JP5426643B2 - Nanocarbon production equipment - Google Patents

Nanocarbon production equipment Download PDF

Info

Publication number
JP5426643B2
JP5426643B2 JP2011265736A JP2011265736A JP5426643B2 JP 5426643 B2 JP5426643 B2 JP 5426643B2 JP 2011265736 A JP2011265736 A JP 2011265736A JP 2011265736 A JP2011265736 A JP 2011265736A JP 5426643 B2 JP5426643 B2 JP 5426643B2
Authority
JP
Japan
Prior art keywords
stainless steel
steel plate
cnt
reaction vessel
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011265736A
Other languages
Japanese (ja)
Other versions
JP2012046426A (en
Inventor
勝記 井手
和高 小城
英一 杉山
毅 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011265736A priority Critical patent/JP5426643B2/en
Publication of JP2012046426A publication Critical patent/JP2012046426A/en
Application granted granted Critical
Publication of JP5426643B2 publication Critical patent/JP5426643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有用性の高い繊維状のナノカーボン例えばカーボンナノチューブを効率的に製造するナノカーボン製造装置に関する。   The present invention relates to a nanocarbon production apparatus for efficiently producing highly useful fibrous nanocarbon such as carbon nanotubes.

カーボンナノチューブの生成法には、アーク放電法、レーザー蒸着法、化学気相成長法(CVD法)などが挙げられる。
アーク放電法は、正負のグラファイト電極間にアーク放電を起こすことでグラファイトが蒸発し、陰極先端に凝縮したカーボンの堆積物の中にカーボンナノチューブが生成される方法である(例えば、特許文献1参照)。レーザー蒸着法は、高温に過熱した不活性ガス中に金属触媒を混合したグラファイト試料を入れ、レーザー照射することによりカーボンナノチューブを生成する方法である(例えば、特許文献2参照)。
Examples of the method for producing the carbon nanotube include an arc discharge method, a laser vapor deposition method, and a chemical vapor deposition method (CVD method).
The arc discharge method is a method in which graphite is evaporated by causing an arc discharge between positive and negative graphite electrodes, and carbon nanotubes are generated in a carbon deposit condensed at the tip of the cathode (see, for example, Patent Document 1). ). The laser vapor deposition method is a method of generating a carbon nanotube by putting a graphite sample mixed with a metal catalyst in an inert gas heated to a high temperature and irradiating it with a laser (see, for example, Patent Document 2).

一般に、上記アーク放電法やレーザー蒸発法では結晶性の良いカーボンナノチューブが生成できるが、生成するカーボンナノチューブの量が少なく大量生成に難しいと言われている。
CVD法には、反応炉の中に配置した基板にカーボンナノチューブを生成させる気相成長基板法(例えば、特許文献3参照)と、触媒金属と炭素源を一緒に高温の炉に流動させカーボンナノチューブを生成する流動気相法(例えば、特許文献4参照)の二つの方法がある。
In general, the arc discharge method or the laser evaporation method can produce carbon nanotubes with good crystallinity, but it is said that the amount of carbon nanotubes to be produced is small and difficult to produce in large quantities.
In the CVD method, a vapor phase growth substrate method (for example, refer to Patent Document 3) in which carbon nanotubes are generated on a substrate disposed in a reaction furnace, and a catalyst metal and a carbon source are flowed together in a high-temperature furnace. There are two methods such as a fluidized gas phase method (see, for example, Patent Document 4).

しかし、上記気相成長基板法は、バッジ処理であるので大量生産が難しい。また、流動気相法は、温度の均一性が低く結晶性の良いカーボンナノチューブを生成するのが難しいとされている。さらに、流動気相法の発展型として、高温の炉の中に、触媒兼用流動材で流動層を形成し、炭素原料を供給して繊維状のナノカーボンを生成する方法も提案されている。しかし、炉内の温度の均一性が低く結晶性の良いカーボンナノチューブを生成するのが難しいと考えられる。   However, since the vapor phase growth substrate method is a badge process, mass production is difficult. Further, the fluidized gas phase method is said to be difficult to produce carbon nanotubes with low temperature uniformity and good crystallinity. Further, as a development type of the fluidized gas phase method, a method of forming a fibrous nanocarbon by forming a fluidized bed with a fluid material also serving as a catalyst in a high-temperature furnace and supplying a carbon raw material has been proposed. However, it is considered difficult to produce carbon nanotubes with low temperature uniformity in the furnace and good crystallinity.

しかして、純度及び安定性の高いカーボンナノチューブを低コストで効率よく量産することができるようになれば、カーボンナノチューブの特性を生かしたナノテクノロジー製品を低コストで大量に供給することが可能になる。   If carbon nanotubes with high purity and stability can be mass-produced efficiently at low cost, it will be possible to supply large quantities of nanotechnology products that make use of the characteristics of carbon nanotubes at low cost. .

特開2000−95509号公報JP 2000-95509 A 特開平10−273308号公報Japanese Patent Laid-Open No. 10-273308 特開2000−86217号公報JP 2000-86217 A 特開2003−342840号公報JP 2003-342840 A

本発明はこうした事情を考慮してなされたもので、純度および安定性の高い高機能のナノカーボンを低コストで効率よく量産することができるナノカーボン製造装置を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a nanocarbon production apparatus capable of efficiently mass-producing highly functional nanocarbon having high purity and stability at low cost.

本願第1の発明に係るナノカーボン製造装置は、内部を還元雰囲気に保持しうる反応容器と、この反応容器内に設けられ,ローラにより駆動するとともに表面にナノカーボンが生成される無端状で帯状のステンレス板と、ステンレス板を加熱する加熱手段と、ステンレス板表面に触媒粉を供給する触媒供給手段と、反応容器内に炭化水素を供給する炭化水素供給手段と、反応容器内に不活性ガスを供給する不活性ガス供給手段と、ステンレス板に生成されたナノカーボンを回収する掻き取り回収手段と、反応容器内のガスを排気するガス排気手段とを具備することを特徴とする。   The nanocarbon production apparatus according to the first invention of the present application is a reaction vessel capable of maintaining the inside in a reducing atmosphere, and an endless, belt-like shape that is provided in the reaction vessel and is driven by a roller and nanocarbon is generated on the surface. Stainless steel plate, heating means for heating the stainless steel plate, catalyst supply means for supplying catalyst powder to the surface of the stainless steel plate, hydrocarbon supply means for supplying hydrocarbons into the reaction vessel, and inert gas in the reaction vessel An inert gas supply means for supplying the carbon, scraping and recovery means for recovering the nanocarbon produced on the stainless steel plate, and gas exhaust means for exhausting the gas in the reaction vessel.

本願第2の発明に係るナノカーボン製造装置は、内部を還元雰囲気に保持しうる反応容器と、この反応容器内に設けられ,ローラにより駆動するとともに表面にナノカーボンが生成される帯状のステンレス板と、ステンレス板を加熱する加熱手段と、ステンレス板表面に触媒粉を供給する触媒供給手段と、反応容器内に炭化水素を供給する炭化水素供給手段と、反応容器内に不活性ガスを供給する不活性ガス供給手段と、ステンレス板に生成されたナノカーボンを回収する掻き取り回収手段と、反応容器内のガスを排気するガス排気手段とを具備することを特徴とする。   The nanocarbon production apparatus according to the second invention of the present application is a reaction vessel capable of maintaining the inside in a reducing atmosphere, and a belt-like stainless steel plate provided in the reaction vessel and driven by a roller and nanocarbon is generated on the surface. Heating means for heating the stainless steel plate, catalyst supply means for supplying catalyst powder to the surface of the stainless steel plate, hydrocarbon supply means for supplying hydrocarbons into the reaction vessel, and supplying an inert gas into the reaction vessel It comprises an inert gas supply means, a scraping recovery means for recovering nanocarbon generated on the stainless steel plate, and a gas exhaust means for exhausting the gas in the reaction vessel.

本願第3の発明に係るナノカーボン製造装置は、内部を還元雰囲気に保持しうる反応容器と、この反応容器内に設けられ,表面にナノカーボンが生成される円板形状のステンレス板と、このステンレス板を駆動する駆動手段と、前記ステンレス板を加熱する加熱手段と、ステンレス板表面に触媒粉を供給する触媒供給手段と、反応容器内に炭化水素を供給する炭化水素供給手段と、反応容器内に不活性ガスを供給する不活性ガス供給手段と、前記ステンレス板に生成されたナノカーボンを回収する掻き取り回収手段と、ナノカーボンを掻き取った後のステンレス板を磨き洗浄する磨き洗浄手段と、反応容器内のガスを排気するガス排気手段とを具備することを特徴とする。   A nanocarbon production apparatus according to a third invention of the present application includes a reaction vessel capable of maintaining the inside in a reducing atmosphere, a disc-shaped stainless steel plate provided in the reaction vessel and generating nanocarbon on a surface thereof, Driving means for driving the stainless steel plate, heating means for heating the stainless steel plate, catalyst supply means for supplying catalyst powder to the surface of the stainless steel plate, hydrocarbon supply means for supplying hydrocarbons into the reaction vessel, and reaction vessel An inert gas supply means for supplying an inert gas therein, a scraping recovery means for recovering the nanocarbon generated on the stainless steel plate, and a polishing cleaning means for polishing and cleaning the stainless steel plate after scraping the nanocarbon. And a gas exhaust means for exhausting the gas in the reaction vessel.

本願第4の発明に係るナノカーボン製造装置は、内部を還元雰囲気に保持しうるとともに,外気と遮断可能な円筒状縦型反応容器と、この縦型反応容器内に配置されたステンレス円筒と、このステンレス円筒の内壁に生成されるナノカーボンを掻き取る螺旋状の掻き取り羽根と、この掻き取り羽根を駆動する駆動源と、前記ステンレス円筒を加熱する加熱手段と、ステンレス円筒内に触媒粉を供給する触媒供給手段と、縦型反応容器内に炭化水素を供給する炭化水素供給手段と、縦型反応容器内に不活性ガスを供給する不活性ガス供給手段と、ステンレス円筒に生成されたナノカーボンを回収する回収手段と、縦型反応容器内のガスを排気するガス排気手段とを具備することを特徴とする。   The nanocarbon production apparatus according to the fourth invention of the present application is capable of maintaining the inside in a reducing atmosphere and is capable of shutting off from the outside air, a cylindrical vertical reaction vessel, and a stainless steel cylinder disposed in the vertical reaction vessel, A spiral scraping blade for scraping nanocarbon generated on the inner wall of the stainless steel cylinder, a driving source for driving the scraping blade, a heating means for heating the stainless steel cylinder, and catalyst powder in the stainless steel cylinder. Catalyst supply means for supplying, hydrocarbon supply means for supplying hydrocarbons into the vertical reaction vessel, inert gas supply means for supplying inert gas into the vertical reaction vessel, and nano-particles produced in the stainless steel cylinder It comprises a recovery means for recovering carbon and a gas exhaust means for exhausting the gas in the vertical reaction vessel.

本発明によれば、純度および安定性の高い高機能のナノカーボンを低コストで効率よく量産することができる。   According to the present invention, highly functional nanocarbon having high purity and stability can be mass-produced efficiently at low cost.

本発明の第1の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るCNT製造装置において、CNTを生成する方法について検証した試験の概略的な工程図である。It is a schematic process drawing of the test verified about the method of producing | generating CNT in the CNT manufacturing apparatus which concerns on the 1st Embodiment of this invention. 図2の生成方法でCNTを生成した写真の外形を描いた図である。It is the figure on which the external shape of the photograph which produced | generated CNT with the production | generation method of FIG. 2 was drawn. 本発明の第2の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 6th Embodiment of this invention. 図8のCNT製造装置の構成部材である回転軸と掻き取り羽根を拡大して示す概念図。The conceptual diagram which expands and shows the rotating shaft and scraping blade | wing which are the structural members of the CNT manufacturing apparatus of FIG. 本発明の第7の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 7th Embodiment of this invention.

以下、本発明のナノカーボン製造装置について更に詳しく説明する。
本発明において、不活性ガスとしては、例えば窒素ガス,アルゴンガスが挙げられる。また、炭化水素としては、例えばエタノール(バイオエタノールを含む)が挙げられる。粉触媒としては、例えば鉄触媒が挙げられる。
Hereinafter, the nanocarbon production apparatus of the present invention will be described in more detail.
In the present invention, examples of the inert gas include nitrogen gas and argon gas. Examples of the hydrocarbon include ethanol (including bioethanol). As a powder catalyst, an iron catalyst is mentioned, for example.

本発明において、炭化水素供給手段は、一般にエタノール等の炭化水素を供給するための炭化水素供給ノズルと、炭化水素を収容する炭化水素収容タンクと、このタンク内の炭化水素をステンレス板上に送るためのポンプとから構成されている。粉触媒供給手段は、例えば鉄触媒等の触媒を供給するための触媒供給ノズルと、ステンレス板の表面に触媒を塗布するための塗布ローラと、触媒を収容する触媒収容タンクと、触媒を触媒供給ノズルに送るためのポンプとから構成されている。不活性ガス供給手段は、例えば窒素等の不活性ガスを供給するための不活性ガス供給ノズルと、不活性ガスを収容する不活性ガス収容タンクと、このタンク内の不活性ガスを不活性ガス供給ノズルに送るためのポンプとから構成されている。磨き洗浄手段は、ステンレス板の表面を研磨する研磨ブラシと、研磨後のステンレス板を洗浄する洗浄液塗布ブラシから構成されている。ガス排気手段は、反応容器に設けられた排気ノズルと、水等の液体を収容する液封タンクと、排気ノズルと液封タンクを接続する配管と、反応容器内のガスを排気するためのポンプにより構成されている。液封タンクに液体を収容するのは、ナノカーボン製造装置で発生するガスの逆流を防ぐためである。   In the present invention, the hydrocarbon supply means generally supplies a hydrocarbon supply nozzle for supplying hydrocarbons such as ethanol, a hydrocarbon storage tank for storing hydrocarbons, and sends the hydrocarbons in the tank onto a stainless steel plate. And is composed of a pump. The powder catalyst supply means includes, for example, a catalyst supply nozzle for supplying a catalyst such as an iron catalyst, an application roller for applying the catalyst to the surface of the stainless steel plate, a catalyst storage tank for storing the catalyst, and a catalyst supply for the catalyst. And a pump for feeding to the nozzle. The inert gas supply means includes, for example, an inert gas supply nozzle for supplying an inert gas such as nitrogen, an inert gas storage tank for storing the inert gas, and the inert gas in the tank as the inert gas. And a pump for feeding to the supply nozzle. The polishing cleaning means includes a polishing brush for polishing the surface of the stainless steel plate and a cleaning liquid application brush for cleaning the polished stainless steel plate. The gas exhaust means includes an exhaust nozzle provided in the reaction vessel, a liquid seal tank for storing a liquid such as water, a pipe connecting the exhaust nozzle and the liquid seal tank, and a pump for exhausting the gas in the reaction vessel It is comprised by. The reason why the liquid is stored in the liquid seal tank is to prevent the backflow of gas generated in the nanocarbon manufacturing apparatus.

次に、本発明の実施形態を、図面を参照して説明する。なお、本実施形態は下記に述べることに限定されない。
(第1の実施形態)
図1は、本発明の第1の実施形態に係るカーボンナノチューブ(CNT)製造装置の概略図である。
同製造装置は、内部を還元雰囲気に保持しうる反応容器1と、表面にナノカーボン(例えばカーボンナノチューブ)2が生成される無端状で帯状のステンレス板3と、加熱手段としてのヒータ4と、炭化水素供給手段5と、不活性ガス供給手段6と、触媒供給手段7と、カーボンナノチューブ掻き取り回収手段(以下、CNT掻き取り回収手段と呼ぶ)8と、磨き洗浄手段9と、ガス排気手段10を備えている。
Next, embodiments of the present invention will be described with reference to the drawings. Note that the present embodiment is not limited to the following description.
(First embodiment)
FIG. 1 is a schematic view of a carbon nanotube (CNT) manufacturing apparatus according to the first embodiment of the present invention.
The manufacturing apparatus includes a reaction vessel 1 capable of maintaining the inside in a reducing atmosphere, an endless belt-like stainless steel plate 3 on which nanocarbon (for example, carbon nanotubes) 2 is generated, a heater 4 as a heating unit, Hydrocarbon supply means 5, inert gas supply means 6, catalyst supply means 7, carbon nanotube scraping recovery means (hereinafter referred to as CNT scraping recovery means) 8, polishing cleaning means 9, and gas exhaust means 10 is provided.

前記ステンレス板3は、駆動ローラ11と従動ローラ12により矢印Aのように回転移動するようになっている。ステンレス板3は、ヒータ4、該ヒータ4を固定して保温する耐熱材13、及び熱を遮断する断熱材14で囲まれている。ヒータ4には、ヒータ制御手段15が電気的に接続されている。ヒータ4とステンレス板3との空間には、炭化水素供給手段5から炭化水素原料例えばエタノールBが供給されるようになっている。   The stainless steel plate 3 is rotated and moved as indicated by an arrow A by a driving roller 11 and a driven roller 12. The stainless steel plate 3 is surrounded by a heater 4, a heat-resistant material 13 that fixes and keeps the heater 4 warm, and a heat-insulating material 14 that blocks heat. A heater control means 15 is electrically connected to the heater 4. A hydrocarbon raw material such as ethanol B is supplied from a hydrocarbon supply means 5 to the space between the heater 4 and the stainless steel plate 3.

炭化水素供給手段5は、例えばエタノールBをヒータ4とステンレス板3との空間に供給する炭化水素供給ノズル16と、このノズル16に接続する炭化水素収容タンク17と、図示しない液送用ポンプとを備えている。前記ステンレス板3,駆動ローラ11,従動ローラ12,ヒータ4,耐熱材13,断熱材14,後述する掻き取り板,研磨ブラシ,洗浄液塗布ブラシは、筐体18により囲まれている。この筐体18の外周部には、例えばロックウールからなる保温材19が貼られている。なお、図中の符号Fは原料ガスの移動方向を示す。   The hydrocarbon supply means 5 includes, for example, a hydrocarbon supply nozzle 16 for supplying ethanol B to the space between the heater 4 and the stainless steel plate 3, a hydrocarbon storage tank 17 connected to the nozzle 16, a liquid feed pump (not shown), It has. The stainless steel plate 3, the driving roller 11, the driven roller 12, the heater 4, the heat-resistant material 13, the heat insulating material 14, a scraping plate, a polishing brush, and a cleaning liquid application brush described later are surrounded by a housing 18. A heat insulating material 19 made of, for example, rock wool is attached to the outer peripheral portion of the housing 18. In addition, the code | symbol F in a figure shows the moving direction of source gas.

前記不活性ガス供給手段6は、反応容器1内に不活性ガス例えば窒素ガスCを供給する不活性ガス供給ノズル20と、このノズル20に接続する不活性ガス収容タンク21と、図示しないポンプとから構成されている。前記触媒供給手段7は、ステンレス板3に隣接した塗布ローラ22と、この塗布ローラ22に粉触媒Dを噴霧して供給する触媒供給ノズル23と、粉触媒Dを収容する触媒収容タンク24と、図示しないポンプとから構成されている。ここで、粉触媒Dの粒径は、例えばミクロン前後の粒径の鉄粉である。   The inert gas supply means 6 includes an inert gas supply nozzle 20 for supplying an inert gas such as nitrogen gas C into the reaction vessel 1, an inert gas storage tank 21 connected to the nozzle 20, a pump (not shown), It is composed of The catalyst supply means 7 includes an application roller 22 adjacent to the stainless steel plate 3, a catalyst supply nozzle 23 for supplying the application roller 22 by spraying the powder catalyst D, a catalyst storage tank 24 for storing the powder catalyst D, It is comprised from the pump which is not illustrated. Here, the particle size of the powder catalyst D is, for example, iron powder having a particle size of about a micron.

前記CNT掻き取り回収手段8は、従動ローラ12の真下でステンレス板3に近接して配置されたカーボンナノチューブ掻き取り板(以下、CNT掻き取り板と呼ぶ)25と、掻き取り板25により掻き取ったカーボンナノチューブ(以下、CNTと呼ぶ)2を収容するカーボンナノチューブ回収缶(以下、CNT回収缶と呼ぶ)26により構成されている。前記ガス排気手段10は、反応容器1の下流側(図中の右側)に設けられた排気ノズル27と、水28を収容する水封タンク29と、排気ノズル27と水封タンク29を接続する配管30と、図示しないガス吸引用ポンプにより構成されている。   The CNT scraping and collecting means 8 includes a carbon nanotube scraping plate (hereinafter referred to as a CNT scraping plate) 25 disposed immediately below the driven roller 12 and in proximity to the stainless steel plate 3, and a scraping plate 25 for scraping. And a carbon nanotube recovery can (hereinafter referred to as CNT recovery can) 26 that accommodates carbon nanotubes (hereinafter referred to as CNT) 2. The gas exhaust means 10 connects an exhaust nozzle 27 provided on the downstream side (right side in the figure) of the reaction vessel 1, a water seal tank 29 for storing water 28, and the exhaust nozzle 27 and the water seal tank 29. It is constituted by a pipe 30 and a gas suction pump (not shown).

前記反応容器1の下部側で且つ掻き取り板22の更に下流側には、ステンレス板2の表面を研磨する研磨ブラシ31、及び研磨を終えたステンレス板2の表面に洗浄液を塗布する洗浄液塗布ブラシ32が夫々設けられている。磨き洗浄手段9は、研磨ブラシ31と洗浄液塗布ブラシ32により構成されている。前記研磨ブラシ29の真下には、ステンレス鉄板3を磨いた研磨粉33を回収する研磨粉回収缶34が配置されている。洗浄液塗布ブラシ32の真下には、ステンレス板3の表面を洗浄処理した洗浄液35を回収する洗浄液回収缶36が配置されている。洗浄塗布ブラシ32には、洗浄液供給ノズル37と洗浄液例えばエタノールEを収容する洗浄液収容タンク38を有する洗浄液供給手段39によりエタノールEが供給されるようになっている。前記従動ローラ12の近くの反応容器1には、ステンレス板3に生成されるCNT2を直接観察するための覗き窓40が設けられている。   On the lower side of the reaction vessel 1 and further downstream of the scraping plate 22, a polishing brush 31 for polishing the surface of the stainless steel plate 2, and a cleaning liquid application brush for applying a cleaning liquid to the surface of the stainless steel plate 2 after polishing. 32 are provided. The polishing cleaning means 9 is composed of a polishing brush 31 and a cleaning liquid application brush 32. A polishing powder recovery can 34 for recovering the polishing powder 33 obtained by polishing the stainless steel plate 3 is disposed immediately below the polishing brush 29. A cleaning liquid recovery can 36 for recovering the cleaning liquid 35 obtained by cleaning the surface of the stainless steel plate 3 is disposed directly below the cleaning liquid application brush 32. Ethanol E is supplied to the cleaning application brush 32 by a cleaning liquid supply means 39 having a cleaning liquid supply nozzle 37 and a cleaning liquid storage tank 38 for storing a cleaning liquid such as ethanol E. The reaction container 1 near the driven roller 12 is provided with a viewing window 40 for directly observing the CNT 2 generated on the stainless steel plate 3.

次に、CNTを生成する方法について検証した試験について、図2の概略的な工程図を参照して説明する。
1)まず、図2の(A)のようにステンレス板41の表面に触媒粉としての鉄粉42を混合したエタノール液を塗布した後、ステンレス板41を反応容器47の中に入れ、図2の(B)のように乾燥し、鉄粉42を塗布した表面を乾燥する。つづいて、鉄粉42を塗布したステンレス板41を、炭化水素供給手段43,不活性ガス供給手段44,排気ガス回収手段45及び加熱手段46を備えた反応容器47の中に入れ、500〜1000℃程度まで加熱する(図2の(C)参照)。
Next, the test verified about the method of producing CNTs will be described with reference to the schematic process diagram of FIG.
1) First, as shown in FIG. 2A, an ethanol solution in which iron powder 42 as catalyst powder is mixed is applied to the surface of a stainless steel plate 41, and then the stainless steel plate 41 is placed in a reaction vessel 47. (B) and the surface coated with the iron powder 42 is dried. Subsequently, the stainless steel plate 41 coated with the iron powder 42 is put into a reaction vessel 47 having a hydrocarbon supply means 43, an inert gas supply means 44, an exhaust gas recovery means 45, and a heating means 46, and 500 to 1000 is added. Heat to about 0 ° C. (see FIG. 2C).

2)次に、ステンレス板41を冷却してから取り出したところ、ステンレス板41の表面にCNT48が生成された(図2の(D)参照)。つづいて、図2の(E)に示すようなステンレス板41上のCNT48を、カッター49により掻き落とす(図2の(F)参照)。その結果、図2の(G)のようにCNT48が回収された。
図3は、前記生成方法でCNT48を生成した写真の外形を描いたものである。即ち、図3は、鉄板41上に生成されたCNTを電子顕微鏡で観察したところ、細い線状のCNT48であることが確認された。
2) Next, when the stainless steel plate 41 was cooled and taken out, CNTs 48 were generated on the surface of the stainless steel plate 41 (see FIG. 2D). Subsequently, the CNTs 48 on the stainless steel plate 41 as shown in FIG. 2E are scraped off by the cutter 49 (see FIG. 2F). As a result, CNTs 48 were recovered as shown in FIG.
FIG. 3 shows the outer shape of a photograph in which the CNT 48 is generated by the generation method. That is, in FIG. 3, when the CNT produced | generated on the iron plate 41 was observed with the electron microscope, it was confirmed that it was the thin linear CNT48.

次に、図1のCNT製造装置での製造方法を説明する。
まず、装置内部を不活性雰囲気にするために、不活性供給手段6を使って例えば窒素ガスを供給し、内部を窒素雰囲気に置換する。その後、ステンレス板3を回転移動させ、ヒータ制御手段15の電源を入れ、カーボンナノチューブ生成雰囲気が500〜1000℃の生成温度に達するまで昇温する。生成温度に達したら、窒素の供給を止めると同時に、炭素原料供給手段5を起動し、例えばエタノールBを炭素原料供給ルズル16から供給し、雰囲気の温度で瞬間に蒸発して炭化水素を含んだ気体となる。並行して、粉触媒供給手段7を起動し、触媒をステンレス板3の表面に塗布する。その際、十分に暖められたステンレス板表面の鉄触媒と炭化水素ガスが反応してCNT2を還元雰囲気で生成して生長する。ステンレス板3の表面に生長したCNT2は、従動ローラ12の下部に設けられたCNT掻き取り板25で掻き落とされ、下部のCNT回収缶26に回収される。ステンレス板3は、従動ローラ12で冷却された後、右へ移動し、研磨ブラシ31で磨き、洗浄液塗布ブラシ32で表面を線状する。その状態でステンレス板3とヒータ4間のカーボンナノチューブ生成部に戻され、再度CNTを生成する。
Next, a manufacturing method using the CNT manufacturing apparatus of FIG. 1 will be described.
First, in order to make the inside of the apparatus an inert atmosphere, for example, nitrogen gas is supplied using the inert supply means 6 and the inside is replaced with a nitrogen atmosphere. Thereafter, the stainless steel plate 3 is rotated, the heater control means 15 is turned on, and the temperature is raised until the carbon nanotube generation atmosphere reaches a generation temperature of 500 to 1000 ° C. When the generation temperature is reached, the supply of nitrogen is stopped, and at the same time, the carbon raw material supply means 5 is started. It becomes gas. In parallel, the powder catalyst supply means 7 is activated to apply the catalyst to the surface of the stainless steel plate 3. At that time, the iron catalyst on the surface of the sufficiently heated stainless steel plate reacts with the hydrocarbon gas to produce CNT2 in a reducing atmosphere and grow. The CNTs 2 grown on the surface of the stainless steel plate 3 are scraped off by a CNT scraping plate 25 provided at the lower portion of the driven roller 12 and collected in a lower CNT collection can 26. The stainless steel plate 3 is cooled by the driven roller 12, moves to the right, is polished by the polishing brush 31, and the surface is linearized by the cleaning liquid application brush 32. In this state, it is returned to the carbon nanotube generation part between the stainless steel plate 3 and the heater 4 to generate CNT again.

第1の実施形態に係るナノカーボン製造装置は、図1に示すように、内部を還元雰囲気に保持しうる反応容器1と、表面にCNT2が生成される無端状で帯状のステンレス板3と、ヒータ4と、炭化水素供給手段5と、不活性ガス供給手段6と、触媒供給手段7と、CNT掻き取り回収手段8と、ガス排気手段9と、洗浄液供給手段39とを備えた構成となっているので、触媒が少なく純度が極めて高いCNTが得られる。また、本発明によれば、反応容器1内の不活性雰囲気化、CNT生成雰囲気での昇温、ステンレス板3への粉触媒の供給、ステンレス板3表面へのCNT生成、CNT2の掻き落とし、ステンレス板3の磨き及び洗浄を順次自動的に行うことができるので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。更に、ステンレス板3を磨いた後の研磨粉33は研磨粉回収缶34で回収でき、洗浄液35の残り液は洗浄液回収缶36で回収して再利用できる。更には、覗き窓40によりCNT2のでき方を直接監視できる。   As shown in FIG. 1, the nanocarbon production apparatus according to the first embodiment includes a reaction vessel 1 capable of maintaining the inside in a reducing atmosphere, an endless strip-shaped stainless steel plate 3 in which CNT2 is generated on the surface, The heater 4, the hydrocarbon supply means 5, the inert gas supply means 6, the catalyst supply means 7, the CNT scraping / recovery means 8, the gas exhaust means 9, and the cleaning liquid supply means 39 are provided. Therefore, CNTs with few catalysts and extremely high purity can be obtained. Further, according to the present invention, the inert atmosphere in the reaction vessel 1, the temperature rise in the CNT generation atmosphere, the supply of the powder catalyst to the stainless steel plate 3, the CNT generation on the surface of the stainless steel plate 3, the CNT 2 is scraped off, Since the stainless steel plate 3 can be polished and washed in sequence automatically, highly functional CNTs 2 with high purity and stability can be mass-produced efficiently at low cost. Further, the polishing powder 33 after polishing the stainless steel plate 3 can be recovered by the polishing powder recovery can 34, and the remaining liquid of the cleaning liquid 35 can be recovered by the cleaning liquid recovery can 36 and reused. Furthermore, the way the CNTs 2 are formed can be directly monitored by the viewing window 40.

(第2の実施形態)
図4は、本発明の第2の実施形態に係るCNT製造装置の概略図である。但し、図1と同部材は同符番を付して説明を省略し、要部のみを説明する。
第2の実施形態に係るナノカーボン製造装置は、図1の場合と比べて、研磨ブラシ及び洗浄液塗布ブラシからなる磨き洗浄手段,研磨粉回収缶,洗浄液回収缶及び洗浄液供給手段を省いた点、及びCNTを掻き取り板で掻き取る際,CNTをほとんど残す点が異なることを特徴とする。
(Second Embodiment)
FIG. 4 is a schematic view of a CNT manufacturing apparatus according to the second embodiment of the present invention. However, the same members as those in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted, and only the main parts will be described.
Compared with the case of FIG. 1, the nanocarbon manufacturing apparatus according to the second embodiment is that the polishing cleaning means, the polishing powder recovery can, the cleaning liquid recovery can and the cleaning liquid supply means including the polishing brush and the cleaning liquid application brush are omitted. And when the CNT is scraped off with a scraping plate, it is characterized in that the CNT is mostly left.

次に、図4のCNT製造装置でのCNTの製造方法について説明する。
まず、装置内部を不活性雰囲気にするために、不活性供給手段6を使って例えば窒素を供給し、内部を窒素雰囲気に置換する。その後、ステンレス板3を回転移動させ、ヒータ制御手段15の電源を入れ、CNT生成雰囲気が500〜1000℃の生成温度に達するまで昇温する。生成温度に達したら、窒素の供給を止めると同時に、炭素原料供給手段5を起動し、例えばエタノールBを炭素原料供給ルズル16から供給し、雰囲気の温度で瞬間に蒸発して炭化水素を含んだ気体となる。並行して、粉触媒供給手段7を起動し、触媒をステンレス板3の表面に塗布する。その際、十分に暖められたステンレス板表面の鉄触媒と炭化水素ガスが反応してCNT2を還元雰囲気で生成して生長する。ステンレス板3の表面に生長したCNT2は、従動ローラ12の下部に設けられたCNT掻き取り板25で掻き落とされ、下部のCNT回収缶26に回収される。
Next, a method for manufacturing CNTs in the CNT manufacturing apparatus of FIG. 4 will be described.
First, in order to make the inside of the apparatus an inert atmosphere, for example, nitrogen is supplied using the inert supply means 6, and the inside is replaced with a nitrogen atmosphere. Thereafter, the stainless steel plate 3 is rotated, the heater control means 15 is turned on, and the temperature is raised until the CNT generation atmosphere reaches a generation temperature of 500 to 1000 ° C. When the generation temperature is reached, the supply of nitrogen is stopped, and at the same time, the carbon raw material supply means 5 is started. It becomes gas. In parallel, the powder catalyst supply means 7 is activated to apply the catalyst to the surface of the stainless steel plate 3. At that time, the iron catalyst on the surface of the sufficiently heated stainless steel plate reacts with the hydrocarbon gas to produce CNT2 in a reducing atmosphere and grow. The CNTs 2 grown on the surface of the stainless steel plate 3 are scraped off by a CNT scraping plate 25 provided at the lower portion of the driven roller 12 and collected in a lower CNT collection can 26.

第2の実施形態に係るCNT製造装置は、図4に示すように、内部を還元雰囲気に保持しうる反応容器1と、表面にCNT2が生成される無端状で帯状のステンレス板3と、ヒータ4と、炭化水素供給手段5と、不活性ガス供給手段6と、触媒供給手段7と、CNT掻き取り回収手段8と、ガス排気手段10を備えた構成となっているので、触媒が少なく純度が極めて高いCNT2が得られる。また、本発明によれば、反応容器1内の不活性雰囲気化、昇温、ステンレス板3への鉄触媒の塗布、ステンレス板3表面へのCNT生成、CNT2の掻き落としを順次自動的に行うことができるので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。   As shown in FIG. 4, the CNT manufacturing apparatus according to the second embodiment includes a reaction vessel 1 capable of maintaining the inside in a reducing atmosphere, an endless strip-like stainless steel plate 3 on which CNT2 is generated, and a heater. 4, hydrocarbon supply means 5, inert gas supply means 6, catalyst supply means 7, CNT scraping / recovery means 8, and gas exhaust means 10. Can be obtained. In addition, according to the present invention, the inert atmosphere in the reaction vessel 1, the temperature rise, the application of the iron catalyst to the stainless steel plate 3, the generation of CNTs on the surface of the stainless steel plate 3, and the scraping off of the CNTs 2 are sequentially and automatically performed. Therefore, highly functional CNT2 having high purity and stability can be mass-produced efficiently at low cost.

(第3の実施形態)
図5は、本発明の第3の実施形態に係るCNT製造装置の概略図である。但し、図1と同部材は同符番を付して説明を省略し、要部のみを説明する。
図5中の符番51は、CNTを生成し、CNT掻き取り後のステンレス板3aを巻き取る駆動巻取りローラである。また、符番52は、例えば塩酸等により表面処理したステンレス板3aが巻回された従動ローラである。表面処理したステンレス板3aは、従動ローラ52から第1の支持ローラ53aを経てCNT生成部でCNTを生成し、CNT掻き取り後、第2の支持ローラ53bを経て駆動巻取りローラ51で巻き取るようになっている。
(Third embodiment)
FIG. 5 is a schematic view of a CNT manufacturing apparatus according to the third embodiment of the present invention. However, the same members as those in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted, and only the main parts will be described.
Reference numeral 51 in FIG. 5 denotes a drive winding roller that generates CNTs and winds up the stainless steel plate 3a after scraping the CNTs. Reference numeral 52 denotes a driven roller around which a stainless steel plate 3a surface-treated with hydrochloric acid or the like is wound. The surface-treated stainless steel plate 3a generates CNTs from the driven roller 52 through the first support roller 53a at the CNT generation unit, scrapes the CNTs, and then winds up with the drive take-up roller 51 through the second support roller 53b. It is like that.

次に、図5のナノカーボン製造装置でのCNTの製造方法について説明する。
まず、装置内部を不活性雰囲気にするために、不活性ガス供給手段6を使って例えば窒素を供給し、内部を窒素雰囲気に置換する。次に、ヒータ制御手段15の電源を入れ、カーボンナノチューブ生成雰囲気が500〜1000℃の生成温度に達するまで昇温する。生成温度に達したら、窒素の供給を止めると同時に、表面処理したステンレス板3aを回転移動させ、炭素原料供給手段5を起動し、例えばエタノールBを炭素原料供給ルズル16から供給し、雰囲気の温度で瞬間に蒸発して炭化水素を含んだ気体となる。並行して、触媒供給手段7を起動し、鉄触媒をステンレス板3aの表面に塗布する。その際、十分に暖められたステンレス板表面の鉄触媒と炭化水素ガスが反応してCNT2を還元雰囲気で生成して生長する。ステンレス板3aの表面に生長したCNT2は、駆動巻き取りローラ51の下部に設けられたCNT掻き取り板25で掻き落とされ、下部のCNT回収缶26に回収される。
Next, a method for producing CNTs in the nanocarbon production apparatus of FIG. 5 will be described.
First, in order to make the inside of the apparatus an inert atmosphere, for example, nitrogen is supplied using the inert gas supply means 6, and the inside is replaced with a nitrogen atmosphere. Next, the heater control means 15 is turned on and the temperature is raised until the carbon nanotube generation atmosphere reaches a generation temperature of 500 to 1000 ° C. When the production temperature is reached, the supply of nitrogen is stopped, and at the same time, the surface-treated stainless steel plate 3a is rotated and moved, the carbon raw material supply means 5 is activated, and, for example, ethanol B is supplied from the carbon raw material supply luz 16 to It instantly evaporates and becomes a gas containing hydrocarbons. In parallel, the catalyst supply means 7 is activated to apply the iron catalyst to the surface of the stainless steel plate 3a. At that time, the iron catalyst on the surface of the sufficiently heated stainless steel plate reacts with the hydrocarbon gas to produce CNT2 in a reducing atmosphere and grow. The CNTs 2 grown on the surface of the stainless steel plate 3a are scraped off by the CNT scraping plate 25 provided at the lower part of the drive take-up roller 51, and are collected in the lower CNT collection can 26.

第3の実施形態に係るCNT製造装置は、図5に示すように、内部を還元雰囲気に保持しうる反応容器1と、表面にCNT2が生成される表面処理されたステンレス板3aと、ヒータ4と、炭化水素供給手段5と、不活性ガス供給手段6と、触媒供給手段7と、CNT掻き取り回収手段8と、ガス排気手段9と、表面処理されたステンレス板3aを巻回する従動ローラ52と、CNT2を生成し掻き取った後のステンレス板3を巻き取る駆動巻取りローラ51を備えた構成となっているので、触媒が少なく純度が極めて高いCNTが得られる。また、本発明によれば、反応容器1内の不活性雰囲気化、昇温、ステンレス板3aへの鉄触媒の塗布、ステンレス板3a表面へのCNT生成、CNT2の掻き落としを順次自動的に行うことができるので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。   As shown in FIG. 5, the CNT manufacturing apparatus according to the third embodiment includes a reaction vessel 1 capable of maintaining the inside in a reducing atmosphere, a surface-treated stainless steel plate 3 a on which CNT 2 is generated, and a heater 4. A hydrocarbon supply means 5, an inert gas supply means 6, a catalyst supply means 7, a CNT scraping and collecting means 8, a gas exhaust means 9, and a driven roller for winding the surface-treated stainless steel plate 3a. 52 and a drive take-up roller 51 for winding up the stainless steel plate 3 after the CNT 2 is generated and scraped off, so that CNTs with little catalyst and extremely high purity can be obtained. Further, according to the present invention, the inert atmosphere in the reaction vessel 1, the temperature rise, the application of the iron catalyst to the stainless steel plate 3a, the CNT generation on the surface of the stainless steel plate 3a, and the scraping off of the CNT2 are sequentially and automatically performed. Therefore, highly functional CNT2 having high purity and stability can be mass-produced efficiently at low cost.

(第4の実施形態)
図6は、本発明の第4の実施形態に係るCNT製造装置の要部のみを示す概略図である。但し、図1と同部材は同符番を付して説明を省略し、要部のみを説明する。
同製造装置は、内部を還元雰囲気に保持しうる反応容器(図示せず)と、表面にCNT2が生成される円板形状のステンレス板60と、加熱手段としてのヒータ4と、触媒供給手段の一構成である触媒塗布ノズル23と、炭化水素供給手段の一構成である炭素原料供給ノズル16と、不活性ガス供給手段(図示せず)と、CNT掻き取り回収手段を構成するCNT掻き取り板22と、ガス排気手段(図示せず)と、ステンレス板60をゆっくり回転させる回転手段61を備えている。同製造装置は、縦型掻き取り方式を採用している。
(Fourth embodiment)
FIG. 6 is a schematic view showing only main parts of a CNT manufacturing apparatus according to the fourth embodiment of the present invention. However, the same members as those in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted, and only the main parts will be described.
The manufacturing apparatus includes a reaction vessel (not shown) capable of maintaining the inside in a reducing atmosphere, a disk-shaped stainless steel plate 60 on which CNT2 is generated, a heater 4 as a heating unit, and a catalyst supply unit. CNT scraping plate which constitutes catalyst coating nozzle 23 which is one configuration, carbon raw material supply nozzle 16 which is one configuration of hydrocarbon supply means, inert gas supply means (not shown), and CNT scraping recovery means 22, a gas exhausting means (not shown), and a rotating means 61 for slowly rotating the stainless steel plate 60. The manufacturing apparatus employs a vertical scraping method.

回転手段61は、一端が複数のスポーク62を介してステンレス板60の内側端部に連結する主軸63と、この主軸63を矢印Fのように回転させる駆動モータ64とから構成されている。図中の符番65a,65bは断熱材(図示せず)を貼った仕切り板であり、ステンレス板60の上部を領域A,Aに区切っている。一方の領域Aには炭素原料供給ノズル16が配置され、例えばエタノールBがステンレス板60上に供給される。他方の領域Aのステンレス板60の上部にはロール状の研磨ブラシ66が設けられている。また、領域Aでは、研磨後のステンレス板60の表面に粉触媒例えば鉄触媒Dを供給するように触媒塗布ノズル35が配置されている。なお、図中の符番67はCNT生成部を示し、符号Sは洗浄面を示す。また、周辺部品である研磨ブラシ66,触媒塗布ノズル23,炭素原料供給ノズル16及びCNT掻き取り板22等は全て筐体18に囲まれ、外気と遮断して還元雰囲気を維持できるように構成されている。 The rotating means 61 includes a main shaft 63 having one end connected to the inner end of the stainless steel plate 60 via a plurality of spokes 62, and a drive motor 64 that rotates the main shaft 63 as indicated by an arrow F. Reference numerals 65a and 65b in the drawing are partition plates to which a heat insulating material (not shown) is attached, and the upper part of the stainless steel plate 60 is divided into regions A 1 and A 2 . In one area A 1 , a carbon raw material supply nozzle 16 is disposed, and for example, ethanol B is supplied onto the stainless steel plate 60. Roll polishing brush 66 is provided at an upper portion of the other stainless steel plate 60 of the region A 2. Further, in the region A 2, the catalyst coating nozzle 35 is arranged to supply powder catalysts such as iron catalysts D on the surface of the stainless steel plate 60 after polishing. In addition, the code | symbol 67 in a figure shows a CNT production | generation part, and the code | symbol S shows a washing surface. Further, the peripheral parts such as the polishing brush 66, the catalyst application nozzle 23, the carbon raw material supply nozzle 16, the CNT scraping plate 22 and the like are all surrounded by the casing 18 so as to be blocked from the outside air and maintain a reducing atmosphere. ing.

次に、図6のCNT製造装置での製造方法を説明する。
まず、装置内部を不活性雰囲気にするために、筐体18内に窒素供給手段を用いて例えば窒素を供給し、内部を窒素雰囲気に置換する。次に、駆動モータ64を矢印Fの方向に回転させる。次に、ヒータ4の電源を入れ、ステンレス板60をカーボンナノチューブ生成雰囲気が500〜1000℃の生成温度に達するまで昇温する。生成温度に達したら、窒素の供給を止めると同時に、炭素原料供給手段を起動し、例えばエタノールBを炭素原料供給ルズル16から供給する。エタノールは、雰囲気の温度で瞬間に蒸発して炭化水素を含んだ気体となる。
Next, a manufacturing method using the CNT manufacturing apparatus of FIG. 6 will be described.
First, in order to make the inside of the apparatus an inert atmosphere, for example, nitrogen is supplied into the housing 18 using a nitrogen supply means, and the inside is replaced with a nitrogen atmosphere. Next, the drive motor 64 is rotated in the direction of arrow F. Next, the heater 4 is turned on and the temperature of the stainless steel plate 60 is increased until the carbon nanotube generation atmosphere reaches a generation temperature of 500 to 1000 ° C. When the generation temperature is reached, the supply of nitrogen is stopped, and at the same time, the carbon raw material supply means is started, and, for example, ethanol B is supplied from the carbon raw material supply luz 16. Ethanol is instantly evaporated at ambient temperature to become a hydrocarbon-containing gas.

並行して、粉触媒供給手段を起動し、粉触媒Dを触媒塗布ノズル23よりステンレス板60の表面に塗布する。その際、十分に暖められたステンレス板60表面の鉄触媒と炭化水素ガスが反応してCNT2を還元雰囲気で生成して生長する。ステンレス板60の表面に生長したCNT2は、CNT掻き取り板25で掻き落とされ、下部のCNT回収缶26に回収される。ステンレス板60は仕切り板65aを通り過ぎ、冷却された後に研磨ブラシ66で磨き、不純物を除去する。その後、ステンレス板60は、仕切り板65bを通過し再度CNT2の生成を繰り返す。   In parallel, the powder catalyst supply means is activated, and the powder catalyst D is applied to the surface of the stainless steel plate 60 from the catalyst application nozzle 23. At that time, the iron catalyst on the surface of the sufficiently heated stainless steel plate 60 and the hydrocarbon gas react with each other to generate and grow CNT2 in a reducing atmosphere. The CNT 2 grown on the surface of the stainless steel plate 60 is scraped off by the CNT scraping plate 25 and collected in the lower CNT collection can 26. The stainless steel plate 60 passes through the partition plate 65a, and after being cooled, is polished with a polishing brush 66 to remove impurities. Thereafter, the stainless steel plate 60 passes through the partition plate 65b and repeats the generation of CNT2 again.

第4の実施形態に係るナノカーボン製造装置は、内部を還元雰囲気に保持しうる反応容器(図示せず)と、表面にCNT2が生成される円形状のステンレス板60と、ヒータ4と、触媒供給手段と、炭化水素供給手段と、不活性ガス供給手段と、CNT掻き取り回収手段と、ガス排気手段と、ステンレス板60を回転駆動する回転手段61とを備えた構成となっているので、触媒が少なく純度が極めて高いCNTが得られる。また、本発明によれば、反応容器内の不活性雰囲気化、昇温、ステンレス板60への鉄触媒の塗布、ステンレス板60表面へのCNT生成、CNT2の掻き落としを順次自動的に行うことができるので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。   The nanocarbon manufacturing apparatus according to the fourth embodiment includes a reaction vessel (not shown) that can maintain the inside in a reducing atmosphere, a circular stainless steel plate 60 on which CNT2 is generated on the surface, a heater 4, and a catalyst. Since the supply means, the hydrocarbon supply means, the inert gas supply means, the CNT scraping and recovery means, the gas exhaust means, and the rotation means 61 that rotationally drives the stainless steel plate 60, CNTs with few catalysts and very high purity can be obtained. Further, according to the present invention, the inert atmosphere in the reaction vessel, the temperature rise, the application of the iron catalyst to the stainless steel plate 60, the CNT generation on the surface of the stainless steel plate 60, and the scraping off of the CNT2 are automatically performed in sequence. Therefore, it is possible to efficiently mass-produce highly functional CNT2 with high purity and stability at low cost.

なお、第4の実施形態では、1枚の円形のステンレス板を用いてCNTの生成を行う場合について述べたが、これに限らない。例えば、複数枚の円形のステンレス板を一定の間隔をおいて主軸の軸方向(Y軸方向)に平行に配置して主軸により回転可能にするとともに、各ステンレス板毎に研磨ブラシ,触媒供給手段,炭素原料供給手段,加熱手段等を配置することにより、1枚のステンレス板を用いる場合に比べてよりCNTの量産化が可能となる。   In the fourth embodiment, the case where CNT is generated using one circular stainless steel plate is described, but the present invention is not limited to this. For example, a plurality of circular stainless steel plates are arranged in parallel to the axial direction (Y-axis direction) of the main shaft at a fixed interval so as to be rotatable by the main shaft, and a polishing brush and a catalyst supply means for each stainless steel plate By arranging the carbon raw material supply means, the heating means, etc., CNT can be mass-produced more than when a single stainless steel plate is used.

(第5の実施形態)
図7は、本発明の第5の実施形態に係るCNT製造装置の要部のみを示す概略図である。但し、図1,図6と同部材は同符番を付して説明を省略し、要部のみを説明する。
第5の実施形態に係るナノカーボン製造装置は横型掻き取り方式を採用し、図6の場合と比べ、円形のステンレス板60を縦型にし、触媒塗布ノズル23からステンレス板60に横方向から鉄触媒を噴霧するようにした点が異なり、他は図6の場合と同様である。また、CNT2の製造の仕方も第4の実施形態で述べたとおりである。
(Fifth embodiment)
FIG. 7 is a schematic view showing only main parts of a CNT manufacturing apparatus according to the fifth embodiment of the present invention. However, the same members as those in FIGS. 1 and 6 are denoted by the same reference numerals and the description thereof will be omitted, and only the main parts will be described.
The nanocarbon manufacturing apparatus according to the fifth embodiment employs a horizontal scraping method, and in comparison with the case of FIG. 6, the circular stainless steel plate 60 is made vertical, and iron is applied from the catalyst application nozzle 23 to the stainless steel plate 60 from the lateral direction. The difference is that the catalyst is sprayed, and the others are the same as in the case of FIG. The method of manufacturing CNT2 is also as described in the fourth embodiment.

第5の実施形態に係るCNT製造装置によれば、第4の実施形態と同様な効果が得られる。また、第5の実施形態の場合も、第4の実施形態と同様に、複数枚の円形のステンレス板を一定の間隔をおいて主軸の軸方向(X軸方向)に平行に配置して主軸により回転可能にするとともに、各ステンレス板毎に研磨ブラシ,触媒供給手段,炭素原料供給手段,加熱手段等を配置することにより、1枚のステンレス板を用いる場合に比べてよりCNTの量産化が可能となる。   According to the CNT manufacturing apparatus according to the fifth embodiment, the same effect as in the fourth embodiment can be obtained. Also in the case of the fifth embodiment, similarly to the fourth embodiment, a plurality of circular stainless steel plates are arranged in parallel to the axial direction (X-axis direction) of the main shaft at a constant interval. Rotation of the CNT, and by arranging a polishing brush, catalyst supply means, carbon raw material supply means, heating means, etc. for each stainless steel plate, mass production of CNT can be made more than when a single stainless steel plate is used. It becomes possible.

(第6の実施形態)
図8及び図9は、本発明の第6の実施形態に係るCNT製造装置の概略図である。ここで、図8は同製造装置の全体図、図9は同製造装置の一構成である回転軸及び掻き取り羽根の形状を拡大して示す概念図である。但し、図1と同部材は同符番を付して説明を省略し、要部のみを説明する。
(Sixth embodiment)
8 and 9 are schematic views of a CNT manufacturing apparatus according to the sixth embodiment of the present invention. Here, FIG. 8 is an overall view of the manufacturing apparatus, and FIG. 9 is an enlarged conceptual view showing the shapes of the rotating shaft and scraping blades which are components of the manufacturing apparatus. However, the same members as those in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted, and only the main parts will be described.

図中の符番71は、回転しないステンレス製の円筒状縦型反応容器である。この反応容器71の内側には、ステンレス製の円筒72が反応容器71と同軸状に固定して配置されている。円筒72の内側には、回転軸73により回転する掻き取り羽根74が設けられている。この掻き取り羽根74は、回転軸73に連結した駆動源としての駆動モータ75により矢印Fの方向に回転し、円筒72の内壁に生成されるCNT2を掻き取るように配置されている。掻き取り羽根74は、図9に示すように「ハの字」形状になっており、鉄触媒が円筒72の内面に効率よく接触し、CNT2の生成を促進する。反応容器71の上部には回転軸73を通すための開口穴が設けられ、この開口穴部分の回転軸73と反応容器71間には反応容器内を外気と遮断して還元雰囲気を保持するためのリング状のシール材76が設けられている。   Reference numeral 71 in the figure is a non-rotating stainless steel cylindrical vertical reaction vessel. Inside the reaction vessel 71, a stainless steel cylinder 72 is arranged coaxially with the reaction vessel 71. Inside the cylinder 72, a scraping blade 74 rotated by a rotating shaft 73 is provided. This scraping blade 74 is arranged to rotate in the direction of arrow F by a driving motor 75 as a driving source connected to the rotating shaft 73 and scrape off the CNT 2 generated on the inner wall of the cylinder 72. As shown in FIG. 9, the scraping blade 74 has a “C” shape, and the iron catalyst efficiently contacts the inner surface of the cylinder 72 to promote the generation of CNT2. An opening hole for passing the rotation shaft 73 is provided in the upper part of the reaction vessel 71. Between the rotation shaft 73 and the reaction vessel 71 at the opening hole portion, the inside of the reaction vessel is blocked from the outside air to maintain a reducing atmosphere. The ring-shaped sealing material 76 is provided.

次に、図8のCNT製造装置での製造方法を説明する。
まず、装置内部を不活性雰囲気にするために、不活性供給手段を用いて例えば窒素を供給し、内部を窒素雰囲気に置換する。次に、ヒータ4の電源を入れ、円筒72が500〜1000℃のカーボンナノチューブ生成温度に達するまで昇温する。生成温度に達したら、窒素の供給を止めると同時に、炭素原料供給手段を起動し、例えばエタノールを炭素原料供給ルズルから供給する。エタノールは、雰囲気の温度で瞬間に蒸発して炭化水素を含んだ気体となる。
Next, a manufacturing method using the CNT manufacturing apparatus in FIG. 8 will be described.
First, in order to make the inside of the apparatus an inert atmosphere, for example, nitrogen is supplied using an inert supply means, and the inside is replaced with a nitrogen atmosphere. Next, the heater 4 is turned on and the temperature is raised until the cylinder 72 reaches a carbon nanotube generation temperature of 500 to 1000 ° C. When the production temperature is reached, the supply of nitrogen is stopped, and at the same time, the carbon raw material supply means is started to supply, for example, ethanol from the carbon raw material supply luzle. Ethanol is instantly evaporated at ambient temperature to become a hydrocarbon-containing gas.

並行して、触媒供給手段を起動し、鉄触媒を触媒塗布ノズルより容器71の内側の円筒72内に供給する。その際、十分に暖められたステンレス製の円筒72の内表面の鉄触媒と炭化水素ガスが反応してCNT2を還元雰囲気で生成して生長する。
CNT2が十分成長したら駆動モータ75を矢印Fの方向に回転させ、円筒72の内面に生長したCNT2を掻き取り羽根74で掻き落とし、下部のCNT回収缶26に回収される。なお、カーボン製造装置内で発生するガスは、ガス排気手段8で水封を介してガスが逆流しないように排気される。
In parallel, the catalyst supply means is activated to supply the iron catalyst into the cylinder 72 inside the container 71 from the catalyst application nozzle. At that time, the iron catalyst on the inner surface of the sufficiently heated stainless steel cylinder 72 reacts with the hydrocarbon gas to produce CNT2 in a reducing atmosphere and grow.
When the CNT 2 is sufficiently grown, the drive motor 75 is rotated in the direction of arrow F, and the CNT 2 grown on the inner surface of the cylinder 72 is scraped off by the scraping blade 74 and collected in the lower CNT collection can 26. The gas generated in the carbon production apparatus is exhausted by the gas exhaust means 8 so that the gas does not flow back through the water seal.

第6の実施形態に係るCNT製造装置は、図8に示すように、内部を還元雰囲気に保持しうる円筒状縦型反応容器71と、この反応容器71内に配置されたステンレス製の円筒72と、この円筒72内に配置されて円筒内壁に生成されるCNT2を掻き取る掻き取り羽根74と、この掻き取り羽根74を駆動する駆動モータ75と、ヒータ4と、触媒供給手段と、炭化水素供給手段と、不活性ガス供給手段と、ガス排気手段8とを備えた構成となっているので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。また、本発明によれば、反応容器71内の不活性雰囲気化、昇温、円筒内への鉄触媒の供給、円筒72内壁へのCNT生成、CNT2の掻き落としを順次自動的に行うことができるので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。更に、CNT2の生成量が減少して生成能力が落ちた場合には、反応容器71内の円筒72のみを取り替えれば新たにCNT2を生成することができ、装置のメンテナンスを低コストに抑えることができる。   As shown in FIG. 8, the CNT manufacturing apparatus according to the sixth embodiment includes a cylindrical vertical reaction vessel 71 capable of maintaining the inside in a reducing atmosphere, and a stainless steel cylinder 72 disposed in the reaction vessel 71. A scraping blade 74 disposed in the cylinder 72 and scraping off the CNT 2 generated on the inner wall of the cylinder 72, a drive motor 75 for driving the scraping blade 74, a heater 4, a catalyst supply means, a hydrocarbon Since the supply means, the inert gas supply means, and the gas exhaust means 8 are provided, it is possible to efficiently mass-produce highly functional CNT2 having high purity and stability at low cost. Further, according to the present invention, the inert atmosphere in the reaction vessel 71, the temperature rise, the supply of the iron catalyst into the cylinder, the CNT generation on the inner wall of the cylinder 72, and the scraping off of the CNT2 can be performed automatically in sequence. Therefore, highly functional CNT2 with high purity and stability can be efficiently mass-produced at low cost. Furthermore, when the production capacity decreases due to a decrease in the production amount of CNT2, it is possible to newly produce CNT2 by replacing only the cylinder 72 in the reaction vessel 71, and to keep the maintenance of the apparatus at low cost. Can do.

ところで、第6の実施形態において、前記円筒は筒状である場合について述べたが、これに限らず、例えば縦方向に2分割された断面形状が半円の半円筒部材を一体化して筒状とした円筒を用いてもよい。   By the way, in the sixth embodiment, the case where the cylinder has a cylindrical shape has been described. However, the present invention is not limited to this. For example, a semicylindrical member having a semicircular sectional shape divided into two in the vertical direction is integrated into a cylindrical shape. A cylinder may be used.

(第7の実施形態)
図10は、本発明の第7の実施形態に係るCNT製造装置の概略図である。但し、図1,8と同部材は同符番を付して説明を省略し、要部のみを説明する。
図10のCNT製造装置は、図9と比べ、内部を還元雰囲気に保持しうるステンレス製の円筒81のみを用いる点が異なり、この円筒81の内壁にCNTを生成することを特徴とする。その他の構成部材及び製造方法は、図8の場合と同様である。
(Seventh embodiment)
FIG. 10 is a schematic view of a CNT manufacturing apparatus according to the seventh embodiment of the present invention. However, the same members as those in FIGS. 1 and 8 are denoted by the same reference numerals and the description thereof will be omitted, and only the main parts will be described.
The CNT manufacturing apparatus of FIG. 10 differs from that of FIG. 9 in that only a stainless steel cylinder 81 capable of maintaining the inside in a reducing atmosphere is used, and CNT is generated on the inner wall of the cylinder 81. Other components and manufacturing methods are the same as in FIG.

第7の実施形態に係るCNT製造装置は、内部を還元雰囲気に保持しうるステンレス製の円筒81と、この円筒81内に配置されて円筒内壁に生成されるCNT2を掻き取る掻き取り羽根74と、この掻き取り羽根74を駆動する駆動モータ75と、ヒータ4と、触媒供給手段と、炭化水素供給手段と、不活性ガス供給手段と、ガス排気手段8とを備えた構成となっているので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。また、本発明によれば、円筒81内の不活性雰囲気化、昇温、円筒81内への鉄触媒の供給、円筒81内壁へのCNT生成、CNT2の掻き落としを順次自動的に行うことができるので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。   The CNT manufacturing apparatus according to the seventh embodiment includes a stainless steel cylinder 81 that can maintain the inside in a reducing atmosphere, and a scraping blade 74 that is disposed in the cylinder 81 and scrapes off the CNT 2 generated on the inner wall of the cylinder. The drive motor 75 for driving the scraping blade 74, the heater 4, the catalyst supply means, the hydrocarbon supply means, the inert gas supply means, and the gas exhaust means 8 are provided. In addition, highly functional CNT2 having high purity and stability can be efficiently mass-produced at low cost. Further, according to the present invention, the inert atmosphere in the cylinder 81, the temperature rise, the supply of the iron catalyst into the cylinder 81, the CNT generation on the inner wall of the cylinder 81, and the scraping off of the CNT2 can be performed automatically in sequence. Therefore, highly functional CNT2 with high purity and stability can be efficiently mass-produced at low cost.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

1…反応容器、2,47…カーボンナノチューブ(CNT)、3,41…ステンレス板、4…ヒータ(加熱手段)、5…炭素原料供給手段、6…不活性ガス供給手段、7…触媒供給手段、8…CNT掻き取り回収手段、9…磨き洗浄手段、10…ガス排気手段、11…駆動ローラ、12,52…従動ローラ、13…耐熱材、14…断熱材、15…ヒータ制御手段、16…炭化水素供給ノズル、17…炭素原料収容タンク、18…筐体、19…保温材、20…不活性ガス供給ノズル、21…不活性ガス収容タンク、22…塗布ローラ、23…触媒供給ノズル、24…触媒収容タンク、25…CNT掻き取り板、26…CNT回収缶、27…排気ノズル、31…研磨ブラシ、32…洗浄液供給ノズル、37…洗浄液供給ノズル、39…洗浄液供給手段、40…覗き窓、51…駆動巻き取りローラ、53a,53b…支持ローラ、61…駆動手段、62…スポーク、63…主軸、64,75…駆動モータ、65a,65b…仕切り板、66…研磨ブラシ、67…CNT生成部、71…円筒状縦型反応容器、72,81…円筒、73…回転軸、74…掻き取り羽根、76…シール材。   DESCRIPTION OF SYMBOLS 1 ... Reaction vessel, 2, 47 ... Carbon nanotube (CNT), 3,41 ... Stainless steel plate, 4 ... Heater (heating means), 5 ... Carbon raw material supply means, 6 ... Inert gas supply means, 7 ... Catalyst supply means 8 ... CNT scraping and collecting means, 9 ... polishing and cleaning means, 10 ... gas exhaust means, 11 ... drive roller, 12,52 ... driven roller, 13 ... heat-resistant material, 14 ... heat insulating material, 15 ... heater control means, 16 DESCRIPTION OF SYMBOLS ... Hydrocarbon supply nozzle, 17 ... Carbon raw material accommodation tank, 18 ... Housing, 19 ... Insulation material, 20 ... Inert gas supply nozzle, 21 ... Inert gas accommodation tank, 22 ... Application roller, 23 ... Catalyst supply nozzle, 24 ... Catalyst storage tank, 25 ... CNT scraping plate, 26 ... CNT recovery can, 27 ... Exhaust nozzle, 31 ... Polishing brush, 32 ... Cleaning liquid supply nozzle, 37 ... Cleaning liquid supply nozzle, 39 ... Cleaning liquid supply Step: 40 ... Viewing window, 51 ... Drive winding roller, 53a, 53b ... Support roller, 61 ... Driving means, 62 ... Spoke, 63 ... Main shaft, 64, 75 ... Drive motor, 65a, 65b ... Partition plate, 66 ... Polishing brush, 67 ... CNT generating part, 71 ... cylindrical vertical reaction vessel, 72, 81 ... cylinder, 73 ... rotating shaft, 74 ... scraping blade, 76 ... sealing material.

Claims (2)

内部を還元雰囲気に保持しうるとともに,外気と遮断可能な円筒状縦型反応容器と、この縦型反応容器内に配置されたステンレス円筒と、このステンレス円筒の内壁に生成されるカーボンナノチューブを掻き取る螺旋状の掻き取り羽根と、この掻き取り羽根を駆動する駆動源と、前記ステンレス円筒を加熱する加熱手段と、ステンレス円筒内に触媒粉を供給する触媒供給手段と、縦型反応容器内に炭化水素を供給する炭化水素供給手段と、縦型反応容器内に不活性ガスを供給する不活性ガス供給手段と、ステンレス円筒に生成されたカーボンナノチューブを回収する回収手段と、縦型反応容器内のガスを排気するガス排気手段とを具備することを特徴とするカーボンナノチューブ製造装置。   A cylindrical vertical reaction vessel that can keep the inside in a reducing atmosphere and can be shut off from the outside air, a stainless steel cylinder disposed in the vertical reaction vessel, and carbon nanotubes generated on the inner wall of the stainless steel cylinder are scraped. A spiral scraping blade, a driving source for driving the scraping blade, a heating means for heating the stainless steel cylinder, a catalyst supplying means for supplying catalyst powder into the stainless steel cylinder, and a vertical reaction vessel. Hydrocarbon supply means for supplying hydrocarbons, inert gas supply means for supplying an inert gas into the vertical reaction vessel, recovery means for recovering the carbon nanotubes produced in the stainless steel cylinder, and in the vertical reaction vessel And a gas exhaust means for exhausting the gas. 前記掻き取り羽根は、主軸を中心に下部方向に末広がりのハの字形状に取り付けられていることを特徴とする請求項1記載のカーボンナノチューブ製造装置。   2. The carbon nanotube manufacturing apparatus according to claim 1, wherein the scraping blade is attached in the shape of a letter C that spreads in the lower direction about the main axis.
JP2011265736A 2011-12-05 2011-12-05 Nanocarbon production equipment Expired - Fee Related JP5426643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011265736A JP5426643B2 (en) 2011-12-05 2011-12-05 Nanocarbon production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011265736A JP5426643B2 (en) 2011-12-05 2011-12-05 Nanocarbon production equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008174929A Division JP2010013319A (en) 2008-07-03 2008-07-03 Apparatus for producing nanocarbon

Publications (2)

Publication Number Publication Date
JP2012046426A JP2012046426A (en) 2012-03-08
JP5426643B2 true JP5426643B2 (en) 2014-02-26

Family

ID=45901735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011265736A Expired - Fee Related JP5426643B2 (en) 2011-12-05 2011-12-05 Nanocarbon production equipment

Country Status (1)

Country Link
JP (1) JP5426643B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3730998B2 (en) * 1999-09-10 2006-01-05 独立行政法人産業技術総合研究所 Method for producing carbon nanotube
JP3991157B2 (en) * 2003-08-28 2007-10-17 日立造船株式会社 Carbon nanotube production equipment

Also Published As

Publication number Publication date
JP2012046426A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP2010013319A (en) Apparatus for producing nanocarbon
JP6056904B2 (en) Simultaneous production method of carbon nanotube and hydrogen, and simultaneous production apparatus of carbon nanotube and hydrogen
JP3991157B2 (en) Carbon nanotube production equipment
JP6059089B2 (en) Carbon nanofiber aggregate manufacturing method and manufacturing apparatus, and conductive wire manufacturing method and manufacturing apparatus
JP4474409B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
JP2007112677A (en) Continuous manufacturing apparatus of nano carbon and its continuous manufacture method
JP4608863B2 (en) Carbon nanotube production apparatus and method, and gas decomposer used therefor
JP5323169B2 (en) Nanocarbon production equipment
JP4940190B2 (en) Carbon nanotube production equipment
JP5022348B2 (en) Carbon nanotube synthesizer
JP5426643B2 (en) Nanocarbon production equipment
JP5049912B2 (en) Nanocarbon generation furnace
JP4869300B2 (en) Nanocarbon production equipment
JP5072887B2 (en) Nanocarbon generator
JP5605908B2 (en) Four-layer catalyst base for CNT production, CNT with substrate carbonized layer, CNT with carbonized layer, CNT production method, CNT recovery method, and CNT continuous production apparatus
JP2004190166A (en) Method and apparatus for collecting carbon nanotube and carbon nanotube roll
JP2012172273A (en) Graphite nano-carbon fiber and method for producing the same
JP2016088787A (en) Method for producing oriented carbon nanotube aggregates
JP5112044B2 (en) Carbon nanotube production equipment
KR101349621B1 (en) Apparatus for synthesizing Carbon Nano Tube
KR101126552B1 (en) Apparatus for synthesizing carbon nano tube
JP3956230B2 (en) Carbon nanotube manufacturing apparatus and manufacturing method thereof
Haluska Synthesis of Tridimensional Ensembles of Carbon Nanotubes
Barney Fabrication Techniques for Growing Carbon Nanotubes
Yousefi et al. Growth of well-oriented VACNTs using thermal chemical vapor deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

LAPS Cancellation because of no payment of annual fees