JP5424046B2 - Novel polymer ionic conductor and synthesis method thereof, and polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly and fuel cell using the novel polymer ionic conductor - Google Patents

Novel polymer ionic conductor and synthesis method thereof, and polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly and fuel cell using the novel polymer ionic conductor Download PDF

Info

Publication number
JP5424046B2
JP5424046B2 JP2010023254A JP2010023254A JP5424046B2 JP 5424046 B2 JP5424046 B2 JP 5424046B2 JP 2010023254 A JP2010023254 A JP 2010023254A JP 2010023254 A JP2010023254 A JP 2010023254A JP 5424046 B2 JP5424046 B2 JP 5424046B2
Authority
JP
Japan
Prior art keywords
group
formula
polymer
compound
aromatic ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010023254A
Other languages
Japanese (ja)
Other versions
JP2011162580A (en
Inventor
隆一 山本
周作 鯉江
正宏 阿部
雅史 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Toppan Inc
Original Assignee
Tokyo Institute of Technology NUC
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Toppan Inc filed Critical Tokyo Institute of Technology NUC
Priority to JP2010023254A priority Critical patent/JP5424046B2/en
Publication of JP2011162580A publication Critical patent/JP2011162580A/en
Application granted granted Critical
Publication of JP5424046B2 publication Critical patent/JP5424046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、新規高分子プロトン伝導体およびその合成方法、および新規高分子プロトン伝導体を用いた高分子電解質、高分子電解質膜および膜電極接合体および燃料電池に関するものである。   The present invention relates to a novel polymer proton conductor, a method for synthesizing the same, a polymer electrolyte using the novel polymer proton conductor, a polymer electrolyte membrane, a membrane electrode assembly, and a fuel cell.

燃料電池は、水素を含有する燃料ガスと酸素を含む酸化剤ガスとを、触媒を含む電極で水の電気分解の逆反応を起こさせ、熱と同時に電気を生み出す発電システムである。この発電システムは、従来の発電方式と比較して高効率で低環境負荷、低騒音などの特徴を有し、将来のクリーンなエネルギー源として注目されている。用いるイオン伝導体の種類によってタイプがいくつかあり、イオン伝導性高分子膜を用いたものは、固体高分子形燃料電池と呼ばれる。   A fuel cell is a power generation system that generates electricity simultaneously with heat by causing a hydrogen gas-containing fuel gas and an oxygen-containing oxidant gas to undergo reverse reaction of water electrolysis at an electrode including a catalyst. This power generation system has features such as high efficiency, low environmental load, and low noise as compared with conventional power generation systems, and is attracting attention as a clean energy source in the future. There are several types depending on the type of ion conductor used, and those using an ion conductive polymer membrane are called solid polymer fuel cells.

燃料電池の中でも固体高分子形燃料電池は、室温付近で使用可能なことから、車搭載電源や家庭据置用電源などへの使用が有望視されており、近年、様々な研究開発が行われている。
固体高分子形燃料電池は、膜電極接合体(Membrane Electrode Assembly;以下、MEAと称することがある)と呼ばれる高分子電解質の両面に一対の電極触媒層を配置させた接合体を、前記電極の一方に水素を含有する燃料ガスを供給し、前記電極の他方に酸素を含む酸化剤ガスを供給するためのガス流路を形成した一対のセパレータ板で挟持した電池である。
ここで、燃料ガスを供給する電極を燃料極、酸化剤を供給する電極を空気極、と呼んでいる。これらの電極は、白金系の貴金属などの触媒物質を担持したカーボン粒子と高分子電解質を積層してなる電極触媒層とガス通気性と電子伝導性を兼ね備えたガス拡散層からなる。しかしながら、固体高分子形燃料電池を用いて長時間発電した際、その高分子電解質膜のラジカルによる劣化が問題となっている。また、高分子イオン伝導体を高分子電解質に用いるに当っては、高分子イオン伝導体の合成法が複雑であったり合成が困難である問題が有る場合がある。
Among fuel cells, polymer electrolyte fuel cells can be used near room temperature, so they are considered promising for use in on-vehicle power sources and household stationary power sources. In recent years, various research and development have been conducted. Yes.
A polymer electrolyte fuel cell has a structure in which a pair of electrode catalyst layers are arranged on both sides of a polymer electrolyte called a membrane electrode assembly (hereinafter sometimes referred to as MEA). In this battery, a fuel gas containing hydrogen is supplied to one side, and a gas flow path for supplying an oxidant gas containing oxygen to the other of the electrodes is sandwiched between a pair of separator plates.
Here, the electrode for supplying the fuel gas is called a fuel electrode, and the electrode for supplying the oxidant is called an air electrode. These electrodes are composed of an electrode catalyst layer formed by laminating carbon particles carrying a catalyst material such as a platinum-based noble metal and a polymer electrolyte, and a gas diffusion layer having both gas permeability and electron conductivity. However, when power is generated for a long time using a polymer electrolyte fuel cell, deterioration of the polymer electrolyte membrane due to radicals is a problem. Further, when the polymer ion conductor is used for the polymer electrolyte, there may be a problem that the synthesis method of the polymer ion conductor is complicated or difficult to synthesize.

燃料電池は、燃料極側と空気極側では、以下のような電気化学反応が生じ、直流電流を発生している。
燃料極側:2H2 →4H+ +4e-
空気極側:O2 +4H+ +4e- →2H2
燃料極側では水素分子(H2 )の酸化反応が起こり、空気極側では酸素分子(O2 )の還元反応が起こることで、燃料極側で生成されたH+ イオンは高分子電解質膜中を空気極側に向かって移動し、e- (電子)は外部の負荷を通って空気極側に移動する。
一方、空気極側では酸化剤ガスに含まれる酸素と、燃料極側から移動してきたH+ イオンおよびe- とが反応して水が生成される。このようにして、固体高分子形燃料電池は、水素と酸素から直流電流を発生し、水を生成する。
In the fuel cell, the following electrochemical reaction occurs on the fuel electrode side and the air electrode side to generate a direct current.
Fuel electrode side: 2H 2 → 4H + + 4e -
Air electrode side: O 2 + 4H + + 4e → 2H 2 O
The oxidation reaction of hydrogen molecules (H 2 ) occurs on the fuel electrode side, and the reduction reaction of oxygen molecules (O 2 ) occurs on the air electrode side, so that H + ions generated on the fuel electrode side are in the polymer electrolyte membrane. E (electrons) moves to the air electrode side through an external load.
On the other hand, on the air electrode side, oxygen contained in the oxidant gas reacts with H + ions and e that have moved from the fuel electrode side to generate water. In this way, the polymer electrolyte fuel cell generates direct current from hydrogen and oxygen to generate water.

しかし、前記空気極側の還元反応(酸素分子(O2 )の4電子還元)は難しく、空気極側において副反応として下記の電気化学反応(酸素分子(O2 )の2電子還元)が生じて多くのH2 2 を発生する。そして不純物としてFe2+などが存在すると、その触媒作用でH22 が分解され、OH・(OHラジカル)が発生する。 However, the reduction reaction on the air electrode side (4-electron reduction of oxygen molecules (O 2 )) is difficult, and the following electrochemical reaction (2-electron reduction of oxygen molecules (O 2 )) occurs as a side reaction on the air electrode side. Generates a large amount of H 2 O 2 . If Fe 2+ or the like is present as an impurity, H 2 O 2 is decomposed by the catalytic action, and OH · (OH radical) is generated.

空気極側:O2 +2H+ +2e- →H2 2
2 2 + Fe2+→OH・+OH- +Fe3+
生成したOH・(OHラジカル)は酸化力が大きく、高分子電解質膜を酸化し、劣化させると言われている。
Air electrode side: O 2 + 2H + + 2e → H 2 O 2
H 2 O 2 + Fe 2+ → OH · + OH + Fe 3+
The generated OH · (OH radical) is said to have a large oxidizing power and oxidize and degrade the polymer electrolyte membrane.

そのため、固体高分子形燃料電池に用いる高分子電解質膜には、高い化学安定性、特に高いラジカル耐性が要求される。また、高分子電解質膜の原料となるプロトン伝導性高分子の合成には一般性の高い合成法の採用が望まれる。
高いラジカル耐性を有するプロトン伝導性高分子電解質膜材料としては、商品名Nafion(登録商標、デュポン社製)などのスルホン酸基含有フッ素樹脂が知られているが近年これらの樹脂に対する問題点も指摘されている。
まず、合成経路が複雑であるため、原料・製造プロセスのコストが高い点である。また、スルホン酸基含有フッ素樹脂は、ガラス転移温度が低く、耐熱性が低いため、動作温度が80℃程度になってしまうという問題点も抱えている。さらに、フッ素というハロゲン系の樹脂であるため、環境負荷が大きいという欠点がある。
Therefore, the polymer electrolyte membrane used for the polymer electrolyte fuel cell is required to have high chemical stability, particularly high radical resistance. In addition, it is desired to employ a highly general synthetic method for synthesizing a proton conductive polymer as a raw material for the polymer electrolyte membrane.
As proton-conducting polymer electrolyte membrane materials having high radical resistance, sulfonic acid group-containing fluororesins such as the trade name Nafion (registered trademark, manufactured by DuPont) are known, but problems with these resins have also been pointed out in recent years. Has been.
First, since the synthesis route is complicated, the cost of raw materials and manufacturing processes is high. In addition, since the sulfonic acid group-containing fluororesin has a low glass transition temperature and low heat resistance, it has a problem that the operating temperature becomes about 80 ° C. Furthermore, since it is a halogen-based resin called fluorine, there is a drawback that the environmental load is large.

前記のような課題を克服するため、フッ素を含まないスルホン酸基を有する炭化水素系材料を原料とする、高温安定性の高い、プロトン伝導性高分子電解質膜が開発されてきているが、化学的安定性がスルホン酸基含有フッ素樹脂には及ばず、そのため、スルホン酸基のようなプロトン伝導性の官能基を備え、かつ耐熱性に優れた炭化水素系材料の開発が要求されている。また、プロトン伝導性高分子の合成法として、一般性の高い合成法を採用することが望まれている。
プロトン伝導性高分子の中には、ベンゼン環に−SO3 H置換基が結合したものが多く報告されている。そして、水素と酸素を用いる燃料電池においては水が発生するが、水存在下では−SO3 H置換基が一部脱離することが問題となっている。この−SO3 H置換基の脱離は、ベンゼン環に他の電子吸引性置換基が結合すると遅くなることが知られている(非特許文献1参照)。
In order to overcome the above-mentioned problems, proton conductive polymer electrolyte membranes having high-temperature stability and using a hydrocarbon-based material having a sulfonic acid group not containing fluorine as a raw material have been developed. Therefore, development of a hydrocarbon-based material having a proton conductive functional group such as a sulfonic acid group and excellent in heat resistance is required. Further, it is desired to adopt a highly general synthetic method as a method for synthesizing a proton conductive polymer.
Many proton-conducting polymers having a —SO 3 H substituent bonded to a benzene ring have been reported. In a fuel cell using hydrogen and oxygen, water is generated, but in the presence of water, there is a problem that a part of the —SO 3 H substituent is eliminated. It is known that the elimination of the —SO 3 H substituent is delayed when another electron-withdrawing substituent is bonded to the benzene ring (see Non-Patent Document 1).

一方、−C≡C−基は電子吸引性基であり、また−C≡C−基を主鎖中に有する高分子有機化合物の合成には一般性の高いパラジウム化合物と銅化合物存在下に合成するなどの合成法を適応することができる(非特許文献2−4参照)。
また、−C≡C−基が結合したベンゼン環等の芳香族環は電子欠乏性を有するようになり酸化に対する耐性を高めると考えられる。また、ピリジン環を初めとする含窒素複素環は電子欠乏性の高い芳香環であり、種々の求電子置換反応に対して不活性で、そのため化学的安定性が非常に高いことが知られている。
例えば、ピリジンは様々な化学反応における溶媒として用いられるほどである。東京工業大学の辻らはベンゼン環に二つの水酸基を持つカテコールを、ピリジン存在下、銅触媒により酸化して開環反応を行っている。これはすなわち、ピリジンが反応過程で発生するラジカルとも反応せず、ベンゼン環に比べ格段に高いラジカル耐性を有することを意味している(非特許文献5参照)。
On the other hand, the —C≡C— group is an electron-withdrawing group, and for the synthesis of a polymer organic compound having a —C≡C— group in the main chain, it is synthesized in the presence of a highly general palladium compound and copper compound. It is possible to apply a synthesis method such as (see Non-Patent Documents 2-4).
In addition, it is considered that an aromatic ring such as a benzene ring to which a —C≡C— group is bonded has electron deficiency and increases resistance to oxidation. Nitrogen-containing heterocycles such as the pyridine ring are highly electron-deficient aromatic rings that are inactive against various electrophilic substitution reactions and are therefore known to have very high chemical stability. Yes.
For example, pyridine is used as a solvent in various chemical reactions. Tatsumi et al. Of Tokyo Institute of Technology perform ring-opening reaction by oxidizing catechol, which has two hydroxyl groups on the benzene ring, in the presence of pyridine with a copper catalyst. This means that pyridine does not react with radicals generated in the reaction process and has a radical resistance much higher than that of the benzene ring (see Non-Patent Document 5).

つまり、主鎖が含窒素複素環からなる高分子有機化合物、とりわけピリジン環のみからなる高分子有機化合物すなわちポリピリジンは、他の芳香族系炭化水素と比べて非常に高い化学的安定性を示し、また耐熱性も高い。そのため、様々な用途での利用が期待される物質である。
本出願人は、先に側鎖に−SO3 X置換基を有するピリジン環からなる高分子電解質を提案した(特許文献1、2参照)。
In other words, a polymer organic compound whose main chain is composed of a nitrogen-containing heterocyclic ring, particularly a polymer organic compound composed of only a pyridine ring, that is, polypyridine, exhibits a very high chemical stability compared to other aromatic hydrocarbons. It also has high heat resistance. Therefore, it is a substance expected to be used for various purposes.
The present applicant has previously proposed a polymer electrolyte composed of a pyridine ring having a —SO 3 X substituent in the side chain (see Patent Documents 1 and 2).

一方、本発明に係る芳香族化合物としては、芳香族性を有する化合物で、酸素原子、窒素原子、硫黄原子を含む芳香族複素環化合物などが知られている(例えば、非特許文献6参照)。
一方、クロロ硫酸ClSO3 Hは芳香環にスルホン基を導入する反応剤となることが知られている(非特許文献7参照)。
しかし、−C≡C−基と、芳香環とを主鎖中に有する高分子化合物とクロロ硫酸との反応により、芳香環にスルホン基を導入する反応は報告されていない。
また、−SO2 Cl基を持つ芳香族化合物はN,N−ジメチルホルムアミドとの反応を通してスルホン酸塩等のスルホン化物に変換され、さらに−SO3 H基を持つ芳香族化合物に変換されることが知られている(非特許文献8−10参照)。
On the other hand, the aromatic compound according to the present invention is an aromatic compound, and an aromatic heterocyclic compound containing an oxygen atom, a nitrogen atom, or a sulfur atom is known (for example, see Non-Patent Document 6). .
On the other hand, chlorosulfuric acid ClSO 3 H is known to be a reactant for introducing a sulfone group into an aromatic ring (see Non-Patent Document 7).
However, no reaction has been reported for introducing a sulfone group into an aromatic ring by the reaction of a polymer compound having a —C≡C— group and an aromatic ring in the main chain with chlorosulfuric acid.
In addition, an aromatic compound having a —SO 2 Cl group is converted into a sulfonated product such as a sulfonate through a reaction with N, N-dimethylformamide, and further converted into an aromatic compound having a —SO 3 H group. Is known (see Non-Patent Documents 8-10).

大饗茂「有機イオウの化学(下)」(化学同人)416ページShigeru Otsuki “Organic sulfur chemistry (below)” C. Weder編 Adv. Polym. Sci. Vol. 177,“Poly(arylene ethynylene), Springer (2005).C. Weder, Adv. Polym. Sci. Vol. 177, “Poly (arylene ethynylene), Springer (2005). K. Sanechika, T. Yamamoto, A. Yamamoto, Bull. Chem. Soc. Jpn., 57, 752 (1984).K. Sanechika, T. Yamamoto, A. Yamamoto, Bull. Chem. Soc. Jpn., 57, 752 (1984). D. L. Trumbo, C. S. Marvel, Polym. Sci., Part A: Polym. Chem., 24, 2311 (1986).D. L. Trumbo, C. S. Marvel, Polym. Sci., Part A: Polym. Chem., 24, 2311 (1986). J.Tsuji,J.Am.Chem.Soc.,96,7349(1974)J. et al. Tsuji, J .; Am. Chem. Soc. 96, 7349 (1974) 化学大辞典、東京化学同人(1989)University of Chemistry Dictionary, Tokyo Chemical Doujin (1989) マーチ有機化学・上(丸善)March Organic Chemistry, above (Maruzen) H. E. Ulery, J. Org. Chem., 30, 2464 (1965).H. E. Ulery, J. Org. Chem., 30, 2464 (1965). H. K. Hall, Jr., J. Am. Chem. Soc., 78, 2717 (1956).H. K. Hall, Jr., J. Am. Chem. Soc., 78, 2717 (1956). F. Higashi, N. Akiyama, I. Takahashi, T. Koyama, J. Polym. Sci.: Polym. Chem. Ed.., 22, 1653 (1984).F. Higashi, N. Akiyama, I. Takahashi, T. Koyama, J. Polym. Sci .: Polym. Chem. Ed .., 22, 1653 (1984).

特開2009−235261JP 2009-235261 A 特開2009−235262JP2009-235262A

しかし、従来のポリピリジンなどは、他の芳香族系炭化水素と比べて非常に高い化学的安定性を示し、また耐熱性も高いが、合成方法が一般性を持ちかつ優れた耐熱性を有するという観点からは、未だ改良の余地があった。
本発明の第1の目的は、化学的安定性に優れるとともに、スルホン酸基のようなイオン伝導性の官能基を備えるのでイオン伝導性に優れ、耐熱性および耐久性に優れた新規なイオン伝導性高分子化合物およびこの新規なイオン伝導性高分子化合物を容易に効率よく合成できるような一般性を持つ合成法を提供することである。
本発明の第2の目的は、このような化学的安定性、プロトン伝導性、耐熱性および耐久性に優れた新規なイオン伝導性高分子化合物から構成される高分子電解質、高分子電解質膜、膜電極接合体、燃料電池を提供することである。
However, conventional polypyridines and the like show very high chemical stability compared to other aromatic hydrocarbons and have high heat resistance, but the synthesis method has generality and excellent heat resistance. From the point of view, there was still room for improvement.
The first object of the present invention is to provide a novel ion conduction that is excellent in chemical stability and has an ion conductive functional group such as a sulfonic acid group, and thus has excellent ion conductivity and heat resistance and durability. It is intended to provide a synthesis method having generality so that a conductive polymer compound and the novel ion conductive polymer compound can be synthesized easily and efficiently.
The second object of the present invention is to provide a polymer electrolyte, a polymer electrolyte membrane composed of a novel ion conductive polymer compound having excellent chemical stability, proton conductivity, heat resistance and durability, A membrane electrode assembly and a fuel cell are provided.

本発明者等は、−C≡C−基の電子吸引性と、この−C≡C−基を主鎖中に有する高分子有機化合物の合成法が一般性の高い合成法であることに着目し、主鎖に−C≡C−基を有するとともに、側鎖に−SO3 X基を有する芳香環を有する高分子有機化合物が、化学的安定性、プロトン伝導性、耐熱性および耐久性に優れていることを見出し、また、この高分子有機化合物を用いて電解質や電解質膜や膜電極接合体および燃料電池などを製造できることを見出し、本発明を完成するに到った。 The present inventors pay attention to the fact that the electron-withdrawing property of the —C≡C— group and the synthesis method of the polymer organic compound having this —C≡C— group in the main chain are highly general synthesis methods. In addition, a high molecular organic compound having an aromatic ring having a —C≡C— group in the main chain and an —SO 3 X group in the side chain has improved chemical stability, proton conductivity, heat resistance, and durability. It has been found that the polymer is excellent, and it has been found that an electrolyte, an electrolyte membrane, a membrane electrode assembly, a fuel cell and the like can be produced using this polymer organic compound, and the present invention has been completed.

前記課題を解決するための本発明の請求項1記載の発明は、下記一般式(1)で表わされる−C≡C−基と、側鎖に−SO3 X基を有する芳香環とを主鎖中に有する高分子化合物から構成されてなることを特徴とする新規高分子イオン伝導体である。 The invention according to claim 1 of the present invention for solving the above-mentioned problems mainly comprises a —C≡C— group represented by the following general formula (1) and an aromatic ring having a —SO 3 X group in the side chain. It is a novel polymer ionic conductor characterized by comprising a polymer compound contained in a chain.

(Ar−C≡C−R−C≡C)n 一般式(1) (Ar—C≡C—R—C≡C) n General Formula (1)

[前記式(1)において、Arは側鎖に−SO3 X基を有する2価の芳香環を表わし、Rは側鎖に−SO3 X基を持っていても良いし持たなくてもよい2価の芳香環を表わし、nは整数である。前記−SO3 X基中のXは、水素または1族元素、2族元素、下式(1−1)で表わされるNR1234 または下式(1−2)で表わされるPR1234を表し、前記式(1−1)中のR1234 はHまたは有機基を表わし、前記式(1−2)中のR1234はHまたは有機基を表わす。] [In the formula (1), Ar represents a divalent aromatic ring having a —SO 3 X group in the side chain, and R may or may not have a —SO 3 X group in the side chain. Represents a divalent aromatic ring, and n is an integer. X in the —SO 3 X group is represented by hydrogen, a Group 1 element, a Group 2 element, NR 1 R 2 R 3 R 4 represented by the following formula (1-1), or the following formula (1-2). It represents PR 1 R 2 R 3 R 4 , R 1 R 2 R 3 R 4 in the formula (1-1) represents H or an organic group, R 1 R 2 R in the formula (1-2) 3 R 4 represents H or an organic group. ]

Figure 0005424046
Figure 0005424046

Figure 0005424046
Figure 0005424046

本発明の請求項2記載の発明は、それぞれ側鎖に−SO 3 X基を有さないAr’、R’を有する芳香族化合物を用いて重合された一般式(1’)(Ar’−C≡C−R’−C≡C) n で表わされる高分子化合物をスルホン化することにより、側鎖に−SO 3 X基が導入されてなることを特徴とする新規高分子イオン伝導体である。 The invention according to claim 2 of the present invention is the compound represented by the general formula (1 ′) (Ar′-) polymerized using an aromatic compound having Ar ′ and R ′ each having no —SO 3 X group in the side chain. C≡C—R′—C≡C) A novel polymer ionic conductor characterized in that a —SO 3 X group is introduced into a side chain by sulfonation of a polymer compound represented by n. is there.

[前記一般式(1’)において、Ar’、R’はそれぞれ側鎖に−SO[In the general formula (1 ′), Ar ′ and R ′ each represent —SO 3 Three X基を有さない2価の芳香環を表わし、nは整数である。前記−SOIt represents a divalent aromatic ring having no X group, and n is an integer. -SO 3 Three X基中のXは、水素または1族元素、2族元素、下式(1−1)で表わされるNRX in the X group is hydrogen or Group 1 element, Group 2 element, NR represented by the following formula (1-1) 11  R 22  R 3Three  R 4Four または下式(1−2)で表わされるPROr PR represented by the following formula (1-2) 11  R 22  R 3Three  R 4Four を表し、前記式(1−1)中のRR in the formula (1-1) 11  R 22  R 3Three  R 4Four はHまたは有機基を表わし、前記式(1−2)中のR Represents H or an organic group, and R in the formula (1-2) 11  R 22  R 3Three  R 4Four はHまたは有機基を表わす。] Represents H or an organic group. ]

Figure 0005424046
Figure 0005424046

Figure 0005424046
Figure 0005424046

本発明の請求項3記載の発明は下記の反応式(1)により、側鎖に−SO3 X基を有する2価の芳香環を有する芳香族化合物のジハロゲン化化合物Y1 −Ar−Y2 と、ジエチニル有機化合物HC≡C-R-C≡CHとを反応させて、請求項1記載の新規高分子イオン伝導体を合成することを特徴とする新規高分子イオン伝導体の合成法である。 The invention according to claim 3 of the present invention is a dihalogenated compound Y 1 -Ar—Y 2 of an aromatic compound having a divalent aromatic ring having a —SO 3 X group in the side chain, according to the following reaction formula (1). When, by reacting an diethynyl organic compound HC≡C-R-C≡CH, in the synthesis of the novel polymer ion conductor, wherein the synthesis of new polymeric ion conductor according to claim 1 Symbol placement is there.

n Y1 −Ar −Y2 + n HC≡C-R-C≡CH→ (Ar -C ≡C-R-C≡C )n 反応式(1) n Y 1 -Ar -Y 2 + n HC≡C—R—C≡CH → (Ar —C ≡CRC≡C) n Reaction Formula (1)

[前記反応式(1)において、Arは側鎖に−SO3 X基を有する2価の芳香環を表わし、Rは側鎖に−SO3 X基を持っていても良いし持たなくてもよい2価の芳香環を表わし、Y1 、Y2 はハロゲン、nは整数である。前記−SO3 X基中のXは、水素または1族元素、2族元素、下式(1−1)で表わされるNR1234または下式(1−2)で表わされるPR1234を表し、前記式(1−1)中のR1234はHまたは有機基を表わし、前記式(1−2)中のR1234はHまたは有機基を表わす。] [In the reaction formula (1), Ar represents a divalent aromatic ring having a —SO 3 X group in the side chain, and R may or may not have a —SO 3 X group in the side chain. It represents a good divalent aromatic ring, Y 1 and Y 2 are halogen, and n is an integer. X in the —SO 3 X group is represented by hydrogen, a Group 1 element, a Group 2 element, NR 1 R 2 R 3 R 4 represented by the following formula (1-1), or the following formula (1-2). It represents PR 1 R 2 R 3 R 4 , R 1 R 2 R 3 R 4 in the formula (1-1) represents H or an organic group, R 1 R 2 R in the formula (1-2) 3 R 4 represents H or an organic group. ]

Figure 0005424046
Figure 0005424046

Figure 0005424046
Figure 0005424046

本発明の請求項4記載の発明は、下記の反応式(2)により、側鎖に−SO3 X基を有する2価の芳香環を有する芳香族化合物のジエチニル化合物HC≡C-Ar -C≡CHと、ジハロゲン化有機化合物Y1-R-Y2 とを反応させて、請求項1記載の新規高分子イオン伝導体を合成することを特徴とする新規高分子イオン伝導体の合成法である。 The invention according to claim 4 of the present invention is an aromatic compound diethynyl compound HC≡C—Ar —C having a divalent aromatic ring having a —SO 3 X group in the side chain according to the following reaction formula (2): and ≡CH, by reacting a dihalogenated organic compound Y 1 -ry 2, is the synthesis of new polymeric ion conductor, wherein the synthesis of new polymeric ion conductor according to claim 1 Symbol placement .

n Y1-R-Y2 + n HC≡C-Ar -C≡CH → (R-C≡C-Ar -C≡C )n 反応式(2) n Y 1 -RY 2 + n HC≡C—Ar—C≡CH → (RC≡C—Ar—C≡C) n Reaction Formula (2)

[前記反応式(2)において、Arは側鎖に−SO3 X基を有する2価の芳香環を表わし、Rは側鎖に−SO3 X基を持っていても良いし持たなくてもよい2価の芳香環を表わし、Y1 、Y2 はハロゲン、nは整数である。前記−SO3 X基中のXは、水素または1族元素、2族元素、下式(1−1)で表わされるNR1234または下式(1−2)で表わされるPR1234を表し、前記式(1−1)中のR1234 はHまたは有機基を表わし、前記式(1−2)中のR1234 はHまたは有機基を表わす。] [In the reaction formula (2), Ar represents a divalent aromatic ring having a —SO 3 X group in the side chain, and R may or may not have a —SO 3 X group in the side chain. It represents a good divalent aromatic ring, Y 1 and Y 2 are halogen, and n is an integer. X in the —SO 3 X group is represented by hydrogen, a Group 1 element, a Group 2 element, NR 1 R 2 R 3 R 4 represented by the following formula (1-1), or the following formula (1-2). It represents PR 1 R 2 R 3 R 4 , R 1 R 2 R 3 R 4 in the formula (1-1) represents H or an organic group, R 1 R 2 R in the formula (1-2) 3 R 4 represents H or an organic group. ]

Figure 0005424046
Figure 0005424046

Figure 0005424046
Figure 0005424046

本発明の請求項5記載の発明は、それぞれ側鎖に−SO 3 X基を有さないAr’、R’を有する芳香族化合物を用いて重合された一般式(1’)(Ar’−C≡C−R’−C≡C) n で表わされる−C≡C−基と、側鎖に−SO3 X基を有していない芳香環とを主鎖中に有する高分子化合物を、クロロ硫酸と反応させて前記芳香環に−SO3 X基を導入してスルホン化するか、あるいは前記高分子化合物を、クロロ硫酸と反応させて前記芳香環に−SO2 Cl基を導入した後、前記−SO2 Cl基を−SO3 H基に転換してスルホン化することを特徴とする請求項記載の新規高分子イオン伝導体の合成法である。 The invention according to claim 5 of the present invention is the compound represented by the general formula (1 ′) (Ar′-) polymerized using an aromatic compound having Ar ′ and R ′ each having no —SO 3 X group in the side chain. A polymer compound having a —C≡C— group represented by C≡C—R′—C≡C) n and an aromatic ring having no —SO 3 X group in the side chain in the main chain; After reacting with chlorosulfuric acid to introduce —SO 3 X group into the aromatic ring to sulfonate, or reacting the polymer compound with chlorosulfuric acid to introduce —SO 2 Cl group into the aromatic ring a synthesis of new polymeric ion conductor according to claim 2, wherein the sulfonating by converting the -SO 2 Cl group in -SO 3 H group.

[前記一般式(1’)において、Ar’、R’はそれぞれ側鎖に−SO[In the general formula (1 ′), Ar ′ and R ′ each represent —SO 3 Three X基を有さない2価の芳香環を表わし、nは整数である。前記−SOIt represents a divalent aromatic ring having no X group, and n is an integer. -SO 3 Three X基中のXは、水素または1族元素、2族元素、下式(1−1)で表わされるNRX in the X group is hydrogen or Group 1 element, Group 2 element, NR represented by the following formula (1-1) 11  R 22  R 3Three  R 4Four または下式(1−2)で表わされるPR Or PR represented by the following formula (1-2) 11  R 22  R 3Three  R 4Four を表し、前記式(1−1)中のRR in the formula (1-1) 11  R 22  R 3Three  R 4Four はHまたは有機基を表わし、前記式(1−2)中のRRepresents H or an organic group, and R in the formula (1-2) 11  R 22  R 3Three  R 4Four はHまたは有機基を表わす。] Represents H or an organic group. ]

Figure 0005424046
Figure 0005424046

Figure 0005424046
Figure 0005424046

本発明の請求項6記載の発明は、下記一般式(1)で表わされる−C≡C−基と、側鎖に−SO3X基を有する芳香環とを主鎖中に有する高分子化合物であって、さらにOH基を有する高分子化合物を、前記OH基と架橋反応可能な架橋剤によって架橋させて得られることを特徴とする新規高分子イオン伝導体である。 The invention according to claim 6 of the present invention is a polymer compound having a —C≡C— group represented by the following general formula (1) and an aromatic ring having a —SO 3 X group in the side chain in the main chain. The polymer ion conductor is obtained by crosslinking a polymer compound having an OH group with a crosslinking agent capable of crosslinking with the OH group.

(Ar−C≡C−R−C≡C)n 一般式(1) (Ar—C≡C—R—C≡C) n General Formula (1)

[前記式(1)において、Arは側鎖に−SO3 X基を有する2価の芳香環を表わし、Rは側鎖に−SO3 X基を持っていても良いし持たなくてもよい2価の芳香環を表わし、nは整数である。前記−SO3 X基中のXは、水素または1族元素、2族元素、下式(1−1)で表わされるNR1234または下式(1−2)で表わされるPR1234を表し、前記式(1−1)中のR1234はHまたは有機基を表わし、前記式(1−2)中のR1234はHまたは有機基を表わす。] [In the formula (1), Ar represents a divalent aromatic ring having a —SO 3 X group in the side chain, and R may or may not have a —SO 3 X group in the side chain. Represents a divalent aromatic ring, and n is an integer. X in the —SO 3 X group is represented by hydrogen, a Group 1 element, a Group 2 element, NR 1 R 2 R 3 R 4 represented by the following formula (1-1), or the following formula (1-2). It represents PR 1 R 2 R 3 R 4 , R 1 R 2 R 3 R 4 in the formula (1-1) represents H or an organic group, R 1 R 2 R in the formula (1-2) 3 R 4 represents H or an organic group. ]

Figure 0005424046
Figure 0005424046

Figure 0005424046
Figure 0005424046

本発明の請求項7記載の発明は、請求項1または請求項2あるいは請求項6記載の新規高分子イオン伝導体から構成されることを特徴とする高分子電解質膜である。   A seventh aspect of the present invention is a polymer electrolyte membrane comprising the novel polymer ion conductor according to the first, second, or sixth aspect.

本発明の請求項8記載の発明は、請求項1または請求項2あるいは請求項6記載の新規高分子イオン伝導体から構成されることを特徴とする高分子電解質である。   The invention according to claim 8 of the present invention is a polymer electrolyte comprising the novel polymer ion conductor according to claim 1, claim 2, or claim 6.

本発明の請求項9記載の発明は、請求項1または請求項2あるいは請求項6記載の新規高分子イオン伝導体、および請求項7記載の高分子電解質膜、および請求項8記載の高分子電解質の内の少なくとも1つを用いたことを特徴とする膜電極接合体である。   The invention according to claim 9 of the present invention is the novel polymer ion conductor according to claim 1 or claim 2 or claim 6, the polymer electrolyte membrane according to claim 7, and the polymer according to claim 8. A membrane electrode assembly using at least one of electrolytes.

本発明の請求項10記載の発明は、請求項1または請求項2あるいは請求項6記載の新規高分子イオン伝導体、および請求項7記載の高分子電解質膜、および請求項8記載の高分子電解質および請求項9記載の膜電極接合体の内の少なくとも1つを用いたことを特徴とする燃料電池である。   The invention according to claim 10 of the present invention is the novel polymer ion conductor according to claim 1, claim 2, or claim 6, the polymer electrolyte membrane according to claim 7, and the polymer according to claim 8. A fuel cell using at least one of an electrolyte and a membrane electrode assembly according to claim 9.

本発明の請求項1記載の新規高分子イオン伝導体は、前記一般式(1)で表わされる−C≡C−基と、側鎖に−SO3 X基を有する芳香環とを主鎖中に有する高分子化合物から構成されてなることを特徴とするものであり、
電子吸引性−C≡C−基を有しており、この基に結合したベンゼン環等の芳香環に結合している−SO3 H基の結合安定性はーC≡C−基の電子吸引性のために高くなり、化学的安定性に優れるとともに、スルホン酸基のようなイオン伝導性の官能基を備えるのでイオン伝導性に優れ、耐熱性および耐久性に優れるという顕著な効果を奏する。
The novel polymer ionic conductor according to claim 1 of the present invention comprises a —C≡C— group represented by the general formula (1) and an aromatic ring having a —SO 3 X group in the side chain in the main chain. It is composed of a polymer compound having
It has an electron-withdrawing -C≡C- group, and the bonding stability of the -SO 3 H group bonded to an aromatic ring such as a benzene ring bonded to this group is the electron-withdrawing of the -C≡C- group. In addition to being excellent in chemical stability and chemical stability, since it has an ion conductive functional group such as a sulfonic acid group, it has a remarkable effect of being excellent in ion conductivity, heat resistance and durability.

また、前記−SO3 X基のXがHである場合には、該イオン伝導体はプロトン伝導性を有するため、燃料電池用の高分子電解質膜、高分子電解質膜、膜電極接合体としての用途を有するという顕著な効果を奏する。 Further, when X of the —SO 3 X group is H, the ion conductor has proton conductivity, so that the polymer electrolyte membrane, the polymer electrolyte membrane, and the membrane electrode assembly for fuel cells are used. There is a remarkable effect of having a use.

また、前記−SO3 X基のXがLiである場合には、該イオン伝導体はリチウムイオン伝導性を有しリチウムイオン電池用の高分子電解質膜として有用である。 Further, when X of the —SO 3 X group is Li, the ion conductor has lithium ion conductivity and is useful as a polymer electrolyte membrane for a lithium ion battery.

また、これらの種々の−SO3 X基において異なるXを持つ化合物との間でイオン交換を行うことにより、例えば、−SO3 H基はLiOHとの反応により−SO3 Li基に変換することができ、しかもこのようなイオン交換による変換反応は一般的にそれほど困難なく行うことができるという顕著な効果を奏する。 Also, by performing ion exchange with compounds having different Xs in these various —SO 3 X groups, for example, —SO 3 H groups are converted to —SO 3 Li groups by reaction with LiOH. In addition, there is a remarkable effect that such a conversion reaction by ion exchange can generally be performed without difficulty.

規高分子イオン伝導体において、側鎖に−SO3 X基を有する2価の前記芳香環が、ベンゼン環、ピリジン環、またはチオフェン環から選択される少なくとも1つであると、ベンゼン環の場合には原料の入手の容易さがあり、ピリジン環の場合には芳香環の酸化に対する安定性が高く、またチオフェンの場合には求電子置換反応を受け易くクロロ硫酸との反応を通して−SO3X基が導入しやすいというさらなる顕著な効果を奏する。
中でも、ピリジン環を初めとする含窒素複素環は電子欠乏性の高い芳香性環であり、種々の求電子置換反応に対して不活性で、そのため化学的安定性が非常に高いので、好ましく使用できる。
In new polymeric ionic conductor, wherein the aromatic ring of the dihydric with -SO 3 X group in the side chain, a benzene ring, the Ru least 1 Tsudea selected from pyridine ring or a thiophene ring, a benzene ring In the case of pyridine ring, the aromatic ring is highly stable against oxidation, and in the case of thiophene, it is susceptible to electrophilic substitution reaction through reaction with chlorosulfuric acid. 3 It has the further remarkable effect that X group is easy to introduce | transduce.
Among them, nitrogen-containing heterocycles such as a pyridine ring are aromatic rings having a high electron deficiency, are inactive against various electrophilic substitution reactions, and therefore have a very high chemical stability. it can.

本発明の請求項2記載の新規高分子イオン伝導体は、それぞれ側鎖に−SOThe novel polymer ionic conductor according to claim 2 of the present invention has -SO in each side chain. 3Three X基を有さないAr’、R’を有する芳香族化合物を用いて重合された一般式(1’)(Ar’−C≡C−R’−C≡C)General formula (1 ') (Ar'-C≡C-R'-C≡C) polymerized using an aromatic compound having Ar' and R 'not having X group nn で表わされる高分子化合物をスルホン化することにより、側鎖に−SOBy sulfonation of a polymer compound represented by 3Three X基が導入されてなることを特徴とするものであり、X group is introduced, and
電子吸引性−C≡C−基を有しており、この基に結合したベンゼン環等の芳香環に結合している−SO  -SO having an electron-withdrawing -C≡C- group and bonded to an aromatic ring such as a benzene ring bonded to the group 3 Three H基の結合安定性はーC≡C−基の電子吸引性のために高くなり、化学的安定性に優れるとともに、スルホン酸基のようなイオン伝導性の官能基を備えるのでイオン伝導性に優れ、耐熱性および耐久性に優れという顕著な効果を奏する。The bond stability of the H group is increased due to the electron withdrawing property of the —C≡C— group, which is excellent in chemical stability and has an ion conductive functional group such as a sulfonic acid group. Excellent effects such as excellent heat resistance and durability.

また、前記−SOIn addition, the -SO 3 Three X基のXがHである場合には、該イオン伝導体はプロトン伝導性を有するため、燃料電池用の高分子電解質膜、高分子電解質膜、膜電極接合体としての用途を有するという顕著な効果を奏する。When X of the X group is H, the ion conductor has proton conductivity, so that it has a remarkable use as a polymer electrolyte membrane for fuel cells, a polymer electrolyte membrane, and a membrane electrode assembly. There is an effect.

また、前記−SO  In addition, the -SO 3 Three X基のXがLiである場合には、該イオン伝導体はリチウムイオン伝導性を有しリチウムイオン電池用の高分子電解質膜として有用である。When X of the X group is Li, the ion conductor has lithium ion conductivity and is useful as a polymer electrolyte membrane for a lithium ion battery.

また、これらの種々の−SO  These various -SO 3 Three X基において異なるXを持つ化合物との間でイオン交換を行うことにより、例えば、−SOBy performing ion exchange with compounds having different X in the X group, for example, —SO 3 Three H基はLiOHとの反応により−SOThe H group reacts with LiOH to —SO 3 Three Li基に変換することができ、しかもこのようなイオン交換による変換反応は一般的にそれほど困難なく行うことができるという顕著な効果を奏する。It has a remarkable effect that it can be converted into a Li group, and such a conversion reaction by ion exchange can generally be performed without difficulty.

本発明の請求項3記載の発明は、前記の反応式(1)により、側鎖に−SO3 X基を有する2価の芳香環を有する芳香族化合物のジハロゲン化化合物と、ジエチニル有機化合物とを反応させて、請求項1記載の新規高分子イオン伝導体を合成することを特徴とする新規高分子イオン伝導体の一般性の高い合成法であり、
本発明の新規なイオン伝導性高分子化合物を容易に効率よく合成できるという顕著な効果を奏する。
The invention according to claim 3 of the present invention is based on the above reaction formula (1), a dihalogenated compound of an aromatic compound having a divalent aromatic ring having a —SO 3 X group in the side chain, a diethynyl organic compound, are reacted, a high synthesis of generality of the novel polymeric ion conductor, wherein the synthesis of new polymeric ion conductor according to claim 1 Symbol placement,
There is a remarkable effect that the novel ion conductive polymer compound of the present invention can be easily and efficiently synthesized.

本発明の請求項4記載の発明は、前記の反応式(2)により、側鎖に−SO3 X基を有する2価の芳香環を有する芳香族化合物のジエチニル化合物と、ジハロゲン化有機化合物とを反応させて、請求項1記載の新規高分子イオン伝導体を合成することを特徴とする新規高分子イオン伝導体の一般性の高い合成法であり、
本発明の新規なイオン伝導性高分子化合物を容易に効率よく合成できるという顕著な効果を奏する。
The invention according to claim 4 of the present invention is based on the above reaction formula (2), the aromatic diethynyl compound having a divalent aromatic ring having a —SO 3 X group in the side chain, a dihalogenated organic compound, are reacted, a high synthesis of generality of the novel polymeric ion conductor, wherein the synthesis of new polymeric ion conductor according to claim 1 Symbol placement,
There is a remarkable effect that the novel ion conductive polymer compound of the present invention can be easily and efficiently synthesized.

本発明の請求項5記載の発明は、それぞれ側鎖に−SO 3 X基を有さないAr’、R’を有する芳香族化合物を用いて重合された一般式(1’)(Ar’−C≡C−R’−C≡C) n で表わされる−C≡C−基と、側鎖に−SO3 X基を有していない芳香環とを主鎖中に有する高分子化合物を、クロロ硫酸と反応させて前記芳香環に−SO3 X基を導入してスルホン化するか、あるいは前記高分子化合物を、クロロ硫酸と反応させて前記芳香環に−SO2 Cl基を導入した後、前記−SO2 Cl基を−SO3 H基に転換してスルホン化することを特徴とする請求項2記載の新規高分子イオン伝導体の合成法であり、
−C≡C−基と、側鎖に−SO3 X基を有していない芳香環とを主鎖中に有する高分子化合物を、クロロ硫酸との反応を通して、前記芳香環に−SO3 X基を結合させてスルホン化するか、あるいは前記高分子化合物を、クロロ硫酸と反応させて前記芳香環に−SO2 Cl基を導入した後、前記−SO2 Cl基を−SO3 H基に転換してスルホン化することにより本発明の新規なイオン伝導性高分子化合物を容易に効率よく合成できるという顕著な効果を奏する。
The invention according to claim 5 of the present invention is the compound represented by the general formula (1 ′) (Ar′-) polymerized using an aromatic compound having Ar ′ and R ′ each having no —SO 3 X group in the side chain. A polymer compound having a —C≡C— group represented by C≡C—R′—C≡C) n and an aromatic ring having no —SO 3 X group in the side chain in the main chain; After reacting with chlorosulfuric acid to introduce —SO 3 X group into the aromatic ring to sulfonate, or reacting the polymer compound with chlorosulfuric acid to introduce —SO 2 Cl group into the aromatic ring a synthesis of new polymeric ion conductor according to claim 2 wherein the sulfonating by converting the -SO 2 Cl group in -SO 3 H group,
A polymer compound having a —C≡C— group and an aromatic ring having no —SO 3 X group in the side chain in the main chain is reacted with chlorosulfuric acid to form —SO 3 X in the aromatic ring. or sulfonated by joining group or the polymer compound, after reacted with chlorosulfonic acid to introduce the -SO 2 Cl group to the aromatic ring, a -SO 3 H group of the -SO 2 Cl group By converting and sulfonating, the novel ion conductive polymer compound of the present invention can be easily and efficiently synthesized.

本発明の請求項6記載の発明は、前記一般式(1)で表わされる−C≡C−基と、側鎖に−SO3X基を有する芳香環とを主鎖中に有する高分子化合物であって、さらにOH基を有する高分子化合物を、前記OH基と架橋反応可能な架橋剤によって架橋させて得られることを特徴とする新規高分子イオン伝導体であり、
架橋させることによって強度を増加させた本発明の新規なイオン伝導性高分子化合物を容易に効率よく合成できるという顕著な効果を奏する。
The invention according to claim 6 of the present invention is a polymer compound having —C≡C— group represented by the general formula (1) and an aromatic ring having —SO 3 X group in the side chain in the main chain. Further, a novel polymer ion conductor characterized in that it is obtained by crosslinking a polymer compound having an OH group with a crosslinking agent capable of crosslinking reaction with the OH group,
There is a remarkable effect that the novel ion conductive polymer compound of the present invention having increased strength by crosslinking can be synthesized easily and efficiently.

本発明の請求項7記載の発明は、請求項1または請求項2あるいは請求項6記載の新規高分子イオン伝導体から構成されることを特徴とする高分子電解質膜であり、低加湿条件下でも、プロトン伝導性が高く、化学的耐久性が高く、耐熱性に優れているという顕著な効果を奏する。   The invention according to claim 7 of the present invention is a polymer electrolyte membrane comprising the novel polymer ion conductor according to claim 1 or claim 2 or claim 6, under low humidification conditions. However, there is a remarkable effect that proton conductivity is high, chemical durability is high, and heat resistance is excellent.

本発明の請求項8記載の発明は、請求項1または請求項2あるいは請求項6記載の新規高分子イオン伝導体から構成されることを特徴とする高分子電解質であり、低加湿条件下でも、プロトン伝導性が高く、化学的耐久性が高く、耐熱性に優れているという顕著な効果を奏する。   The invention according to claim 8 of the present invention is a polymer electrolyte comprising the novel polymer ionic conductor according to claim 1 or claim 2 or claim 6, and even under low humidification conditions. It has a remarkable effect of high proton conductivity, high chemical durability, and excellent heat resistance.

本発明の請求項9記載の発明は、請求項1または請求項2あるいは請求項6記載の新規高分子イオン伝導体、および請求項7記載の高分子電解質膜、および請求項8記載の高分子電解質の内の少なくとも1つを用いたことを特徴とする膜電極接合体であり、低加湿条件下でも、プロトン伝導性が高く、化学的耐久性が高く、耐熱性に優れているという顕著な効果を奏する。   The invention according to claim 9 of the present invention is the novel polymer ion conductor according to claim 1 or claim 2 or claim 6, the polymer electrolyte membrane according to claim 7, and the polymer according to claim 8. A membrane electrode assembly characterized by using at least one of the electrolytes, and has a remarkable proton conductivity, high chemical durability, and excellent heat resistance even under low humidification conditions. There is an effect.

本発明の請求項10記載の発明は、請求項1または請求項2あるいは請求項6記載の新規高分子イオン伝導体、および請求項7記載の高分子電解質膜、および請求項8記載の高分子電解質および請求項9記載の膜電極接合体の内の少なくとも1つを用いたことを特徴とする燃料電池であり、低加湿条件下でも、プロトン伝導性が高く、化学的耐久性が高く、耐熱性に優れているので、高効率で発電でき信頼性が高いという顕著な効果を奏する。   The invention according to claim 10 of the present invention is the novel polymer ion conductor according to claim 1, claim 2, or claim 6, the polymer electrolyte membrane according to claim 7, and the polymer according to claim 8. A fuel cell comprising at least one of an electrolyte and a membrane electrode assembly according to claim 9, wherein the fuel cell has high proton conductivity, high chemical durability, and heat resistance even under low humidification conditions. Since it is excellent in performance, it has a remarkable effect that it can generate power with high efficiency and has high reliability.

本発明の電解質膜の両面に電極触媒層を形成した本発明の膜電極結合体を装着した燃料電池の単セルの構成を示す分解断面図である。1 is an exploded cross-sectional view showing a configuration of a single cell of a fuel cell equipped with a membrane electrode assembly of the present invention in which an electrode catalyst layer is formed on both surfaces of an electrolyte membrane of the present invention. 高分子化合物P1のIRスペクトルを示すグラフである。It is a graph which shows IR spectrum of the high molecular compound P1. 高分子化合物P2のIRスペクトルを示すグラフである。It is a graph which shows IR spectrum of the high molecular compound P2. 高分子化合物P3のIRスペクトルを示すグラフである。It is a graph which shows IR spectrum of the high molecular compound P3. 高分子化合物P3とコハク酸ジクロリドの反応生成物である高分子化合物P4のIRスペクトルを示すグラフである。It is a graph which shows IR spectrum of the high molecular compound P4 which is a reaction product of the high molecular compound P3 and a succinic acid dichloride.

以下に、本発明の新規高分子イオン伝導体または新規高分子イオン伝導体の合成法および本発明の新規高分子イオン伝導体を用いた本発明の膜電極接合体について説明する。
なお、本発明は、以下に記載する各実施の形態に限定されるものではなく、当業者の知識に基づいて設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
Hereinafter, the novel polymer ion conductor of the present invention or a method for synthesizing the novel polymer ion conductor and the membrane electrode assembly of the present invention using the novel polymer ion conductor of the present invention will be described.
The present invention is not limited to the embodiments described below, and modifications such as design changes can be added based on the knowledge of those skilled in the art, and such modifications are added. The embodiments may be included in the scope of the present invention.

本発明の新規高分子イオン伝導体は、前記のように一般式(1)で表わされる−C≡C−基と、側鎖に−SO3 X基を有する芳香環とを主鎖中に有する高分子化合物から構成されてなるか、それぞれ側鎖に−SO 3 X基を有さないAr’、R’を有する芳香族化合物を用いて重合された一般式(1’)(Ar’−C≡C−R’−C≡C) n で表わされる高分子化合物をスルホン化することにより、側鎖に−SO 3 X基が導入されてなることを特徴とするものであり、電子吸引性−C≡C−基を有しており、この基に結合したベンゼン環等の芳香環に結合している−SO3 H基の結合安定性は−C≡C−基の電子吸引性のために高くなり、化学的安定性に優れるとともに、スルホン酸基のようなイオン伝導性の官能基を備えるのでイオン伝導性に優れ、耐熱性および耐久性に優れている。
一般式(1)、一般式(1’)中のnは整数であり、本発明の新規高分子イオン伝導体が機械的強度を有するためには約5〜10,000が好ましく、5〜1000がさらに好ましいが、これに制限されるものではない。
nが5未満では強度を有する高分子が得られない恐れがあり、10,000を超えると合成および取り扱いが困難となる恐れがある。
The novel polymer ion conductor of the present invention has a —C≡C— group represented by the general formula (1) and an aromatic ring having a —SO 3 X group in the side chain in the main chain as described above. General formula (1 ′) (Ar′-C) composed of a polymer compound or polymerized using an aromatic compound having Ar ′ and R ′ each having no —SO 3 X group in the side chain ≡C—R′—C≡C) The polymer compound represented by n is sulfonated to introduce a —SO 3 X group into the side chain, and has an electron withdrawing property— The bond stability of the —SO 3 H group bonded to an aromatic ring such as a benzene ring having a C≡C— group is due to the electron withdrawing property of the —C≡C— group. It has high chemical stability, and has an ion conductive functional group such as a sulfonic acid group, so it has excellent ion conductivity. Excellent heat resistance and durability.
In the general formula (1) and general formula (1 ′) , n is an integer, and is preferably about 5 to 10,000 for the novel polymer ion conductor of the present invention to have mechanical strength, Is more preferable, but is not limited thereto.
If n is less than 5, a polymer having strength may not be obtained, and if it exceeds 10,000, synthesis and handling may be difficult.

前記側鎖に−SO3 X基を有する2価の前記芳香環は、例えばベンゼン環、ピリジン環、またはチオフェン環から選択される少なくとも1つである。前記芳香環がベンゼン環、ピリジン環、またはチオフェン環から選択されるものであると、ベンゼン環の場合には原料の入手の容易さがあり、ピリジン環の場合には芳香環の酸化に対する安定性が高く、またチオフェンの場合には求電子置換反応を受け易くクロロ硫酸との反応を通して−SO3 X基が導入しやすいので好ましい。 The divalent aromatic ring having a —SO 3 X group in the side chain is at least one selected from, for example, a benzene ring, a pyridine ring, or a thiophene ring. When the aromatic ring is selected from a benzene ring, a pyridine ring, or a thiophene ring, the raw material is easily available in the case of the benzene ring, and in the case of the pyridine ring, the stability of the aromatic ring against oxidation In the case of thiophene, it is preferable because it is susceptible to electrophilic substitution reaction and -SO 3 X group is easily introduced through reaction with chlorosulfuric acid.

前記反応式(1)および前記反応式(2)による高分子合成反応は一般的にはパラジウム化合物と銅化合物存在下に行われる一般性の高い合成法である。
Arは側鎖に−SO 3 X基を有する2価の芳香環であり、−SO3 X基はAr中の芳香環に直接結合していても良いし-O(CH2)4SO3 Xのように連結基(この場合はO(CH2 )4基)を通して芳香環に結合していても良い。
前記反応式(1)および前記反応式(2)中のハロゲンY1とY2については、高分子合成反応の進み易さおよび原料の入手のし易さから、塩素、臭素またはヨウ素が望ましい。
The polymer synthesis reaction according to the above reaction formula (1) and the above reaction formula (2) is generally a general synthesis method performed in the presence of a palladium compound and a copper compound.
Ar is a divalent aromatic ring having a —SO 3 X group in the side chain, and the —SO 3 X group may be directly bonded to the aromatic ring in Ar, or —O (CH 2 ) 4 SO 3 X And may be bonded to the aromatic ring through a linking group (in this case, O (CH 2 ) 4 group).
As for the halogens Y 1 and Y 2 in the reaction formula (1) and the reaction formula (2), chlorine, bromine or iodine is desirable from the viewpoint of easy progress of the polymer synthesis reaction and availability of raw materials.

芳香族化合物を構成する芳香環としてはベンゼン環、ナフタレン環、アントラセン環等の芳香族炭化水素の芳香環およびピリジン環、チオフェン環等の複素芳香環が挙げられるが、これらに限定されるものではない。   Examples of the aromatic ring constituting the aromatic compound include aromatic rings of aromatic hydrocarbons such as benzene ring, naphthalene ring and anthracene ring, and heteroaromatic rings such as pyridine ring and thiophene ring, but are not limited thereto. Absent.

また、これらの芳香環には−SO3 X基、連結基を通した−SO3 X基の他にさらにアルキル基、アルコキシ基等の置換基が結合していても良い。また、ナフタレン−1,4−ジイル基やアントセン−9,10−ジイル基等の様に、側鎖に縮環構造を持っていても良い。 In addition to the —SO 3 X group and the —SO 3 X group through which the linking group is passed, a substituent such as an alkyl group or an alkoxy group may be bonded to these aromatic rings. Further, the side chain may have a condensed ring structure such as naphthalene-1,4-diyl group or anthcene-9,10-diyl group.

芳香族炭化水素のベンゼン環等に−SO3 H基が直接結合している場合には、−C≡C−基の電子吸引効果により−SO3 H基の芳香環からの脱離が抑制される。 When the —SO 3 H group is directly bonded to the benzene ring of an aromatic hydrocarbon, etc., the elimination of the —SO 3 H group from the aromatic ring is suppressed by the electron withdrawing effect of the —C≡C— group. The

Rは有機化合物の2価の基であり、元になる有機化合物はベンゼンやピリジンの様な芳香族化合物でも良いし、ヘキサンのような脂肪族化合物でも良い。例えば、Rとしてはパラフェニレン基、ピリジン−2,5−ジイル基、ヘキサン−1,6−ジイル基等が挙げられる。
また、Rは側鎖に−SO3 X基を持っていても良いし持たなくてもよい。さらに、Rは−SO3 X基、連結基を通した−SO3 X基以外の側鎖を持っていても良いし持たなくてもよい。
R is a divalent group of an organic compound, and the original organic compound may be an aromatic compound such as benzene or pyridine, or may be an aliphatic compound such as hexane. For example, R includes a paraphenylene group, a pyridine-2,5-diyl group, a hexane-1,6-diyl group, and the like.
R may or may not have a —SO 3 X group in the side chain. Furthermore, R may not have may have a -SO 3 X group, the side chain other than -SO 3 X group through a linking group.

−C≡C−基と、側鎖に−SO3 X基を有していない芳香環とを主鎖中に有する高分子化合物を、クロロ硫酸ClSO3 Hと反応させる過程により前記芳香環をスルホン化する反応においては、反応条件により芳香環に−SO3 H基または−SO2 Cl基が導入される。ベンゼンを例にとれば、反応式(3)および反応式(4)のようになる。 In the process of reacting a polymer compound having —C≡C— group and an aromatic ring having no —SO 3 X group in the side chain in the main chain with ClSO 3 H chlorosulfate, the aromatic ring is converted to sulfone. In the reaction to be converted, an —SO 3 H group or an —SO 2 Cl group is introduced into the aromatic ring depending on the reaction conditions. Taking benzene as an example, reaction formulas (3) and (4) are obtained.

C6 H6 + ClSO3H→ C6 H5SO3 H 反応式(3)
C6 H6 + ClSO3H→ C6 H5SO2 Cl 反応式(4)
C 6 H 6 + ClSO 3 H → C 6 H 5 SO 3 H Reaction formula (3)
C 6 H 6 + ClSO 3 H → C 6 H 5 SO 2 Cl reaction formula (4)

クロロ硫酸の濃度が低い時には、一般的に反応式(3)に示されるように−SO3 H基が導入され、クロロ硫酸の濃度が高い時には、一般的に反応式(4)に示されるように−SO2 Cl基が導入される。
また、−SO2 Cl基が導入された場合にも、この−SO2 Cl基は長時間の水との反応により−SO3 H基に変換される。
また、−SO2 Cl基を持つ芳香族化合物はN,N−ジメチルホルムアミドとの反応を通してスルホン酸塩等のスルホン化物に変換され、さらに−SO3 H基を持つ芳香族化合物に変換される。
When the concentration of chlorosulfuric acid is low, the —SO 3 H group is generally introduced as shown in the reaction formula (3), and when the concentration of chlorosulfuric acid is high, it is generally shown in the reaction formula (4). -SO 2 Cl group is introduced into
In addition, when a —SO 2 Cl group is introduced, this —SO 2 Cl group is converted to a —SO 3 H group by a long-time reaction with water.
In addition, an aromatic compound having a —SO 2 Cl group is converted into a sulfonated product such as a sulfonate through a reaction with N, N-dimethylformamide, and further converted into an aromatic compound having a —SO 3 H group.

Aryl-SO2Cl + (CH3 )2NCHO→ Aryl-SO3 - [(CH3)2-CH=N(CH3)2]+ 反応式(5)
[前記反応式(5)中のArylはフェニル基等の芳香族化合物の1価の基である。]
反応式(5)によって生成した化合物は塩酸等の酸との反応におけるイオン交換でスルホン化物Aryl-SO3Hに変換される。
一般に、−SO3 X(1)基と−SO3 X(2)基の間ではX(1)とX(2)の間のイオン交換により、容易に基の変換を行うことができる。
Aryl-SO 2 Cl + (CH 3 ) 2 NCHO → Aryl-SO 3 - [(CH 3 ) 2 -CH = N (CH 3 ) 2 ] + Reaction formula (5)
[Aryl in the reaction formula (5) is a monovalent group of an aromatic compound such as a phenyl group. ]
The compound produced by the reaction formula (5) is converted into a sulfonated product Aryl-SO 3 H by ion exchange in the reaction with an acid such as hydrochloric acid.
In general, group conversion can be easily performed between the —SO 3 X (1) group and the —SO 3 X (2) group by ion exchange between X (1) and X (2).

−C≡C−基と、側鎖に−SO3 X基を有する芳香環とを主鎖中に有するとともに、さらにOH基を有する高分子化合物を、前記OH基と架橋反応可能な架橋剤によって架橋させることによって強度などを改善することができる。
OH基とカルボン酸、酸塩化物、イソシアナート等の反応性を応用して、該OH基を有するイオン伝導体とジカルボン酸、ジカルボン酸の酸塩化物、ジイソシアナート等のOHに対する反応性を有する基を2個以上持つ化合物(架橋剤)と反応させて該イオン伝導体に架橋反応を行うことができ、架橋反応を行うことにより、高分子化合物である該イオン伝導体の強度を増加できる。
架橋反応の手法としては、該イオン伝導体の膜を架橋剤の溶液に浸して行う手法が有るが、これに限定されるものではない。
A polymer compound having a —C≡C— group and an aromatic ring having a —SO 3 X group in the side chain in the main chain and further having an OH group is produced by a crosslinking agent capable of crosslinking reaction with the OH group. Strength and the like can be improved by crosslinking.
Applying the reactivity of OH groups with carboxylic acids, acid chlorides, isocyanates, etc., the reactivity of ionic conductors with OH groups with OH such as dicarboxylic acids, acid chlorides of dicarboxylic acids, diisocyanates, etc. The ionic conductor can be reacted with a compound having two or more groups (crosslinking agent) to carry out a crosslinking reaction, and by performing the crosslinking reaction, the strength of the ionic conductor that is a polymer compound can be increased. .
As a method of the crosslinking reaction, there is a method of immersing the ion conductor film in a solution of a crosslinking agent, but the method is not limited thereto.

(高分子電解質膜の製造)
本発明の新規高分子イオン伝導体(電解質)を用いて高分子電解質膜を製造するためには、具体的には、例えば、熱溶解することによって膜を形成するか、あるいは適当な溶媒に溶解させ、適当な基板や支持体に塗布した後、乾燥させ、高分子電解質膜を形成する、いわゆる溶液プロセスによる方法などが挙げられるが、その形成法は特に限定されるものではない。
(Manufacture of polymer electrolyte membrane)
In order to produce a polymer electrolyte membrane using the novel polymer ionic conductor (electrolyte) of the present invention, specifically, for example, a membrane is formed by hot dissolution or dissolved in an appropriate solvent. The polymer electrolyte membrane is formed by applying a suitable substrate or support to a suitable substrate and then drying to form a polymer electrolyte membrane, but the formation method is not particularly limited.

前記のような溶液プロセスにより、本発明の新規高分子イオン伝導体を成膜する場合に使用する溶媒は、試料を溶解することができるなら特に限定されるものではないが、工業的に入手が容易で、かつ製膜および乾燥の際に除去しやすいものがより好ましく、クロロホルム、塩化メチレン、エーテル、ジオキサン、ヘキサン、シクロへキサン、テトラヒドロフラン、アセトン、メタノール、エタノール、ギ酸、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)などが例示でき、また、2種類以上の溶媒の混合物であってもよい。   The solvent used when forming the film of the novel polymer ion conductor of the present invention by the solution process as described above is not particularly limited as long as it can dissolve the sample. Those which are easy and easy to remove during film formation and drying are more preferred, such as chloroform, methylene chloride, ether, dioxane, hexane, cyclohexane, tetrahydrofuran, acetone, methanol, ethanol, formic acid, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF) can be exemplified, and a mixture of two or more solvents may be used.

膜電極接合体(MEA)を製造する方法の一例としては、まず、本発明の新規高分子イオン伝導体を用いて前述した製造法により、本発明の高分子電解質膜を形成する。図1に示すように、その後、本発明の高分子電解質膜1の両側に電極触媒層2、3を作製し、本発明の膜電極接合体11を作製する。
発電の際には、図1に示すように電極触媒層2、3上にガス拡散層4、5を配置して空気極(カソード)6および燃料極(アノード)7を作製し、セパレータ10や図示しない補助的な装置(ガス供給装置、冷却装置など)を装着して組み立て、単一あるいは積層することにより燃料電池を作製することができる。
8はガス流路、9は冷却水流路を示す。
As an example of a method for producing a membrane electrode assembly (MEA), first, the polymer electrolyte membrane of the present invention is formed by the production method described above using the novel polymer ion conductor of the present invention. As shown in FIG. 1, thereafter, electrode catalyst layers 2 and 3 are prepared on both sides of the polymer electrolyte membrane 1 of the present invention, and a membrane electrode assembly 11 of the present invention is manufactured.
At the time of power generation, as shown in FIG. 1, gas diffusion layers 4 and 5 are arranged on the electrode catalyst layers 2 and 3 to produce an air electrode (cathode) 6 and a fuel electrode (anode) 7, and a separator 10 or A fuel cell can be manufactured by mounting and assembling, and singly or laminating auxiliary devices (gas supply device, cooling device, etc.) not shown.
Reference numeral 8 denotes a gas flow path, and 9 denotes a cooling water flow path.

以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to a following example.

(スルホン酸基を導入したピリドンモノマーの合成)
5.0gの3,5−ジブロモ−2−ヒドロキシピリジンと1.2gの水酸化ナトリウムを溶液に溶かし、撹拌した。その後、溶媒に溶かした4.0gのブタンスルトンを加えて、反応させた。
得られた粗生成物を回収し、精製、乾燥することで、下記反応式(6)で示される化合物1を白色粉末として4.1g(収率33%)で得た。
得られた化合物1の元素分析値は、炭素:24.12%(計算値 24.20%)。水素:2.11%(2.03%)。窒素:3.31%(3.53%)であった。
(Synthesis of pyridone monomer with sulfonic acid group)
5.0 g 3,5-dibromo-2-hydroxypyridine and 1.2 g sodium hydroxide were dissolved in the solution and stirred. Thereafter, 4.0 g of butane sultone dissolved in a solvent was added and reacted.
The obtained crude product was recovered, purified, and dried to obtain 4.1 g (yield 33%) of Compound 1 represented by the following reaction formula (6) as a white powder.
The elemental analysis value of the obtained compound 1 is carbon: 24.12% (calculated value 24.20%). Hydrogen: 2.11% (2.03%). Nitrogen: 3.31% (3.53%).

Figure 0005424046
Figure 0005424046

(実施例1)
(高分子化合物P1の合成)
200mgの化合物1、60mgのパラジエチニルベンゼン、56mgのテトラキス(トリフェニルホスフィン)パラジウムPd(PPh34 、9 mgのCuIをトリエチルアミンを含むN,N−ジメチルホルムアミド中で60℃で1.5時間反応させ(下記の反応式(7)参照)、回収、乾燥させて高分子化合物を得た。
得られた高分子化合物を集め、希塩酸で処理し回収、乾燥することにより高分子化合物P1を45%の収率で得た。高分子化合物P1のIRスペクトルを図2に示す。
このIRスペクトルでは、1186cm-1に−SO3 -基に特徴的な吸収が観測されている。
この高分子化合物P1の粉末を水に30分浸し、ろ紙で水を除いた後のサンプルについて、加圧下での、複素インピーダンス解析機を用いた測定により、室温において優れたイオン伝導性示すことが分かった。
Example 1
(Synthesis of polymer compound P1)
200 mg of compound 1, 60 mg of paradiethynylbenzene, 56 mg of tetrakis (triphenylphosphine) palladium Pd (PPh 3 ) 4 , 9 mg of CuI in N, N-dimethylformamide containing triethylamine for 1.5 hours at 60 ° C. The polymer compound was obtained by reacting (see the following reaction formula (7)), collecting and drying.
The obtained polymer compound was collected, treated with dilute hydrochloric acid, collected and dried to obtain polymer compound P1 in a yield of 45%. The IR spectrum of the polymer compound P1 is shown in FIG.
In this IR spectrum, a characteristic absorption of the —SO 3 group is observed at 1186 cm −1 .
The sample after immersing this polymer compound P1 powder in water for 30 minutes and removing the water with a filter paper shows excellent ion conductivity at room temperature by measurement using a complex impedance analyzer under pressure. I understood.

Figure 0005424046
Figure 0005424046

(実施例2)
(高分子化合物P2の合成)
パラジエチニルベンゼンの代わりにメタジエチニルベンゼンを用いる他は、実施例1と同様にして高分子化合物を合成した(下記の反応式(8)参照)。得られた高分子化合物を集め、希塩酸で処理し回収、乾燥することにより高分子化合物P2を33%の収率で得た。高分子化合物P2のIRスペクトルを図3に示す。このIRスペクトルでは、1181cm-1に−SO3 -基に特徴的な吸収が観測されている。
この高分子化合物P2の粉末を水に30分浸し、ろ紙で水を除いた後のサンプルについて、加圧下での、複素インピーダンス解析機を用いた測定により、室温において優れたイオン伝導性示すことが分かった。
(Example 2)
(Synthesis of polymer compound P2)
A polymer compound was synthesized in the same manner as in Example 1 except that metadiethynylbenzene was used instead of paradiethynylbenzene (see the following reaction formula (8)). The obtained polymer compound was collected, treated with dilute hydrochloric acid, collected and dried to obtain polymer compound P2 in a yield of 33%. The IR spectrum of the polymer compound P2 is shown in FIG. In this IR spectrum, a characteristic absorption of the —SO 3 group is observed at 1181 cm −1 .
A sample obtained by immersing the powder of the polymer compound P2 in water for 30 minutes and removing the water with a filter paper exhibits excellent ion conductivity at room temperature by measurement using a complex impedance analyzer under pressure. I understood.

Figure 0005424046
Figure 0005424046

(実施例3)
(高分子化合物P3の合成)
パラジエチニルベンゼンの代わりに1,4−ジエチニル−2.5−ジヒドロキシベンゼンを用いる他は、実施例1と同様にして高分子化合物P3を合成した(下記の反応式(9)参照)。得られた高分子化合物を集め、乾燥することにより高分子化合物P3を78%の収率で得た。高分子化合物P3のIRスペクトルを図4に示す。このIRスペクトルでは、1176cm-1に−SO3 -基に特徴的な吸収が観測されている。
(Example 3)
(Synthesis of polymer compound P3)
A polymer compound P3 was synthesized in the same manner as in Example 1 except that 1,4-diethynyl-2.5-dihydroxybenzene was used instead of paradiethynylbenzene (see the following reaction formula (9)). The obtained polymer compound was collected and dried to obtain polymer compound P3 in a yield of 78%. The IR spectrum of the polymer compound P3 is shown in FIG. In this IR spectrum, a characteristic absorption of the —SO 3 group is observed at 1176 cm −1 .

Figure 0005424046
Figure 0005424046

(実施例4)
(高分子化合物P3の架橋反応による高分子化合物P4の合成)
40mgのP3を二塩化スクシニルClCOCH2 CH2 COCl(40mg)の乾燥ジメチルスルホキシド溶液(2mL)と混合し真空下130℃で3時間反応させ(下記の反応式(10)参照、式(10)中のmは整数であり、縦方向の括弧はこの単位を通して元の高分子化合物が架橋していることを示す)、回収、乾燥させて黒色の生成物である高分子化合物P4を得た。空気中に放置した後に得られたP4のIRスペクトルを図5に示す。このIRスペクトルには1207cm-1にエステル基に特徴的な吸収が観測されており、架橋反応が進行したことを示している。
なお、架橋反応によりHClが発生するので−SO3 Na基の一部またはすべてが−SO3 H基に変換されていると考えられる。空気中に放置した後に得られた高分子化合物フィルムサンプルにおいては、未反応の二塩化スクシニルは空気中の水分と反応してコハク酸に変換されていると考えられる。この空気中に放置した後に得られた高分子化合物フィルムサンプルは重水素化ジメチルスルホキシドに可溶であり、この溶媒中でのプロトンNMRスペクトルはδ2.40にコハク酸のメチレン基のピークを示し、またδ2.26に架橋高分子化合物P4の架橋基中のメチレン基によると考えられるピークを示した。
δ2.40とδ2.26の両者のピークの面積比(3:1)から架橋反応に用いられた二塩化スクシニルの量を計算した結果、架橋反応前の高分子化合物中の−OH基の約3分の2が架橋反応に用いられていることが分かった。
この架橋反応の原料のP3はメタノールおよびジメチルスルホキド、水に良く溶けた。一方、得られたP4はジメチルスルホキシド、水には溶解性を示したがメタノールには難溶性となった。また、P3とP4について、各々の水溶液からのキャスト後の加熱乾燥により製膜を試みたところ、P3の場合には粒子状の粒が形成し膜は得られなかった。
これに対して、P4については割れのないキャスト膜を得ることができた。これらのことは、本実施例で示した架橋反応の効果を示している。
Example 4
(Synthesis of polymer compound P4 by crosslinking reaction of polymer compound P3)
40 mg of P3 was mixed with a solution of succinyl dichloride ClCOCH 2 CH 2 COCl (40 mg) in dry dimethyl sulfoxide (2 mL) and reacted at 130 ° C. under vacuum for 3 hours (see the following reaction formula (10), in formula (10) M is an integer, and the parentheses in the vertical direction indicate that the original polymer compound is cross-linked through this unit), and the polymer compound P4 is obtained as a black product by collecting and drying. FIG. 5 shows the IR spectrum of P4 obtained after being left in the air. In this IR spectrum, a characteristic absorption of the ester group was observed at 1207 cm −1 , indicating that the crosslinking reaction has proceeded.
Since HCl is generated by the crosslinking reaction, it is considered that a part or all of the —SO 3 Na groups are converted to —SO 3 H groups. In the polymer compound film sample obtained after being left in the air, it is considered that unreacted succinyl dichloride is converted to succinic acid by reacting with moisture in the air. The polymer film sample obtained after being left in the air is soluble in deuterated dimethyl sulfoxide, and the proton NMR spectrum in this solvent shows a methylene group peak of succinic acid at δ 2.40. Moreover, the peak considered to be based on the methylene group in the crosslinking group of bridge | crosslinking polymeric compound P4 was shown to (delta) 2.26.
As a result of calculating the amount of succinyl dichloride used for the crosslinking reaction from the area ratio (3: 1) of the peaks of both δ2.40 and δ2.26, it was found that about —OH groups in the polymer compound before the crosslinking reaction. It was found that two thirds were used for the crosslinking reaction.
The raw material P3 for this crosslinking reaction was well dissolved in methanol, dimethyl sulfoxide and water. On the other hand, the obtained P4 was soluble in dimethyl sulfoxide and water, but hardly soluble in methanol. Further, when P3 and P4 were subjected to film formation by heating and drying after casting from each aqueous solution, in the case of P3, particulate particles were formed and no film was obtained.
On the other hand, for P4, a cast film without cracks could be obtained. These facts show the effect of the crosslinking reaction shown in this example.

Figure 0005424046
Figure 0005424046

(実施例5)
(高分子化合物P5の合成)
ポリ(パラフェニレンエチニレン)39mgを1,1,2,2−テトラクロロエタン(5g)に溶解させたクロロ硫酸(12.5g)と室温で反応させ反応液を水で処理した後に固体を回収、乾燥させて高分子化合物P5を得た(下記の反応式(11)参照)。
この高分子化合物P5の元素分析値は、P5が炭素、塩素、硫黄を8:0.46:0.43のモル比で含有しており、ベンゼン環に対して反応式(4)に示すような−SO2 Cl基の導入反応が起こっていることを示している。
式(11)の生成物P5における−SO2 Cl基の導入率は元素比から約45%と考えられる。この−SO2 Cl基は前述のように−SO3 Hに変換できると考えられる。高分子化合物P5のIRスペクトルは1210cm-1に−SO2 Cl基に基づくと考えられる吸収を示した。
(Example 5)
(Synthesis of polymer compound P5)
A solid was recovered after 39 mg of poly (paraphenyleneethynylene) was reacted with chlorosulfuric acid (12.5 g) dissolved in 1,1,2,2-tetrachloroethane (5 g) at room temperature and the reaction solution was treated with water. The polymer compound P5 was obtained by drying (see the following reaction formula (11)).
The elemental analysis value of this polymer compound P5 is that P5 contains carbon, chlorine, and sulfur in a molar ratio of 8: 0.46: 0.43, as shown in the reaction formula (4) with respect to the benzene ring. This shows that a reaction for introducing a —SO 2 Cl group is occurring.
Introduction rate of the -SO 2 Cl group in the product P5 of formula (11) is considered to be about 45% from the element ratio. This —SO 2 Cl group can be converted to —SO 3 H as described above. The IR spectrum of the polymer compound P5 showed absorption considered to be based on the —SO 2 Cl group at 1210 cm −1 .

Figure 0005424046
Figure 0005424046

(実施例6)
下式(ア)で示す原料高分子化合物(ポリ(パラフェニレンエチニレン))108mgを1,1,2,2−テトラクロロエタン(80 mL)に溶解させたクロロ硫酸(5.02g)と室温で反応させ反応液を水で処理した後に固体を回収、乾燥させて高分子化合物P6を得た。
クロロ硫酸の濃度は、0.54Mと実施例5の場合(約10M)よりも低い。
この高分子化合物P6の元素分析値は、P6が炭素、塩素、硫黄を16:0.60:0.85のモル比で含有しており(ここで、炭素の16は原料高分子化合物中の化学式(ア)で示した繰返し単位に含まれる炭素の数16に対応するものである)、ベンゼン環に対して反応式(3)に示すような−SO3 H基の導入反応と(4)に示すような−SO2 Cl基の導入反応が起こっていることを示している。このことは、前述のようにクロロ硫酸の濃度が実施例5の場合よりも低いことによるものと考えられる。
この反応の原料高分子化合物中をベンゼン環2個を含む上記の繰返し単位からなる化学式(ア)で示すと、繰返し単位1個当りの−SO3 H基および−SO2 Cl基の導入率は元素比から各々25%、60%と考えられる。
−SO2 Cl基は前述のように−SO3 Hに変換できると考えられる。また、上記の−SO3 H基および−SO2 Cl基の導入率はベンゼン環1個当りに換算すると、各々約13%、30%である。高分子化合物P6のIRスペクトルは1213および1194cm-1に−SO3 H基あるいは−SO2 Cl基に基づくと考えられる吸収を示した。P6を50℃で真空乾燥した後に空気中に放置すると、3時間半後には11%の重量の増加がおこった。このことは、P6が空気中の水分を吸収する吸湿性を持つことを示している。
(Example 6)
Chlorosulfuric acid (5.02 g) obtained by dissolving 108 mg of a raw material polymer compound (poly (paraphenyleneethynylene)) represented by the following formula (A) in 1,1,2,2-tetrachloroethane (80 mL) at room temperature After reacting and treating the reaction solution with water, the solid was collected and dried to obtain polymer compound P6.
The concentration of chlorosulfuric acid is 0.54M, which is lower than in the case of Example 5 (about 10M).
The elemental analysis value of this polymer compound P6 is that P6 contains carbon, chlorine, and sulfur in a molar ratio of 16: 0.60: 0.85 (where 16 of carbon is in the starting polymer compound) (Corresponding to the number 16 of carbon contained in the repeating unit represented by chemical formula (a)), introduction reaction of —SO 3 H group as shown in reaction formula (3) to the benzene ring and (4) It shows that the introduction reaction of —SO 2 Cl group as shown in FIG. This is considered to be due to the fact that the concentration of chlorosulfuric acid is lower than that in Example 5 as described above.
When the raw material polymer compound of this reaction is represented by the chemical formula (a) consisting of the above repeating units containing two benzene rings, the introduction rate of —SO 3 H groups and —SO 2 Cl groups per repeating unit is as follows: From the element ratio, it is considered to be 25% and 60% respectively.
It is considered that the —SO 2 Cl group can be converted to —SO 3 H as described above. The introduction rates of the above-mentioned -SO 3 H group and -SO 2 Cl group are about 13% and 30%, respectively, when converted per benzene ring. The IR spectrum of the polymer compound P6 showed absorptions believed to be based on —SO 3 H groups or —SO 2 Cl groups at 1213 and 1194 cm −1 . When P6 was vacuum-dried at 50 ° C. and left in the air, an increase in weight of 11% occurred after 3 and a half hours. This indicates that P6 has a hygroscopic property of absorbing moisture in the air.

Figure 0005424046
Figure 0005424046

(実施例7)
下式(イ)で示す原料高分子化合物50mgと1,1,2,2−テトラクロロエタン(80mL)に溶解させたクロロ硫酸(5.02g)とを実施例6と同様の条件化室温で反応させ反応液を水で処理した後に固体を回収、乾燥させて高分子化合物P7を得た。
この高分子化合物P7の元素分析値は、P7が炭素、塩素、硫黄を24:1.03:1.49のモル比で含有しており(ここで、炭素の24は原料高分子化合物中の式(イ)で示した繰返し単位に含まれる炭素の数24に対応するものである)、ベンゼン環及びアントラセン環に対して反応式(3)に示すような−SO3 H基の導入反応と(4)に示すような−SO2 Cl基の導入反応が起こっていることを示している。
この反応の原料高分子化合物中をベンゼン環1個とアントラセン環1個を含む上記の繰返し単位からなる式(イ)で示すと、繰返し単位1個当りの−SO3 H基および−SO2 Cl基の導入率は元素比から各々約46%、103%と考えられる。−SO2 Cl基は前述のように−SO3 Hに変換できると考えられる。
この実施例においてベンゼン環1個当りの−SO3 H基および−SO2 Cl基の導入率が実施例6における場合と同じであると仮定すると、アントラセン環1個当りの−SO3 H基および−SO2 Cl基の導入率は各々約33(=46−13)%、73(=103−30)%と計算され、アントラセン環には置換可能なCH基がベンゼン環よりも多く存在することを反映しており、また本発明において高分子中のアントラセン環のような縮合環構造を持つ単位においても−SO3 H基および−SO2 Cl基の導入が可能であることを示していると考えられる。
得られた高分子化合物P7のIRスペクトルは1230および1177cm-1に−SO3H基または−SO2 Cl基に基づくと考えられる吸収を示した。P7を50℃で真空乾燥した後に空気中に放置すると、3時間半後には12%の重量の増加がおこった。このことは、P7が空気中の水分を吸収する吸湿性を持つことを示している。
(Example 7)
Reaction of 50 mg of the starting polymer compound represented by the following formula (I) and chlorosulfuric acid (5.02 g) dissolved in 1,1,2,2-tetrachloroethane (80 mL) at the same conditioned room temperature as in Example 6. After the reaction solution was treated with water, the solid was collected and dried to obtain polymer compound P7.
The elemental analysis value of this polymer compound P7 is that P7 contains carbon, chlorine and sulfur in a molar ratio of 24: 1.03: 1.49 (wherein 24 of carbon is in the starting polymer compound) And the introduction reaction of —SO 3 H group as shown in the reaction formula (3) with respect to the benzene ring and the anthracene ring. This shows that the introduction reaction of —SO 2 Cl group as shown in (4) occurs.
When the raw material polymer compound of this reaction is represented by the formula (A) consisting of the above repeating unit containing one benzene ring and one anthracene ring, —SO 3 H group and —SO 2 Cl per repeating unit The introduction ratio of groups is considered to be about 46% and 103%, respectively, from the element ratio. It is considered that the —SO 2 Cl group can be converted to —SO 3 H as described above.
Assuming that the introduction rate of —SO 3 H groups and —SO 2 Cl groups per benzene ring in this example is the same as in Example 6, —SO 3 H groups per anthracene ring and The introduction rates of —SO 2 Cl groups are calculated to be about 33 (= 46-13)% and 73 (= 103-30)%, respectively, and there are more substitutable CH groups in the anthracene ring than in the benzene ring. In addition, in the present invention, it is shown that it is possible to introduce a —SO 3 H group and a —SO 2 Cl group even in a unit having a condensed ring structure such as an anthracene ring in a polymer. Conceivable.
The IR spectrum of the obtained polymer compound P7 showed absorptions considered to be based on —SO 3 H groups or —SO 2 Cl groups at 1230 and 1177 cm −1 . When P7 was vacuum-dried at 50 ° C. and left in the air, a weight increase of 12% occurred after 3 and a half hours. This indicates that P7 has a hygroscopic property of absorbing moisture in the air.

Figure 0005424046
Figure 0005424046

(実施例8)
下式(ウ)で示す原料高分子化合物16.6mgと1,1,2,2−テトラクロロエタン(80 mL)に溶解させたクロロ硫酸(5.02g)とを実施例6と同様の条件化室温で反応させ反応液を水で処理した後に固体を回収、乾燥させて高分子化合物P8を得た。
この高分子化合物P8の元素分析値は、P8が炭素、塩素、硫黄を14:0.68:2.01のモル比で含有しており(ここで、炭素の14は原料高分子化合物中の式(ウ)で示した繰返し単位に含まれる炭素の数14に対応するものである)、ベンゼン環及びチオフェン環に対して反応式(3)に示すような−SO3 H基の導入反応と(4)に示すような−SO2 Cl基の導入反応が起こっていることを示している。
この反応の原料高分子化合物中をベンゼン環1個とチオフェン環1個を含む上記の繰返し単位からなる式(ウ)で示すと、繰返し単位1個当りの−SO3 H基および−SO2 Cl基の導入率は元素比から各々約33%、68%と考えられる。
−SO2 Cl基は前述のように−SO3 Hに変換できると考えられる。この実施例においてベンゼン環1個当りの−SO3 H基および−SO2 Cl基の導入率が実施例6における場合と同じであると仮定すると、チオフェン環1個当りの−SO3 H基および−SO2 Cl基の導入率は各々約20(=46−13)%、38(=68−30)%と計算され、チオフェン環は置換可能なCH基(2個)がベンゼン環(4個)よりも少なく存在するにも係らず、チオフェン環においてベンゼン環の場合と同程度以上に−SO3 H基および−SO2 Cl基の導入が可能であることを示していると考えられる。
チオフェン環がベンゼン環よりも電子供与性が高いことが知られているので、このことはクロロ硫酸との反応における求電子置換反応がチオフェン環上で起こりいことを示していると考えられる。
得られた高分子化合物P8のIRスペクトルは1228および1181cm-1に−SO3H基または−SO2 Cl基に基づくと考えられる吸収を示した。P8を50℃で真空乾燥した後に空気中に放置すると、3時間半後には9%の重量の増加がおこった。このことは、P8が空気中の水分を吸収する吸湿性を持つことを示している。
(Example 8)
The same conditions as in Example 6 were applied, with 16.6 mg of the starting polymer compound represented by the following formula (c) and chlorosulfuric acid (5.02 g) dissolved in 1,1,2,2-tetrachloroethane (80 mL). After reacting at room temperature and treating the reaction solution with water, the solid was recovered and dried to obtain polymer compound P8.
The elemental analysis value of this polymer compound P8 is that P8 contains carbon, chlorine and sulfur in a molar ratio of 14: 0.68: 2.01 (wherein 14 of carbon is in the starting polymer compound) And the introduction reaction of —SO 3 H group as shown in the reaction formula (3) with respect to the benzene ring and the thiophene ring. This shows that the introduction reaction of —SO 2 Cl group as shown in (4) occurs.
When the raw material polymer compound of this reaction is represented by the formula (c) consisting of the above repeating unit containing one benzene ring and one thiophene ring, —SO 3 H group and —SO 2 Cl per repeating unit The introduction ratio of groups is considered to be about 33% and 68% from the element ratio.
It is considered that the —SO 2 Cl group can be converted to —SO 3 H as described above. Assuming that the introduction rate of —SO 3 H groups and —SO 2 Cl groups per benzene ring in this example is the same as in Example 6, —SO 3 H groups per thiophene ring and The introduction rates of —SO 2 Cl groups are calculated to be about 20 (= 46-13)% and 38 (= 68-30)%, respectively, and the thiophene ring has substitutable CH groups (2) and benzene rings (4 ), The —SO 3 H group and the —SO 2 Cl group can be introduced in the thiophene ring to the same extent as in the case of the benzene ring.
Since the thiophene ring is known to have higher electron donating properties than the benzene ring, this is considered to indicate that the electrophilic substitution reaction in the reaction with chlorosulfuric acid does not occur on the thiophene ring.
The IR spectrum of the obtained polymer compound P8 showed absorptions believed to be based on —SO 3 H groups or —SO 2 Cl groups at 1228 and 1181 cm −1 . When P8 was vacuum dried at 50 ° C. and left in the air, a 9% weight increase occurred after 3 and a half hours. This indicates that P8 has a hygroscopic property of absorbing moisture in the air.

Figure 0005424046
Figure 0005424046

本発明の新規高分子イオン伝導体は、前記一般式(1)で表わされる−C≡C−基と、側鎖に−SO3 X基を有する芳香環とを主鎖中に有する高分子化合物から構成されてなるか、それぞれ側鎖に−SO 3 X基を有さないAr’、R’を有する芳香族化合物を用いて重合された一般式(1’)(Ar’−C≡C−R’−C≡C) n で表わされる高分子化合物をスルホン化することにより、側鎖に−SO 3 X基が導入されてなることを特徴とするものであり、電子吸引性−C≡C−基を有しており、この基に結合したベンゼン環等の芳香環に結合している−SO3 H基の結合安定性は−C≡C−基の電子吸引性のために高くなり、化学的安定性に優れるとともに、スルホン酸基のようなイオン伝導性の官能基を備えるのでイオン伝導性に優れ、耐熱性および耐久性に優れており、前記−SO3 X基のXがHである場合には、該イオン伝導体はプロトン伝導性を有するため、燃料電池用の高分子電解質膜、高分子電解質膜、膜電極接合体としての用途を有し、前記−SO3 X基のXがLiである場合には、該イオン伝導体はリチウムイオン伝導性を有しリチウムイオン電池用の高分子電解質膜として有用であるなどという顕著な効果を奏するので、産業上の利用価値は甚だ大きい。 The novel polymer ionic conductor of the present invention is a polymer compound having —C≡C— group represented by the general formula (1) and an aromatic ring having —SO 3 X group in the side chain in the main chain. Or a polymer represented by the general formula (1 ′) (Ar′-C≡C—) polymerized by using an aromatic compound having Ar ′ and R ′ each having no —SO 3 X group in the side chain. R′—C≡C) n is characterized in that a —SO 3 X group is introduced into the side chain by sulfonating a polymer compound represented by n , and the electron-withdrawing property —C≡C - has a group, binding stability of -SO 3 H group bonded to the aromatic ring of the benzene ring or the like attached to the base is high because of the electron-withdrawing -C≡C- group, In addition to excellent chemical stability, it has an ion conductive functional group such as a sulfonic acid group, so it has excellent ion conductivity and heat resistance. In the case where X of the —SO 3 X group is H, the ion conductor has proton conductivity, so that the polymer electrolyte membrane for a fuel cell, the polymer electrolyte membrane, When used as a membrane / electrode assembly, when the X of the —SO 3 X group is Li, the ion conductor has lithium ion conductivity and is useful as a polymer electrolyte membrane for lithium ion batteries The industrial utility value is extremely large.

1 高分子電解質膜
2 電極触媒層
3 電極触媒層
4 ガス拡散層
5 ガス拡散層
6 空気極(カソード)
7 燃料極(アノード)
8 ガス流路
9 冷却水流路
10 セパレータ
11 膜電極接合体
DESCRIPTION OF SYMBOLS 1 Polymer electrolyte membrane 2 Electrode catalyst layer 3 Electrode catalyst layer 4 Gas diffusion layer 5 Gas diffusion layer 6 Air electrode (cathode)
7 Fuel electrode (anode)
8 Gas channel 9 Cooling water channel 10 Separator 11 Membrane electrode assembly

Claims (10)

下記一般式(1)で表わされる−C≡C−基と、側鎖に−SO3X基を有する芳香環とを主鎖中に有する高分子化合物から構成されてなることを特徴とする新規高分子イオン伝導体。
(Ar−C≡C−R−C≡C)n 一般式(1)
[前記式(1)において、Arは側鎖に−SO3 X基を有する2価の芳香環を表わし、Rは側鎖に−SO3 X基を持っていても良いし持たなくてもよい2価の芳香環を表わし、nは整数である。前記−SO3 X基中のXは、水素または1族元素、2族元素、下式(1−1)で表わされるNR1234 または下式(1−2)で表わされるPR1234を表し、前記式(1−1)中のR1234 はHまたは有機基を表わし、前記式(1−2)中のR1234はHまたは有機基を表わす。]
Figure 0005424046
Figure 0005424046
A novel compound comprising a polymer compound having a —C≡C— group represented by the following general formula (1) and an aromatic ring having a —SO 3 X group in the side chain in the main chain. Polymer ionic conductor.
(Ar—C≡C—R—C≡C) n General Formula (1)
[In the formula (1), Ar represents a divalent aromatic ring having a —SO 3 X group in the side chain, and R may or may not have a —SO 3 X group in the side chain. Represents a divalent aromatic ring, and n is an integer. X in the —SO 3 X group is represented by hydrogen, a Group 1 element, a Group 2 element, NR 1 R 2 R 3 R 4 represented by the following formula (1-1), or the following formula (1-2). It represents PR 1 R 2 R 3 R 4 , R 1 R 2 R 3 R 4 in the formula (1-1) represents H or an organic group, R 1 R 2 R in the formula (1-2) 3 R 4 represents H or an organic group. ]
Figure 0005424046
Figure 0005424046
それぞれ側鎖に−SO  -SO on each side chain 3Three X基を有さないAr’、R’を有する芳香族化合物を用いて重合された一般式(1’)(Ar’−C≡C−R’−C≡C)General formula (1 ') (Ar'-C≡C-R'-C≡C) polymerized using an aromatic compound having Ar' and R 'not having X group nn で表わされる高分子化合物をスルホン化することにより、側鎖に−SOBy sulfonation of a polymer compound represented by 3Three X基が導入されてなることを特徴とする新規高分子イオン伝導体。A novel polymer ion conductor, wherein an X group is introduced.
[前記一般式(1’)において、Ar’、R’はそれぞれ側鎖に−SO[In the general formula (1 ′), Ar ′ and R ′ each represent —SO 3 Three X基を有さない2価の芳香環を表わし、nは整数である。前記−SOIt represents a divalent aromatic ring having no X group, and n is an integer. -SO 3 Three X基中のXは、水素または1族元素、2族元素、下式(1−1)で表わされるNRX in the X group is hydrogen or Group 1 element, Group 2 element, NR represented by the following formula (1-1) 11  R 22  R 3Three  R 4Four または下式(1−2)で表わされるPROr PR represented by the following formula (1-2) 11  R 22  R 3Three  R 4Four を表し、前記式(1−1)中のRR in the formula (1-1) 11  R 22  R 3Three  R 4Four はHまたは有機基を表わし、前記式(1−2)中のRRepresents H or an organic group, and R in the formula (1-2) 11  R 22  R 3Three  R 4Four はHまたは有機基を表わす。] Represents H or an organic group. ]
Figure 0005424046
Figure 0005424046
Figure 0005424046
Figure 0005424046
下記の反応式(1)により、側鎖に−SO3 X基を有する2価の芳香環を有する芳香族化合物のジハロゲン化化合物Y1 −Ar−Y2 と、ジエチニル有機化合物HC≡C-R-C≡CHとを反応させて、請求項1記載の新規高分子イオン伝導体を合成することを特徴とする新規高分子イオン伝導体の合成法。
n Y1−Ar −Y2 + n HC≡C-R-C≡CH→ (Ar -C ≡C-R-C≡C )n 反応式(1)
[前記反応式(1)において、Arは側鎖に−SO3 X基を有する2価の芳香環を表わし、Rは側鎖に−SO3 X基を持っていても良いし持たなくてもよい2価の芳香環を表わし、Y1 、Y2 はハロゲン、nは整数である。前記−SO3 X基中のXは、水素または1族元素、2族元素、下式(1−1)で表わされるNR1234または下式(1−2)で表わされるPR1234を表し、前記式(1−1)中のR1234 はHまたは有機基を表わし、前記式(1−2)中のR1234はHまたは有機基を表わす。]
Figure 0005424046
Figure 0005424046
According to the following reaction formula (1), the dihalogenated compound Y 1 -Ar—Y 2 of an aromatic compound having a divalent aromatic ring having a —SO 3 X group in the side chain and the diethynyl organic compound HC≡C—R and -C≡CH reacted, the synthesis of the novel polymer ion conductor, wherein the synthesis of new polymeric ion conductor according to claim 1 Symbol placement.
n Y 1 −Ar −Y 2 + n HC≡C—R—C≡CH → (Ar —C≡C—R—C≡C) n Reaction Formula (1)
[In the reaction formula (1), Ar represents a divalent aromatic ring having a —SO 3 X group in the side chain, and R may or may not have a —SO 3 X group in the side chain. It represents a good divalent aromatic ring, Y 1 and Y 2 are halogen, and n is an integer. X in the —SO 3 X group is represented by hydrogen, a Group 1 element, a Group 2 element, NR 1 R 2 R 3 R 4 represented by the following formula (1-1), or the following formula (1-2). It represents PR 1 R 2 R 3 R 4 , R 1 R 2 R 3 R 4 in the formula (1-1) represents H or an organic group, R 1 R 2 R in the formula (1-2) 3 R 4 represents H or an organic group. ]
Figure 0005424046
Figure 0005424046
下記の反応式(2)により、側鎖に−SO3 X基を有する2価の芳香環を有する芳香族化合物のジエチニル化合物HC≡C-Ar -C≡CHと、ジハロゲン化有機化合物Y1-R-Y2 とを反応させて、請求項1記載の新規高分子イオン伝導体を合成することを特徴とする新規高分子イオン伝導体の合成法。
n Y1-R-Y2 + n HC≡C-Ar -C≡CH → (R-C≡C-Ar -C≡C )n 反応式(2)
[前記反応式(2)において、Arは側鎖に−SO3 X基を有する2価の芳香環を表わし、Rは側鎖に−SO3X基を持っていても良いし持たなくてもよい2価の芳香環を表わし、Y1 、Y2はハロゲン、nは整数である。前記−SO3 X基中のXは、水素または1族元素、2族元素、下式(1−1)で表わされるNR1234または下式(1−2)で表わされるPR1234を表し、前記式(1−1)中のR1234はHまたは有機基を表わし、前記式(1−2)中のR1234はHまたは有機基を表わす。]
Figure 0005424046
Figure 0005424046
According to the following reaction formula (2), a diethynyl compound HC≡C—Ar—C≡CH, which is an aromatic compound having a divalent aromatic ring having a —SO 3 X group in the side chain, and a dihalogenated organic compound Y 1 − is reacted with RY 2, the synthesis of the novel polymer ion conductor, wherein the synthesis of new polymeric ion conductor according to claim 1 Symbol placement.
n Y 1 -RY 2 + n HC≡C—Ar—C≡CH → (RC≡C—Ar—C≡C) n Reaction Formula (2)
[In the reaction formula (2), Ar represents a divalent aromatic ring having a —SO 3 X group in the side chain, and R may or may not have a —SO 3 X group in the side chain. It represents a good divalent aromatic ring, Y 1 and Y 2 are halogen, and n is an integer. X in the —SO 3 X group is represented by hydrogen, a Group 1 element, a Group 2 element, NR 1 R 2 R 3 R 4 represented by the following formula (1-1), or the following formula (1-2). It represents PR 1 R 2 R 3 R 4 , R 1 R 2 R 3 R 4 in the formula (1-1) represents H or an organic group, R 1 R 2 R in the formula (1-2) 3 R 4 represents H or an organic group. ]
Figure 0005424046
Figure 0005424046
それぞれ側鎖に−SO 3 X基を有さないAr’、R’を有する芳香族化合物を用いて重合された一般式(1’)(Ar’−C≡C−R’−C≡C) n で表わされる−C≡C−基と、側鎖に−SO3 X基を有していない芳香環とを主鎖中に有する高分子化合物を、クロロ硫酸と反応させて前記芳香環に−SO3 X基を導入してスルホン化するか、あるいは前記高分子化合物を、クロロ硫酸と反応させて前記芳香環に−SO2 Cl基を導入した後、前記−SO2 Cl基を−SO3 H基に転換してスルホン化することを特徴とする請求項記載の新規高分子イオン伝導体の合成法。
[前記一般式(1’)において、Ar’、R’はそれぞれ側鎖に−SO 3 X基を有さない2価の芳香環を表わし、nは整数である。前記−SO 3 X基中のXは、水素または1族元素、2族元素、下式(1−1)で表わされるNR 1 2 3 4 または下式(1−2)で表わされるPR 1 2 3 4 を表し、前記式(1−1)中のR 1 2 3 4 はHまたは有機基を表わし、前記式(1−2)中のR 1 2 3 4 はHまたは有機基を表わす。]
Figure 0005424046
Figure 0005424046
General formula (1 ′) (Ar′—C≡C—R′—C≡C) polymerized using an aromatic compound having Ar ′ and R ′ each having no —SO 3 X group in the side chain A polymer compound having a —C≡C— group represented by n and an aromatic ring having no —SO 3 X group in the side chain in the main chain is reacted with chlorosulfuric acid to form the aromatic ring — SO 3 or by introducing X group to sulfonation, or the polymer compound, after introducing the -SO 2 Cl group to the aromatic ring is reacted with chlorosulfonic acid, -SO 3 the -SO 2 Cl group The method for synthesizing a novel polymer ionic conductor according to claim 2 , wherein the sulfonate is converted to an H group for sulfonation.
[In the general formula (1 ′), Ar ′ and R ′ each represents a divalent aromatic ring having no —SO 3 X group in the side chain, and n is an integer. X in the —SO 3 X group is represented by hydrogen, a Group 1 element, a Group 2 element, NR 1 R 2 R 3 R 4 represented by the following formula (1-1), or the following formula (1-2). It represents PR 1 R 2 R 3 R 4 , R 1 R 2 R 3 R 4 in the formula (1-1) represents H or an organic group, R 1 R 2 R in the formula (1-2) 3 R 4 represents H or an organic group. ]
Figure 0005424046
Figure 0005424046
下記一般式(1)で表わされる−C≡C−基と、側鎖に−SO3X基を有する芳香環とを主鎖中に有する高分子化合物であって、さらにOH基を有する高分子化合物を、前記OH基と架橋反応可能な架橋剤によって架橋させて得られることを特徴とする新規高分子イオン伝導体。
(Ar−C≡C−R−C≡C)n 一般式(1)
[前記式(1)において、Arは側鎖に−SO3 X基を有する2価の芳香環を表わし、Rは側鎖に−SO3 X基を持っていても良いし持たなくてもよい2価の芳香環を表わし、nは整数である。前記−SO3 X基中のXは、水素または1族元素、2族元素、下式(1−1)で表わされるNR1234 または下式(1−2)で表わされるPR1234を表し、前記式(1−1)中のR1234はHまたは有機基を表わし、前記式(1−2)中のR1234 はHまたは有機基を表わす。]
Figure 0005424046
Figure 0005424046
A polymer compound having a —C≡C— group represented by the following general formula (1) and an aromatic ring having a —SO 3 X group in the side chain in the main chain, and further having an OH group A novel polymer ionic conductor obtained by crosslinking a compound with a crosslinking agent capable of crosslinking reaction with the OH group.
(Ar—C≡C—R—C≡C) n General Formula (1)
[In the formula (1), Ar represents a divalent aromatic ring having a —SO 3 X group in the side chain, and R may or may not have a —SO 3 X group in the side chain. Represents a divalent aromatic ring, and n is an integer. X in the —SO 3 X group is represented by hydrogen, a Group 1 element, a Group 2 element, NR 1 R 2 R 3 R 4 represented by the following formula (1-1), or the following formula (1-2). It represents PR 1 R 2 R 3 R 4 , R 1 R 2 R 3 R 4 in the formula (1-1) represents H or an organic group, R 1 R 2 R in the formula (1-2) 3 R 4 represents H or an organic group. ]
Figure 0005424046
Figure 0005424046
請求項1または請求項2あるいは請求項6記載の新規高分子イオン伝導体から構成されることを特徴とする高分子電解質膜。   A polymer electrolyte membrane comprising the novel polymer ion conductor according to claim 1, claim 2 or claim 6. 請求項1または請求項2あるいは請求項6記載の新規高分子イオン伝導体から構成されることを特徴とする高分子電解質。   A polymer electrolyte comprising the novel polymer ion conductor according to claim 1, claim 2, or claim 6. 請求項1または請求項2あるいは請求項6記載の新規高分子イオン伝導体、および請求項7記載の高分子電解質膜、および請求項8記載の高分子電解質の内の少なくとも1つを用いたことを特徴とする膜電極接合体。   Use of at least one of the novel polymer ion conductor according to claim 1, claim 2, or claim 6, the polymer electrolyte membrane according to claim 7, and the polymer electrolyte according to claim 8. A membrane electrode assembly characterized by the above. 請求項1または請求項2あるいは請求項6記載の新規高分子イオン伝導体、および請求項7記載の高分子電解質膜、および請求項8記載の高分子電解質および請求項9記載の膜電極接合体の内の少なくとも1つを用いたことを特徴とする燃料電池。   The novel polymer ion conductor according to claim 1 or claim 2 or claim 6, the polymer electrolyte membrane according to claim 7, the polymer electrolyte according to claim 8, and the membrane electrode assembly according to claim 9. A fuel cell using at least one of the above.
JP2010023254A 2010-02-04 2010-02-04 Novel polymer ionic conductor and synthesis method thereof, and polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly and fuel cell using the novel polymer ionic conductor Active JP5424046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023254A JP5424046B2 (en) 2010-02-04 2010-02-04 Novel polymer ionic conductor and synthesis method thereof, and polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly and fuel cell using the novel polymer ionic conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023254A JP5424046B2 (en) 2010-02-04 2010-02-04 Novel polymer ionic conductor and synthesis method thereof, and polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly and fuel cell using the novel polymer ionic conductor

Publications (2)

Publication Number Publication Date
JP2011162580A JP2011162580A (en) 2011-08-25
JP5424046B2 true JP5424046B2 (en) 2014-02-26

Family

ID=44593663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023254A Active JP5424046B2 (en) 2010-02-04 2010-02-04 Novel polymer ionic conductor and synthesis method thereof, and polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly and fuel cell using the novel polymer ionic conductor

Country Status (1)

Country Link
JP (1) JP5424046B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915052B2 (en) * 2011-09-21 2016-05-11 凸版印刷株式会社 Polymer electrolyte, polymer electrolyte membrane and solid polymer fuel cell using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003210976A (en) * 2002-01-18 2003-07-29 Sony Corp Hydrogen storage body and method for manufacturing the same
JP2005353807A (en) * 2004-06-10 2005-12-22 Konica Minolta Holdings Inc Polymer semiconductor material and organic thin film transistor using the same
JP2006036959A (en) * 2004-07-28 2006-02-09 Kyoto Univ Conjugated compound and its polymer
JP5205778B2 (en) * 2007-03-15 2013-06-05 株式会社リコー Organic thin film transistor

Also Published As

Publication number Publication date
JP2011162580A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5740030B2 (en) Copolymer of sulfonated polyethersulfone containing hydroxy group and method for producing the same, polymer electrolyte membrane for fuel cell, and membrane electrode assembly including the same
JP5472267B2 (en) Nitrogen-containing aromatic compound, method for producing the same, polymer, and proton conducting membrane
JP4051736B2 (en) Polymer electrolyte, polymer electrolyte membrane, and fuel cell
JP2002324559A (en) Multifunctional electrolyte, electrochemical device using the same and production method of the multifunctional electrolyte
JP6698148B2 (en) Fluorine-based nanocomposite membrane containing polyhedral oligomeric silsesquioxane having a proton donor and a proton acceptor, and method for producing the same
JP2010013625A (en) Polymer and proton conductive membrane
JP4985041B2 (en) Aromatic sulfonate esters and sulfonated polyarylene polymers
JP4554568B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP5424046B2 (en) Novel polymer ionic conductor and synthesis method thereof, and polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly and fuel cell using the novel polymer ionic conductor
JP2003147075A (en) Sulfonated fluorine-containing polymer, resin composition containing the same and polymer electrolyte membrane
JP2009129703A (en) Dendronized polymer electrolyte, manufacturing method thereof, solid polymer electrolyte membrane, electrode for solid polymer fuel cell, and fuel cell
JP5352128B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP5180808B2 (en) Electrolyte and production method thereof, electrolyte membrane and production method thereof, catalyst layer and fuel cell
JP3937912B2 (en) Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell using the same
JP5549970B2 (en) Aromatic polyelectrolytes having superacid groups and their use
KR101773245B1 (en) Sulfonated hydrocarbon nanocomposite membrane comprising polyhedral oligomeric silsesquioxane with proton donor and proton acceptor and Method of preparing the same
JP4841193B2 (en) Composite ion exchange membrane for fuel cells
KR101538761B1 (en) Sulfonated polyphenylene polymer containing fluorine moiety
KR20170107634A (en) Fluorinated nanocomposite membrane comprising polyhedral oligomeric silsesquioxane with proton donor and proton acceptor and Method of preparing the same
JP2004288497A (en) Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same
JP2010135280A (en) Proton conductive membrane and manufacturing method thereof, membrane-electrode assembly, and solid polymer fuel cell
KR101773246B1 (en) Fluorinated nanocomposite membrane comprising polyhedral oligomeric silsesquioxane with proton donor and proton acceptor and Method of preparing the same
JP6819047B2 (en) Diphenylsulfone compounds for polymer electrolytes, polymer electrolytes, methods for producing polymer electrolytes, membrane electrode assemblies, and polymer electrolyte fuel cells.
JP2010129292A (en) Polymer electrolyte, polymer electrolyte membrane, and its utilization
JP5458320B2 (en) Novel organic compound, novel polymer organic compound and polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly, fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5424046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350