KR101538761B1 - Sulfonated polyphenylene polymer containing fluorine moiety - Google Patents

Sulfonated polyphenylene polymer containing fluorine moiety Download PDF

Info

Publication number
KR101538761B1
KR101538761B1 KR1020140041375A KR20140041375A KR101538761B1 KR 101538761 B1 KR101538761 B1 KR 101538761B1 KR 1020140041375 A KR1020140041375 A KR 1020140041375A KR 20140041375 A KR20140041375 A KR 20140041375A KR 101538761 B1 KR101538761 B1 KR 101538761B1
Authority
KR
South Korea
Prior art keywords
sulfonated polyphenylene
membrane
polymer
polymer containing
fluoro group
Prior art date
Application number
KR1020140041375A
Other languages
Korean (ko)
Inventor
김환기
임영돈
이순호
이상영
무하마드아울라드후세
주현호
장호현
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020140041375A priority Critical patent/KR101538761B1/en
Application granted granted Critical
Publication of KR101538761B1 publication Critical patent/KR101538761B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1097Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/162End groups comprising metal complexes
    • C08G2261/1626End groups comprising metal complexes of Fe, Co or Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a sulfonated polyphenylene polymer containing a fluoro group and, more specifically, relates to a sulfonated polyphenylene polymer containing a carbon-carbon bond type fluoro group, a fuel cell electrolyte membrane containing the same, and a manufacturing method thereof. According to the present invention, an aggressive reaction caused by nucleophiles such as H_2O, hydrogen peroxide, hydroxide anion and radical does not occur, by providing the sulfonated polyphenylene polymer containing a fluoro group made of carbon-carbon bond having no ether bond in the polymer backbone, and an electrolyte membrane for a fuel cell having excellent thermal stability at high temperature, high proton conductivity, oxidative and mechanical stability can be provided.

Description

플루오로기를 함유하는 설폰화 폴리페닐렌 고분자{SULFONATED POLYPHENYLENE POLYMER CONTAINING FLUORINE MOIETY}SULFONATED POLYPHENYLENE POLYMER CONTAINING FLUORINE MOIETY FIELD OF THE INVENTION The present invention relates to a sulfonated polyphenylene polymer containing a fluoro group,

본 발명은 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자에 관한 것으로서, 더욱 상세하게는 탄소-탄소 결합형 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자와 이를 함유하는 연료전지 전해질막 및 이의 제조방법에 관한 것이다.The present invention relates to a sulfonated polyphenylene polymer containing a fluoro group, and more particularly, to a sulfonated polyphenylene polymer containing a carbon-carbon bond fluoro group, a fuel cell electrolyte membrane containing the sulfonated polyphenylene polymer and a method for producing the same .

화학 에너지를 전기 에너지로 전환시키는 고분자 전해질막 연료전지(polymer electrolyte membrane fuel cells; PEMFCs)는 교통, 휴대용 장치, 고정식 동력 등의 대안 및 환경 친화적인 에너지원으로 주목받고 있다. PEMFCs의 주요 재료 중 하나가 양성자 교환막(proton exchange membrane, PEM)인데, 이는 양극(anode)으로부터 음극(cathode)으로의 양성자 수송을 가능하게 하고, 크게 불소계(fluorinated-based PEM)와 탄화수소계(Hydrocarbon-based PEM)로 구분된다.Polymer electrolyte membrane fuel cells (PEMFCs), which convert chemical energy into electrical energy, are attracting attention as alternative and environmentally friendly energy sources for transportation, portable devices, stationary power, and the like. One of the main materials of the PEMFCs is a proton exchange membrane (PEM), which allows proton transport from the anode to the cathode and is largely composed of a fluorinated-based PEM and a hydrocarbon- -based PEM).

대부분의 PEM 기술은 퍼플루오로황산(perfluorosulfonic acid) 고분자막을 기반으로 하며, 듀폰(Dupont)사의 나피온(Nafion)이 대표적이다. 나피온은 일반적으로 높은 상대습도(RH) 및 저온에서 우수한 화학 안정성과 양성자전도도를 나타내지만, 고비용, 높은 메탄올 투과성, 80 ℃ 이상에서의 불충분한 열기계적 특성(thermomechanical properties) 및 폐기와 관련된 환경 위험과 같은 단점으로 인해 고분자 전해질막(PEM)의 적용에 한계가 있다. Most PEM technologies are based on perfluorosulfonic acid polymer membranes, and are representative of Nafion from DuPont. Although Nafion generally exhibits excellent chemical stability and proton conductivity at high relative humidity (RH) and low temperature, it has a high cost, high methanol permeability, inadequate thermomechanical properties at < RTI ID = 0.0 > 80 C & The application of the polymer electrolyte membrane (PEM) is limited.

이에, 저렴한 비용과 높은 성능을 갖는 비플루오르화된 고분자 양성자 전도성 물질(non-fluorinated polymeric proton-conducting materials)에 중점을 두고 많은 연구들이 진행 중에 있다. 구체적으로, 폴리포스파젠(polyphosphazenes), 폴리벤즈이미다졸(polybenzimidazole), 폴리(에테르 설폰)(poly(ether sulfone)s), 폴리(에테르 케톤)(poly(ether ketone)s) 등과 같은 다양한 고분자가 연료전지의 막 제조에 응용되었고, 이러한 고분자 중에서도 폴리(에테르 설폰)은 연료전지 환경에서 높은 열, 산화 및 화학적 안정성을 이유로 많은 주목을 받고 있다. 관련 선행기술로는 한국 등록특허 10-0723391(고분자 전해질막 및 이를 구비한 연료전지) 등이 있다.Accordingly, many studies have been conducted focusing on non-fluorinated polymeric proton-conducting materials having low cost and high performance. Specifically, various polymers such as polyphosphazenes, polybenzimidazole, poly (ether sulfone) s, poly (ether ketone) s and the like Among these polymers, poly (ether sulfone) has attracted much attention due to its high heat, oxidation and chemical stability in a fuel cell environment. Related prior arts include Korean Patent No. 10-0723391 (polymer electrolyte membrane and fuel cell equipped with the membrane).

탄화수소계 전해질막은 불소계 막 수준의 수소이온 전도도를 부여하기 위하여 설폰산기 등 친수성 이온기가 도입되는데, 그에 따라 수분에 의한 과도한 팽윤으로 기계적 물성이 저하되어 막의 안정성이 떨어지고 설폰화된 수지의 일부가 용출되는 문제점이 있다. 이러한 문제점을 보완하기 위하여 원료 수지에 공유결합에 의한 가교 구조를 도입하여 전해질막의 수용성을 낮추어 수지의 용출을 억제하거나 고분자의 주쇄가 아닌 측쇄에 설폰산기를 도입하여 고분자 사슬의 유동성을 증가시킴으로써 수소이온의 전도도를 향상시키는 방법이 제안되었으나, 수소이온 전도도가 여전히 낮고 가교에 의한 거대 고분자는 합성과정 및 이를 이용한 막 제조과정에 어려움이 있으며 유리전이온도(Tg)의 상승으로 고분자의 유동성이 떨어져 막의 기계적 물성이 충분치 못한 문제점이 있다.In the hydrocarbon-based electrolyte membrane, a hydrophilic ionic group such as a sulfonic acid group is introduced in order to impart hydrogen ion conductivity at the level of the fluorine-based membrane. As a result, the mechanical properties are deteriorated due to excessive swelling due to moisture and the stability of the membrane is deteriorated and a part of the sulfonated resin is eluted There is a problem. In order to overcome this problem, a cross-linking structure by covalent bonding is introduced into the raw resin to lower the water solubility of the electrolyte membrane to inhibit elution of the resin or to increase the fluidity of the polymer chain by introducing a sulfonic acid group into the side chain, However, the hydrogen ion conductivity is still low, and the macromolecules due to crosslinking have difficulties in the synthesis process and the membrane manufacturing process using the same, and the fluidity of the polymer is lowered due to the increase of the glass transition temperature (Tg) There is a problem that the physical properties are not sufficient.

본 발명의 목적은 우수한 양성자 전도도, 전기화학적 안전성, 기계적 강도, 작동온도에서의 열적 안정성 및 박막화의 용이성을 갖춘 새로운 고분자를 제조함으로써 연료전지 전해질막에 이용함에 있다.An object of the present invention is to provide a novel polymer having excellent proton conductivity, electrochemical stability, mechanical strength, thermal stability at an operating temperature, and ease of thinning for use in fuel cell electrolyte membranes.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표기되는 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자를 제공한다.In order to achieve the above object, the present invention provides a sulfonated polyphenylene polymer containing a fluoro group represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure 112014033181409-pat00001
Figure 112014033181409-pat00001

상기 n과 m은 몰분율로서, 각각 독립적으로 0.05 내지 0.95이고, n+m=1이며;Wherein n and m are mole fractions, each independently 0.05 to 0.95, n + m = 1;

상기 X1 내지 X5는 각각 독립적으로 0 또는 1이되, 모두 0인 경우는 제외한다.X 1 to X 5 are each independently 0 or 1, but not all 0s.

또한, 본 발명은 상기 고분자를 함유하는 연료전지의 전해질막을 제공한다.The present invention also provides an electrolyte membrane of a fuel cell containing the polymer.

또한, 본 발명은 (1) (2,2,2-트리플루오로-1-페닐에틸리덴)-비스(4-클로로벤젠)을 제조하는 단계; (2) 상기 (2,2,2-트리플루오로-1-페닐에틸리덴)-비스(4-클로로벤젠)을 2,5-디클로로벤조페논과 니켈 촉매화된 중합 방법으로 중합하여 플루오로기를 포함하는 폴리페닐렌을 합성하는 단계; 및 (3) 상기 플루오로기를 포함하는 폴리페닐렌에 설폰산기를 도입하는 단계;를 포함하는 상기 화학식 1로 표기되는 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자의 제조방법을 제공한다.The present invention also provides a process for producing (1) (2,2,2-trifluoro-1-phenylethylidene) -bis (4-chlorobenzene); (2) The above (2,2,2-trifluoro-1-phenylethylidene) -bis (4-chlorobenzene) was polymerized by 2,5-dichlorobenzophenone and nickel- ≪ / RTI > And (3) introducing a polyphenylene ethersulfonic acid group containing the fluoro group into a sulfonated polyphenylene polymer containing a fluoro group represented by the formula (1).

또한, 본 발명은 상기 (2)단계에서 니켈 촉매화된 중합 방법이 (2,2,2-트리플루오로-1-페닐에틸리덴)-비스(4-클로로벤젠), 2,5-디클로로벤조페논, 아연, 니켈 브로마이드 및 트리페닐포스핀을 디메틸아세트아미드(DMAc) 용매를 이용하여 혼합하는 것을 특징으로 하는, 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자의 제조방법을 제공한다.The present invention also provides a process for producing a nickel-catalyzed polymerization process, wherein the nickel-catalyzed polymerization process in the step (2) is (2,2,2-trifluoro-1-phenylethylidene) -bis (4-chlorobenzene) There is provided a process for producing a sulfonated polyphenylene polymer containing a fluoro group, characterized in that benzophenone, zinc, nickel bromide and triphenylphosphine are mixed using a dimethylacetamide (DMAc) solvent.

또한, 본 발명은 상기 (3)단계에서 설폰산기를 발열황산(Fuming Surfuric acid)을 이용한 설폰화 반응으로 도입하는 것을 특징으로 하는, 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자의 제조방법을 제공한다.Further, the present invention provides a process for producing a sulfonated polyphenylene polymer containing a fluoro group, which comprises introducing a sulfonic acid group into a sulfonation reaction using fuming sulfuric acid in the step (3) do.

상기와 같은 본 발명에 따르면, 고분자 골격에 어떠한 에테르 결합을 갖지 않는 탄소 결합으로 이루어진 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자를 제공함으로써, H2O, 과산화수소, 수산화물 음이온 및 라디칼과 같은 친핵체(nucleophiles)에 의한 공격반응이 일어나지 않고 고온에서 우수한 열적 안정성, 높은 양성자전도도, 산화적 및 기계적 안정성을 갖는 연료전지용 전해질막을 제공하는 효과가 있다.According to the present invention, it is possible to provide a sulfonated polyphenylene polymer containing a fluoro group having a carbon bond which does not have any ether bond in a polymer skeleton, thereby providing a nucleophilic group such as H 2 O, hydrogen peroxide, hydroxide anion, nucleophiles, and has excellent thermal stability at high temperature, high proton conductivity, oxidative and mechanical stability, and has an effect of providing an electrolyte membrane for a fuel cell.

도 1은 PPTF와 SPPTF의 1H-NMR.
도 2는 SPPTF 1, 2, 3의 열중량 분석 곡선.
도 3은 80 ℃, 30~90 % 상대습도에서 막의 양성자 전도도.
도 4는 40~80 ℃, 80 % 상대습도에서 막의 양성자 전도도.
도 5는 4 ppm Fe2+ 펜턴 시약을 이용한 가속화된 막 열화 실험 결과.
도 6은 막의 전지 성능.
도 7은 SPPTE 1, 2, 3의 AFM 이미지.
Figure 1 shows 1 H-NMR of PPTF and SPPTF.
2 is a thermogravimetric analysis curve of SPPTF 1, 2,
Figure 3 shows the proton conductivity of the membrane at 80 < 0 > C, 30-90% relative humidity.
Figure 4 shows the proton conductivity of the membrane at 40-80 < 0 > C, 80% relative humidity.
FIG. 5 shows accelerated film degradation test results using 4 ppm Fe 2+ Fenton's reagent.
6 shows the cell performance of the membrane.
7 is an AFM image of SPPTEs 1, 2 and 3;

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

종래 탄화수소계 전해질막은 산소결합을 지닌 고분자로 과산화수소, 산소 라디칼 또는 음이온 등에 의해 산소결합이 분해되어 장기적인 사용에 문제가 있다. 이에 본 발명은 에테르 결합이 없는 탄소-탄소 결합과 설폰 결합만으로 이루어진 고분자를 제공하고 안정성을 높이기 위해 플루오로기를 도입하여 그 효율을 높인 것을 특징으로 한다.Conventionally, a hydrocarbon-based electrolyte membrane is a polymer having an oxygen bond, which is decomposed by hydrogen peroxide, an oxygen radical, an anion, or the like, and has a problem in long-term use. Accordingly, the present invention provides a polymer comprising only a carbon-carbon bond and a sulfone bond without an ether bond, and introducing a fluoro group to enhance stability.

본 발명은 하기 화학식 1로 표기되는 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자를 제공한다.The present invention provides a sulfonated polyphenylene polymer containing a fluoro group represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure 112014033181409-pat00002
Figure 112014033181409-pat00002

상기 n과 m은 몰분율로서, 각각 독립적으로 0.05 내지 0.95이고, n+m=1이며;Wherein n and m are mole fractions, each independently 0.05 to 0.95, n + m = 1;

상기 X1 내지 X5는 각각 독립적으로 0 또는 1이되, 모두 0인 경우는 제외한다.X 1 to X 5 are each independently 0 or 1, but not all 0s.

또한, 본 발명은 (1) (2,2,2-트리플루오로-1-페닐에틸리덴)-비스(4-클로로벤젠)을 제조하는 단계; (2) 상기 (2,2,2-트리플루오로-1-페닐에틸리덴)-비스(4-클로로벤젠)을 2,5-디클로로벤조페논과 니켈 촉매화된 중합 방법으로 중합하여 플루오로기를 포함하는 폴리페닐렌을 합성하는 단계; 및 (3) 상기 플루오로기를 포함하는 폴리페닐렌에 설폰산기를 도입하는 단계;를 포함하는 상기 제 1항의 화학식 1로 표기되는 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자의 제조방법을 제공한다.The present invention also provides a process for producing (1) (2,2,2-trifluoro-1-phenylethylidene) -bis (4-chlorobenzene); (2) The above (2,2,2-trifluoro-1-phenylethylidene) -bis (4-chlorobenzene) was polymerized by 2,5-dichlorobenzophenone and nickel- ≪ / RTI > And (3) introducing a polyphenylene ethersulfonic acid group containing the fluoro group into the sulfonated polyphenylene polymer of formula (1). .

상기 (1)단계에서 (2,2,2-트리플루오로-1-페닐에틸리덴)-비스(4-클로로벤젠) 단량체는 통상의 방법에 따라 제조될 수 있으며, 구체적으로 2,2,2-트리플루오로아세토페논과 클로로벤젠 혼합물에 트리플루오로메탄설폰산을 적가함으로써 제조될 수 있다.In step (1), the (2,2,2-trifluoro-1-phenylethylidene) -bis (4-chlorobenzene) monomer may be prepared by a conventional method, Can be prepared by dropwise adding trifluoromethanesulfonic acid to a mixture of 2-trifluoroacetophenone and chlorobenzene.

상기 (2)단계에서 니켈 촉매화된 중합 방법은 (2,2,2-트리플루오로-1-페닐에틸리덴)-비스(4-클로로벤젠)과 2,5-디클로로벤조페논을 아연, 니켈 브로마이드 및 트리페닐포스핀과 혼합하여 반응시킴으로써, 고분자 골격에 에테르 결합을 갖지 않는 탄소-탄소 결합으로 이루어진 플루오로기를 함유하는 폴리페닐렌 고분자의 제조가 가능하다. 중합 반응은 톨루엔, 디메틸아세트아마이드, N-메틸피롤리돈, 디메틸술폭사이드, 자이렌, 벤젠, n-부틸아세테이트, 메틸시클로헥산, 디메틸시클로헥산 또는 이들의 혼합 용매인 유기 용매 내에서 20 내지 80 ℃에서 1 내지 10 시간 동안 교반하여 실시될 수 있으나, 이에 제한되는 것은 아니다. In the step (2), nickel-catalyzed polymerization is carried out by reacting (2,2,2-trifluoro-1-phenylethylidene) -bis (4-chlorobenzene) and 2,5- Nickel bromide and triphenylphosphine and reacting them, it is possible to prepare a polyphenylene polymer containing a fluoro group having a carbon-carbon bond which does not have an ether bond in a polymer skeleton. The polymerization reaction is carried out in an organic solvent which is a mixed solvent of toluene, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, xylene, benzene, n-butyl acetate, methylcyclohexane, dimethylcyclohexane, Lt; 0 > C for 1 to 10 hours, but is not limited thereto.

상기 (3)단계에서 설폰산기는 발열황산(Fuming Surfuric acid)을 이용한 설폰화 반응으로 도입하는 것이 바람직하며, 발열황산을 이용한 설폰화 반응을 통해 5개의 페닐기에 최대 5개의 설폰산기가 도입되어 수소이온 전도도가 향상되는 효과가 있다. 발열황산이란 97~98 % 농황산에 다량의 삼산화황을 흡수시킨 산화작용이 큰 기름상의 액체를 말한다. 설폰화 반응은 고분자를 설폰화 화합물과 반응시키는 통상의 방법에 따라 진행될 수 있으며, 구체적으로 진한 황산(H2SO4), 클로로설폰산(ClSO3H), 발열황산(Fumming SO3), 발열황산 트리에틸포스페이트 염(SO3-TEP) 등을 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 설폰화 반응 온도 및 시간은 특별히 제한되지 않으나, 바람직하게는 20 내지 80 ℃에서 1 내지 30 시간 동안 반응시킬 수 있다. 상기 조건하에서 반응시키는 경우, 설폰산기 도입이 더욱 원활해질 수 있을 뿐만 아니라, 고분자 주쇄가 분해되는 등의 현상을 보다 효과적으로 방지할 수 있는 이점이 있다.In the step (3), the sulfonic acid group is preferably introduced into the sulfonation reaction using Fuming Surfuric acid. Through the sulfonation reaction using the exothermic sulfuric acid, up to five sulfonic acid groups are introduced into five phenyl groups, The ionic conductivity is improved. Exothermic sulfuric acid means 97 to 98% sulfuric acid, which absorbs a large amount of sulfur trioxide and is highly oxidative. The sulfonation reaction may be carried out according to a conventional method of reacting a polymer with a sulfonated compound. Specifically, the sulfonation reaction may be carried out in the presence of concentrated sulfuric acid (H 2 SO 4 ), chlorosulfonic acid (ClSO 3 H), exothermic sulfuric acid (Fumming SO 3 ) Sulfuric acid triethyl phosphate salt (SO 3 -TEP), and the like, or a mixture of two or more thereof. The sulfonation reaction temperature and time are not particularly limited, but preferably from 20 to 80 캜 for 1 to 30 hours. When the reaction is carried out under the above conditions, there is an advantage that the introduction of the sulfonic acid group becomes more smooth and the phenomenon such as decomposition of the polymer main chain can be more effectively prevented.

상기와 같은 방법으로 제조된 고분자를 함유하는 연료전지 전해질막의 특성을 알아보기 위해 1H NMR, 이온 교환 용량(IEC), 수분 흡수율 및 양성자 전도도를 분석하였고, 펜턴 시약을 이용한 막 열화 실험을 통해 종래 설폰화 폴리(에테르 설폰) 및 나피온과 비교 분석하였다. 1 H NMR, ion exchange capacity (IEC), water uptake rate and proton conductivity were analyzed to examine the characteristics of the fuel cell electrolyte membrane containing the polymer prepared by the above method. Through the membrane deterioration experiment using the Fenton reagent, Sulfonated poly (ether sulfone) and Nafion.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are merely illustrative of the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

실시예.Examples.

(1) (2,2,2-트리플루오로-1-페닐에틸리덴)-비스(4-클로로벤젠)(TFPECB)의 합성(1) Synthesis of (2,2,2-trifluoro-1-phenylethylidene) -bis (4-chlorobenzene) (TFPECB)

TFPECB 단량체는 초산 촉매화된 반응의 하이드로알킬레이션(hydroalkylation)에 의해 제조되었다(Guzmman-Gutierrez TM, Daniel RN, Serguei F, Salvador LM, Mikhail GZ, Carmen GM, Hernandez M, Kricheldorf H, Edward SW. Dramatic Enhancement of Superacid-Catalyzed Polyhydroxyalkylation Reactions. Macromolecules, 2011;44:194, Olah GA. Superelectrophiles. Angew Chem. 1993;105:805.).TFPECB monomers were prepared by hydroalkylation of acetic acid catalyzed reactions (Guzmman-Gutierrez TM, Daniel RN, Serguei F, Salvador LM, Mikhail GZ, Carmen GM, Hernandez M, Kricheldorf H, Edward SW. Dramatic Enhancement of Superacid-Catalyzed Polyhydroxyalkylation Reactions. Macromolecules, 2011; 44: 194, Olah GA. Superelectrophiles. Angew Chem., 105: 805.).

기계적 교반기와 얼음욕(ice bath)이 구비된 100 mL의 이목 둥근 바닥 플라스크(two-necked round-bottomed flask)에 함유된 2,2,2-트리플루오로아세토페논(7.0 g, 39.5 mmol)과 클로로벤젠(11.1 g, 98.7 mmol)의 빙냉 혼합물에 트리플루오로메탄설폰산(TFSA)(26.9 g, 177.6 mmol)을 천천히 첨가하였다. 이후, 얼음욕을 제거하고 30 분간 온도를 20 ℃로 승온시켜 20 ℃에서 24 시간 동안 반응을 유지하였다. 반응은 탄산수소나트륨 수용액을 첨가함으로써 종료되고 디클로로메탄을 이용하여 유기층이 추출되었다. 수득된 유기층은 포화 염수로 세척하고 무수 황산마그네슘 상에서 건조시킨 후, 용매를 증발시켜 얻은 결과물을 n-헥산과 에틸 아세테이트를 이용한 실리카겔 컬럼 크로마토그래피로 정제하였다. 합성된 TFPECB는 80 ℃의 진공오븐에서 24 시간 동안 건조시켰으며, 93~94 ℃의 녹는점을 갖는 흰색 분말의 산물을 얻었다. 아래 반응식은 단량체 및 고분자의 반응공정을 나타낸다.2,2,2-Trifluoroacetophenone (7.0 g, 39.5 mmol) contained in a 100-mL two-necked round-bottomed flask equipped with a mechanical stirrer and an ice bath and Trifluoromethanesulfonic acid (TFSA) (26.9 g, 177.6 mmol) was slowly added to an ice-cold mixture of chlorobenzene (11.1 g, 98.7 mmol). Thereafter, the ice bath was removed, and the temperature was raised to 20 ° C for 30 minutes, and the reaction was maintained at 20 ° C for 24 hours. The reaction was terminated by the addition of aqueous sodium hydrogencarbonate solution and the organic layer was extracted with dichloromethane. The obtained organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The obtained product was purified by silica gel column chromatography using n-hexane and ethyl acetate. The synthesized TFPECB was dried in a vacuum oven at 80 ° C for 24 hours, and a product of white powder having a melting point of 93 to 94 ° C was obtained. The following equation shows the reaction process of monomers and polymers.

[반응식][Reaction Scheme]

Figure 112014033181409-pat00003
Figure 112014033181409-pat00003

상기 화학식에서 설폰산기는 5개의 페닐기에 최소 1개, 최대 5개가 랜덤하게 도입된다. 즉, 각 페닐기에 설폰산기가 1개씩 도입되어 총 5개의 설폰산기가 페닐기에 도입된 것이 최대값이다. 상기 X/5에서 5는 페닐기 5개를 의미하고 X는 페닐기 5개 중에서 설폰산기가 몇 개 도입되는지를 의미한다. In the above formula, at least 1 and at most 5 sulfonic acid groups are randomly introduced into 5 phenyl groups. That is, the maximum value is that one sulfonic acid group is introduced into each phenyl group and a total of five sulfonic acid groups are introduced into the phenyl group. In X / 5, 5 means 5 phenyl groups, and X means the number of sulfonic acid groups introduced from 5 phenyl groups.

(2) 플루오로기를 포함하는 폴리페닐렌(PPTF)의 합성(2) Synthesis of fluorene-containing polyphenylene (PPTF)

PPTF는 DMAc 용매 시스템에서 TFPECB와 2,5-디클로로벤조페논의 니켈 촉매화된 탄소-탄소 결합 반응을 통해 제조되었다.PPTF was prepared via a nickel-catalyzed carbon-carbon bond reaction of TFPECB with 2,5-dichlorobenzophenone in a DMAc solvent system.

아연(2.6 g, 39.8 mmol), 니켈 브로마이드(0.3 g, 1.3 mmol) 및 트리페닐포스핀(3.4 g, 12.8 mmol)을 질소 분위기 하에서 삼목 플라스크에 넣고, 디메틸아세트아미드(DMAc) 11 mL를 강한 질소 흐름 하에서 플라스크 안으로 이동시켰다. DMAc 7.5 mL 중의 TFPECB(0.5 g, 1.4 mmol)와 2,5-디클로로벤조페논(3.2 g, 12.8 mmol) 용액을 주사기로 주입하고 혼합물을 80 ℃에서 4~6 시간 동안 교반하여 생성된 점성이 강한 혼합물을 DMAc로 희석하였다. 이후, 혼합물을 10 % 염산 수용액에 붓고 침전된 고분자를 여과한 후 DMAc에 용해시키고 10 % 염산 수용액으로 재침전시켰다. 마지막으로, DMAc에 용해시키고 메탄올로 재침전, 60 ℃의 진공오븐에서 건조시켜 PPTF를 얻었다.(2.6 g, 39.8 mmol), nickel bromide (0.3 g, 1.3 mmol) and triphenylphosphine (3.4 g, 12.8 mmol) were placed in a cedar flask under a nitrogen atmosphere and 11 mL of dimethylacetamide (DMAc) Lt; RTI ID = 0.0 > flask. ≪ / RTI > A solution of TFPECB (0.5 g, 1.4 mmol) and 2,5-dichlorobenzophenone (3.2 g, 12.8 mmol) in DMAc 7.5 mL was injected via syringe and the mixture was stirred at 80 ° C for 4-6 hours The mixture was diluted with DMAc. Then, the mixture was poured into 10% hydrochloric acid aqueous solution, the precipitated polymer was filtered, dissolved in DMAc, and reprecipitated with a 10% hydrochloric acid aqueous solution. Finally, it was dissolved in DMAc, reprecipitated with methanol, and dried in a vacuum oven at 60 DEG C to obtain PPTF.

(3) 설폰화 폴리페닐렌(SPPTF)의 합성(3) Synthesis of sulfonated polyphenylene (SPPTF)

50 mL 플라스크에 0.5 g PPTF 공중합체와 8 ml 발열 황산(fuming sulfuric acid, 20 %)을 첨가하여 혼합물을 40 ℃에서 24 시간 동안 교반하였다. 이후, 혼합물을 냉수에 붓고 고분자를 물로 완전히 세척하여 80 ℃ 진공에서 24 시간 동안 건조시켰다. 설폰화도는 반응 시간에 따라 조절되며, 최종적으로 각각 다른 반응 시간(8, 16, 24 시간)을 갖는 SPPTF 1, 2, 3을 합성하였다.0.5 g of PPTF copolymer and 8 ml of fuming sulfuric acid (20%) were added to a 50 mL flask, and the mixture was stirred at 40 DEG C for 24 hours. Thereafter, the mixture was poured into cold water, the polymer was thoroughly washed with water and dried at 80 DEG C under vacuum for 24 hours. The degree of sulfonation was controlled according to the reaction time. Finally, SPPTF 1, 2, 3 having different reaction times (8, 16, 24 hours) were synthesized.

실험예.Experimental example.

(1) 막 제조와 특성(1) Membrane fabrication and properties

고분자 구조는 DMSO-d 6 용매와 테트라메틸실란(TMS) 내부표준물질을 이용하여 Bruker DRX(400 MHz) 분광기에 기록된 1H NMR 스펙트럼에 의해 분석되었고, 열중량 분석(TGA, thermogravimetric analysis)은 Perkin-Elmer TGA-7 분석기에 의해 실시되었다.Polymer structure DMSO- d 6 solvent with tetramethylsilane (TMS) was analyzed by the 1 H NMR spectrum recorded on a Bruker DRX (400 MHz) spectrometer with an internal standard, thermogravimetric analysis (TGA, thermogravimetric analysis) is Perkin-Elmer TGA-7 analyzer.

DMSO에 고분자를 용해시켜 얻은 20 wt%의 투명한 용액을 60, 80, 100 및 120 ℃의 고온에서 캐스팅하여 25 ㎛ 막을 제조하였다(D. W. Seo, Y. D. Lim, S. H. Lee, I. S. Jeong, D. I. Kim, J. H. Lee, and W. G. Kim, Int. J. Hydrogen Energy 37, 6140 (2012)). A 20 wt% transparent solution obtained by dissolving the polymer in DMSO was cast at high temperatures of 60, 80, 100 and 120 ° C to prepare a 25 μm membrane (DW Seo, YD Lim, SH Lee, IS Jeong, DI Kim, JH Lee , and WG Kim, Int. J. Hydrogen Energy 37, 6140 (2012)).

또한, 막을 100 ℃에서 24 시간 동안 진공 건조시켜 무게를 측정한 후 30 ℃ 및 80 ℃에서 24 시간 동안 탈이온화수에 침지시켰다. 이후, 젖은 막을 닦아 건조하고 빠르게 무게를 다시 측정하였다. 막의 수분흡수율(WU)은 다음과 같이 계산되었다. Wdry와 Wwet은 각각 막의 건조된 중량과 젖은 중량을 의미한다.In addition, the membrane was vacuum dried at 100 < 0 > C for 24 hours, weighed and immersed in deionized water at 30 < 0 > C and 80 < 0 > C for 24 hours. The wet film was then wiped dry and quickly weighed again. The water absorption rate (WU) of the membrane was calculated as follows. W dry and W wet mean the dry weight and wet weight of the film, respectively.

수분흡수율 = {(Wwet-Wdry)/Wdry} × 100 %Water absorption rate = {(W wet -W dry ) / W dry } × 100%

막의 이온 교환 용량(IEC)을 결정하기 위해 적정 방법을 이용하였다(D. W. Seo, Y. D. Lim, S. H. Lee, I. S. Jeong, D. I. Kim, J. H. Lee, and W. G. Kim, Int. J. Hydrogen Energy 37, 6140 (2012)). 산 형태(H+)의 막은 1.0 M NaCl 용액에서 24 시간 동안 침지에 의해 H+ 이온과 Na+ 이온을 교환하여 나트륨염 형태로 전환되었다. 이후, 용액 중의 교환된 H+ 이온은 0.02 N NaOH 용액으로 적정되었다. 설폰화도(DS, degree of sulfonation)로부터 계산된 이론적인 IEC는 다음과 같이 계산되었다.We used an appropriate method to determine the ion exchange capacity (IEC) of the membrane (DW Seo, YD Lim, SH Lee, IS Jeong, DI Kim, JH Lee, and WG Kim, Int. J. Hydrogen Energy 37, 6140 )). The membrane in acid form (H + ) was converted to sodium salt form by exchanging H + and Na + ions by immersion in 1.0 M NaCl solution for 24 hours. The exchanged H + ions in the solution were then titrated with 0.02 N NaOH solution. The theoretical IEC calculated from the degree of sulfonation (DS) was calculated as follows.

IEC (meq./g) = 이온의 mmol 농도 / 25 ℃에서의 건조 막 중량IEC (meq./g) = mmol concentration of ion / dry film weight at 25 캜

막의 양성자 전도도는 4침법 전기화학 임피던스 분광학(EIS)으로 측정하였다. 1 cm × 3 cm의 사각형 전해질막 샘플을 증류수에 침지시켜 20 내지 30 분간 안정화시킨 후 80 % 습도, 40 내지 80 ℃ 및 30 내지 90 % 습도, 80 ℃에서 양성자 전도도를 측정하였다. EIS는 적은 교류전압(10 mV)을 적용하고 1×105 Hz에서 교류전압의 주파수를 변화시켜 개방 회로 조건에서 유도하였다. The proton conductivity of the membrane was measured by quadruple electrochemical impedance spectroscopy (EIS). A 1 cm x 3 cm square electrolyte membrane sample was immersed in distilled water, stabilized for 20-30 minutes, and then proton conductivity measured at 80% humidity, 40-80 ° C and 30-90% humidity at 80 ° C. The EIS was derived under open circuit conditions by applying a small alternating voltage (10 mV) and varying the frequency of the alternating voltage at 1 × 10 5 Hz.

(2) 가속화된 화학적 막 열화 실험(2) accelerated chemical film degradation experiments

막 열화는 75 ℃에서 펜턴 시약(Fenton reagent, 4 ppm Fe2+, 3 % H2O2)에 담금으로써 실시되었다. 조사 샘플은 선형의 설폰화 폴리(에테르 설폰)(SPES 40), SPPTEs 및 나피온 211®이었다. 최초의 샘플 무게를 측정한 후 샘플을 45 ml 초순수(ultrapure water, MilliQ) 중의 황산철(Ⅱ) 7수화물 용액에 넣어 75 ℃로 승온시키고, 30 % 과산화수소 5 ml를 용액에 첨가하였다. 막 샘플은 무게를 측정하는 과정에서 정기적으로 취득하였고, 증류수로 샘플을 세척하여 열화 반응을 중지하고 노출된 막을 최종 무게를 측정하기 전에 건조시켰다.The film deterioration was carried out by immersing in Fenton reagent (4 ppm Fe 2+ , 3% H 2 O 2 ) at 75 ° C. The irradiated samples were linear sulfonated poly (ether sulfone) (SPES 40), SPPTEs and Nafion 211 ® . After the initial sample weight was measured, the sample was placed in a solution of iron (II) sulfate heptahydrate in 45 ml ultrapure water (MilliQ), heated to 75 ° C, and 5 ml of 30% hydrogen peroxide was added to the solution. Membrane samples were taken regularly during the weighing process, the samples were washed with distilled water to stop the degradation reaction and the exposed membranes were dried prior to final weight measurement.

[SPES 40][SPES 40]

Figure 112014033181409-pat00004
Figure 112014033181409-pat00004

상기 SPES 40의 Mw는 10,000 내지 150,000이다.The Mw of SPES 40 is 10,000 to 150,000.

(3) MEA 제조 및 실험(3) MEA manufacture and experiment

촉매 코팅된 막(CCM)에 기초한 데칼 방법을 이용하여 활성 영역 9 ㎠를 갖는 막 전극 집합체(MEAs)를 제조하였다. 20 wt%, 190 ㎛ 두께를 갖는 내습 토레이 탄소지(TGPH-060, Toray Inc.)는 양극 쪽의 기체 확산층(GDL)으로 적용하였으며, 탄소지지 백금(Hispec 13100, Johnson Matthey Inc.)은 양극과 음극 모두에서 촉매로 사용하였다. 양극 및 음극에 0.2 ㎎ Pt/㎠의 촉매층을 로딩(loading)하였으며, 상기 촉매층은 막 위로 옮겨 5분간 130 ℃, 10 MPa에서 데칼법에 의해 CCM을 형성시켰다. 상기 GDL은 CCM의 양극 및 음극 쪽에 위치시켜 MEAs를 형성시켰다.Membrane electrode assemblies (MEAs) with an active area of 9 cm 2 were prepared using a decal method based on a catalyst coated membrane (CCM). (TGPH-060, Toray Inc.) was applied as a gas diffusion layer (GDL) on the anode side. Carbon supported platinum (Hispec 13100, Johnson Matthey Inc.) was applied to the anode and cathode All were used as catalysts. A catalyst layer of 0.2 mg Pt / cm 2 was loaded on the anode and the cathode. The catalyst layer was transferred onto the membrane and CCM was formed by decal method at 130 ° C and 10 MPa for 5 minutes. The GDLs were positioned on the positive and negative sides of the CCM to form MEAs.

실험결과.Experiment result.

(1) 도 1은 1H-NMR을 이용하여 확인된 고분자의 화학적 구조를 나타내며, 6.82~7.95 ppm에서 페닐 고리 양성자가 나타났고 설폰화 이후 설폰산기 주위의 양성자 피크가 다운필드로 이동되고 더 넓은 피크가 형성된 것을 알 수 있었다.(1) FIG. 1 shows the chemical structure of the polymer confirmed by 1 H-NMR, and a phenyl ring protomer appeared at 6.82-7.95 ppm. After the sulfonation, the proton peak around the sulfonic acid group was shifted to the down field and wider Peak was formed.

(2) SPPTFs의 열산화 안정성을 열중량 분석을 통해 실험하여 도 2에 나타내었다. 100~200 ℃ 부근에서 초기 중량 손실은 잔여 용매(DMSO)와 SPPTFs로부터의 물 방출에 의한 것이며, 250 ℃ 부근에서 두 번째 중량 손실은 설폰산기의 분해에 의한 것이다. 550 ℃ 부근에서 세 번째 중량 손실은 고분자 주쇄의 분해에 의한 것이다. 또한, 고분자의 열산화 안정성은 설폰산의 함량이 증가할수록 감소되었다. 분자량은 겔 투과 크로마토그래피(GPC)로 분석하였다.(2) Thermal oxidation stability of SPPTFs was tested by thermogravimetric analysis and is shown in FIG. The initial weight loss at around 100 to 200 ° C is due to the water release from the residual solvent (DMSO) and SPPTFs, and the second weight loss around 250 ° C is due to the decomposition of the sulfonic acid group. The third weight loss at around 550 ° C is due to the decomposition of the polymer backbone. The thermal oxidation stability of the polymer was also decreased as the content of sulfonic acid increased. Molecular weights were analyzed by gel permeation chromatography (GPC).

(3) 표 1은 분석된 막의 특성을 나타낸다. 합성된 고분자의 평균 분자량(M w )과 다분산성(M w /M n )은 각각 88,200~89,400 및 2.2~2.3의 범위를 나타냈고, SPPTF 1, 2, 3의 IECs는 각각 1.82, 2.03, 2.49 meq./g을 나타낸 반면 나피온 211®은 0.91 meq./g을 나타내어 설폰산기 함량이 증가함에 따라 SPPTF 막의 IEC가 증가함을 알 수 있었다. 또한, 80 ℃에서 SPPTF 1, 2, 3 막의 수분흡수율은 각각 24.72 %, 28.49 %, 35.84 %, 나피온 211® 막의 수분흡수율은 32.13 %인 것으로 나타나 SPPTF 막은 높은 IEC에도 불구하고 낮은 수분흡수율을 보이는 것을 알 수 있었다.(3) Table 1 shows the characteristics of the analyzed film. The average molecular weight ( M w ) and polydispersity ( M w / M n ) of the synthesized polymers ranged from 88,200 to 89,400 and 2.2 to 2.3, respectively. The IECs of SPPTF 1, 2 and 3 were 1.82, 2.03 and 2.49 meq./g whereas Nafion 211 ® showed 0.91 meq./g. As the content of sulfonic acid group increased, the IEC of SPPTF membrane increased. Further, in the 80 ℃ SPPTF 1, 2, 3 membrane water absorption were 24.72%, 28.49%, 35.84%, Nafion ® 211 membrane water absorption is 32.13%, indicating that the SPPTF membrane exhibits a low water absorption rate despite the high IEC.

건조된 상태와 수화된 상태를 비교하여 막의 두께(Δt)와 지름(Δl) 변화를 통해 SPPTF 막의 치수 변화를 분석한 결과, 에테르 결합 구조 없이 플루오로기에 의한 영향을 받아 매우 낮은 치수 변화 값을 갖는 것을 알 수 있었다. 높은 양성자 전도도와 낮은 치수 변화는 PEMFC 스택(stack) 작동시 안정성을 유지시켜 준다. As a result of analyzing the dimensional change of SPPTF membrane through the change of membrane thickness (Δ t ) and diameter (Δ 1 ) by comparing dry state and hydrated state, it was found that the effect of fluoro group . ≪ / RTI > High proton conductivity and low dimensional changes maintain stability during PEMFC stack operation.

건조 및 젖은 막의 인장 응력 변형 특성을 분석한 결과, 건조된 막의 경우 SPPTF 1, 2, 3의 영률이 나피온 211®의 208 MPa과 비교하여 1206, 1221, 1229 MPa인 것으로 나타났고, 파단신율이 고무상 물질인 나피온 211®의 177 %와 비교하여 열가소성 수지에 더 가까운 각각 21, 20, 20 %인 것으로 나타났다. 젖은 막의 경우 SPPTF 1, 2, 3의 영률이 나피온 211®의 56 MPa과 비교하여 319, 316, 304 MPa인 것으로 나타났고, 파단신율이 나피온 211®의 170 %와 비교하여 각각 9, 9, 10 %인 것으로 나타났다.Appeared to be dry and the wet film was analyzed and a tensile stress-strain properties, and when the dried film Young's modulus in the SPPTF 1, 2, 3 compared to 208 MPa of Nafion 211 ® 1206, 1221, 1229 MPa , the elongation at break 20, and 20%, respectively, which are closer to the thermoplastic resin than 177% of Nafion 211 ® , a rubbery material. The Young's modulus of SPPTF 1, 2 and 3 in wet film was 319, 316 and 304 MPa compared with 56 MPa of Nafion 211 ® . The elongation at break was 9 and 9, respectively, compared with 170% of Nafion 211 ® , And 10%, respectively.

Figure 112014033181409-pat00005
Figure 112014033181409-pat00005

(4) SPPTFs 막의 양성자 전도도는 80 ℃, 30~90 % 상대습도(도 3) 및 40~80 ℃, 80 % 상대습도(도 4)에서 측정하여 그 결과를 교류 임피던스 분광학 데이터로부터 측정하였다. 80 ℃, 90 % 습도에서 SPPTF 1, 2, 3의 양성자 전도도는 각각 83.57, 99.21, 108.43 mS/cm, 나피온 211®의 양성자 전도도는 106.32 mS/cm로 나타났고, 80 ℃, 다양한 습도 조건에서 SPPTF 막의 양성자 전도도는 습도가 증가함에 따라 함께 증가하였으며, 높은 IEC 값을 갖는 막은 양성자 전도도 값도 높았다. SPPTF 3 막의 양성자 전도도는 80~90 % 상대습도에서 나피온 211®의 값과 거의 유사하였다.(4) The proton conductivity of the SPPTFs membrane was measured at 80 ° C, 30-90% relative humidity (FIG. 3) and 40-80 ° C., 80% relative humidity (FIG. 4) and the results were measured from ac impedance spectroscopic data. The proton conductivities of SPPTF 1, 2 and 3 at 80 ℃ and 90% humidity were 83.57, 99.21 and 108.43 mS / cm respectively, and the proton conductivity of Nafion 211 ® was 106.32 mS / cm. The proton conductivities of SPPTF membranes increased with increasing humidity, and the membranes with higher IEC values also had higher proton conductivities. The proton conductivity of the SPPTF 3 membrane was similar to that of Nafion 211 ® at 80-90% relative humidity.

(5) 계외(Ex situ) 과산화수소 시험을 SPPTFs, 나피온 211® 및 SPES 40(40 mol%의 4,4-비페놀을 함유하는 설폰화된 선형의 폴리(에테르 설폰))의 모든 막에 대하여 같은 온도에서 실시하였다. 막의 화학적 분해 가속 시험으로서 8 시간 동안 고온 Fenton 시약으로 진행하였으며, 시험 후 막의 중량 손실은 도 5에서 보는 바와 같이 시간에 따른 막의 잔존하는 중량으로 나타내었다. 모든 SPPTF 막의 곡선은 8 시간 이후에도 84 wt% 이상을 유지하였다.5, with respect to all of film off - system (Ex situ) hydrogen peroxide test SPPTFs, Nafion 211 ® and SPES 40 (40 mol% of the set of the sulfonated polyester containing a linear 4,4-phenol (ether sulfone)) Lt; / RTI > The accelerated test of the membrane chemical progression was carried out with a high temperature Fenton reagent for 8 hours. The weight loss of the membrane after the test was represented by the remaining weight of the membrane with time as shown in FIG. The curves of all SPPTF membranes remained above 84 wt% even after 8 hours.

(6) 도 6은 완전한 습도 주입 조건(RHa/RHc = 100 %/100 %) 하에서 SPPTF 1, 2, 3 및 나피온 211®의 전지성능을 나타낸다. SPPTF 1, 2, 3 및 나피온 211®의 최대 전력밀도는 대략 0.51, 0.58, 0.64 및 0.62 W/cm2를 나타냈으며, SPPTF 3의 경우 전체 전류밀도 범위에서 나피온 211®보다 우수한 전지성능을 나타내었다.(6) Figure 6 shows the cell performance of SPPTF 1, 2, 3 and Nafion 211 ® under complete humidity injection conditions (RH a / RH c = 100% / 100%). SPPTF 1, 2, the maximum power density of 3, and Nafion 211 ® was superior cell performance than approximately 0.51, 0.58, 0.64, and showed a 0.62 W / cm 2, for SPPTF 3 in the entire current density range of Nafion 211 ® Respectively.

(7) 도 7은 고분자 표면의 형태를 관찰한 SPPTF 1, 2, 3의 AFM 이미지를 나타낸다. 설폰산과 물의 클러스터 형성으로 인해 소수성 구역은 어둡게 보이는 친수성 구역 사이에서 밝게 나타나 이미지는 소수성-친수성 미세구역을 반영하는 표면 패턴을 나타냈다. 선명한 소수성-친수성 미세분리구역을 갖는 SPPTF 3 막은 나피온 211®보다 높은 양성자 전도도를 나타냈다.(7) FIG. 7 shows AFM images of SPPTF 1, 2, and 3 observing the morphology of the polymer surface. Due to the cluster formation of sulfonic acid and water, the hydrophobic areas appeared bright between the darkly visible hydrophilic areas and the images showed a surface pattern reflecting the hydrophobic-hydrophilic fine zones. The SPPTF 3 membrane with a clear hydrophobic-hydrophilic microseparation zone showed higher proton conductivity than Nafion 211 ® .

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.
Having described specific portions of the present invention in detail, it will be apparent to those skilled in the art that this specific description is only a preferred embodiment and that the scope of the present invention is not limited thereby. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (5)

하기 화학식 1로 표기되는 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자.
[화학식 1]
Figure 112014033181409-pat00006

상기 n과 m은 몰분율로서, 각각 독립적으로 0.05 내지 0.95이고, n+m=1이며;
상기 X1 내지 X5는 각각 독립적으로 0 또는 1이되, 모두 0인 경우는 제외한다.
A sulfonated polyphenylene polymer containing a fluoro group represented by the following formula (1).
[Chemical Formula 1]
Figure 112014033181409-pat00006

Wherein n and m are mole fractions, each independently 0.05 to 0.95, n + m = 1;
X 1 to X 5 are each independently 0 or 1, but not all 0s.
제 1항의 고분자를 함유하는 연료전지의 전해질막.
An electrolyte membrane of a fuel cell containing the polymer of claim 1.
(1) (2,2,2-트리플루오로-1-페닐에틸리덴)-비스(4-클로로벤젠)을 제조하는 단계;
(2) 상기 (2,2,2-트리플루오로-1-페닐에틸리덴)-비스(4-클로로벤젠)을 2,5-디클로로벤조페논과 니켈 촉매화된 중합 방법으로 중합하여 플루오로기를 포함하는 폴리페닐렌을 합성하는 단계; 및
(3) 상기 플루오로기를 포함하는 폴리페닐렌에 설폰산기를 도입하는 단계;를 포함하는 상기 제 1항의 화학식 1로 표기되는 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자의 제조방법.
(1) preparing (2,2,2-trifluoro-1-phenylethylidene) -bis (4-chlorobenzene);
(2) The above (2,2,2-trifluoro-1-phenylethylidene) -bis (4-chlorobenzene) was polymerized by 2,5-dichlorobenzophenone and nickel- ≪ / RTI > And
(3) introducing a polyphenylene ethersulfonic acid group containing the fluoro group into the sulfonated polyphenylene sulfonic acid group represented by the formula (1).
제 3항에 있어서,
상기 (2)단계에서 니켈 촉매화된 중합 방법은 (2,2,2-트리플루오로-1-페닐에틸리덴)-비스(4-클로로벤젠), 2,5-디클로로벤조페논, 아연, 니켈 브로마이드 및 트리페닐포스핀을 디메틸아세트아미드(DMAc) 용매를 이용하여 혼합하는 것을 특징으로 하는 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자의 제조방법.
The method of claim 3,
In the step (2), nickel-catalyzed polymerization is carried out by using (2,2,2-trifluoro-1-phenylethylidene) -bis (4-chlorobenzene), 2,5-dichlorobenzophenone, Nickel bromide and triphenylphosphine are mixed in a solvent of dimethylacetamide (DMAc). The process for producing a sulfonated polyphenylene polymer according to claim 1,
제 3항에 있어서,
상기 (3)단계에서 설폰산기는 발열황산(Fuming Surfuric acid)을 이용한 설폰화 반응으로 도입하는 것을 특징으로 하는 플루오로기를 함유하는 설폰화 폴리페닐렌 고분자의 제조방법.

The method of claim 3,
Wherein the sulfonic acid group is introduced into the sulfonation reaction using fuming sulfuric acid in the step (3).

KR1020140041375A 2014-04-07 2014-04-07 Sulfonated polyphenylene polymer containing fluorine moiety KR101538761B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140041375A KR101538761B1 (en) 2014-04-07 2014-04-07 Sulfonated polyphenylene polymer containing fluorine moiety

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140041375A KR101538761B1 (en) 2014-04-07 2014-04-07 Sulfonated polyphenylene polymer containing fluorine moiety

Publications (1)

Publication Number Publication Date
KR101538761B1 true KR101538761B1 (en) 2015-07-27

Family

ID=53875124

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140041375A KR101538761B1 (en) 2014-04-07 2014-04-07 Sulfonated polyphenylene polymer containing fluorine moiety

Country Status (1)

Country Link
KR (1) KR101538761B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798499B1 (en) 2017-03-14 2017-11-16 건국대학교 글로컬산학협력단 Branched sulfonated polyphenylene polymer and polymer electrolyte membrane for fuel cell comprising the same
KR102195258B1 (en) 2019-06-24 2020-12-28 건국대학교 글로컬산학협력단 Sulfonimide based poly(phenylene benzophenone) polymer for proton exchange membrane fuel and and process for preparing the same by carbon-carbon coupling polymerization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301002B1 (en) * 2003-10-14 2007-11-27 Sandia Corporation Sulfonated polyphenylene polymers
KR20140024663A (en) * 2012-08-20 2014-03-03 건국대학교 산학협력단 Polysulfone-based polymer, electrolyte membrane comprising the same, and method for preparing the polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301002B1 (en) * 2003-10-14 2007-11-27 Sandia Corporation Sulfonated polyphenylene polymers
KR20140024663A (en) * 2012-08-20 2014-03-03 건국대학교 산학협력단 Polysulfone-based polymer, electrolyte membrane comprising the same, and method for preparing the polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
박사학위논문, 2006 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798499B1 (en) 2017-03-14 2017-11-16 건국대학교 글로컬산학협력단 Branched sulfonated polyphenylene polymer and polymer electrolyte membrane for fuel cell comprising the same
KR102195258B1 (en) 2019-06-24 2020-12-28 건국대학교 글로컬산학협력단 Sulfonimide based poly(phenylene benzophenone) polymer for proton exchange membrane fuel and and process for preparing the same by carbon-carbon coupling polymerization

Similar Documents

Publication Publication Date Title
JP5740030B2 (en) Copolymer of sulfonated polyethersulfone containing hydroxy group and method for producing the same, polymer electrolyte membrane for fuel cell, and membrane electrode assembly including the same
US10868322B2 (en) Hydrocarbon-based cross-linked membrane in which nanoparticles are used, method for manufacturing said membrane, and fuel cell
Seo et al. Preparation and characterization of sulfonated amine-poly (ether sulfone) s for proton exchange membrane fuel cell
Feng et al. Novel method for the preparation of ionically crosslinked sulfonated poly (arylene ether sulfone)/polybenzimidazole composite membranes via in situ polymerization
Lim et al. Synthesis and properties of sulfonated poly (phenylene sulfone) s without ether linkage by Diels–Alder reaction for PEMFC application
Li et al. New highly proton-conducting membrane based on sulfonated poly (arylene ether sulfone) s containing fluorophenyl pendant groups, for low-temperature polymer electrolyte membrane fuel cells
Seo et al. Anion conductive poly (tetraphenyl phthalazine ether sulfone) containing tetra quaternary ammonium hydroxide for alkaline fuel cell application
Seo et al. Preparation and characterization of sulfonated poly (tetra phenyl ether ketone sulfone) s for proton exchange membrane fuel cell
Li et al. Facile synthesis of poly (arylene ether ketone) s containing flexible sulfoalkyl groups with enhanced oxidative stability for DMFCs
KR101267905B1 (en) Proton conducting copolymer containing diphenyl fuorene-sulfonic acid group, manufacturing method thereof, proton conducting polymer membrane, membrane-electrolyte assembly, and polymer electrolyte membrane fuel cell using the same
JP5892643B2 (en) Polymer electrolyte membrane and use thereof
KR101649204B1 (en) Sulfonated polyphenylene containing benzophenone moiety via nickel catalyzed polymerization
KR101538761B1 (en) Sulfonated polyphenylene polymer containing fluorine moiety
KR20160081117A (en) Sulfonated poly(isatin-ethersulfone), method for preparing the same and polymer membrane composition for fuel cell using the same
KR101546651B1 (en) Grafted propane sulfonic acid polyphenylene
KR101372071B1 (en) Polysulfone-based polymer, electrolyte membrane comprising the same, and method for preparing the polymer
Lim et al. Synthesis and characterization of pendant propane sulfonic acid on phenylene based copolymers by superacid-catalyzed reaction
JP5549970B2 (en) Aromatic polyelectrolytes having superacid groups and their use
Lim et al. Preparation and characterization of grafted propane sulfonic acid polyphenylene membrane via superacid-catalyzed reaction
KR101987529B1 (en) Polymer electrolyte membrane and fuel cell comprising the same
JP5626960B2 (en) POLYMER ELECTROLYTE, PROCESS FOR PRODUCING THE SAME AND USE THEREOF
KR20150142885A (en) Sulfonated polyphenylene polymer containing n-methylisatin
JP5950323B2 (en) POLYMER ELECTROLYTE AND USE THEREOF
Jang et al. Synthesis and property of sulfonated poly (methylisatin biphenylene) containing diphenyl ether by polyhydroalkylation reaction
JP2009217950A (en) Ion conductive polymer electrolyte membrane, and manufacturing method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180716

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190716

Year of fee payment: 5

R401 Registration of restoration