JP5418803B2 - All solid battery - Google Patents

All solid battery Download PDF

Info

Publication number
JP5418803B2
JP5418803B2 JP2008173746A JP2008173746A JP5418803B2 JP 5418803 B2 JP5418803 B2 JP 5418803B2 JP 2008173746 A JP2008173746 A JP 2008173746A JP 2008173746 A JP2008173746 A JP 2008173746A JP 5418803 B2 JP5418803 B2 JP 5418803B2
Authority
JP
Japan
Prior art keywords
negative electrode
solid electrolyte
solid
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008173746A
Other languages
Japanese (ja)
Other versions
JP2010015782A (en
Inventor
重人 岡田
良典 野口
栄次 小林
貴之 土井
準一 山木
俊広 吉田
一博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Kyushu University NUC
Original Assignee
NGK Insulators Ltd
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Kyushu University NUC filed Critical NGK Insulators Ltd
Priority to JP2008173746A priority Critical patent/JP5418803B2/en
Publication of JP2010015782A publication Critical patent/JP2010015782A/en
Application granted granted Critical
Publication of JP5418803B2 publication Critical patent/JP5418803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、高出力及び長寿命であるとともに安全性が高く、低コストで製造可能な全固体電池に関する。   The present invention relates to an all-solid-state battery that has high output and long life, is highly safe, and can be manufactured at low cost.

近年、パーソナルコンピュータ、携帯電話等のポータブル機器の開発に伴い、その電源としての電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させる媒体として、有機溶媒等の液体の電解質(電解液)が従来使用されている。このような電解液を用いた電池においては、電解液の漏液や発火等の問題を生ずる可能性がある。   In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as power sources has been greatly expanded. In batteries used for such applications, liquid electrolytes (electrolytic solutions) such as organic solvents are conventionally used as a medium for moving ions. A battery using such an electrolytic solution may cause problems such as leakage of the electrolytic solution and ignition.

このような問題を解消して本質的な安全性を確保するために、液体の電解質に代えて固体電解質を使用するとともに、その他の要素の全てを固体で構成した全固体電池の開発が進められている。かかる全固体電池は、電解質が固体であるために、発火や漏液の心配がなく、また、腐食による電池性能の劣化等の問題も生じ難いものである。なかでも、全固体リチウム二次電池は、容易に高エネルギー密度とすることが可能な二次電池として各方面で盛んに研究が行われている。   In order to solve these problems and ensure intrinsic safety, the development of an all-solid-state battery in which a solid electrolyte is used instead of a liquid electrolyte and all other elements are made of solid is being promoted. ing. In such all solid state batteries, since the electrolyte is solid, there is no fear of ignition or leakage, and problems such as deterioration of battery performance due to corrosion hardly occur. In particular, all-solid lithium secondary batteries have been actively studied in various fields as secondary batteries that can easily have a high energy density.

関連する従来技術として、LiS−SiS−LiPO等のリチウムイオン伝導性電解質を固体電解質として用いたリチウム二次電池が開示されている(例えば、特許文献1参照)。 As a related art, a lithium secondary battery using a lithium ion conductive electrolyte such as Li 2 S—SiS 2 —Li 3 PO 4 as a solid electrolyte is disclosed (for example, see Patent Document 1).

しかしながら、世界的な原材料の高騰や枯渇問題等が叫ばれる昨今、リチウムイオン電池材料を取り巻く環境もその例に漏れず厳しいものになりつつある。そこで、将来的に求められる蓄電デバイス像として、その構成材料自体を材料枯渇の心配のない、より安価な材料とし、且つ安全な構造を有するものへの転換が必要である。   However, in recent years when global raw material price increases and depletion problems are screamed, the environment surrounding lithium ion battery materials is becoming severe as it is. Therefore, it is necessary to convert the constituent material itself into a cheaper material without worrying about material depletion and having a safe structure as an image of an electricity storage device required in the future.

特開平5−205741号公報JP-A-5-205741

本発明は、このような従来の電池の有する問題点に鑑みてなされたものであり、その課題とするところは、原材料の安定的な量と価格を実現するとともに、安全性が高い蓄電デバイスとして、Naをカチオンとした全固体電池を提供することにある。   The present invention has been made in view of the problems of such a conventional battery, and the problem is to realize a stable amount and price of raw materials and a highly safe power storage device. An object of the present invention is to provide an all solid state battery using Na as a cation.

本発明者らは上記課題を達成すべく鋭意検討した結果、以下の構成とすることによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-described problems, the present inventors have found that the above-described problems can be achieved by adopting the following configuration, and have completed the present invention.

即ち、本発明によれば、以下に示す全固体電池が提供される。   That is, according to the present invention, the following all solid state battery is provided.

[1]正極活物質を含有する正極と、負極活物質を含有する負極と、前記正極と前記負極の間に配設される、下記一般式(1)で表される固体電解質を含有する固体電解質層と、を備えた全固体電池であって、前記正極と前記負極の少なくともいずれかが、前記固体電解質を更に含有するものであり、前記正極活物質と前記負極活物質の少なくともいずれかが、下記一般式(2)で表される物質であり、前記正極が前記固体電解質を含有し、且つ前記負極が前記固体電解質を含有しない場合には、前記正極と前記固体電解質層とが、加圧した状態で加熱焼成され、焼成一体化された焼結体であり、前記正極が前記固体電解質を含有せず、且つ前記負極が前記固体電解質を含有する場合には、前記負極と前記固体電解質層とが、加圧した状態で加熱焼成され、焼成一体化された焼結体であり、前記正極、及び前記負極が前記固体電解質を含有する場合には、前記正極、及び前記負極の少なくともいずれかと前記固体電解質層とが、加圧した状態で加熱焼成され、焼成一体化された焼結体である、全固体電池。 [1] A solid containing a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a solid electrolyte represented by the following general formula (1) disposed between the positive electrode and the negative electrode An all-solid battery comprising an electrolyte layer, wherein at least one of the positive electrode and the negative electrode further contains the solid electrolyte, and at least one of the positive electrode active material and the negative electrode active material. In the case where the positive electrode contains the solid electrolyte and the negative electrode does not contain the solid electrolyte, the positive electrode and the solid electrolyte layer are added to each other. When the positive electrode does not contain the solid electrolyte and the negative electrode contains the solid electrolyte, the negative electrode and the solid electrolyte In a pressurized state Is thermally sintered, a sintered integral sintered body, when the positive electrode, and the negative electrode containing the solid electrolyte, the positive electrode, and the at least one of the negative electrode and the solid electrolyte layer is pressurized An all-solid battery, which is a sintered body that is heated and fired in a pressed state and is fired and integrated.

Na1+yZr(SiO(PO3−y ・・・(1)
Na(PO ・・・(2)
Na 1 + y Zr 2 (SiO 4 ) y (PO 4 ) 3-y (1)
Na x V 2 (PO 4 ) 3 (2)

但し、記一般式(1)中、1≦y<3であり、記一般式(2)中、1≦x≦5である。 However, in the above following general formula (1), a 1 ≦ y <3, in the above following general formula (2), it is 1 ≦ x ≦ 5.

]前記負極活物質が、金属ナトリウムである前記[1]に記載の全固体電池。 [ 2 ] The all solid state battery according to [1], wherein the negative electrode active material is metallic sodium.

]前記負極活物質が前記金属ナトリウムである場合に、前記負極が、前記固体電解質層と直接的に接触する状態で配設されている前記[2]に記載の全固体電池。 [ 3 ] The all-solid-state battery according to [2] , wherein when the negative electrode active material is the metallic sodium, the negative electrode is disposed in direct contact with the solid electrolyte layer.

本発明の全固体電池は、Naをカチオンとした安全性の高い蓄電デバイスであり、原材料が安定的に低価格で供給され得るものである。また、本発明の全固体電池は、高容量、高出力、及び長寿命であるとともに、低コストで製造可能であるといった効果を奏するものである。   The all-solid-state battery of the present invention is a highly safe electricity storage device using Na as a cation, and the raw materials can be stably supplied at a low price. Moreover, the all-solid-state battery of this invention has the effect of being able to manufacture at low cost while being high capacity | capacitance, high output, and long life.

以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.

図1は、本発明の全固体電池の一実施形態を模式的に示す断面図である。図1に示すように、本実施形態の全固体電池10は、正極1、負極2、及びこれらの間に配設される固体電解質層3を備えたものである。なお、正極1には、正極集電体4が電気的に接続されており、負極2には、負極集電体5が電気的に接続されている。また、正極1、負極2、及び固体電解質層3は、積層一体化された状態でケース20内に収納されている。   FIG. 1 is a cross-sectional view schematically showing one embodiment of an all solid state battery of the present invention. As shown in FIG. 1, the all solid state battery 10 of the present embodiment includes a positive electrode 1, a negative electrode 2, and a solid electrolyte layer 3 disposed therebetween. Note that a positive electrode current collector 4 is electrically connected to the positive electrode 1, and a negative electrode current collector 5 is electrically connected to the negative electrode 2. The positive electrode 1, the negative electrode 2, and the solid electrolyte layer 3 are housed in the case 20 in a state where they are laminated and integrated.

正極1には、正極活物質31が含有されている。より具体的には、多数の粒子状の正極活物質31の集合体として正極1が構成されている。そして、負極2には、負極活物質32が含有されている。より具体的には、多数の粒子状の負極活物質32の集合体として負極2が構成されている。また、固体電解質層3は、固体電解質33が含有されており、多数の粒子状の固体電解質33の集合体として構成されている。   The positive electrode 1 contains a positive electrode active material 31. More specifically, the positive electrode 1 is configured as an aggregate of a large number of particulate positive electrode active materials 31. The negative electrode 2 contains a negative electrode active material 32. More specifically, the negative electrode 2 is configured as an aggregate of a large number of particulate negative electrode active materials 32. The solid electrolyte layer 3 contains a solid electrolyte 33 and is configured as an aggregate of a large number of particulate solid electrolytes 33.

そして、本実施形態の全固体電池10においては、正極1及び負極2に固体電解質33が含有されている。このように、正極1及び負極2に固体電解質33が含有されていると、高出力であるとともに長寿命化することができる。これは、正極1や負極2を構成する活物質粒子間に固体電解質による三次元的なネットワークが形成されることで、正極活物質や負極活物質と固体電解質との接点となる界面の面積を飛躍的に拡大することが可能となり、その結果、インターカレーションに伴う界面電荷移動抵抗の大幅な低減を実現できるためであると推察される。その上、前記活物質粒子と、固体電解質の間には、共焼時の異相生成が無く、互いの反応性が低いことが確認された。そのため、電解液を用いた従来のリチウムイオン電池等に見られるSEIが生成され難く、長期に渡って安定した状態が維持されると推察される。より具体的には、図1に示すように、粒子状の多数の固体電解質33が、それぞれの電極を構成する粒子状の活物質(正極活物質31、負極活物質32)の粒界において三次元的に接続した状態でそれぞれの電極に含有されていることが好ましい。なお、固体電解質は、正極と負極の一方にのみ含有されていてもよいが、図1に示すように、正極1と負極2の両方に含有されていると、より高出力であるとともに長寿命化することが可能となるために好ましい。   And in the all-solid-state battery 10 of this embodiment, the positive electrode 1 and the negative electrode 2 contain the solid electrolyte 33. FIG. As described above, when the positive electrode 1 and the negative electrode 2 contain the solid electrolyte 33, the output can be increased and the life can be extended. This is because a three-dimensional network of solid electrolytes is formed between the active material particles constituting the positive electrode 1 and the negative electrode 2, thereby reducing the area of the interface serving as a contact point between the positive electrode active material and the negative electrode active material and the solid electrolyte. It is possible to dramatically expand, and as a result, it is assumed that the interface charge transfer resistance accompanying intercalation can be significantly reduced. In addition, it was confirmed that there was no heterogeneous phase formation during the co-firing between the active material particles and the solid electrolyte, and the reactivity with each other was low. For this reason, it is presumed that SEI seen in conventional lithium ion batteries using an electrolytic solution is difficult to be generated, and that a stable state is maintained for a long time. More specifically, as shown in FIG. 1, a large number of particulate solid electrolytes 33 are tertiary at the grain boundaries of the particulate active materials (positive electrode active material 31 and negative electrode active material 32) constituting each electrode. It is preferably contained in each electrode in an originally connected state. The solid electrolyte may be contained only in one of the positive electrode and the negative electrode. However, when it is contained in both the positive electrode 1 and the negative electrode 2, as shown in FIG. This is preferable because

正極に固体電解質が含有される場合において、正極に含有される、正極活物質と固体電解質の質量比は、正極活物質:固体電解質=70:30〜30:70であることが好ましく、正極活物質:固体電解質=70:30〜50:50であることが更に好ましい。正極活物質の割合が少なくなると、単位質量当りのエネルギー密度特性や出力密度特性の観点から、電池特性が低下する傾向にある。一方、70:30よりも正極活物質の割合が多くなると、電極層内の固体電解質によるネットワークが途切れる場合があり、電池特性が低下する傾向にある。   When the solid electrolyte is contained in the positive electrode, the mass ratio of the positive electrode active material and the solid electrolyte contained in the positive electrode is preferably positive electrode active material: solid electrolyte = 70: 30 to 30:70. It is more preferable that the substance: solid electrolyte = 70: 30 to 50:50. When the proportion of the positive electrode active material decreases, the battery characteristics tend to deteriorate from the viewpoint of energy density characteristics per unit mass and output density characteristics. On the other hand, when the ratio of the positive electrode active material is larger than 70:30, the network of the solid electrolyte in the electrode layer may be interrupted, and the battery characteristics tend to be deteriorated.

また、負極に固体電解質が含有される場合において、負極に含有される、負極活物質と固体電解質の質量比は、負極活物質:固体電解質=70:30〜30:70であることが好ましく、負極活物質:固体電解質=70:30〜50:50であることが更に好ましい。負極活物質の割合が少なくなると、単位質量当りのエネルギー密度特性や出力密度特性の観点から、電池特性が低下する傾向にある。一方、70:30よりも負極活物質の割合が多くなると、電極層内の固体電解質によるネットワークが途切れる場合があり、電池特性が低下する傾向にある。   When the negative electrode contains a solid electrolyte, the mass ratio of the negative electrode active material to the solid electrolyte contained in the negative electrode is preferably negative electrode active material: solid electrolyte = 70: 30 to 30:70, More preferably, negative electrode active material: solid electrolyte = 70: 30 to 50:50. When the proportion of the negative electrode active material decreases, the battery characteristics tend to deteriorate from the viewpoint of energy density characteristics per unit mass and output density characteristics. On the other hand, when the ratio of the negative electrode active material is larger than 70:30, the network due to the solid electrolyte in the electrode layer may be interrupted, and the battery characteristics tend to deteriorate.

全固体電池10の固体電解質層3は、層状(薄膜状)に形成されており、正極1と負極2を隔てるように配置されている。固体電解質層3の厚みは、好ましくは5〜500μm、更に好ましくは5〜50μmである。この固体電解質層3の厚みは、薄ければ薄いほど内部抵抗を抑制する効果が顕著に発揮される。しかしながら、正極と負極の間の電子伝導面では絶縁を維持する機能が必要とされるため、絶縁確保のための最低限の厚みは確保されることが好ましい。固体電解質層を構成する固体電解質は、その化学組成が下記一般式(1)で表されるものである。
Na1+yZr(SiO(PO3−y ・・・(1)
The solid electrolyte layer 3 of the all-solid battery 10 is formed in a layer shape (thin film shape), and is disposed so as to separate the positive electrode 1 and the negative electrode 2. The thickness of the solid electrolyte layer 3 is preferably 5 to 500 μm, more preferably 5 to 50 μm. As the thickness of the solid electrolyte layer 3 is thinner, the effect of suppressing internal resistance is more remarkable. However, since the function of maintaining insulation is required on the electron conduction surface between the positive electrode and the negative electrode, it is preferable to ensure a minimum thickness for ensuring insulation. The solid electrolyte constituting the solid electrolyte layer has a chemical composition represented by the following general formula (1).
Na 1 + y Zr 2 (SiO 4 ) y (PO 4 ) 3-y (1)

なお、前記一般式(1)中、1≦y<3であり、好ましくはy≒2である。このように、その化学組成が前記一般式(1)で表される、即ち、同一化学組成式中にポリアニオンを二種類(「SiO」と「PO」)同時に含む固体電解質からなる固体電解質層を用いると、高いイオン伝導度を得ることが可能となり、高容量、高出力、及び長寿命な全固体電池とすることができる。後述の実施例においては、特に高温条件下(例えば、80℃以上)において全固体電池として動作することが確認できた。 In the general formula (1), 1 ≦ y <3, and preferably y≈2. Thus, the chemical composition is represented by the general formula (1), that is, the solid electrolyte composed of the solid electrolyte containing two types of polyanions (“SiO 4 ” and “PO 4 ”) at the same time in the same chemical composition formula. When a layer is used, high ionic conductivity can be obtained, and an all-solid-state battery with high capacity, high output, and long life can be obtained. In the examples described later, it was confirmed that the battery operated as an all-solid battery particularly under high temperature conditions (for example, 80 ° C. or higher).

全固体電池10の正極1の形状は、好ましくは厚み5〜500μm、更に好ましくは20〜100μmの薄膜状である。また、負極2についても正極1と同様に、その形状は、好ましくは厚み5〜500μm、更に好ましくは20〜100μmの薄膜状である。   The shape of the positive electrode 1 of the all-solid battery 10 is preferably a thin film having a thickness of 5 to 500 μm, more preferably 20 to 100 μm. The shape of the negative electrode 2 is also a thin film with a thickness of preferably 5 to 500 μm, more preferably 20 to 100 μm, as with the positive electrode 1.

正極に含まれる正極活物質と、負極に含まれる負極活物質の少なくともいずれかは、その化学組成が下記一般式(2)で表される物質(以下、「電極活物質」ともいう)である。なお、下記一般式(2)中、1≦x≦5である。
Na(PO ・・・(2)
At least one of the positive electrode active material included in the positive electrode and the negative electrode active material included in the negative electrode is a material whose chemical composition is represented by the following general formula (2) (hereinafter also referred to as “electrode active material”). . In the following general formula (2), 1 ≦ x ≦ 5.
Na x V 2 (PO 4 ) 3 (2)

図2は、本発明の全固体電池の他の実施形態を模式的に示す断面図である。図2に示す実施形態の全固体電池50の負極12を構成する負極活物質は、金属ナトリウム42である。即ち、本実施形態の全固体電池50の負極12は、薄膜状の金属ナトリウム42である。このように、特定の正極活物質31と固体電解質33で正極1を形成するとともに、金属ナトリウム42によって負極12を形成することにより、より高容量及び高出力な全固体電池とすることができるために好ましい。なお、金属ナトリウムで負極を形成することにより、得られる全固体電池の容量や出力が向上する理由については、固体電解質(例えば、NASICON電解質材料)を構成する遷移金属であるジルコニウム(Zr)が、負極を構成するナトリウム(Na)と反応し難いためであると推測される。即ち、本発明の全固体電池の固体電解質層を構成する固体電解質は、負極に金属ナトリウムを適用可能な材料である。   FIG. 2 is a cross-sectional view schematically showing another embodiment of the all solid state battery of the present invention. The negative electrode active material constituting the negative electrode 12 of the all solid state battery 50 of the embodiment shown in FIG. That is, the negative electrode 12 of the all solid state battery 50 of the present embodiment is a thin-film metal sodium 42. In this way, by forming the positive electrode 1 with the specific positive electrode active material 31 and the solid electrolyte 33 and forming the negative electrode 12 with the metallic sodium 42, it is possible to obtain an all-solid battery with higher capacity and higher output. Is preferable. In addition, about the reason why the capacity and output of the obtained all-solid battery are improved by forming the negative electrode with metallic sodium, zirconium (Zr), which is a transition metal constituting the solid electrolyte (for example, NASICON electrolyte material), This is presumably because it is difficult to react with sodium (Na) constituting the negative electrode. That is, the solid electrolyte constituting the solid electrolyte layer of the all solid state battery of the present invention is a material that can apply metallic sodium to the negative electrode.

図3は、本発明の全固体電池の更に他の実施形態を模式的に示す断面図である。図3に示す実施形態の全固体電池100は、複数の正極11a,11b、及び複数の負極22a,22bを備えるとともに、これらが固体電解質層13a,13bを介在させた状態で積層された積層構造を有するものである。ここで、正極11a,11bには、それぞれ正極集電体14が電気的に接続されている。また、負極22a,22bには、それぞれ負極集電体15が電気的に接続されている。このように、複数の正極11a,11b、複数の負極22a,22b及び複数の固体電解質層13a,13bを備えた、いわゆる積層構造とすることも好ましい態様の一つである。   FIG. 3 is a cross-sectional view schematically showing still another embodiment of the all solid state battery of the present invention. The all-solid-state battery 100 of the embodiment shown in FIG. 3 includes a plurality of positive electrodes 11a and 11b and a plurality of negative electrodes 22a and 22b, and a stacked structure in which these are stacked with solid electrolyte layers 13a and 13b interposed therebetween. It is what has. Here, the positive electrode current collector 14 is electrically connected to the positive electrodes 11a and 11b, respectively. The negative electrode current collector 15 is electrically connected to the negative electrodes 22a and 22b, respectively. Thus, it is also one of the preferable embodiments to have a so-called laminated structure including a plurality of positive electrodes 11a, 11b, a plurality of negative electrodes 22a, 22b, and a plurality of solid electrolyte layers 13a, 13b.

次に、本発明の全固体電池を製造する方法について、一例を挙げつつ説明する。正極1(図1参照)を作製するには、プレス法、ドクターブレード法、ロールコーター法等の成形方法を用いることができる。プレス法では、粉末状又は粒子状の正極活物質、及び粉末状又は粒子状の固体電解質、更には電子伝導助剤としての粉末状又は粒子状のアセチレンブラックやVGCF等のカーボン材料を金型等に充填し、加圧することで成形体を得る。一方、ドクターブレード法、ロールコーター法では、先ず、正極活物質、固体電解質、カーボン材料、及び熱分解性に優れる種類のバインダー(例えばアクリル系バインダー等)を混合して混合物を得る。次に、得られた混合物にエタノールやトルエン等、バインダーの種類に応じた有機溶剤を適宜添加して正極スラリーを調製する。調製した正極スラリーを、ドクターブレード法、ロールコーター法等の成形方法によって所定厚みの薄膜状又はシート状に成形する。乾燥後、必要に応じて切断等の加工を施し、正極用のグリーンシートを作製することができる。なお、負極、及び固体電解質層についても、上述の正極の場合と同様の操作によって、グリーンシートを作製することができる。   Next, a method for producing the all solid state battery of the present invention will be described with an example. In order to produce the positive electrode 1 (see FIG. 1), a molding method such as a press method, a doctor blade method, or a roll coater method can be used. In the pressing method, a powder or particulate positive electrode active material, a powder or particulate solid electrolyte, and a powder or particulate carbon material such as acetylene black or VGCF as an electron conduction aid are used as a mold, etc. The molded product is obtained by filling and pressurizing. On the other hand, in the doctor blade method and the roll coater method, first, a positive electrode active material, a solid electrolyte, a carbon material, and a binder having excellent thermal decomposability (for example, an acrylic binder) are mixed to obtain a mixture. Next, an organic solvent according to the type of the binder such as ethanol or toluene is appropriately added to the obtained mixture to prepare a positive electrode slurry. The prepared positive electrode slurry is formed into a thin film or sheet having a predetermined thickness by a forming method such as a doctor blade method or a roll coater method. After drying, processing such as cutting may be performed as necessary to produce a green sheet for a positive electrode. In addition, a green sheet can be produced also about a negative electrode and a solid electrolyte layer by operation similar to the case of the above-mentioned positive electrode.

作製した正極、負極、及び固体電解質層のグリーンシートを積層し、焼成して一体化することで、正極1、負極2、及び固体電解質層3を備えた電池焼成体部材を得ることができる。得られた電池焼成体部材に、正極集電体4、及び負極集電体5を配設する。正極集電体4及び負極集電体5を構成する材料としては、例えば、白金(Pt)、白金(Pt)/パラジウム(Pd)、金(Au)、銀(Ag)、アルミニウム(Al)、銅(Cu)、ITO(インジウム−錫酸化膜)等を挙げることができる。   The produced positive electrode, the negative electrode, and the solid electrolyte layer green sheet are stacked, fired, and integrated, whereby a battery fired body member including the positive electrode 1, the negative electrode 2, and the solid electrolyte layer 3 can be obtained. A positive electrode current collector 4 and a negative electrode current collector 5 are disposed on the obtained battery fired body member. Examples of the material constituting the positive electrode current collector 4 and the negative electrode current collector 5 include platinum (Pt), platinum (Pt) / palladium (Pd), gold (Au), silver (Ag), aluminum (Al), Examples thereof include copper (Cu) and ITO (indium-tin oxide film).

正極集電体4、及び負極集電体5は、例えば、スパッタリング法、抵抗により蒸着源を加熱して蒸着させる抵抗加熱蒸着法、イオンビームにより蒸着源を加熱して蒸着させるイオンビーム蒸着法、電子ビームにより蒸着源を加熱して蒸着させる電子ビーム蒸着法等の方法によって、正極1及び負極2に配設することができる。正極集電体4と負極集電体5の絶縁を確保しつつケース20に収納すれば、全固体電池10を製造することができる。   The positive electrode current collector 4 and the negative electrode current collector 5 are, for example, a sputtering method, a resistance heating vapor deposition method in which a vapor deposition source is heated by resistance, and an ion beam vapor deposition method in which the vapor deposition source is heated and vapor deposited by an ion beam, It can arrange | position to the positive electrode 1 and the negative electrode 2 by methods, such as the electron beam vapor deposition method which heats a vapor deposition source with an electron beam and vapor-deposits. If the positive electrode current collector 4 and the negative electrode current collector 5 are accommodated in the case 20 while ensuring insulation, the all-solid battery 10 can be manufactured.

以上、正極、負極、及び固体電解質層のグリーンシートをそれぞれ別々に作製した後、これらを積層する作製手順について説明したが、これ以外の手順に従って各層を積層してもよい。例えば、固体電解質層3及び負極2を、正極1上に順次形成しつつ積層してもよい。また、各層を逐次焼成してもよいし、一括焼成してもよい。更に、加圧条件下で焼成(ホットプレス焼成)すると、無加圧条件下で焼成した場合に比して緻密な焼成体を得ることが可能となる。このため、固体電解質と電極活物質間の界面が良好な状態で形成されるとともに、固体電解質どうしもより緻密化され、より内部抵抗の低い全固体電池を形成することが可能となる。   As mentioned above, although the preparation procedure which laminates | stacks these, after producing separately the green sheet of a positive electrode, a negative electrode, and a solid electrolyte layer, respectively, you may laminate | stack each layer according to procedures other than this. For example, the solid electrolyte layer 3 and the negative electrode 2 may be stacked while being sequentially formed on the positive electrode 1. Each layer may be fired sequentially or may be fired at once. Furthermore, when fired under pressure (hot press firing), it becomes possible to obtain a dense fired body as compared with the case of firing under no pressure. Therefore, the interface between the solid electrolyte and the electrode active material is formed in a good state, and the solid electrolytes are further densified so that an all-solid battery having a lower internal resistance can be formed.

本発明の全固体電池は、その全ての構成要素が、セラミックス等の固体の材料からなるものである。このため、漏液や腐食による電池性能の劣化等の問題も生じ難く、安全性の高い電池である。更に、全ての構成要素を固体の材料としたため、本発明の全固体電池は簡易なプロセスによって作製可能なものであり、低コストで製造することができる。   In the all solid state battery of the present invention, all the constituent elements are made of a solid material such as ceramics. For this reason, problems such as deterioration of battery performance due to leakage or corrosion hardly occur, and the battery is highly safe. Furthermore, since all the constituent elements are solid materials, the all solid state battery of the present invention can be manufactured by a simple process and can be manufactured at low cost.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

(電極活物質の合成(固相反応法))
とNaHPOを1:3(モル比)で混合し、アルゴン−水素(水素:5体積%)雰囲気中、900℃で20時間焼成した後、得られた焼成物を粉砕した。焼成から粉砕までを2サイクル実施して、その組成がNa(POで表される電極活物質の材料粉末(以下、単に「NVP材料粉末」ともいう)を得た。得られたNVP材料粉末のXRD測定結果を図4に示す。
(Synthesis of electrode active material (solid-phase reaction method))
V 2 O 3 and NaH 2 PO 4 were mixed at a molar ratio of 1: 3 and baked at 900 ° C. for 20 hours in an argon-hydrogen (hydrogen: 5% by volume) atmosphere. did. Two cycles from firing to pulverization were performed to obtain a material powder of an electrode active material whose composition is represented by Na 3 V 2 (PO 4 ) 3 (hereinafter also simply referred to as “NVP material powder”). The XRD measurement result of the obtained NVP material powder is shown in FIG.

(固体電解質の合成(Sol−Gel法))
Si(OC(0.06mol/Lを20.448g)、COH(50mL)、HNO(0.01mol/Lをポリスポイトで1滴滴下)、及びHO(0.96mL)を反応系に投入し、窒素ガス気流下、オイルバスを使用して70℃に加熱して1時間撹拌した。引き続き、Zr(OC(0.06mol/Lを24.290g)を追加投入して5時間撹拌、COH(50mL)を追加投入して30分撹拌、PO(OC(0.03mol/Lを8.267g)を追加投入して12時間撹拌、NaOC(0.09mol/Lを6.812g)を追加投入して1時間撹拌して、前駆体溶液を得た。得られた前駆体溶液を加水分解してゲル化させて1日放置し、ゲルを熟成させた後、120℃で24時間乾燥させた。その後、擂潰し、750℃で5時間仮焼して前駆体粉末を得た。得られた粉末を1000℃で5時間焼成して、その組成がNaZr(SiO(PO)で表される固体電解質の材料粉末(以下、単に「NASICON材料粉末」ともいう)を得た。得られたNASICON材料粉末のXRD測定結果を図5に示す。
(Synthesis of solid electrolyte (Sol-Gel method))
Si (OC 2 H 5 ) 4 (20.448 g of 0.06 mol / L), C 2 H 5 OH (50 mL), HNO 3 (1 drop of 0.01 mol / L with a poly dropper), and H 2 O (0.96 mL) was added to the reaction system, heated to 70 ° C. using an oil bath under a nitrogen gas stream, and stirred for 1 hour. Subsequently, Zr (OC 4 H 9 ) 4 (0.06 mol / L of 24.290 g) was added and stirred for 5 hours, C 2 H 5 OH (50 mL) was added and stirred for 30 minutes, and PO (OC 4 H 9 ) 3 (0.03 mol / L of 8.267 g) was added and stirred for 12 hours, and NaOC 2 H 5 (0.09 mol / L of 6.812 g) was added and stirred for 1 hour. A precursor solution was obtained. The obtained precursor solution was hydrolyzed to be gelled and left for 1 day to age the gel and then dried at 120 ° C. for 24 hours. Then, it was crushed and calcined at 750 ° C. for 5 hours to obtain a precursor powder. The obtained powder was fired at 1000 ° C. for 5 hours, and the solid electrolyte material powder whose composition is represented by Na 3 Zr 2 (SiO 4 ) 2 (PO 4 ) (hereinafter also simply referred to as “NASICON material powder”). ) The XRD measurement result of the obtained NASICON material powder is shown in FIG.

[固体電解質と電極活物質の反応性確認]:上述の製法によって得られたNVP材料粉末とNASICON材料粉末を1:1の質量比で混合した混合粉末を、1軸プレス成形によりペレット状に成形した。得られたペレット上の成形体をアルゴン気流下(0.3L/min)にて600℃から900℃まで100℃刻みで各4時間焼成した焼成体ペレットを作製した。作製したそれぞれの焼成体ペレットのXRD測定結果を図13に示す。図13に示す結果から、何れの焼成温度においても電極活物質と固体電解質以外の異相の生成は確認されず、900℃までの共焼が可能であることが確認できた。   [Reactivity confirmation of solid electrolyte and electrode active material]: A mixed powder obtained by mixing the NVP material powder and NASICON material powder obtained by the above-described manufacturing method at a mass ratio of 1: 1 is formed into a pellet by uniaxial press molding. did. The formed body on the obtained pellet was fired at 600 ° C. to 900 ° C. in increments of 100 ° C. for 4 hours under an argon stream (0.3 L / min) to prepare fired body pellets. The XRD measurement result of each produced fired body pellet is shown in FIG. From the results shown in FIG. 13, it was confirmed that any phase other than the electrode active material and the solid electrolyte was not generated at any firing temperature, and co-firing up to 900 ° C. was possible.

(実施例1)
前述の「固体電解質の合成(Sol−Gel法)」で得た前駆体粉末をディスク状に成形した後、1000℃で5時間焼成し、ディスク状の焼成体(焼成体ディスク)を作製した。NVP材料粉末、NASICON材料粉末、及び電子伝導助剤としてのアセチレンブラックを、40:40:20(質量比)の割合で混合して電極粉末を得た。得られた電極粉末に対して、有機溶媒に溶解した有機バインダーを適量添加して電極ペーストを得た。焼成体ディスクの両表面に電極ペーストを、スクリーン印刷により薄膜状に印刷した後、乾燥した。アルゴン気流下(0.3L/min)、5kN/cmの荷重をかけた状態で、700℃、5時間のホットプレス焼成を実施し、固体電解質層の両表面に電極層が形成された焼成体(内部電極体)を得た。この際、正極と負極の電極の比率を、正:負=1:3(質量比)とした。得られた内部電極体の両表面に、Ptをスパッタして集電体層(Pt層、厚み:50nm)を形成した。120℃で12時間真空乾燥を行った後、アルゴン雰囲気のグローブボックス内でコインセルに封入して全固体電池(実施例1)を得た。
Example 1
The precursor powder obtained by the above-described “synthesis of solid electrolyte (Sol-Gel method)” was formed into a disk shape, and then fired at 1000 ° C. for 5 hours to prepare a disk-shaped fired body (fired body disk). NVP material powder, NASICON material powder, and acetylene black as an electron conduction aid were mixed at a ratio of 40:40:20 (mass ratio) to obtain an electrode powder. An appropriate amount of an organic binder dissolved in an organic solvent was added to the obtained electrode powder to obtain an electrode paste. The electrode paste was printed on both surfaces of the fired disk in a thin film by screen printing, and then dried. Firing in which electrode layers were formed on both surfaces of the solid electrolyte layer by performing hot press firing at 700 ° C. for 5 hours under a load of 5 kN / cm 2 under an argon stream (0.3 L / min) A body (internal electrode body) was obtained. At this time, the ratio of the positive electrode to the negative electrode was set to positive: negative = 1: 3 (mass ratio). A current collector layer (Pt layer, thickness: 50 nm) was formed on both surfaces of the obtained internal electrode body by sputtering Pt. After vacuum drying at 120 ° C. for 12 hours, it was enclosed in a coin cell in a glove box in an argon atmosphere to obtain an all-solid battery (Example 1).

[交流インピーダンスの測定(1)]:蘭国Ecochemie社製のPGSTAT30 AUTOLABにFRA2インピーダンスアナライザーを用い、測定環境はespec社製の恒温槽を用い、組立直後(25℃)の実施例1の全固体電池の交流インピーダンスを測定した。測定周波数は、1MHzから10mHzまでとし、測定信号電圧を10mVとした。結果を図6に示す。   [Measurement of AC Impedance (1)]: All solids of Example 1 immediately after assembly (25 ° C.) using a FRA2 impedance analyzer for PGSTAT30 AUTOLAB manufactured by Ranko Ecochemie and using a thermostatic chamber manufactured by espec. The AC impedance of the battery was measured. The measurement frequency was 1 MHz to 10 mHz, and the measurement signal voltage was 10 mV. The results are shown in FIG.

[充放電特性の評価(1)]:C.C.C.V.(Constant Current Constant Voltage)方式にて充放電を行い、組立直後(25℃)の実施例1の全固体電池の充放電特性を評価した。得られた容量特性は正極活物質量にて算出した。具体的には、充電特性は、定電流50μA/cmにて1.85Vカットオフまで充電後、1.85V定電圧にて1μA/cmの電流値まで充電した際の容量(mAhg−1)を測定することで評価した。一方、放電特性は、定電流50μA/cmにて0Vカットオフまで放電後、0V定電圧にて1μA/cmの電流値まで放電した際の容量(mAhg−1)を測定することで評価した。結果を図7に示す。 [Evaluation of Charging / Discharging Characteristics (1)]: Charging / discharging by C.C.C.V. (Constant Current Constant Voltage) method, charging / discharging of all-solid-state battery of Example 1 immediately after assembly (25 ° C.) Characteristics were evaluated. The obtained capacity characteristic was calculated by the amount of the positive electrode active material. Specifically, the charge characteristic is the capacity (mAhg −1 ) when charged to a current value of 1 μA / cm 2 at a constant current of 50 μA / cm 2 and charged to a current value of 1 μA / cm 2 at a constant voltage of 1.85 V. ) Was evaluated. On the other hand, the discharge characteristics are evaluated by measuring the capacity (mAhg −1 ) when discharged at a constant current of 50 μA / cm 2 to 0 V cutoff and then discharged at a constant voltage of 0 V to a current value of 1 μA / cm 2. did. The results are shown in FIG.

[交流インピーダンスの測定(2)]:蘭国Ecochemie社製のPGSTAT30 AUTOLABにFRA2インピーダンスアナライザーを用い、測定環境はespec社製の恒温槽を用い、80℃の温度条件下で10サイクルの充放電を行った後の実施例1の全固体電池の交流インピーダンスを測定した。測定周波数は、1MHzから10mHzまでとし、測定信号電圧を10mVとした。結果を図8に示す。   [Measurement of AC Impedance (2)]: Using FRA2 impedance analyzer for PGSTAT30 AUTOLAB manufactured by Lancheme Ecochemie, and using a thermostatic chamber manufactured by espec for measurement environment, charging and discharging for 10 cycles under a temperature condition of 80 ° C. The AC impedance of the all solid state battery of Example 1 after the measurement was measured. The measurement frequency was 1 MHz to 10 mHz, and the measurement signal voltage was 10 mV. The results are shown in FIG.

[充放電特性の評価(2)]:C.C.C.V.(Constant Current Constant Voltage)方式にて充放電を行い、80℃の温度条件下で10サイクルの充放電を行った後の実施例1の全固体電池の充放電特性を評価した。具体的には、充電特性は、定電流50μA/cmにて1.85Vカットオフまで充電後、1.85V定電圧にて1μA/cmの電流値まで充電した際の容量(mAhg−1)を測定することで評価した。一方、放電特性は、定電流50μA/cmにて0.01Vカットオフまで放電後、0.01V定電圧にて1μA/cmの電流値まで放電した際の容量(mAhg−1)を測定することで評価した。結果を図9に示す。また、充放電のサイクル(回)に対して、放電容量(mAhg−1)をプロットしたグラフを図10に示す。 [Evaluation of Charging / Discharging Characteristics (2)]: After charging / discharging by C.C.C.V. (Constant Current Constant Voltage) method, after 10 cycles of charging / discharging at a temperature of 80 ° C. The charge / discharge characteristics of the all solid state battery of Example 1 were evaluated. Specifically, the charge characteristic is the capacity (mAhg −1 ) when charged to a current value of 1 μA / cm 2 at a constant current of 50 μA / cm 2 and charged to a current value of 1 μA / cm 2 at a constant voltage of 1.85 V. ) Was evaluated. On the other hand, the discharge characteristics were measured by measuring the capacity (mAhg −1 ) when discharged at a constant current of 50 μA / cm 2 to 0.01 V cutoff and then discharged at a constant voltage of 0.01 V to a current value of 1 μA / cm 2. It was evaluated by doing. The results are shown in FIG. Moreover, the graph which plotted discharge capacity (mAhg < -1 >) with respect to the cycle (times) of charging / discharging is shown in FIG.

(実施例2)
前述の「固体電解質の合成(Sol−Gel法)」で得た前駆体粉末をディスク状に成形した後、1000℃で5時間焼成し、ディスク状の焼成体(焼成体ディスク)を作製した。NVP材料粉末、NASICON材料粉末、及び電子伝導助剤としてのアセチレンブラックを、40:40:20(質量比)の割合で混合して電極粉末を得た。得られた電極粉末に対して、有機溶媒に溶解した有機バインダーを適量添加して電極ペーストを得た。焼成体ディスクの一方の表面に電極ペーストを、スクリーン印刷により薄膜状に印刷した後、乾燥した。アルゴン気流下(0.3L/min)、5kN/cmの荷重をかけた状態で、700℃、5時間のホットプレス焼成を実施し、固体電解質層の一方の表面に電極層が形成された焼成体(片面電極焼成体)を得た。得られた片面電極焼成体の電極層の表面に、Ptをスパッタして集電体層(Pt層、厚み:50nm)を形成した後、120℃で12時間真空乾燥を行った。アルゴン雰囲気のグローブボックス内で、他方の表面(焼成体ディスクの研磨面)に金属ナトリウムの薄膜(厚み:約1mm)を貼付した後、コインセルに封入して全固体電池(実施例2)を得た。
(Example 2)
The precursor powder obtained by the above-described “synthesis of solid electrolyte (Sol-Gel method)” was formed into a disk shape, and then fired at 1000 ° C. for 5 hours to prepare a disk-shaped fired body (fired body disk). NVP material powder, NASICON material powder, and acetylene black as an electron conduction aid were mixed at a ratio of 40:40:20 (mass ratio) to obtain an electrode powder. An appropriate amount of an organic binder dissolved in an organic solvent was added to the obtained electrode powder to obtain an electrode paste. The electrode paste was printed on one surface of the fired disk in a thin film by screen printing, and then dried. Under a stream of argon (0.3 L / min), with a load of 5 kN / cm 2 , hot press firing was performed at 700 ° C. for 5 hours, and an electrode layer was formed on one surface of the solid electrolyte layer A fired body (single-sided electrode fired body) was obtained. Pt was sputtered on the surface of the electrode layer of the obtained single-sided electrode fired body to form a current collector layer (Pt layer, thickness: 50 nm), followed by vacuum drying at 120 ° C. for 12 hours. A metal sodium thin film (thickness: about 1 mm) was affixed to the other surface (the polished surface of the fired disk) in a glove box in an argon atmosphere, and then sealed in a coin cell to obtain an all-solid battery (Example 2). It was.

[充放電特性の評価(3)]:C.C.C.V.(Constant Current Constant Voltage)方式にて充放電を行い、組立直後の実施例2の全固体電池の、80℃の温度条件下における充放電特性を評価した。具体的には、充電特性は、定電流50μA/cmにて3.6Vカットオフまで充電後、3.6V定電圧にて1μA/cmの電流値まで充電した際の容量(mAhg−1)を測定することで評価した。一方、放電特性は、定電流50μA/cmにて1.5Vカットオフまで放電後、1.5V定電圧にて1μA/cmの電流値まで放電した際の容量(mAhg−1)を測定することで評価した。結果を図11に示す。 [Evaluation of Charging / Discharging Characteristics (3)]: The temperature condition of 80 ° C. of the all-solid-state battery of Example 2 immediately after assembling after charging / discharging by C.C.C.V. (Constant Current Constant Voltage) method. The charge / discharge characteristics below were evaluated. Specifically, the charge characteristic is the capacity (mAhg −1 ) when charged to a current value of 1 μA / cm 2 at a constant voltage of 3.6 V after charging to a 3.6 V cutoff at a constant current of 50 μA / cm 2 . ) Was evaluated. On the other hand, the discharge characteristic was measured by measuring the capacity (mAhg −1 ) when discharged to a current value of 1 μA / cm 2 at a constant current of 50 μA / cm 2 and then discharged to a current value of 1 μA / cm 2 at a constant voltage of 1.5 V. It was evaluated by doing. The results are shown in FIG.

(考察)
図6に示す結果と図8に示す結果を比較すると、実施例1の全固体電池は、高温環境下(80℃)では、室温環境下に比して交流インピーダンスが大幅に低下していることが確認できる。また、図7に示す結果と図9に示す結果を比較してすると、実施例1の全固体電池は、高温環境下(80℃)で充放電容量が増加し、電池としての充放電動作がスムーズに行われていることが確認できる。即ち、実施例1の全固体電池は、高温環境下で電池特性が向上し、電池として明確に動作可能となることが明らかとなった。
(Discussion)
When the results shown in FIG. 6 and the results shown in FIG. 8 are compared, the all-solid-state battery of Example 1 has a greatly reduced AC impedance in a high temperature environment (80 ° C.) compared to a room temperature environment. Can be confirmed. Moreover, when the result shown in FIG. 7 is compared with the result shown in FIG. 9, the charge / discharge capacity of the all-solid-state battery of Example 1 increases in a high temperature environment (80 ° C.), and the charge / discharge operation as a battery is performed. It can be confirmed that the operation is smooth. That is, it has been clarified that the all solid state battery of Example 1 has improved battery characteristics under a high temperature environment and can be operated clearly as a battery.

一方、図11に示す結果から、金属ナトリウムで負極を構成した実施例2の全固体電池も、高温環境下(80℃)であれば、実施例1の全固体電池と同様に充放電することが明らかとなった。なお、実施例2の全固体電池は、金属ナトリウムで負極を構成したために、電池電位が3V超まで上昇した。   On the other hand, from the results shown in FIG. 11, the all-solid-state battery of Example 2 in which the negative electrode is composed of metallic sodium is also charged and discharged in the same manner as the all-solid-state battery of Example 1 if it is in a high temperature environment (80 ° C.). Became clear. In addition, since the all solid state battery of Example 2 comprised the negative electrode with metallic sodium, the battery potential rose to over 3V.

なお、充放電特性評価後の実施例2の全固体電池を分解して負極(金属ナトリウム)を剥離し、負極に接していた焼成体ディスク(固体電解質層)の面をエタノール洗浄した。得られた焼成体ディスクの金属ナトリウムに接していた面のXRD測定を行った。XRD測定結果を図12に示す。   In addition, the all-solid-state battery of Example 2 after charge / discharge characteristic evaluation was decomposed | disassembled, the negative electrode (metal sodium) was peeled, and the surface of the sintered body disk (solid electrolyte layer) which was in contact with the negative electrode was ethanol-cleaned. The XRD measurement of the surface which was in contact with the metal sodium of the obtained fired body disk was performed. The XRD measurement results are shown in FIG.

図12に示すように、実施例2の全固体電池を構成していた固体電解質層の金属ナトリウムに接していた面は、NASICON材料に由来するピーク以外の異相は認められなかった。これは、NASICON材料を構成するジルコニア(Zr)が、遷移金属元素であり、金属ナトリウム等の金属とは反応し難いためであるものと推測される。以上より、NASICON電解質材料は、金属ナトリウムを負極の構成材料として適用可能な材質であることが明らかとなった。従って、NASICON電解質材料を用いて構成した固体電解質層と、金属ナトリウムを用いて構成した負極と、を組み合わせることで、高容量であるとともに高出力の全固体電池を提供可能であることが判明した。   As shown in FIG. 12, on the surface of the solid electrolyte layer constituting the all-solid battery of Example 2 that was in contact with the sodium metal, no different phase other than the peak derived from the NASICON material was observed. This is presumably because zirconia (Zr) constituting the NASICON material is a transition metal element and hardly reacts with a metal such as metal sodium. From the above, it has been clarified that the NASICON electrolyte material is a material applicable to metallic sodium as a constituent material of the negative electrode. Therefore, it was found that a high-capacity and high-power all-solid battery can be provided by combining a solid electrolyte layer formed using a NASICON electrolyte material and a negative electrode formed using metallic sodium. .

本発明の全固体電池は、ポータブル機器用電池、ICカード内蔵用電池、インプラント医療器具用電池、基板表面実装用電池、太陽電池をはじめとする他の電池と組み合せて用いられる電池(ハイブリッド電源用電池)等として好適である。   The all-solid-state battery of the present invention is a battery (for hybrid power supply) used in combination with other batteries such as a battery for portable devices, a battery for built-in IC cards, a battery for implant medical devices, a battery for mounting on a substrate, and a solar battery. Battery) and the like.

本発明の全固体電池の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the all-solid-state battery of this invention. 本発明の全固体電池の他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the all-solid-state battery of this invention. 本発明の全固体電池の更に他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the all-solid-state battery of this invention. 電極活物質(NVP材料粉末)のXRDの測定結果を示すチャートである。It is a chart which shows the measurement result of XRD of an electrode active material (NVP material powder). 固体電解質(NASICON材料粉末)のXRDの測定結果を示すチャートである。It is a chart which shows the measurement result of XRD of a solid electrolyte (NASICON material powder). 実施例1の全固体電池(室温下)の交流インピーダンスの測定結果を示すグラフである。It is a graph which shows the measurement result of the alternating current impedance of the all-solid-state battery (under room temperature) of Example 1. 実施例1の全固体電池(室温下)の充放電特性を評価した充放電波形を示すグラフである。It is a graph which shows the charging / discharging waveform which evaluated the charging / discharging characteristic of the all-solid-state battery (under room temperature) of Example 1. FIG. 実施例1の全固体電池(80℃環境下、充放電サイクル10サイクル経過後)の交流インピーダンスの測定結果を示すグラフである。It is a graph which shows the measurement result of the alternating current impedance of the all-solid-state battery of Example 1 (80 degreeC environment, after 10 cycles of charging / discharging cycles). 実施例1の全固体電池(80℃環境下)の充放電特性を評価した充放電波形を示すグラフである。It is a graph which shows the charging / discharging waveform which evaluated the charging / discharging characteristic of the all-solid-state battery (under 80 degreeC environment) of Example 1. FIG. 実施例1の全固体電池の、充放電のサイクル(回)毎の放電容量(mAhg−1)をプロットしたグラフである。It is the graph which plotted the discharge capacity (mAhg < -1 >) for every charging / discharging cycle (times) of the all-solid-state battery of Example 1. FIG. 実施例2の全固体電池の、80℃の温度条件下における充放電特性を評価した充放電波形を示すグラフである。It is a graph which shows the charging / discharging waveform which evaluated the charging / discharging characteristic in 80 degreeC temperature conditions of the all-solid-state battery of Example 2. FIG. 実施例2の充放電特性評価後の全固体電池を分解して得られた固体電解質層の、金属ナトリウムとの接触面のXRD測定結果を示すチャートである。It is a chart which shows the XRD measurement result of the contact surface with metal sodium of the solid electrolyte layer obtained by decomposing | disassembling the all-solid-state battery after the charging / discharging characteristic evaluation of Example 2. FIG. NVP材料粉末とNASICON材料粉末を含む成形体を焼成して得られた焼成体ペレットのXRD測定結果を示すチャートである。It is a chart which shows the XRD measurement result of the baking body pellet obtained by baking the molded object containing NVP material powder and NASICON material powder.

符号の説明Explanation of symbols

1,11a,11b:正極、2,12,22a,22b:負極、3,13a,13b,13c:固体電解質層、4,14:正極集電体、5,15:負極集電体、10,50,100:全固体電池、20:ケース、31:正極活物質、32:負極活物質、33:固体電解質、42:金属ナトリウム 1, 11a, 11b: positive electrode, 2, 12, 22a, 22b: negative electrode, 3, 13a, 13b, 13c: solid electrolyte layer, 4, 14: positive electrode current collector, 5, 15: negative electrode current collector, 10, 50, 100: all solid state battery, 20: case, 31: positive electrode active material, 32: negative electrode active material, 33: solid electrolyte, 42: metallic sodium

Claims (3)

正極活物質を含有する正極と、負極活物質を含有する負極と、前記正極と前記負極の間に配設される、下記一般式(1)で表される固体電解質を含有する固体電解質層と、を備えた全固体電池であって、
前記正極と前記負極の少なくともいずれかが、前記固体電解質を更に含有するものであり、
前記正極活物質と前記負極活物質の少なくともいずれかが、下記一般式(2)で表される物質であり、
前記正極が前記固体電解質を含有し、且つ前記負極が前記固体電解質を含有しない場合には、前記正極と前記固体電解質層とが、加圧した状態で加熱焼成され、焼成一体化された焼結体であり、
前記正極が前記固体電解質を含有せず、且つ前記負極が前記固体電解質を含有する場合には、前記負極と前記固体電解質層とが、加圧した状態で加熱焼成され、焼成一体化された焼結体であり、
前記正極、及び前記負極が前記固体電解質を含有する場合には、前記正極、及び前記負極の少なくともいずれかと、前記固体電解質層とが、加圧した状態で加熱焼成され、焼成一体化された焼結体である、全固体電池。
Na1+yZr(SiO(PO3−y ・・・(1)
Na(PO ・・・(2)
(但し、上記一般式(1)中、1≦y<3であり、上記一般式(2)中、1≦x≦5である)
A positive electrode containing a positive electrode active material; a negative electrode containing a negative electrode active material; and a solid electrolyte layer containing a solid electrolyte represented by the following general formula (1) disposed between the positive electrode and the negative electrode: An all solid state battery comprising:
At least one of the positive electrode and the negative electrode further contains the solid electrolyte,
At least one of the positive electrode active material and the negative electrode active material is a material represented by the following general formula (2):
In the case where the positive electrode contains the solid electrolyte and the negative electrode does not contain the solid electrolyte, the positive electrode and the solid electrolyte layer are heated and fired in a pressurized state, and sintered integrally. Body,
In the case where the positive electrode does not contain the solid electrolyte and the negative electrode contains the solid electrolyte, the negative electrode and the solid electrolyte layer are heated and fired in a pressurized state, and are fired and integrated. Is a unity,
In the case where the positive electrode and the negative electrode contain the solid electrolyte , at least one of the positive electrode and the negative electrode, and the solid electrolyte layer are heated and fired in a pressurized state, and fired and integrated. An all-solid-state battery that is a unit.
Na 1 + y Zr 2 (SiO 4 ) y (PO 4 ) 3-y (1)
Na x V 2 (PO 4 ) 3 (2)
(However, in the general formula (1), 1 ≦ y <3, and in the general formula (2), 1 ≦ x ≦ 5)
前記負極活物質が、金属ナトリウムである請求項1に記載の全固体電池。   The all-solid-state battery according to claim 1, wherein the negative electrode active material is metallic sodium. 前記負極活物質が前記金属ナトリウムである場合に、
前記負極が、前記固体電解質層と直接的に接触する状態で配設されている請求項2に記載の全固体電池。
When the negative electrode active material is the metallic sodium,
The all-solid-state battery according to claim 2, wherein the negative electrode is disposed in direct contact with the solid electrolyte layer.
JP2008173746A 2008-07-02 2008-07-02 All solid battery Active JP5418803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173746A JP5418803B2 (en) 2008-07-02 2008-07-02 All solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173746A JP5418803B2 (en) 2008-07-02 2008-07-02 All solid battery

Publications (2)

Publication Number Publication Date
JP2010015782A JP2010015782A (en) 2010-01-21
JP5418803B2 true JP5418803B2 (en) 2014-02-19

Family

ID=41701720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173746A Active JP5418803B2 (en) 2008-07-02 2008-07-02 All solid battery

Country Status (1)

Country Link
JP (1) JP5418803B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132627A1 (en) * 2010-04-23 2011-10-27 株式会社 村田製作所 All-solid state secondary battery and production method for same
CA2846472C (en) 2011-08-29 2016-08-16 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for sodium battery, and method of producing the same
WO2013108309A1 (en) * 2012-01-20 2013-07-25 株式会社豊田自動織機 Secondary battery
JP6028285B2 (en) * 2012-02-23 2016-11-16 国立研究開発法人産業技術総合研究所 Sodium secondary battery positive electrode material, method for producing the positive electrode material for sodium secondary battery, sodium secondary battery electrode using the sodium secondary battery positive electrode material, non-aqueous sodium secondary provided with the sodium secondary battery electrode Batteries and electric devices using the non-aqueous sodium secondary batteries
KR102133786B1 (en) * 2012-08-28 2020-07-14 어플라이드 머티어리얼스, 인코포레이티드 Solid state battery fabrication
KR102164521B1 (en) * 2012-09-25 2020-10-13 유니버시티 오브 메릴랜드, 컬리지 파크 High conductivity nasicon electrolyte for room temperature solid-state sodium ion batteries
US10622666B2 (en) 2013-03-21 2020-04-14 University Of Maryland, College Park Ion conducting batteries with solid state electrolyte materials
US11888149B2 (en) 2013-03-21 2024-01-30 University Of Maryland Solid state battery system usable at high temperatures and methods of use and manufacture thereof
JP2015026483A (en) * 2013-07-25 2015-02-05 トヨタ自動車株式会社 Positive electrode for sodium batteries, and sodium battery
JP6460316B2 (en) 2013-12-09 2019-01-30 日本電気硝子株式会社 Sodium ion battery electrode mixture, method for producing the same, and sodium all-solid battery
CN103730684B (en) * 2014-01-15 2016-04-27 广东亿纬赛恩斯新能源***有限公司 A kind of High-safety all-solid-state lithium ion battery and production method thereof
WO2016069749A1 (en) 2014-10-28 2016-05-06 University Of Maryland, College Park Interfacial layers for solid-state batteries methods of making same
WO2016084573A1 (en) * 2014-11-26 2016-06-02 日本電気硝子株式会社 Method for manufacturing positive electrode material for electrical storage device
JP6861942B2 (en) 2015-08-10 2021-04-21 日本電気硝子株式会社 Solid electrolyte sheet and its manufacturing method, and sodium ion all-solid-state secondary battery
US11101497B2 (en) 2016-02-29 2021-08-24 Hitachi Zosen Corporation All-solid state secondary battery and method for manufacturing same
JP7052215B2 (en) * 2017-05-08 2022-04-12 日本電気硝子株式会社 Power storage device members and power storage devices
US11552329B2 (en) 2017-09-20 2023-01-10 Nippon Electric Glass Co., Ltd. Solid electrolyte sheet, method for producing same and all-solid-state secondary battery
JP6870572B2 (en) * 2017-10-27 2021-05-12 日本電気硝子株式会社 Manufacturing method of solid electrolyte sheet
CN111886090B (en) 2018-02-15 2023-07-04 马里兰大学派克分院 Ordered porous solid electrolyte structure, electrochemical device having the same, and method of manufacturing the same
CN109786815B (en) * 2018-12-20 2022-06-03 广东工业大学 Nasicon type sodium ion solid electrolyte and preparation method and application thereof
JP7345748B2 (en) * 2019-02-25 2023-09-19 国立大学法人長岡技術科学大学 Manufacturing method for secondary batteries
US11569527B2 (en) 2019-03-26 2023-01-31 University Of Maryland, College Park Lithium battery
JPWO2022070777A1 (en) * 2020-09-30 2022-04-07

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3134289A1 (en) * 1981-08-29 1983-03-10 Varta Batterie Ag, 3000 Hannover GALVANIC SOLID SOLID CELL WITH ION AND ELECTRON-CONDUCTING CATHODE, THE ACTIVE MATERIAL OF METAL CHLORIDES.
JP2001185123A (en) * 1999-12-22 2001-07-06 Kyocera Corp Whole solid secondary battery
CN100372158C (en) * 2001-04-06 2008-02-27 威伦斯技术公司 Sodium ion batteries

Also Published As

Publication number Publication date
JP2010015782A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5418803B2 (en) All solid battery
JP5078120B2 (en) All solid battery
KR102410194B1 (en) Electrode mixture for sodium ion batteries, production method therefor, and all-solid-state sodium battery
JP5115920B2 (en) All solid battery
WO2013137224A1 (en) All solid state cell and method for producing same
TWI528618B (en) Lithium ion secondary battery
TWI528611B (en) Lithium ion secondary battery and manufacturing method thereof
US20110081580A1 (en) Solid-state lithium secondary battery and method for producing the same
EP2214248A1 (en) Lithium battery and method for manufacturing the same
JP7154847B2 (en) Method for manufacturing all-solid-state battery
JP6183783B2 (en) All solid battery
JPWO2012008422A1 (en) All solid battery
JPWO2012020700A1 (en) Stacked solid battery
WO2016157751A1 (en) Lithium ion conductor, solid electrolyte layer, electrode, battery and electronic device
JP6575109B2 (en) Lithium ion conductor, electrode, battery, manufacturing method thereof, and electronic device
JP2000311710A (en) Solid electrolyte battery and its manufacture
JP6504515B2 (en) Solid electrolyte material and all solid battery
JP2013051171A (en) Electrode body for all solid-state battery and all solid-state battery
CN109792080B (en) All-solid lithium ion secondary battery
JPWO2014020654A1 (en) All solid ion secondary battery
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
WO2012029641A1 (en) Solid state battery and manufacturing method for same
JP5164256B2 (en) All solid state secondary battery
JP5930063B2 (en) Positive electrode material, all solid state battery, and manufacturing method thereof
JP6201569B2 (en) Solid electrolyte material and all solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131106

R150 Certificate of patent or registration of utility model

Ref document number: 5418803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350