JP2013051171A - Electrode body for all solid-state battery and all solid-state battery - Google Patents

Electrode body for all solid-state battery and all solid-state battery Download PDF

Info

Publication number
JP2013051171A
JP2013051171A JP2011189406A JP2011189406A JP2013051171A JP 2013051171 A JP2013051171 A JP 2013051171A JP 2011189406 A JP2011189406 A JP 2011189406A JP 2011189406 A JP2011189406 A JP 2011189406A JP 2013051171 A JP2013051171 A JP 2013051171A
Authority
JP
Japan
Prior art keywords
solid
solid electrolyte
lithium ion
oxide
state battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011189406A
Other languages
Japanese (ja)
Inventor
Yasumasa Oguma
泰正 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011189406A priority Critical patent/JP2013051171A/en
Publication of JP2013051171A publication Critical patent/JP2013051171A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an all solid-state battery excellent in lithium ion conductivity and electron conductivity while an interface between a solid electrolyte and an electrode thereof has good junction.SOLUTION: An electrode body for an all solid-state battery includes: an electrode layer containing an active material particle, a glass solid electrolyte having lithium ion conductivity and an oxide-based conducting agent; and a solid electrolyte layer containing a glass solid electrolyte having lithium ion conductivity.

Description

本発明は、全固体電池用の電極体及び全固体電池、特にリチウムイオン伝導性ガラス固体電解質を用いた全固体電池用の電極体及び全固体電池に関する。   The present invention relates to an electrode body for an all solid state battery and an all solid state battery, and more particularly to an electrode body for an all solid state battery and an all solid state battery using a lithium ion conductive glass solid electrolyte.

近年、二次電池は、パソコン、ビデオカメラ、及び携帯電話等の電源として、あるいは自動車や電力貯蔵用の電源として、なくてはならない重要な構成要素となってきている。   In recent years, a secondary battery has become an indispensable component as a power source for personal computers, video cameras, mobile phones, and the like, or as a power source for automobiles and power storage.

二次電池の中でも特にリチウム二次電池またはリチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として情報関連機器や通信機器に使用されており、近年、低公害車としての電気自動車やハイブリッド自動車用の高出力且つ高容量のリチウムイオン二次電池の開発が進められている。   Among secondary batteries, a lithium secondary battery or a lithium ion secondary battery, in particular, has a feature that it has a higher energy density than other secondary batteries and can operate at a high voltage. Therefore, it is used in information-related equipment and communication equipment as secondary batteries that are easy to reduce in size and weight. In recent years, high-output and high-capacity lithium-ion secondary batteries for electric vehicles and hybrid vehicles as low-pollution vehicles have been used. Development is underway.

リチウム二次電池またはリチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される電解質とが備えられ、電解質は、非水系の液体又は固体によって構成される。電解質に非水系の液体電解質が用いられる場合には、電解液が正極層の内部へと浸透するため、正極層を構成する正極活物質と電解質との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止等の安全性を確保するためのシステムを搭載する必要がある。これに対し、液体電解質を固体電解質に変えて、電池を全固体化した全固体電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられており、開発が進められている。   A lithium secondary battery or a lithium ion secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte disposed therebetween, and the electrolyte is composed of a non-aqueous liquid or solid. When a non-aqueous liquid electrolyte is used for the electrolyte, the electrolyte solution penetrates into the positive electrode layer, so that an interface between the positive electrode active material constituting the positive electrode layer and the electrolyte is easily formed, and performance is easily improved. . However, since widely used electrolytes are flammable, it is necessary to install a system for ensuring safety such as attachment of a safety device that suppresses temperature rise at the time of short circuit and prevention of short circuit. In contrast, an all-solid battery in which the liquid electrolyte is changed to a solid electrolyte to make the battery all solid does not use a flammable organic solvent in the battery, so the safety device can be simplified, and manufacturing costs and productivity can be reduced. It is considered excellent and is being developed.

固体電解質層が正極層と負極層との間に配設される全固体電池では、活物質及び電解質が固体であるため、電解質が活物質の内部へ浸透しにくく、活物質と電解質との界面が低減しやすい。それゆえ、全固体電池では、活物質の粉末と固体電解質の粉末とを混合した合剤層を電極層として用いることにより、活物質と固体電解質との界面の面積を増大させている。   In an all-solid battery in which the solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer, the active material and the electrolyte are solid, so that the electrolyte hardly penetrates into the active material, and the interface between the active material and the electrolyte Is easy to reduce. Therefore, in the all-solid battery, the area of the interface between the active material and the solid electrolyte is increased by using a mixture layer in which the active material powder and the solid electrolyte powder are mixed as an electrode layer.

また、全固体電池においては、電極中の電子導電性を向上するために、電解質と活物質とで構成された電極合剤中に、カーボン等の導電助剤を添加することが行われている。   Moreover, in an all-solid-state battery, in order to improve the electronic conductivity in an electrode, adding conductive assistants, such as carbon, in the electrode mixture comprised by the electrolyte and the active material is performed. .

全固体電池に用いる固体電解質の一つに、酸化物系固体電解質が検討されている。酸化物系固体電解質は、耐熱性に優れ、安全性向上に有利である。酸化物系固体電解質として、例えば、リチウムイオン伝導性を示すLi1.5Al0.5Ge1.5(PO43(LAGP)が知られている。(特許文献1)。 As one of solid electrolytes used for all solid state batteries, oxide-based solid electrolytes have been studied. An oxide-based solid electrolyte is excellent in heat resistance and advantageous in improving safety. As an oxide solid electrolyte, for example, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (LAGP) showing lithium ion conductivity is known. (Patent Document 1).

全固体電池の電極中において、活物質粉末の空隙にテトラメトキシシラン等のシロキサン結合(Si‐O)を主骨格とする化合物を介在させ、固体電解質と電極との接合強度を向上させることが提案されている(特許文献2)。   Proposed to improve the bonding strength between the solid electrolyte and the electrode by interposing a compound having a main skeleton of siloxane bond (Si-O) such as tetramethoxysilane in the voids of the active material powder in the electrode of the all-solid-state battery (Patent Document 2).

特開2007−258148号明細書JP 2007-258148 A specification 特開2001−126740号明細書JP 2001-126740 A

固体電解質と固体電極とを含む全固体電池では、固体電解質と固体電極との界面の接合が不足したり、接合強度が不足しやすく、界面抵抗が増加しやすいという問題がある。界面抵抗が増加すると、電池としての内部抵抗が大きくなり充放電性能が低下する。このため、良好な固−固界面を構築し、界面抵抗の増加を抑制することが大きな課題となっている。   An all-solid battery including a solid electrolyte and a solid electrode has a problem that the interface between the solid electrolyte and the solid electrode is insufficiently bonded, the bonding strength tends to be insufficient, and the interface resistance is likely to increase. When the interface resistance increases, the internal resistance of the battery increases and the charge / discharge performance decreases. For this reason, it is a big subject to construct a good solid-solid interface and suppress an increase in interface resistance.

このような課題に対して、特許文献2の場合、シロキサン結合(Si‐O)を主骨格とする化合物により、固体電解質と電極との接合強度を向上することが提案されているが、シロキサン結合(Si‐O)を主骨格とする化合物自体がリチウムイオン伝導性を持たないため、リチウムイオンは活物質中のみで拡散する必要があり、電池性能が低下(出力低下)する問題があった。   In the case of Patent Document 2, it has been proposed to improve the bonding strength between the solid electrolyte and the electrode by using a compound having a siloxane bond (Si—O) as the main skeleton in response to such a problem. Since the compound itself having (Si—O) as the main skeleton does not have lithium ion conductivity, lithium ions need to diffuse only in the active material, resulting in a problem that the battery performance is reduced (output reduction).

また、特許文献1の場合、LAGPは、550℃付近でガラスが軟化し活物質粒子を結着させ、600℃付近でガラスの結晶化に伴い、リチウムイオン伝導性を発現する材料であるが、LAGPを用いた電極合剤は、電子導電性が低いという問題点があった。上述のように、電子導電性を付与するために、一般的にはカーボンを電極合剤に添加することが知られているが、カーボンを電極合剤に添加した場合、固体電解質と固体電極との間の界面において剥離が発生しやすいということが分かった。   In addition, in the case of Patent Document 1, LAGP is a material that softens glass near 550 ° C. and binds active material particles, and develops lithium ion conductivity with crystallization of glass near 600 ° C. The electrode mixture using LAGP has a problem of low electronic conductivity. As described above, in order to impart electronic conductivity, it is generally known that carbon is added to the electrode mixture. However, when carbon is added to the electrode mixture, the solid electrolyte and the solid electrode It was found that peeling was likely to occur at the interface between the two.

上記問題を解決し、リチウムイオン伝導性及び電子導電性に優れ、固体電解質と電極との界面の良好な接合を得ることができ、さらに電池の充放電の際に電極材料が膨張収縮してもその接合を良好に保つことが可能な、安価な固体電解質層及び電極層を含む電極体、及びそれを用いた全固体電池が求められている。   Solves the above problems, is excellent in lithium ion conductivity and electronic conductivity, can obtain a good joint at the interface between the solid electrolyte and the electrode, and even when the electrode material expands and contracts during charging and discharging of the battery There is a demand for an inexpensive solid electrolyte layer and an electrode body including an electrode layer that can maintain the bonding well, and an all-solid battery using the electrode body.

本発明者らは、電極合剤に、活物質粒子と、固体電解質としてリチウムイオン伝導性ガラスと、酸化物系導電剤とを用いることで、優れたリチウムイオン伝導性及び電子導電性を両立し、且つ固体電解質/電極界面にて良好な接合面を形成することができ、低コストの全固体電池用の電極体の構成を見出した。   The inventors of the present invention have both excellent lithium ion conductivity and electronic conductivity by using active material particles, lithium ion conductive glass as a solid electrolyte, and an oxide-based conductive agent as an electrode mixture. In addition, the present inventors have found a configuration of a low-cost all-solid-state battery electrode body that can form a good bonding surface at the solid electrolyte / electrode interface.

本発明は、活物質粒子、リチウムイオン伝導性ガラス固体電解質、及び酸化物系導電剤を含む電極層と、リチウムイオン伝導性ガラス固体電解質を含む固体電解質層とを含む、全固体電池用電極体である。   The present invention relates to an electrode body for an all solid state battery comprising active material particles, a lithium ion conductive glass solid electrolyte, an electrode layer containing an oxide-based conductive agent, and a solid electrolyte layer containing a lithium ion conductive glass solid electrolyte. It is.

本発明により、リチウムイオン伝導性及び電子導電性を両立させ、且つ固体電解質/固体電極界面にて良好な接触面を有する電極体を得ることができる。   According to the present invention, it is possible to obtain an electrode body that achieves both lithium ion conductivity and electronic conductivity and has a good contact surface at the solid electrolyte / solid electrode interface.

本発明の電極体及び全固体電池の一実施形態の構成を説明する部分模式図である。It is a partial schematic diagram explaining the structure of one Embodiment of the electrode body of this invention, and an all-solid-state battery. 実施例で作成した全固体電池のサイクル特性である。It is a cycle characteristic of the all-solid-state battery created in the Example. 比較例で作成した全固体電池のサイクル特性である。It is a cycle characteristic of the all-solid-state battery created by the comparative example. 実施例で作成した全固体電池の破断面の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the fracture surface of the all-solid-state battery created in the Example. 比較例で作成した全固体電池の破断面の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the fracture surface of the all-solid-state battery created by the comparative example. RuO2添加量に対する、Li1.5Al0.5Ge1.5(PO43/RuO2焼結体の導電率及び焼成収縮率の関係を示すグラフである。For RuO 2 amount is a graph showing the relationship between Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 / conductivity and firing shrinkage of the RuO 2 sintered body. RuO2添加量が5体積%のときの、Li1.5Al0.5Ge1.5(PO43/RuO2焼結体の破断面の走査型電子顕微鏡(SEM)写真である。When RuO 2 addition amount of 5% by volume, is a scanning electron microscope (SEM) photograph of a fracture surface of Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 / RuO 2 sintered body.

図1は、本発明の電極体及び全固体電池の一実施形態の構成を説明する部分模式図である。図1に示すように、本実施形態の電極体10は、正極層1、負極層3、及びこれらの間に配置される固体電解質層2を有している。正極層1には正極集電体4が電気的に接続され、負極層3には負極集電体5が電気的に接続され、全固体電池100を構成している。   FIG. 1 is a partial schematic diagram illustrating the configuration of an embodiment of an electrode body and an all-solid battery of the present invention. As shown in FIG. 1, the electrode body 10 of this embodiment has the positive electrode layer 1, the negative electrode layer 3, and the solid electrolyte layer 2 arrange | positioned among these. A positive electrode current collector 4 is electrically connected to the positive electrode layer 1, and a negative electrode current collector 5 is electrically connected to the negative electrode layer 3 to constitute an all-solid-state battery 100.

正極層1及び負極層3には、それぞれ、活物質粒子、リチウムイオン伝導性ガラス固体電解質、及び酸化物系導電剤が含まれる。   The positive electrode layer 1 and the negative electrode layer 3 contain active material particles, a lithium ion conductive glass solid electrolyte, and an oxide-based conductive agent, respectively.

電極層に含まれるリチウムイオン伝導性ガラス固体電解質としては、Li1+xAlxGe2-x(PO43(xは0≦x≦1)、Li2O−B23、LiCl−Li2O−B23、Li2O−SiO2、Li2O−Nb25、Li2O−Ta25、Li2O−B23−P25、Li2O−B23−ZnO等のリチウムイオン伝導性を示すガラス固体電解質、またはこれらの組み合わせを用いることができる。 The lithium ion conductive glass solid electrolyte contained in the electrode layer includes Li 1 + x Al x Ge 2-x (PO 4 ) 3 (x is 0 ≦ x ≦ 1), Li 2 O—B 2 O 3 , LiCl -Li 2 O-B 2 O 3 , Li 2 O-SiO 2, Li 2 O-Nb 2 O 5, Li 2 O-Ta 2 O 5, Li 2 O-B 2 O 3 -P 2 O 5, Li A glass solid electrolyte exhibiting lithium ion conductivity such as 2 O—B 2 O 3 —ZnO, or a combination thereof can be used.

正極層と負極層との間に配置される固体電解質層に含まれるリチウムイオン伝導性ガラス固体電解質としても、上記と同様のリチウムイオン伝導性を示すガラス固体電解質を用いることができ、電極層に含まれる固体電解質と固体電解質層に含まれる固体電解質とが同じであることが好ましい。   As the lithium ion conductive glass solid electrolyte contained in the solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, a glass solid electrolyte exhibiting the same lithium ion conductivity as described above can be used. It is preferable that the solid electrolyte contained is the same as the solid electrolyte contained in the solid electrolyte layer.

本発明において、酸化物系導電剤は、リチウムイオン伝導性ガラス固体電解質に電子導電性を付与するものであり、酸化物系導電剤として、ルテニウム酸化物、酸化レニウム、酸化インジウム、酸化イリジウム、酸化ロジウム、レニウム系パイロクロア、ルテニウム系パイロクロア、イリジウム系パイロクロア、及び酸化スズ、並びにこれらの組み合わせを用いることができる。   In the present invention, the oxide-based conductive agent imparts electronic conductivity to the lithium ion conductive glass solid electrolyte. As the oxide-based conductive agent, ruthenium oxide, rhenium oxide, indium oxide, iridium oxide, oxidation Rhodium, rhenium-based pyrochlore, ruthenium-based pyrochlore, iridium-based pyrochlore, tin oxide, and combinations thereof can be used.

上記酸化物系導電剤は、リチウムイオン伝導性ガラス固体電解質中に分散してリチウムイオン伝導性ガラス固体電解質に電子導電性を付与することができるものである。リチウムイオン伝導性ガラス固体電解質に上記酸化物系導電剤を加えると、リチウムイオン伝導性だけでなく電子導電性も両立できることが分かった。なお、本発明においては、カーボンの使用を完全に排除するものではなく、主要量の酸化物系導電剤に加えてカーボンを併用してもよい。   The oxide conductive agent can be dispersed in a lithium ion conductive glass solid electrolyte to impart electronic conductivity to the lithium ion conductive glass solid electrolyte. It has been found that when the above-mentioned oxide-based conductive agent is added to the lithium ion conductive glass solid electrolyte, not only lithium ion conductivity but also electronic conductivity can be achieved. In the present invention, the use of carbon is not completely excluded, and carbon may be used in combination with the main amount of oxide-based conductive agent.

さらに、従来よく用いられているカーボンを電極合剤に加えた場合に比べて、酸化物系導電剤を電極合剤に加えた場合の方が、より少量の体積割合の添加で電子導電性を確保することができ、且つ固体電解質/電極界面の良好な接合を得ることができることが分かった。   Furthermore, compared to the case where carbon, which has been often used in the past, is added to the electrode mixture, the case where the oxide-based conductive agent is added to the electrode mixture can improve the electronic conductivity by adding a smaller volume ratio. It has been found that a good bonding at the solid electrolyte / electrode interface can be obtained.

このメカニズムは、理論に束縛されるものではないが、次のように考えられる。カーボンを添加してリチウムイオン伝導性ガラス固体電解質中に電子伝導パスを形成するためには、パーコレーション理論にしたがって所定量以上のカーボンの添加を必要とし、またカーボンは形状が比較的いびつであり、また凝集しやすい傾向があるため、カーボンの凝集によって固体電解質と電極との界面における接触が得にくくなることや、層間剥離が発生しやすいということが考えられる。それに対して、上記酸化物系導電剤を添加した場合は、電極合剤中にて、活物質粒子間の空隙に存在するリチウムイオン伝導性ガラスのマトリックス中で上記酸化物系導電剤の非常に微細な粒子が点在するように非接触に分散し、ガラスと酸化物系導電剤との反応層が形成されると考えられる。このような反応層がリチウムイオン伝導性ガラス固体電解質中で形成されるため、上記酸化物系導電剤を添加する場合はカーボンに比べて少量の添加であっても電子伝導パスを形成することができ、さらに、上記酸化物系導電剤はカーボンのような凝集もなく少量の添加であるために、電解質と電極との接合を阻害しないということが考えられる。また、上記酸化物系導電剤の電極合剤への添加量を、体積割合で、カーボンを添加する場合よりも少量にすることができるため、その分、電極合剤中のガラス固体電解質の体積割合を増やすことができ、固体電解質と電極との界面の結合を向上することができるということも考えられる。また、活物質の量を増やして容量を向上することも可能である。   This mechanism is not bound by theory, but can be considered as follows. In order to form an electron conduction path in a lithium ion conductive glass solid electrolyte by adding carbon, it is necessary to add a predetermined amount or more of carbon according to the percolation theory, and the shape of the carbon is relatively irregular. Further, since there is a tendency to easily aggregate, it is considered that contact at the interface between the solid electrolyte and the electrode is difficult to obtain due to the aggregation of carbon, and delamination is likely to occur. On the other hand, when the above-mentioned oxide-based conductive agent is added, the oxide-based conductive agent is extremely dispersed in the lithium ion conductive glass matrix in the gap between the active material particles in the electrode mixture. It is considered that fine particles are dispersed in a non-contact manner so that a reaction layer of glass and an oxide-based conductive agent is formed. Since such a reaction layer is formed in a lithium ion conductive glass solid electrolyte, when the oxide-based conductive agent is added, an electron conduction path can be formed even with a small amount of addition compared to carbon. In addition, since the oxide-based conductive agent is added in a small amount without agglomeration like carbon, it is considered that the bonding between the electrolyte and the electrode is not hindered. In addition, since the amount of the oxide-based conductive agent added to the electrode mixture can be made smaller in volume ratio than when carbon is added, the volume of the glass solid electrolyte in the electrode mixture correspondingly. It is also conceivable that the ratio can be increased and the bonding at the interface between the solid electrolyte and the electrode can be improved. In addition, the capacity can be improved by increasing the amount of the active material.

正極活物質として用いられる活物質材料は、負極活物質として用いる材料に対して充放電電位が貴な電位を示すものであって、全固体電池の電極活物質材料として利用可能な材料を用いることができる。例えば、正極活物質粒子の本体の材料として、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)、LiCo1/3Ni1/3Mn1/32、Li1+xMn2-x-yy4(Mは、Al、Mg、Co、Fe、Ni、及びZnから選ばれる1種以上の金属元素)で表される組成の異種元素置換Li−Mnスピネル、チタン酸リチウム(LixTiOy)、リン酸金属リチウム(LiMPO4、MはFe、Mn、Co、またはNi)、酸化ニオブ(Nb25)、酸化バナジウム(V25)、及び酸化モリブデン(MoO3)等の遷移金属酸化物、硫化チタン(TiS2)、グラファイト及びハードカーボン等の炭素材料、リチウムコバルト窒化物(LiCoN)、リチウムシリコン酸化物(LixSiyz)、リチウム金属(Li)、リチウム合金(LiM、Mは、Sn、Si、Al、Ge、Sb、またはP)、リチウム貯蔵性金属間化合物(MgxMまたはNySb、MはSn、Ge、またはSb、NはIn、Cu、またはMn)等、並びにこれらの誘導体が挙げられる。本発明において、正極活物質と負極活物質には明確な区別はなく、2種類の充放電電位を比較して、充放電電位が貴な電位を示すものを正極に、卑な電位を示すものを負極に用いて、任意の電圧の電池を構成することができる。 The active material used as the positive electrode active material has a noble charge / discharge potential relative to the material used as the negative electrode active material, and a material that can be used as an electrode active material for all solid state batteries is used. Can do. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2, Li 1 + x Mn 2-xy M y O 4 (M is, Al, Mg, Co, Fe , Ni, and selected one or more metal elements from Zn) heterogeneous element substitution represented by a composition by Li-Mn spinel, lithium titanate (Li x TiO y ), lithium metal phosphate (LiMPO 4 , M is Fe, Mn, Co, or Ni), niobium oxide (Nb 2 O 5 ), vanadium oxide (V 2 O 5), and a transition metal oxide such as molybdenum oxide (MoO 3), titanium sulfide (TiS 2), carbon materials such as graphite and hard carbon, lithium-cobalt nitride (LiCoN), lithium silicon Compound (Li x Si y O z) , lithium metal (Li), lithium alloy (LiM, M is, Sn, Si, Al, Ge , Sb or P,), lithium storage intermetallic compound (Mg x M or NySb , M is Sn, Ge, or Sb, N is In, Cu, or Mn), and derivatives thereof. In the present invention, there is no clear distinction between the positive electrode active material and the negative electrode active material, and the two types of charge / discharge potentials are compared. Can be used as a negative electrode to form a battery having an arbitrary voltage.

活物質粒子を、リチウムイオン伝導性ガラス固体電解質及び酸化物系導電剤と混合することによって、電極合剤を形成することができる。例えば、正極活物質粒子、リチウムイオン伝導性ガラス固体電解質の粉末、及び酸化物系導電剤の粉末を、乳鉢で混合して正極合剤を調製することができる。また、正極活物質粒子に代えて負極活物質粒子を用いることで、負極合剤を調製することができる。   An electrode mixture can be formed by mixing the active material particles with a lithium ion conductive glass solid electrolyte and an oxide-based conductive agent. For example, positive electrode active material particles, lithium ion conductive glass solid electrolyte powder, and oxide-based conductive agent powder can be mixed in a mortar to prepare a positive electrode mixture. Moreover, a negative electrode mixture can be prepared by using negative electrode active material particles instead of positive electrode active material particles.

正極合剤及び負極合剤をそれぞれ調製し、リチウムイオン伝導性を示すガラス固体電解質を用意して、正極層、固体電解質層、及び負極層を含む電極体を形成することができる。   A positive electrode mixture and a negative electrode mixture are respectively prepared, a glass solid electrolyte exhibiting lithium ion conductivity is prepared, and an electrode body including a positive electrode layer, a solid electrolyte layer, and a negative electrode layer can be formed.

正極層及び負極層の作製方法は、特定の方法に限定されるものではなく、例えば、活物質粉末、固体電解質粉末、及び酸化物系導電剤を所定の比率で混合して混合粉末を調製し、混合粉末をプレス機で加圧成形して、成形体を熱処理して焼結体を得る方法、または、上記同様に混合粉末を調製し、混合粉末を、水または有機溶媒及び所望により有機バインダー等の成形助剤を用いてスラリー化して、得られたスラリーを、ポリエチレンテレフタレート等の基材フィルム上にドクターブレード等の任意の方法で、塗布及び乾燥してグリーンシートを成形し、成形したシートを熱処理して焼結体を得る方法等が挙げられる。   The method for producing the positive electrode layer and the negative electrode layer is not limited to a specific method. For example, an active material powder, a solid electrolyte powder, and an oxide-based conductive agent are mixed at a predetermined ratio to prepare a mixed powder. Either by pressing the mixed powder with a press and heat-treating the molded body to obtain a sintered body, or by preparing a mixed powder in the same manner as described above, and mixing the mixed powder with water or an organic solvent and optionally an organic binder. The resulting slurry was formed into a green sheet by applying and drying the resulting slurry on a base film such as polyethylene terephthalate by any method such as a doctor blade. And a method of obtaining a sintered body by heat treatment.

固体電解質層の作製方法についても、特定の方法に限定されるものではなく、例えば電極層の作製方法と同様の方法が挙げられる。   The method for producing the solid electrolyte layer is not limited to a specific method, and examples thereof include a method similar to the method for producing the electrode layer.

電極体の作製方法についても、特定の方法に限定されるものではなく、例えば、活物質粉末、固体電解質粉末、及び酸化物系導電剤を所定の比率で混合して、粉末状の正極合剤及び負極合剤をそれぞれ調製し、固体電解質層用の固体電解質粉末を準備し、例えば、ダイスを用いて、粉末状の、正極合剤、固体電解質、及び負極合剤をダイス中で加圧成形し、成形体を熱処理して、焼結体を得ることができる。熱処理の前にCIP(等方静水圧プレス)を行ってもよい。正極集電体及び負極集電体として、例えば、アルミニウム、ニッケル、銅、金等の金属箔や、Au等の金属膜を蒸着等で形成して、全固体電池を得ることができる。   The method for producing the electrode body is not limited to a specific method. For example, the active material powder, the solid electrolyte powder, and the oxide-based conductive agent are mixed at a predetermined ratio to form a powdered positive electrode mixture. And a negative electrode mixture are prepared, and a solid electrolyte powder for a solid electrolyte layer is prepared. For example, using a die, a powdered positive electrode mixture, a solid electrolyte, and a negative electrode mixture are pressure-molded in the die. Then, the molded body can be heat-treated to obtain a sintered body. CIP (isotropic isostatic pressing) may be performed before the heat treatment. As the positive electrode current collector and the negative electrode current collector, for example, a metal foil such as aluminum, nickel, copper, or gold, or a metal film such as Au can be formed by vapor deposition or the like to obtain an all-solid battery.

電極層及び固体電解質層は、界面の接合を強固なものとするために、上記のように、正極層、固体電解質層、及び負極層となるように電極層で固体電解質層を挟んだ状態の成形体を作製して熱処理することが好ましいが、それぞれの層を単独で成形及び熱処理をして、その後組み合わせてもよい。   The electrode layer and the solid electrolyte layer are in a state in which the solid electrolyte layer is sandwiched between the electrode layer so as to become a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, as described above, in order to strengthen the bonding at the interface. It is preferable to produce a molded body and heat-treat, but each layer may be molded and heat-treated alone and then combined.

電池特性の面から、電極体中のリチウムイオン導電性ガラス固体電解質の電子導電率は、10-5S/cm以上が好ましく、10-4S/cm以上がさらに好ましい。 From the viewpoint of battery characteristics, the electronic conductivity of the lithium ion conductive glass solid electrolyte in the electrode body is preferably 10 −5 S / cm or more, and more preferably 10 −4 S / cm or more.

電極体中のリチウムイオン導電性ガラス固体電解質の焼成収縮率としては、5%以上が好ましく、10%以上がさらに好ましい。リチウムイオン導電性ガラス固体電解質の焼成収縮率が大きい方が、電池としての体積エネルギー密度が向上し、伝導パスが短く密になるため、リチウムイオン導電性及び電子導電性も向上する傾向がある。   The firing shrinkage of the lithium ion conductive glass solid electrolyte in the electrode body is preferably 5% or more, and more preferably 10% or more. When the firing shrinkage rate of the lithium ion conductive glass solid electrolyte is larger, the volume energy density of the battery is improved and the conduction path is shorter and denser, so that the lithium ion conductivity and electronic conductivity tend to be improved.

本発明が適用される全固体電池は、円筒型、角型、ボタン型、コイン型、または扁平型等、所望の形状をとることができ、これらに限定されるものではない。   The all-solid-state battery to which the present invention is applied can take a desired shape such as a cylindrical shape, a square shape, a button shape, a coin shape, or a flat shape, but is not limited thereto.

(実施例1)
リチウムイオン導電性ガラス固体電解質としてLi1.5Al0.5Ge1.5(PO43の粉末、活物質としてLiFePO4の粉末、及び酸化物系導電剤としてRuO2の粉末を、体積比で45:50:5となるように乳鉢に入れて混合し、粉末状の正極合剤を調製した。
Example 1
Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 powder as the lithium ion conductive glass solid electrolyte, LiFePO 4 powder as the active material, and RuO 2 powder as the oxide-based conductive agent in a volume ratio of 45:50: 5 was mixed in a mortar to prepare a powdered positive electrode mixture.

正極合剤の調製に用いたものと同じLi1.5Al0.5Ge1.5(PO43の粉末、活物質としてNb25の粉末、及び正極合剤粉末の調製に用いたものとRuO2の粉末を、体積比で45:50:5となるように乳鉢に入れて混合し、粉末状の負極合剤を調製した。 The same Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 powder as used for the preparation of the positive electrode mixture, Nb 2 O 5 powder as the active material, and RuO 2 used for the preparation of the positive electrode mixture powder The powder was mixed in a mortar so that the volume ratio was 45: 50: 5 to prepare a powdered negative electrode mixture.

上下から一軸プレス可能なφ13mmのダイスに、正極合剤粉末及び負極合剤粉末の調製に用いたものと同じLi1.5Al0.5Ge1.5(PO43の粉末を0.2g充填し、5PMaの一軸プレスにて成形した。次いで、得られた固体電解質ペレットの片側に、調製した負極電極合剤粉末を17mg、均一になるように充填させ、5MPaの一軸プレスを行い、成形体を得た。得られた成形体の負極と反対側の面に、調製した正極合剤粉末を22mg、均一になるように充填させ、10MPaの一軸プレスを行い、負極合剤/電解質/正極合剤で構成された成形体を得た。 A φ13 mm die that can be uniaxially pressed from above and below is filled with 0.2 g of the same Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 powder used for the preparation of the positive electrode mixture powder and the negative electrode mixture powder. Molded with a uniaxial press. Next, 17 mg of the prepared negative electrode mixture powder was uniformly packed on one side of the obtained solid electrolyte pellet, and 5 MPa uniaxial pressing was performed to obtain a molded body. The surface of the obtained molded body opposite to the negative electrode is filled with 22 mg of the prepared positive electrode mixture powder so as to be uniform, and is uniaxially pressed at 10 MPa, and is composed of a negative electrode mixture / electrolyte / positive electrode mixture. A molded product was obtained.

上記負極合剤/電解質/正極合剤で構成された成形体を真空パックして、次いで200MPaに加圧しながら1分間、CIP(等方静水圧プレス)処理を施した。次いで、電気炉中で、不活性ガスであるAr雰囲気下にて、600℃、2時間の熱処理を実施し、直径13mm、厚み1mmの円盤形状の焼結体を得た。得られた焼結体の両面にそれぞれ800Å厚のAuを蒸着して、全固体電池を作製した。   The molded body composed of the negative electrode mixture / electrolyte / positive electrode mixture was vacuum-packed and then subjected to CIP (isotropic isostatic pressing) for 1 minute while being pressurized to 200 MPa. Next, heat treatment was performed at 600 ° C. for 2 hours in an electric furnace under an Ar atmosphere as an inert gas to obtain a disk-shaped sintered body having a diameter of 13 mm and a thickness of 1 mm. An 800-thick Au was vapor-deposited on both sides of the obtained sintered body to produce an all-solid battery.

(実施例2)
実施例1で用いたものと同じLi1.5Al0.5Ge1.5(PO43とRuO2とを97:3体積%になるように秤量し、エタノール中にて17時間、ジルコニアの玉石を用いてボールミル混合を実施した。ボールミル混合したスラリーを湯煎乾燥し混合粉末を得た。得られた混合粉末を5MPaにてプレス成形を実施し、得られた成形体を、真空パックして、次いで200MPaにてCIP処理を実施して成型体を得て、600℃で2時間、熱処理を実施して、焼結体を得た。
(Example 2)
The same Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and RuO 2 as used in Example 1 were weighed to 97: 3% by volume, and were used in ethanol for 17 hours using zirconia cobblestones. Ball mill mixing was performed. The slurry mixed with the ball mill was dried in a hot water bath to obtain a mixed powder. The obtained mixed powder is press-molded at 5 MPa, the obtained molded body is vacuum-packed, and then subjected to CIP treatment at 200 MPa to obtain a molded body, which is heat-treated at 600 ° C. for 2 hours. To obtain a sintered body.

(実施例3)
Li1.5Al0.5Ge1.5(PO43及びRuO2を95:5体積%となるように秤量して混合した以外は、実施例2と同様にして、焼結体を得た。
(Example 3)
A sintered body was obtained in the same manner as in Example 2, except that Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and RuO 2 were weighed and mixed so as to be 95: 5 vol%.

(実施例4)
Li1.5Al0.5Ge1.5(PO43及びRuO2を90:10体積%となるように秤量して混合した以外は、実施例2と同様にして、焼結体を得た。
Example 4
A sintered body was obtained in the same manner as in Example 2 except that Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and RuO 2 were weighed and mixed so as to be 90: 10% by volume.

(実施例5)
Li1.5Al0.5Ge1.5(PO43及びRuO2を85:15体積%となるように秤量して混合した以外は、実施例2と同様にして、焼結体を得た。
(Example 5)
A sintered body was obtained in the same manner as in Example 2, except that Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and RuO 2 were weighed and mixed so as to be 85: 15% by volume.

(実施例6)
Li1.5Al0.5Ge1.5(PO43とRuO2とを80:20体積%となるように秤量して混合した以外は、実施例2と同様にして、焼結体を得た。
(Example 6)
A sintered body was obtained in the same manner as in Example 2, except that Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and RuO 2 were weighed and mixed so as to be 80: 20% by volume.

(比較例1)
実施例1で用いたものと同じLi1.5Al0.5Ge1.5(PO43、実施例1で用いたものと同じLiFePO4、及びアセチレンブラックを、体積比で37:50:13となるように乳鉢に入れて混合し、正極合剤粉末を調製した。
(Comparative Example 1)
The same Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 as used in Example 1 and LiFePO 4 and acetylene black used in Example 1 were in a volume ratio of 37:50:13. The mixture was put in a mortar and mixed to prepare a positive electrode mixture powder.

実施例1で用いたものと同じLi1.5Al0.5Ge1.5(PO43、実施例1で用いたものと同じNb25、及び正極合剤粉末の調製に用いたものと同じアセチレンブラックを、体積比で37:50:13となるように乳鉢に入れて混合し、負極合剤粉末を調製した。 The same Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 used in Example 1, Nb 2 O 5 same as used in Example 1, and the same acetylene black used for the preparation of the positive electrode mixture powder. Were mixed in a mortar so that the volume ratio was 37:50:13 to prepare a negative electrode mixture powder.

調製した正極合剤粉末及び負極合剤粉末を用いて、実施例1と同様にして、直径13mm、厚み1mmの円盤形状の全固体電池を作製した。   Using the prepared positive electrode mixture powder and negative electrode mixture powder, a disc-shaped all-solid battery having a diameter of 13 mm and a thickness of 1 mm was produced in the same manner as in Example 1.

(比較例2)
Li1.5Al0.5Ge1.5(PO43のみとして、RuO2を添加しなかったこと以外は、実施例2と同様にして、焼結体を得た。
(Comparative Example 2)
Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 only to, except that no addition of RuO 2, in the same manner as in Example 2 to obtain a sintered body.

(全固体電池の評価)
実施例1で作成した、電極合剤中にRuO2を含む全固体電池、及び比較例1で作成した、電極合剤中にカーボンを含む全固体電池について、スイープ電圧を0.1mV/秒、電圧範囲を0〜3V、及び3サイクルの条件で、サイクリックボルタンメトリー(CV)測定を実施した。
(Evaluation of all-solid-state battery)
For the all solid state battery containing RuO 2 in the electrode mixture prepared in Example 1 and the all solid state battery containing carbon in the electrode mixture prepared in Comparative Example 1, the sweep voltage was 0.1 mV / second, Cyclic voltammetry (CV) measurement was performed under the voltage range of 0 to 3 V and 3 cycles.

図2及び3に、実施例1で作成した、電極合剤中にRuO2を含む全固体電池、及び比較例1で作成した、電極合剤中にカーボンを含む全固体電池のサイクル特性(サイクリックボルタモグラム)を示す。実施例1で作製した電池は、1サイクル目に充電電流が流れず、この理由は不明であるが、2〜3サイクル目で回復を示しており、サイクルに依存した劣化は認められず、良好なサイクル特性を示した。比較例1で作製した電池のサイクル特性は、1サイクル目に比べて2〜3サイクル目で大きく劣化した。 FIGS. 2 and 3 show the cycle characteristics of the all-solid battery containing RuO 2 in the electrode mixture prepared in Example 1 and the all-solid battery containing carbon in the electrode mixture prepared in Comparative Example 1. Click voltammogram). In the battery prepared in Example 1, the charging current did not flow in the first cycle, and the reason for this is unknown, but the recovery was shown in the second to third cycles, and no deterioration depending on the cycle was observed, which was good. Showed good cycle characteristics. The cycle characteristics of the battery produced in Comparative Example 1 were greatly deteriorated at the second to third cycles as compared with the first cycle.

実施例1及び比較例1で作成した全固体電池についてCV測定した後に、全固体電池を破断して、電極層と固体電解質層の間の界面の接合状態を比較観察した。図4及び5に、実施例1及び比較例1で作成した全固体電池のCV測定後の破断面における、負極層及び固体電解質層の走査型電子顕微鏡(SEM)写真を示す。   After the CV measurement was performed on the all solid state batteries prepared in Example 1 and Comparative Example 1, the all solid state batteries were broken, and the bonding state of the interface between the electrode layer and the solid electrolyte layer was comparatively observed. 4 and 5 show scanning electron microscope (SEM) photographs of the negative electrode layer and the solid electrolyte layer at the fracture surface after CV measurement of the all-solid-state battery prepared in Example 1 and Comparative Example 1. FIG.

負極層と固体電解質層の間の界面を観察した結果、比較例1で作製した全固体電池は、負極層32と固体電解質層2との界面で剥離がみられたのに対して、実施例1で作製した全固体電池は、CV測定後においても、負極層31と固体電解質層2との界面に剥離はみられず、密着性の良い界面が形成されていた。正極層と固体電解質層の間の界面の状態も同様の傾向であり、実施例1で作製した全固体電池については、正極層と固体電解質層との間の界面は良好な接合状態であったが、比較例1で作製した全固体電池については、正極層と固体電解質層との間の界面に剥離がみられた。   As a result of observing the interface between the negative electrode layer and the solid electrolyte layer, the all-solid battery produced in Comparative Example 1 was peeled off at the interface between the negative electrode layer 32 and the solid electrolyte layer 2, whereas the example In the all-solid-state battery produced in No. 1, no peeling was observed at the interface between the negative electrode layer 31 and the solid electrolyte layer 2 even after CV measurement, and an interface with good adhesion was formed. The state of the interface between the positive electrode layer and the solid electrolyte layer also has the same tendency. For the all-solid battery produced in Example 1, the interface between the positive electrode layer and the solid electrolyte layer was in a good bonding state. However, for the all solid state battery fabricated in Comparative Example 1, peeling was observed at the interface between the positive electrode layer and the solid electrolyte layer.

(焼結性の評価)
実施例2〜6及び比較例2で作製した焼結体について、焼成収縮率を測定した。焼成収縮率を、次の式:
焼成収縮率(%)=(X−Y)/X×100(式中、Xは焼成前の直径、Yは焼成後の直径である)
にしたがって算出した。
(Sinterability evaluation)
About the sintered compact produced in Examples 2-6 and the comparative example 2, the baking shrinkage rate was measured. The firing shrinkage, the following formula:
Firing shrinkage rate (%) = (XY) / X × 100 (where X is a diameter before firing and Y is a diameter after firing)
Calculated according to

(導電率の評価)
実施例2〜6及び比較例2で作製した焼結体の両面に、Auを800Åの厚みで蒸着し、0.5Vの電圧を印加して、得られた電流値から、焼結体の導電率を算出した。
(Evaluation of conductivity)
Au was vapor-deposited at a thickness of 800 mm on both surfaces of the sintered bodies produced in Examples 2 to 6 and Comparative Example 2, and a voltage of 0.5 V was applied. From the obtained current value, the conductivity of the sintered body was determined. The rate was calculated.

図6に、RuO2添加量に対する、Li1.5Al0.5Ge1.5(PO43/RuO2焼結体の導電率及び焼成収縮率の関係を示す。導電率に関しては、RuO2を添加しなかった比較例2の焼結体については電子導電性を示さなかったが、RuO2を添加した実施例2〜6の焼結体については電子導電性を示した。RuO2の添加量を3体積%〜20体積%の間で増やすにつれて電子導電率が向上する傾向がみられた。焼成収縮率に関しては、RuO2の添加量が15体積%までは、ほとんど変化はなく、RuO2の添加量を20体積%まで増加させると焼成収縮率がやや大きく低下した。リチウムイオン導電性ガラスの焼結性に大きな影響を与えずに高い電子導電率を得ることが好ましいため、RuO2の添加量の下限は、3体積%以上が好ましく、5体積%以上がより好ましく、RuO2の添加量の上限は、20体積%以下が好ましく、15体積%以下がより好ましく、10体積%以下がさらにより好ましい。 FIG. 6 shows the relationship between the conductivity of the Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 / RuO 2 sintered body and the firing shrinkage ratio with respect to the amount of RuO 2 added. Regarding the electrical conductivity, the sintered body of Comparative Example 2 to which no RuO 2 was added did not show electronic conductivity, but the sintered bodies of Examples 2 to 6 to which RuO 2 was added had electronic conductivity. Indicated. There was a tendency for the electronic conductivity to increase as the amount of RuO 2 added was increased between 3% and 20% by volume. With respect to the firing shrinkage, there was almost no change until the addition amount of RuO 2 was up to 15% by volume, and when the addition amount of RuO 2 was increased to 20% by volume, the firing shrinkage rate decreased slightly. Since it is preferable to obtain a high electronic conductivity without greatly affecting the sinterability of the lithium ion conductive glass, the lower limit of the amount of RuO 2 added is preferably 3% by volume or more, more preferably 5% by volume or more. The upper limit of the addition amount of RuO 2 is preferably 20% by volume or less, more preferably 15% by volume or less, and still more preferably 10% by volume or less.

図7に、実施例3で得られたRuO2添加量が5体積%のときのLi1.5Al0.5Ge1.5(PO43/RuO2焼結体の破断面の走査型電子顕微鏡(SEM)写真を示す。白い部分がRuO2であり、灰色の部分がLi1.5Al0.5Ge1.5(PO43ガラスである。RuO2が、Li1.5Al0.5Ge1.5(PO43ガラス中に非接触に分散して存在していることが確認された。 FIG. 7 shows a scanning electron microscope (SEM) of the fracture surface of the Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 / RuO 2 sintered body obtained when the RuO 2 addition amount obtained in Example 3 is 5% by volume. Show photos. The white part is RuO 2 and the gray part is Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 glass. It was confirmed that RuO 2 was present in a non-contact manner in Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 glass.

上記結果から、本発明により、リチウムイオン伝導性及び電子導電性を両立することができ、且つ固体電解質/界面にて良好な接触面を有する電極体、及びそれを用いた全固体電池を得ることができることが分かった。   From the above results, according to the present invention, lithium ion conductivity and electronic conductivity can be achieved, and an electrode body having a good contact surface at the solid electrolyte / interface, and an all-solid battery using the same are obtained. I found out that

1 正極層
2 固体電解質層
3 負極層
4 正極集電体
5 負極集電体
6 電池ケース
7 Li1.5Al0.5Ge1.5(PO43ガラス
8 RuO2
10 電極体
31 RuO2を添加した負極層
32 カーボンを添加した負極層
100 全固体電池
DESCRIPTION OF SYMBOLS 1 Positive electrode layer 2 Solid electrolyte layer 3 Negative electrode layer 4 Positive electrode collector 5 Negative electrode collector 6 Battery case 7 Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 Glass 8 RuO 2
A negative electrode layer was added negative electrode layer 32 of carbon with the addition of 10 electrode body 31 RuO 2 100 all-solid-state cell

Claims (11)

活物質粒子、リチウムイオン伝導性ガラス固体電解質、及び酸化物系導電剤を含む電極層と、リチウムイオン伝導性ガラス固体電解質を含む固体電解質層とを含む、全固体電池用電極体。   An electrode body for an all solid state battery, comprising: an electrode layer containing active material particles, a lithium ion conductive glass solid electrolyte, and an oxide-based conductive agent; and a solid electrolyte layer containing a lithium ion conductive glass solid electrolyte. 前記酸化物系導電剤がルテニウム酸化物である、請求項1に記載の全固体電池用電極体。   The electrode body for an all-solid-state battery according to claim 1, wherein the oxide-based conductive agent is a ruthenium oxide. 前記リチウムイオン伝導性ガラス固体電解質が、Li1+xAlxGe2-x(PO43(xは0≦x≦1)である、請求項1に記載の全固体電池用電極体。 The lithium ion conductive glass solid electrolyte, (the x 0 ≦ x ≦ 1) Li 1 + x Al x Ge 2-x (PO 4) 3 is an all-solid-state battery electrode of claim 1. 前記酸化物系導電剤の体積割合が、前記リチウムイオン伝導性ガラス固体電解質及び前記酸化物系導電剤の合計量を基準として3〜15体積%である、請求項1に記載の全固体電池用電極体。   The volume ratio of the oxide-based conductive agent is 3 to 15% by volume based on the total amount of the lithium ion conductive glass solid electrolyte and the oxide-based conductive agent. Electrode body. 前記電極層において、前記リチウムイオン伝導性ガラス固体電解質中に前記酸化物系導電剤が非接触に点在して分散している、請求項1に記載の全固体電池用電極体。   The electrode body for an all-solid-state battery according to claim 1, wherein the oxide-based conductive agent is scattered in a non-contact manner in the lithium ion conductive glass solid electrolyte in the electrode layer. 請求項1〜5のいずれか一項に記載の電極体を含む全固体電池。   The all-solid-state battery containing the electrode body as described in any one of Claims 1-5. 正極活物質、リチウムイオン伝導性ガラス固体電解質、及び酸化物系導電剤を含む正極層、リチウムイオン伝導性ガラス固体電解質を含む固体電解質層、並びに負極活物質、リチウムイオン伝導性ガラス固体電解質、及び酸化物系導電剤を含む負極層を含む、全固体電池。   A positive electrode active material, a lithium ion conductive glass solid electrolyte, and a positive electrode layer containing an oxide-based conductive agent, a solid electrolyte layer containing a lithium ion conductive glass solid electrolyte, and a negative electrode active material, a lithium ion conductive glass solid electrolyte, and An all solid state battery including a negative electrode layer containing an oxide-based conductive agent. 前記酸化物系導電剤がルテニウム酸化物である、請求項7に記載の全固体電池。   The all-solid-state battery of Claim 7 whose said oxide type electrically conductive agent is a ruthenium oxide. 前記リチウムイオン伝導性ガラス固体電解質が、Li1+xAlxGe2-x(PO43(xは0≦x≦1)である、請求項7に記載の全固体電池。 The lithium ion conductive glass solid electrolyte, (the x 0 ≦ x ≦ 1) Li 1 + x Al x Ge 2-x (PO 4) 3 is an all-solid-state battery according to claim 7. 前記正極活物質がLiFePO4である、請求項7に記載の全固体電池。 The all-solid-state battery according to claim 7, wherein the positive electrode active material is LiFePO 4 . 前記負極活物質がNb25である、請求項7に記載の全固体電池。 The negative active material is Nb 2 O 5, all-solid-state cell of claim 7.
JP2011189406A 2011-08-31 2011-08-31 Electrode body for all solid-state battery and all solid-state battery Withdrawn JP2013051171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011189406A JP2013051171A (en) 2011-08-31 2011-08-31 Electrode body for all solid-state battery and all solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011189406A JP2013051171A (en) 2011-08-31 2011-08-31 Electrode body for all solid-state battery and all solid-state battery

Publications (1)

Publication Number Publication Date
JP2013051171A true JP2013051171A (en) 2013-03-14

Family

ID=48013043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011189406A Withdrawn JP2013051171A (en) 2011-08-31 2011-08-31 Electrode body for all solid-state battery and all solid-state battery

Country Status (1)

Country Link
JP (1) JP2013051171A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015222553A1 (en) 2014-12-31 2016-06-30 Hyundai Motor Company Cathode for a solid-state lithium battery and accumulator, in which this is used
WO2017104405A1 (en) * 2015-12-16 2017-06-22 富士フイルム株式会社 Material for electrodes, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JP2017521822A (en) * 2014-06-05 2017-08-03 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. Electrical energy storage element and method and apparatus for manufacturing the same
JP2017531297A (en) * 2014-10-15 2017-10-19 サクティ3 インコーポレイテッド Amorphous cathode material for battery devices
WO2018002303A1 (en) * 2016-07-01 2018-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for producing an electrochemical cell, and electrochemical cell produced by the process
JP2018166020A (en) * 2017-03-28 2018-10-25 Fdk株式会社 All-solid battery and manufacturing method thereof
KR20200093467A (en) * 2019-01-28 2020-08-05 폭스바겐 악티엔게젤샤프트 Method for producing a cathode for a solid-state battery
CN113348529A (en) * 2019-03-25 2021-09-03 松下知识产权经营株式会社 Electricity storage device
CN114975872A (en) * 2022-04-25 2022-08-30 昆明理工大学 Preparation method of integrated all-solid-state sodium ion battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521822A (en) * 2014-06-05 2017-08-03 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. Electrical energy storage element and method and apparatus for manufacturing the same
JP2017531297A (en) * 2014-10-15 2017-10-19 サクティ3 インコーポレイテッド Amorphous cathode material for battery devices
US10326128B2 (en) 2014-12-31 2019-06-18 Hyundai Motor Company Cathode of all-solid lithium battery and secondary battery using the same
DE102015222553A1 (en) 2014-12-31 2016-06-30 Hyundai Motor Company Cathode for a solid-state lithium battery and accumulator, in which this is used
KR20160083485A (en) 2014-12-31 2016-07-12 현대자동차주식회사 A cathode of wholly solid lithium battery and a secondary battery comprising thereof
DE102015222553B4 (en) 2014-12-31 2022-12-01 Hyundai Motor Company Cathode for solid-state lithium battery and accumulator using same
US11177472B2 (en) 2014-12-31 2021-11-16 Hyundai Motor Company Cathode of all-solid lithium battery and secondary battery using the same
US10693190B2 (en) 2015-12-16 2020-06-23 Fujifilm Corporation Material for electrode, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
WO2017104405A1 (en) * 2015-12-16 2017-06-22 富士フイルム株式会社 Material for electrodes, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
JPWO2017104405A1 (en) * 2015-12-16 2018-09-20 富士フイルム株式会社 Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
WO2018002303A1 (en) * 2016-07-01 2018-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for producing an electrochemical cell, and electrochemical cell produced by the process
JP2018166020A (en) * 2017-03-28 2018-10-25 Fdk株式会社 All-solid battery and manufacturing method thereof
KR20200093467A (en) * 2019-01-28 2020-08-05 폭스바겐 악티엔게젤샤프트 Method for producing a cathode for a solid-state battery
CN111509194A (en) * 2019-01-28 2020-08-07 大众汽车有限公司 Method for preparing cathode of solid-state battery
KR102444473B1 (en) * 2019-01-28 2022-09-16 폭스바겐 악티엔게젤샤프트 Method for producing a cathode for a solid-state battery
CN111509194B (en) * 2019-01-28 2023-09-15 大众汽车有限公司 Method for producing a cathode for a solid-state battery
CN113348529A (en) * 2019-03-25 2021-09-03 松下知识产权经营株式会社 Electricity storage device
CN114975872A (en) * 2022-04-25 2022-08-30 昆明理工大学 Preparation method of integrated all-solid-state sodium ion battery

Similar Documents

Publication Publication Date Title
KR102272556B1 (en) Solid-state battery
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP2013051171A (en) Electrode body for all solid-state battery and all solid-state battery
JP5093449B2 (en) Lithium battery
JP5418803B2 (en) All solid battery
JP5970284B2 (en) All solid battery
JP6222142B2 (en) Method for manufacturing electrode body
KR101930561B1 (en) Rechargeable high-density electrochemical device
CN111864207B (en) All-solid battery
US20130273437A1 (en) All solid state battery
JP2019505074A (en) ALL-SOLID LITHIUM SECONDARY BATTERY INCLUDING LLZO SOLID ELECTROLYTE AND METHOD FOR PRODUCING THE SAME
JP2011096630A (en) Solid-state lithium secondary battery, and method for producing the same
WO2011125481A1 (en) Lithium ion secondary battery and method for producing same
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
KR101939142B1 (en) ALL SOLID LITHIUM SECONDARY BATTERY INCLUDING Ga-DOPED LLZO SOLID ELECTROLYTE AND MANUFACTURING METHOD FOR THE SAME
WO2014141962A1 (en) All-solid-state battery
KR20170003544A (en) Electrode, method of producing the same, battery, and electronic device
JP2012028231A (en) Solid lithium ion secondary battery
JP6936661B2 (en) Manufacturing method of all-solid-state battery
JPWO2019212026A1 (en) Ion-conductive powder, ion-conductive compact, and power storage device
JP2012243644A (en) Electrode and all-solid state nonaqueous electrolyte battery
WO2018062085A1 (en) All solid-state lithium ion secondary battery
JP2017224427A (en) Solid electrolyte and battery
JP2014175080A (en) All-solid-state battery, and method of manufacturing all-solid-state battery
JP2016103381A (en) Method for manufacturing all-solid battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104