JP5411062B2 - Robot arm - Google Patents

Robot arm Download PDF

Info

Publication number
JP5411062B2
JP5411062B2 JP2010115714A JP2010115714A JP5411062B2 JP 5411062 B2 JP5411062 B2 JP 5411062B2 JP 2010115714 A JP2010115714 A JP 2010115714A JP 2010115714 A JP2010115714 A JP 2010115714A JP 5411062 B2 JP5411062 B2 JP 5411062B2
Authority
JP
Japan
Prior art keywords
arm
robot
supported
shaft
guide surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010115714A
Other languages
Japanese (ja)
Other versions
JP2011240450A (en
Inventor
勝年 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEC Corp
Original Assignee
KEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEC Corp filed Critical KEC Corp
Priority to JP2010115714A priority Critical patent/JP5411062B2/en
Priority to PCT/JP2010/065025 priority patent/WO2011027824A1/en
Publication of JP2011240450A publication Critical patent/JP2011240450A/en
Application granted granted Critical
Publication of JP5411062B2 publication Critical patent/JP5411062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Description

本発明は、XθZ駆動方式(X軸方向への直線移動、θ方向への旋回、及びその旋回軸と平行なZ方向への直線移動からなる駆動方式)を採用するロボットアームに関し、特に衝突等に対するロボットアームの緩衝手段に関する。   The present invention relates to a robot arm that employs an XθZ drive system (a drive system comprising a linear movement in the X-axis direction, a turn in the θ-direction, and a linear movement in the Z-direction parallel to the rotation axis), and particularly a collision or the like. The present invention relates to a buffering means for a robot arm against

ロボットアームは、サーボ制御で各関節の駆動制御を行い、所望の動作を発生させて製造・加工等に用いられるものである。
しかし、例えば、位置合わせ時や、非常の環境変化の際には、ロボットアームの稼動領域に障害物が存在する場合があり、障害物にロボットアームが衝突することによる破損事故や人身事故が生じる虞が生じる。
The robot arm performs drive control of each joint by servo control, generates a desired motion, and is used for manufacturing and processing.
However, for example, there may be obstacles in the operating area of the robot arm during alignment or when the environment changes significantly, and there is a risk of damage or personal injury due to the robot arm colliding with the obstacle. Occurs.

そこで、センサによって衝突を検出し、トルクの解除及び動作の反転を行う手法が種々紹介されていた(例えば下記特許文献参照)。   Therefore, various techniques for detecting a collision by a sensor, releasing torque and reversing the operation have been introduced (for example, refer to the following patent document).

特開2003−039376号公報Japanese Patent Laid-Open No. 2003-039376 特開平11−207682号公報Japanese Patent Laid-Open No. 11-207682

しかし、上記従来の方法は、駆動制御のみで緩衝を行なう手法であることから、衝突の瞬間における緩衝が不十分である。そのため、その様な手法だけでは、事実上、衝突による被害の防止というよりも、衝突状態の解消に寄与すると言う作用に留まっていた。   However, since the conventional method is a method of performing buffering only by drive control, the buffering at the moment of collision is insufficient. For this reason, such a method alone has effectively limited the effect of eliminating the collision state rather than preventing the damage caused by the collision.

本発明は、上記実情に鑑みてなされたものであって、比較的簡素な構造で緩衝作用が得られる構造を備えるロボットアームの提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a robot arm having a structure that can provide a buffering action with a relatively simple structure.

上記課題を解決する為になされた本発明によるロボットアームは、XθZ駆動方式のロボットアームであって、モータ等のθ回転手段で旋回する第1アームと、当該第1アームの先端部に連結し上下左右に揺動可能な第2アームを備えてなり、当該第2アームの先端部に作業部、即ち、プーリとベルト等を介して前記縦シャフトと平行な軸を回転軸として回転することができるチャック等の作業ツール、又は当該作業ツールを脱着できる支持領域等を適宜備えたものである。   The robot arm according to the present invention, which has been made to solve the above problems, is an XθZ drive type robot arm, and is connected to a first arm that is rotated by θ rotation means such as a motor, and a tip of the first arm. A second arm that can swing vertically and horizontally is provided, and the tip of the second arm can be rotated with a working portion, i.e., a shaft parallel to the vertical shaft through a pulley and a belt as a rotation axis. A work tool such as a chuck, or a support region where the work tool can be attached and detached.

前記当該第1アームと第2アームの連結部としては、前記第1アームの先端部と第2アームの基端を上下に重ね(どちらが上でも良い)、例えば、前記第1アームの先端部に横揺動軸を支持し、当該横揺動軸に前記第2アームの基部が支持する縦揺動軸を支持する構成や、前記第2アームの基部に横揺動軸を支持し、当該横揺動軸に前記第1アームの先端部が支持する縦揺動軸を支持する構成や、ボール軸受けで当該第1アームに対して第2アームが上下左右に揺動可能となる様に連結する構成のいずれを採ることもできる。
更に、本発明によるロボットアームは、前記第1アームと第2アームとの間に緩衝手段を備えたものであって、当該緩衝手段は、第2アームを第1アームに対する定常姿勢へ誘導する姿勢維持手段と、第2アームを第1アームに対する定常姿勢から第2アームの先端部を左右及び上方へ誘導する退避手段を備えることを特徴とする。
As the connecting portion of the first arm and the second arm, the tip end portion of the first arm and the base end of the second arm are stacked one above the other (whichever is upper), for example, on the tip end portion of the first arm A structure in which a horizontal rocking shaft is supported and a vertical rocking shaft supported by the base of the second arm is supported by the horizontal rocking shaft, or a horizontal rocking shaft is supported by the base of the second arm, A structure in which the vertical swing shaft supported by the tip of the first arm is supported by the swing shaft, or a ball bearing is connected to the first arm so that the second arm can swing vertically and horizontally. Any of the configurations can be adopted.
Furthermore, the robot arm according to the present invention is provided with a buffer means between the first arm and the second arm, and the buffer means is a posture for guiding the second arm to a steady posture with respect to the first arm. It is characterized by comprising a maintaining means and a retracting means for guiding the tip of the second arm left and right and upward from a steady posture with respect to the first arm.

前記緩衝手段は、相互に向かい合うスロープを含む谷状の誘導面と、当該誘導面に当接する突起部で構成することが可能である。ここで、スロープを含む谷状の誘導面の態様としては、すり鉢状、又は球面状であっても良い。
その際、前記緩衝手段は、前記誘導面は第1アームと第2アームのうちのいずれか一方における、横揺動軸及び縦揺動軸又はボール軸受け等からなる連結部の前方又は後方に備え、前記突起部は第1アームと第2アームのうちの他方に、誘導面に面して備える構成とする。
The buffer means may be constituted by a valley-shaped guide surface including slopes facing each other and a protrusion that contacts the guide surface. Here, the form of the valley-shaped guide surface including the slope may be a mortar shape or a spherical shape.
In this case, the buffer means is provided with the guide surface in front of or behind the connecting portion including the horizontal swing shaft, the vertical swing shaft, or the ball bearing in one of the first arm and the second arm. The protruding portion is provided on the other of the first arm and the second arm so as to face the guide surface.

前記突起部の先端に磁性体からなる当接部を備え、前記誘導面の最深部に前記当接部を引寄せ、又は吸着する磁石を備える構成とすれば、磁力の調整により、定常姿勢の維持・誘導強度を調整することができる。尚、前記誘導面の最深部に当接部を引寄せる手法(復帰手段)としては、当該当接部が誘導面の最深部へ向かう様に、第1アームと第2アームの角度を復元すべく付勢するコイルスプリングや板バネを用いることもできる。   If the protrusion is provided with a contact portion made of a magnetic material and a magnet that attracts or attracts the contact portion to the deepest portion of the guide surface, the adjustment of the magnetic force causes a steady posture. Maintenance / induction strength can be adjusted. In addition, as a method (return means) for pulling the contact portion to the deepest portion of the guide surface, the angle between the first arm and the second arm is restored so that the contact portion goes to the deepest portion of the guide surface. A coil spring or a leaf spring that biases as much as possible can also be used.

本発明によるロボットアームは、XθZ駆動方式の採用により、各関節において回転量の制御が必要な多関節アーム(以下多関節アームと略記する)と比べれば、各関節におけるアームの軌道を一時的に外すことが容易でありながら、多関節アームに引けをとらない稼動範囲及び精度並びに制御の便宜を得ることができる。   The robot arm according to the present invention adopts the XθZ drive method, and thus the trajectory of the arm at each joint is temporarily compared with a multi-joint arm (hereinafter abbreviated as a “multi-joint arm”) that requires a rotation amount control at each joint. While easy to remove, it is possible to obtain an operating range and accuracy that are not inferior to the articulated arm, and convenience of control.

上記の如く、各関節においてアームの軌道を一時的に外すことが許容される結果、第1アームの先端部に横揺動軸を支持し、当該横揺動軸に前記第2アームの基部が支持する縦揺動軸を支持し、第2アームを第1アームに対する定常姿勢へ誘導する姿勢維持手段と、第2アームを第1アームに対する定常姿勢から第2アームの先端部を左右及び上方へ誘導可能な退避手段を備える緩衝手段を有する構成とすることができる。   As described above, as a result of temporarily allowing the arm trajectory to be removed at each joint, the lateral swing shaft is supported at the distal end portion of the first arm, and the base portion of the second arm is supported on the lateral swing shaft. A posture maintaining means for supporting the vertical swing shaft to be supported and guiding the second arm to a steady posture with respect to the first arm, and a tip of the second arm from the steady posture with respect to the first arm to the left and right and upward. It can be set as the structure which has a buffer means provided with the retractable means which can be guided.

前記緩衝手段の存在によって、衝突の瞬間において十分な緩衝を行なうことができ、衝突による被害の防止軽減が可能となる。また、従来技術と併用すれば、第2アームについて一定量の退避が行なわれる間に、センサによる検出結果に基いて、衝突状態の解消動作を開始することができることから、衝突事故の復旧制御にも便宜となる。   Due to the presence of the buffering means, sufficient buffering can be performed at the moment of collision, and damage caused by the collision can be prevented and reduced. In addition, when used in combination with the prior art, the collision state can be resolved based on the detection result by the sensor while the second arm is retracted by a certain amount. Will also be convenient.

本発明によるロボットアームの一例を示す分解図である。It is an exploded view which shows an example of the robot arm by this invention. 本発明によるロボットアームの動作の一例を示す要部拡大図である。It is a principal part enlarged view which shows an example of operation | movement of the robot arm by this invention. 本発明によるロボットアームの一例を示す定常姿勢における、(A)は平面図、(B)は側面図である。FIG. 2A is a plan view and FIG. 2B is a side view in a steady posture showing an example of a robot arm according to the present invention. 本発明によるロボットアームの動作の一例を示す、(A)は平面図、(B)は側面図である。An example of operation | movement of the robot arm by this invention is shown, (A) is a top view, (B) is a side view. 本発明によるロボットアームの動作の一例を示す、(A)は平面図、(B)は側面図である。An example of operation | movement of the robot arm by this invention is shown, (A) is a top view, (B) is a side view. 本発明によるロボットアームの動作の一例を示す、(A)は平面図、(B)は側面図である。An example of operation | movement of the robot arm by this invention is shown, (A) is a top view, (B) is a side view. 本発明によるロボットアームを用い得るXθZ駆動方式のロボットの一例を示す正面側から見た要部斜視図である。It is the principal part perspective view seen from the front side which shows an example of the robot of the X (theta) Z drive system which can use the robot arm by this invention. 本発明によるロボットアームを用い得るXθZ駆動方式のロボットにおけるZ軸駆動手段の一例を示す裏側から見た斜視図である。It is the perspective view seen from the back side which shows an example of the Z-axis drive means in the robot of the X (theta) Z drive system which can use the robot arm by this invention. 本発明によるロボットアームを用い得るXθZ駆動方式のロボットにおけるX軸駆動手段の一例を示す裏側から見た斜視図である。It is the perspective view seen from the back side which shows an example of the X-axis drive means in the robot of the XthetaZ drive system which can use the robot arm by this invention.

以下、本発明によるロボットアームの実施の形態を図面に基づき説明する。
図1に示す実施の形態は、XθZ駆動方式のロボットに用いるロボットアームである。
本実施の形態におけるXθZ駆動方式は、θ回転手段7であるモータ及びモータで駆動する縦シャフトを、ワイヤ駆動のZ軸駆動手段8に搭載し、当該Z軸駆動手段8を、ワイヤ駆動のX軸駆動手段9に搭載したものである。
本実施の形態では、モータで駆動する縦シャフト7aにロボットアームの基端部を固定することにより、縦シャフト7aの上下左右への移動、及び縦シャフト7aに固定したロボットアームの旋回を可能とする。
Embodiments of a robot arm according to the present invention will be described below with reference to the drawings.
The embodiment shown in FIG. 1 is a robot arm used for an XθZ drive type robot.
In the XθZ drive system in the present embodiment, a motor that is the θ rotation means 7 and a vertical shaft that is driven by the motor are mounted on a wire-driven Z-axis drive means 8, and the Z-axis drive means 8 is connected to the wire-driven X-axis. It is mounted on the shaft drive means 9.
In the present embodiment, by fixing the base end portion of the robot arm to the vertical shaft 7a driven by the motor, the vertical shaft 7a can be moved up and down, left and right, and the robot arm fixed to the vertical shaft 7a can be turned. To do.

本実施の形態のロボットアームは、前記縦シャフト7aに基端部が直接固定され縦シャフト7aを軸として旋回制御を受ける第1アーム1と、当該第1アーム1の先端部にその基端部を連結し上下左右に可能な第2アーム2と、当該第2アーム2の先端部にあってプーリ28とベルト(図示省略)を介して前記縦シャフトによって回転することができるチャック3とを備える。   The robot arm of the present embodiment includes a first arm 1 whose base end is directly fixed to the vertical shaft 7a and subjected to turning control about the vertical shaft 7a, and a base end at the front end of the first arm 1. And a chuck 3 that can be rotated by the vertical shaft via a pulley 28 and a belt (not shown) at the tip of the second arm 2. .

本実施の形態のロボットアームは、第1アーム1の先端部の下に第2アーム2の基端部を重ねた構造を有し、第1アーム1と第2アーム2との間に相互を連結させる関節部を備える。
当該関節部は、縦横のヒンジ機構と緩衝手段6を備えるが、チャック3をその機能を果たすべき位置(作用点)へ移動させる構造として、第1アーム1に対する第2アーム2の連結角度等を制御上変化させることはなく、第1アーム1と第2アーム2との間で障害物との衝突等による衝撃を和らげる退避動作を行うに留まる。
The robot arm of the present embodiment has a structure in which the base end portion of the second arm 2 is overlapped below the tip end portion of the first arm 1, and the first arm 1 and the second arm 2 are mutually connected. A joint part to be connected is provided.
The joint portion includes vertical and horizontal hinge mechanisms and buffering means 6. However, as a structure for moving the chuck 3 to a position (action point) where the chuck 3 should perform its function, the connection angle of the second arm 2 with respect to the first arm 1 and the like are set. No change is made in terms of control, and only a retreat operation is performed between the first arm 1 and the second arm 2 to relieve an impact caused by a collision with an obstacle.

本実施の形態のヒンジ機構は、縦横のヒンジ機構が一体となったものである。即ち、第2アーム2の基端部に二股形状の軸受け2aを備え、当該軸受け2aの股間部2bに横揺動軸4を遊嵌し、前記軸受け2aの軸孔2c及び横揺動軸4の軸孔4aに縦揺動軸5を連通し、第1アーム1の先端部の軸孔1aに前記横揺動軸4の上端部を回転可能に、且つ離脱しないように軸支したものである(図1参照)。
以上の構造により、第2アーム2の基端部において横揺動軸4が上下に揺動し、且つ左右に揺動することとなる(図4参照)。
The hinge mechanism of the present embodiment is a combination of vertical and horizontal hinge mechanisms. That is, a bifurcated bearing 2a is provided at the base end portion of the second arm 2, and the lateral swing shaft 4 is loosely fitted into the crotch portion 2b of the bearing 2a. The shaft hole 2c of the bearing 2a and the lateral swing shaft 4 The vertical swing shaft 5 is communicated with the shaft hole 4a, and the upper end portion of the horizontal swing shaft 4 is rotatably supported in the shaft hole 1a at the tip of the first arm 1 so as not to be detached. Yes (see FIG. 1).
With the above structure, the horizontal swing shaft 4 swings up and down and swings left and right at the base end of the second arm 2 (see FIG. 4).

本実施の形態の緩衝手段6は、第2アーム2を第1アーム1の延長線上に配置する定常姿勢へ誘導するための姿勢維持手段と、第2アーム2を第1アーム1に対する前記定常姿勢(図3参照)から第2アーム2の先端部を左右及び上方へ誘導可能な退避手段を一体化したものである。   The buffering means 6 of the present embodiment includes a posture maintaining means for guiding the second arm 2 to a steady posture in which the second arm 2 is disposed on an extension line of the first arm 1, and the steady posture with respect to the first arm 1. A retracting means capable of guiding the tip of the second arm 2 to the left and right and upward from (see FIG. 3) is integrated.

本実施の形態の緩衝手段6は、相互に向かい合うスロープ6aを含む谷状の誘導面29と、当該誘導面29に当接する突起部6bからなり、前記誘導面29は、第1アーム1と第2アーム2のうちのいずれか一方における横揺動軸4及び縦揺動軸5の後方に備え、前記突起部6bは第1アーム1と第2アーム2のうちの他方に備える。   The buffer means 6 of the present embodiment includes a valley-shaped guide surface 29 including slopes 6a facing each other, and a protrusion 6b that contacts the guide surface 29. The guide surface 29 is connected to the first arm 1 and the first arm. The protrusion 6 b is provided on the other of the first arm 1 and the second arm 2, and provided on the rear side of the horizontal swing shaft 4 and the vertical swing shaft 5 in either one of the two arms 2.

尚、図1及び図2に示す例では、突起部6bを第1アーム1の裏面に備えるべく、第1アーム1の孔1bに、球面を先端とするピンを装着すると共に、第2アーム2の基端部を上面側から横断面形状が谷状となる様に切欠することによって、第2アーム2の上面に前記突起部6bと接する一対の平面状スロープ6a,6aを、前記突起部6bの曲率で湾曲した曲面を以って連結し、一連の誘導面29を形成したものである。   In the example shown in FIGS. 1 and 2, a pin having a spherical surface is attached to the hole 1 b of the first arm 1 in order to provide the protrusion 6 b on the back surface of the first arm 1, and the second arm 2. A pair of planar slopes 6a and 6a in contact with the protrusion 6b is formed on the upper surface of the second arm 2 by cutting out the base end of the second arm 2 so that the cross-sectional shape is valley-shaped from the upper surface side. A series of guiding surfaces 29 are formed by connecting with curved surfaces curved with a curvature of.

本実施の形態の姿勢維持手段は、前記突起部6bとなるピンとして磁性体のピンを採用し、前記一対のスロープ6a,6aの谷部(一対のスロープ6a,6aに挟まれた領域の最深部)に当該ピンを引寄せる磁石6abを固定したものである。誘導面29の谷部は、前記一対のスロープ6a,6aの間隔及び傾斜を、谷部とピンの先端部(当接部6aa)の球面をガタつき無く支持できる様に構成することによって、磁石6abの磁力調整と相俟って、正常稼動時における振動や衝撃に対抗して第2アーム2の位置ズレや揺動を防止できる(図6参照)。   The posture maintaining means of the present embodiment employs a magnetic pin as the pin serving as the protrusion 6b, and the valleys of the pair of slopes 6a, 6a (the deepest region between the pair of slopes 6a, 6a). The magnet 6ab for attracting the pin is fixed to the part). The trough portion of the guide surface 29 is configured such that the gap and the inclination of the pair of slopes 6a, 6a are configured so that the trough portion and the spherical surface of the tip end portion (contact portion 6aa) of the pin can be supported without backlash. Combined with the magnetic force adjustment of 6ab, it is possible to prevent displacement and swing of the second arm 2 against vibration and impact during normal operation (see FIG. 6).

本発明によるロボットアームは、以上の如く構成され、磁石6abによる定着力を凌駕する側方からの衝撃によって、第2アーム2の先端部は、第1アーム1に対して左右上方へ向く形で退避し(図2及び図4参照)、磁石6abによる定着力を凌駕する下方からの衝撃によって、第2アーム2の先端部は、第1アーム1に対して上方へ向く形で退避する(図5参照)。
障害物からの圧力が解除されれば、第2アーム2は、その自重により前記突起部6bがスロープ6a,6aをトレースしつつ(図2参照)、定常姿勢に復帰する(図3参照)。上記構成において、突起部6bにマグネットセンサを付ければ、ロボットアームが定常姿勢から外れた状態を電気的に検知することができる。
The robot arm according to the present invention is configured as described above, and the tip of the second arm 2 is directed left and right upward with respect to the first arm 1 by an impact from the side that surpasses the fixing force of the magnet 6ab. Retracted (see FIGS. 2 and 4), and the tip of the second arm 2 is retracted upward with respect to the first arm 1 by an impact from below that exceeds the fixing force by the magnet 6ab (see FIG. 2). 5).
When the pressure from the obstacle is released, the second arm 2 returns to a normal posture while the projection 6b traces the slopes 6a and 6a by its own weight (see FIG. 2) (see FIG. 3). In the above configuration, if a magnet sensor is attached to the protrusion 6b, it is possible to electrically detect the state where the robot arm is out of the normal posture.

以下、本実施の形態のXθZ駆動方式を説明する。
ロボットアームを固定した縦シャフト7aは、θ回転手段7から鉛直方向上向きに備える。
本実施の形態のθ回転手段7は、アームベース10にステー11を介して固定されたモータ及びその回転軸に連結する減速器からなり、減速器で回転速度の制御(減速)を受けた回転軸を縦シャフト7aとする(図7参照)。
Hereinafter, the XθZ driving method of the present embodiment will be described.
The vertical shaft 7 a to which the robot arm is fixed is provided vertically upward from the θ rotation means 7.
The θ rotation means 7 of the present embodiment includes a motor fixed to the arm base 10 via a stay 11 and a speed reducer connected to the rotation shaft thereof. The axis is a vertical shaft 7a (see FIG. 7).

アームベース10は、制御手段による制御の下、ベースフレーム(図示省略)に渡し掛けた走行ガイド(X軸方向へのガイド)12a,12bに対して摺動可能に装着したものである(図7参照)。
本実施の形態のベースフレームは、左右側板と、それを垂直に起立する様に支える底板を備える。
左右側板は、その前方下部及び後方上部に一対の上下走行ガイド12a,12bを相互に平行となる様に架設する。
The arm base 10 is slidably mounted on travel guides (guides in the X-axis direction) 12a and 12b passed over a base frame (not shown) under the control of the control means (FIG. 7). reference).
The base frame of the present embodiment includes left and right side plates and a bottom plate that supports the left and right side plates so as to stand vertically.
The left and right plate is provided with a pair of upper and lower traveling guides 12a and 12b on the lower front portion and the upper rear portion so as to be parallel to each other.

アームベース10は、走行ベース10aに昇降ベース10bを備えたものである。
走行ベース10aは、基板10aaの後方に背板10abを垂直に立設したものである(図7参照)。
The arm base 10 includes a traveling base 10a and a lifting base 10b.
The traveling base 10a has a back plate 10ab standing vertically on the rear side of the board 10aa (see FIG. 7).

背板10abは、その上部に、上走行ガイド12aを挿通する上支持部10cを備え、その中間部の略同じ高さに、Z軸駆動手段8を構成する左右一対の伝動プーリ13a,13bを背板10abの表面に対して垂直な回転軸で支持する(図7参照)。
更に、背板10abは、走行ワイヤ14の両端を支持する二つのワイヤ固定機構15,15を備える(図7及び図9参照)。当該ワイヤ固定機構15,15は、そこへ固定された走行ワイヤ14を介してX軸駆動手段9による走行力を受けることとなる。
基板10aaは、その前部に、下走行ガイド12bを挿通する下支持部10dを備え、その奥行きの中間部に、底板の表面から垂直に起立する左右一対の昇降ガイド(Z軸方向へのガイド)16,16を備える(図7及び図8参照)。
昇降ガイド16,16は、その上部を、背板10abの上部に前方へ迫出す形で固定した天板10eで固定する。
The back plate 10ab includes an upper support portion 10c through which the upper travel guide 12a is inserted, and a pair of left and right transmission pulleys 13a and 13b constituting the Z-axis drive means 8 are provided at substantially the same height in the middle portion of the back plate 10ab. It supports with the rotating shaft perpendicular | vertical with respect to the surface of the backplate 10ab (refer FIG. 7).
Further, the back plate 10ab includes two wire fixing mechanisms 15 and 15 that support both ends of the traveling wire 14 (see FIGS. 7 and 9). The wire fixing mechanisms 15 and 15 receive a traveling force from the X-axis driving means 9 through the traveling wire 14 fixed thereto.
The substrate 10aa includes a lower support portion 10d through which the lower traveling guide 12b is inserted at a front portion thereof, and a pair of left and right lifting guides (guides in the Z-axis direction) that stands vertically from the surface of the bottom plate at an intermediate portion of the depth. ) 16 and 16 (see FIGS. 7 and 8).
The upper and lower guides 16 and 16 are fixed at the top by a top plate 10e that is fixed to the upper portion of the back plate 10ab so as to protrude forward.

昇降ベース10bは、昇降ベース本体10baと、前記Z軸駆動手段8から昇降力を受ける受動体10bbとからなる。
昇降ベース本体10baは、昇降ガイド16,16が挿通する支持部10f,10fを備え、その前面に前記ステー11を固定する(図7参照)。
受動体10bbは、Z軸駆動手段8を構成する上下一対の受動プーリ17a,17bを受動体10bbの表面に対して垂直な回転軸で支持する。
前記昇降ベース本体10baの支持部10f,10fが備える各ガイド孔の間に、当該受動体10bbを固定することを以って昇降ベース10bは一体となる。
The lifting base 10b includes a lifting base body 10ba and a passive body 10bb that receives the lifting force from the Z-axis driving means 8.
The lift base body 10ba includes support portions 10f and 10f through which the lift guides 16 and 16 are inserted, and fixes the stay 11 on the front surface thereof (see FIG. 7).
The passive body 10bb supports a pair of upper and lower passive pulleys 17a and 17b constituting the Z-axis driving means 8 with a rotation axis perpendicular to the surface of the passive body 10bb.
The lift base 10b is integrated by fixing the passive body 10bb between the guide holes provided in the support portions 10f, 10f of the lift base body 10ba.

上記走行ベース10aの昇降ガイド16,16に、昇降ベース10bを装着することで、当該昇降ベース10bは、昇降ガイド16,16に規制された軌道で昇降し、その際、受動体10bbは、一対の伝動プーリ13a,13bの回転軸に挟まれた領域で昇降しつつ、昇降ワイヤ18を介してZ軸駆動手段8による昇降力を受けることとなる。   By attaching the elevating base 10b to the elevating guides 16 and 16 of the traveling base 10a, the elevating base 10b is moved up and down along a track regulated by the elevating guides 16 and 16, and at this time, the passive body 10bb is a pair. The elevating force by the Z-axis driving means 8 is received via the elevating wire 18 while elevating in the region sandwiched between the rotation shafts of the transmission pulleys 13a and 13b.

本実施の形態のX軸駆動手段9は、その走行駆動源たるモータ19を前記ベースフレームにおける底板の右端に固定して備え、以下の構成を有する(図9参照)。
即ち、当該走行駆動源のシャフトに固定した原動プーリ20に螺旋状に巻き付けた走行ワイヤ14の一端を引き出し、右側の側板に支持した同軸同径の一対の右中継プーリ21,21の一方、続いて左側の側板に支持した左中継プーリ22に掛けた後に、前記背板10abが備えるワイヤ固定機構15,15の一方に走行ワイヤ14の一端を締結する。
更に、前記原動プーリ20に螺旋状に巻き付けた走行ワイヤ14の他端を引き出し、右側の側板に支持した同軸同径の一対の中継プーリ21,21の他方、続いて前記背板10abが備えるワイヤ固定機構15,15の他方に締結する。
The X-axis drive means 9 of the present embodiment includes a motor 19 as a traveling drive source fixed to the right end of the bottom plate of the base frame, and has the following configuration (see FIG. 9).
That is, one end of the traveling wire 14 spirally wound around the driving pulley 20 fixed to the shaft of the traveling drive source is pulled out, and one of the pair of right relay pulleys 21 and 21 having the same coaxial diameter supported by the right side plate is continued. After being hooked on the left relay pulley 22 supported on the left side plate, one end of the traveling wire 14 is fastened to one of the wire fixing mechanisms 15 and 15 provided in the back plate 10ab.
Further, the other end of the traveling wire 14 spirally wound around the driving pulley 20 is pulled out, and the other of the pair of coaxial pulleys 21 and 21 having the same diameter and supported on the right side plate, followed by the wire provided in the back plate 10ab. Fastened to the other of the fixing mechanisms 15 and 15.

以上の構成により、走行駆動源が正転逆転を行うことによって、その回転量に応じたX軸方向への走行が可能となる。   With the above configuration, when the traveling drive source performs forward and reverse rotation, traveling in the X-axis direction according to the amount of rotation becomes possible.

本実施の形態のZ軸駆動手段8は、その昇降駆動源たるモータ23を前記ベースフレームにおける底板の左端に固定して備え、以下の構成を有する。
即ち、当該昇降駆動源のシャフトに固定した原動プーリ24に螺旋状に巻き付けた昇降ワイヤ18の一端を引き出し、左側の側板の下位に支持した揺動中継プーリ25に掛け、続いて背板10abの左側に支持した左伝動プーリ13aに下から掛けた後に、前記受動体10bbが備える上受動プーリ17aに掛け、更に背板10abの右側に支持した右伝動プーリ13bに下から掛け、右側の側板が備えるワイヤ固定機構27に締結する。
The Z-axis drive means 8 of the present embodiment includes a motor 23 as a lifting drive source fixed to the left end of the bottom plate in the base frame, and has the following configuration.
That is, one end of the lifting wire 18 spirally wound around the driving pulley 24 fixed to the shaft of the lifting drive source is pulled out, hung on the swing relay pulley 25 supported below the left side plate, and then the back plate 10ab. After hanging on the left transmission pulley 13a supported on the left side, it is hung on the upper passive pulley 17a included in the passive body 10bb, and further on the right transmission pulley 13b supported on the right side of the back plate 10ab from below. Fastened to the wire fixing mechanism 27 provided.

加えて、前記昇降駆動源のシャフトに固定した原動プーリ24に螺旋状に巻き付けた昇降ワイヤ18の他端を引き出し、左側の側板の上位に支持した固定中継プーリ26に掛け、続いて背板の左側に支持した左伝動プーリ13aに上から掛けた後に、前記受動体10bbが備える下受動プーリ17bに掛け、更に背板10abの右側に支持した右伝動プーリ13bに上から掛け、右側の側板が備えるワイヤ固定機構27に締結する。   In addition, the other end of the elevating wire 18 spirally wound around the driving pulley 24 fixed to the shaft of the elevating drive source is pulled out and hung on the fixed relay pulley 26 supported on the upper side of the left side plate, and then the back plate After hanging on the left transmission pulley 13a supported on the left side, it is hung on the lower passive pulley 17b included in the passive body 10bb, and further on the right transmission pulley 13b supported on the right side of the back plate 10ab. Fastened to the wire fixing mechanism 27 provided.

以上の構成により、昇降駆動源が正転逆転を行うことによって、その回転量に応じたZ軸方向への昇降が可能となる。   With the above configuration, the elevating drive source performs normal rotation and reverse rotation, so that it is possible to move up and down in the Z-axis direction according to the rotation amount.

上記構造を基礎として、加工対象を支持するプラットフォーム等が適宜付設し、使用目的に応じたロボットとする。   On the basis of the above structure, a platform or the like that supports the object to be processed is appropriately attached to provide a robot according to the purpose of use.

1 第1アーム,1a 軸孔,1b 孔,
2 第2アーム,2a 軸受け,2b 股間部,2c 軸孔,
3 チャック,
4 横揺動軸,4a 軸孔,
5 縦揺動軸,
6 緩衝手段,6a スロープ,6aa 当接部,6ab 磁石,6b 突起部,
7 θ軸回転手段,7a 縦シャフト,
8 Z軸駆動手段,9 X軸駆動手段,
10 アームベース,
10a 走行ベース,10aa 基板,10ab 背板,
10b 昇降ベース,10ba 昇降ベース本体,10bb 受動体,
10c 上支持部,10d 下支持部,
10e 天板,10f 支持部,
11 ステー,
12a 上走行ガイド,12b 下走行ガイド,
13a 左伝動プーリ,13b 右伝動プーリ,
14 走行ワイヤ,15 ワイヤ固定機構,
16 昇降ガイド,
17a 上受動プーリ,17b 下受動プーリ,
18 昇降ワイヤ,
19 モータ(X軸)
20 原動プーリ(X軸),21 右中継プーリ,22 左中継プーリ,
23 モータ(Z軸)
24 原動プーリ(Z軸),25 揺動中継プーリ,26 固定中継プーリ,
27 ワイヤ固定機構,
28 プーリ,29 誘導面,
1 first arm, 1a shaft hole, 1b hole,
2 second arm, 2a bearing, 2b crotch, 2c shaft hole,
3 chuck,
4 laterally swinging shaft, 4a shaft hole,
5 vertical swing axis,
6 buffer means, 6a slope, 6aa contact part, 6ab magnet, 6b protrusion,
7 θ-axis rotating means, 7a vertical shaft,
8 Z-axis drive means, 9 X-axis drive means,
10 arm base,
10a traveling base, 10aa substrate, 10ab back plate,
10b elevating base, 10ba elevating base body, 10bb passive body,
10c upper support, 10d lower support,
10e top plate, 10f support part,
11 Stay,
12a upper travel guide, 12b lower travel guide,
13a Left transmission pulley, 13b Right transmission pulley,
14 running wires, 15 wire fixing mechanisms,
16 Lifting guide,
17a Upper passive pulley, 17b Lower passive pulley,
18 lifting wire,
19 Motor (X axis)
20 Driving pulley (X axis), 21 Right relay pulley, 22 Left relay pulley,
23 Motor (Z axis)
24 driving pulley (Z axis), 25 swing relay pulley, 26 fixed relay pulley,
27 wire fixing mechanism,
28 pulleys, 29 guide surfaces,

Claims (1)

XθZ駆動方式ロボットのロボットアームにおいて、
θ軸回転手段で旋回する第1アームと、
当該第1アームの先端部に連結し上下左右に揺動可能な第2アームと、
第1アーム1と第2アーム2との間に相互を連結させる関節部を備えてなり、
当該関節部は、縦横のヒンジ機構と緩衝手段を備え、
前記ヒンジ機構は、
前記第1アームの先端部に横揺動軸を支持し、当該横揺動軸に前記第2アームの基部を支持する縦揺動軸を支持してなり
当該緩衝手段は、
第2アームを第1アームに対する定常姿勢へ誘導する姿勢維持手段と、
第2アームを第1アームに対する定常姿勢から第2アームの先端部を左右及び上方へ誘導可能な退避手段を一体化して備え、
前記緩衝手段は、相互に向かい合うスロープを含む谷状の誘導面と、当該誘導面に当接する突起部からなり、
前記誘導面は第1アームと第2アームのうちのいずれか一方に備え、
前記突起部は第1アームと第2アームのうちの他方に備えることを特徴とするロボットアーム。
In the robot arm of XθZ drive robot,
a first arm that pivots with a θ-axis rotating means;
A second arm connected to the tip of the first arm and swingable vertically and horizontally ;
Comprising a joint part for connecting the first arm 1 and the second arm 2 to each other;
The joint portion includes vertical and horizontal hinge mechanisms and buffer means,
The hinge mechanism is
A horizontal swing shaft is supported at a tip portion of the first arm, and a vertical swing shaft that supports a base portion of the second arm is supported by the lateral swing shaft ;
The buffer means is
Posture maintaining means for guiding the second arm to a steady posture with respect to the first arm;
The second arm is integrally provided with a retracting means capable of guiding the distal end portion of the second arm left and right and upward from a normal posture with respect to the first arm ,
The buffer means comprises a valley-shaped guide surface including slopes facing each other, and a protrusion that contacts the guide surface,
The guide surface is provided on one of the first arm and the second arm,
The robot arm according to claim 1, wherein the protrusion is provided on the other of the first arm and the second arm.
JP2010115714A 2009-09-02 2010-05-19 Robot arm Expired - Fee Related JP5411062B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010115714A JP5411062B2 (en) 2010-05-19 2010-05-19 Robot arm
PCT/JP2010/065025 WO2011027824A1 (en) 2009-09-02 2010-09-02 Wire-driven robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115714A JP5411062B2 (en) 2010-05-19 2010-05-19 Robot arm

Publications (2)

Publication Number Publication Date
JP2011240450A JP2011240450A (en) 2011-12-01
JP5411062B2 true JP5411062B2 (en) 2014-02-12

Family

ID=45407641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115714A Expired - Fee Related JP5411062B2 (en) 2009-09-02 2010-05-19 Robot arm

Country Status (1)

Country Link
JP (1) JP5411062B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106826804A (en) * 2017-04-11 2017-06-13 巨轮智能装备股份有限公司 High-performance rectangular robot
JP7181461B2 (en) * 2019-01-17 2022-12-01 株式会社不二越 Overload safety device and overload safety system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214984A (en) * 1985-03-15 1986-09-24 株式会社デンソー Industrial robot
JPS61214985A (en) * 1985-03-15 1986-09-24 株式会社デンソー Industrial robot
JPS61249297A (en) * 1985-04-24 1986-11-06 三菱電機株式会社 Collision detector
JPS6288593A (en) * 1985-10-11 1987-04-23 三菱電機株式会社 Collision detector
JPS62106791U (en) * 1985-12-24 1987-07-08
GB2210350A (en) * 1987-09-25 1989-06-07 Kemble Instr Company Limited Machine drive system
JPH0382187U (en) * 1989-12-14 1991-08-21
JPH03211103A (en) * 1990-01-16 1991-09-13 Seibu Electric & Mach Co Ltd Wire driving picker device
JPH0810524Y2 (en) * 1990-03-26 1996-03-29 株式会社安川電機 Horizontal articulated robot
JPH04141392A (en) * 1990-09-28 1992-05-14 Kobe Steel Ltd Work tool protecting device for industrial robot
JPH04226886A (en) * 1990-10-19 1992-08-17 Sony Corp Tool holding mechanism for robot
JP2611114B2 (en) * 1993-03-11 1997-05-21 株式会社アマダメトレックス Interference protection device for welding torch in automatic welding machine
JP2539580B2 (en) * 1993-07-07 1996-10-02 三島光産株式会社 Robot hand shock absorption structure
JP3516066B2 (en) * 1993-11-26 2004-04-05 芝浦メカトロニクス株式会社 Article transfer device
JPH07202492A (en) * 1993-12-28 1995-08-04 Yamaha Motor Co Ltd Suction head of mounting machine
JPH1094937A (en) * 1996-09-20 1998-04-14 Hitachi Koki Co Ltd Actuator
JP3109489B2 (en) * 1998-09-30 2000-11-13 日本電気株式会社 Multi-axis drive mechanism
JP2002273280A (en) * 2001-03-15 2002-09-24 Honda Motor Co Ltd Sealer applying apparatus
JP2003209156A (en) * 2002-01-17 2003-07-25 Juki Corp Substrate conveyor
JP2004009152A (en) * 2002-06-03 2004-01-15 Sankyo Seiki Mfg Co Ltd Industrial robot
JP4286280B2 (en) * 2006-12-01 2009-06-24 株式会社ビーイング Robot hand overload safety device

Also Published As

Publication number Publication date
JP2011240450A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
US7377415B2 (en) Bond head link assembly for a wire bonding machine
KR101343892B1 (en) Parallel Mechanism
KR101382815B1 (en) Horizontal articulated robot
KR101338044B1 (en) Manipulator with weight compensation mechanism and face robot using the same
US20170106534A1 (en) Transporter and transport method
JP2008213060A (en) Articulated robot
EP1772588A3 (en) Articulated ladder or raisable platform with position path control and active vibration damping
JP5411062B2 (en) Robot arm
TW200827283A (en) Transfer device
KR100846743B1 (en) Grip apparatus of robot for inspecting distribution power line
US9090407B2 (en) Stopping apparatus and temporary stopping method
JP5370120B2 (en) Work transfer device
WO2011027824A1 (en) Wire-driven robot
JP2011240448A (en) Wire-driven robot
JP4980770B2 (en) Transport device
JP3666592B2 (en) Bonding equipment
JP4141690B2 (en) Bending machine
JPH09136239A (en) Safety device for plate material working machine
JP5929086B2 (en) Guiding legged robot and grip moving mechanism
TWI604913B (en) Swinging mechanism
JP7060559B2 (en) Work mounting device
JP6527040B2 (en) Lifting device and moving body
JP4643803B2 (en) Elevator damping device
JP2002168317A (en) Ball screw drive device
KR20100130067A (en) 3d self-alignment device for bolting tightening mobile manipulator of steel structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131107

R150 Certificate of patent or registration of utility model

Ref document number: 5411062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees