JP5407378B2 - Cooling device and cooling method - Google Patents

Cooling device and cooling method Download PDF

Info

Publication number
JP5407378B2
JP5407378B2 JP2009022334A JP2009022334A JP5407378B2 JP 5407378 B2 JP5407378 B2 JP 5407378B2 JP 2009022334 A JP2009022334 A JP 2009022334A JP 2009022334 A JP2009022334 A JP 2009022334A JP 5407378 B2 JP5407378 B2 JP 5407378B2
Authority
JP
Japan
Prior art keywords
pressure
processing tank
target
curve
decompression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009022334A
Other languages
Japanese (ja)
Other versions
JP2010181041A (en
Inventor
正敏 三浦
勝利 松永
伸二 堀川
将平 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2009022334A priority Critical patent/JP5407378B2/en
Publication of JP2010181041A publication Critical patent/JP2010181041A/en
Application granted granted Critical
Publication of JP5407378B2 publication Critical patent/JP5407378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、食品や食材などの被冷却物を真空冷却する真空冷却装置(真空冷却専用機)の他、被冷却物の真空冷却と冷風冷却とを実行可能な複合冷却装置など、真空冷却機能を有する各種の冷却装置と、そのような冷却装置を用いた冷却方法とに関するものである。   The present invention provides a vacuum cooling function such as a vacuum cooling device (vacuum cooling dedicated machine) that vacuum-cools an object to be cooled such as food and foodstuffs, as well as a composite cooling device that can perform vacuum cooling and cold air cooling of the object to be cooled. And a cooling method using such a cooling device.

食品や食材(以下、単に食品という)の冷却方法として、真空冷却が知られている。真空冷却とは、食品が収容された処理槽内の気体を外部へ吸引排出して処理槽内を減圧することで、食品からの水分の蒸発を促し、その気化熱により食品の冷却を図る方法である。食品を何℃まで真空冷却するかは適宜に設定されるが、食品の品質保持のため、たとえば5℃まで真空冷却される。このような低温までの真空冷却を図ろうとする場合、処理槽内の減圧手段として、真空ポンプだけでは足りず、通常、その上流側に蒸気エゼクタを設置したり、減圧ライン中の蒸気の凝縮を図る間接熱交換器を設置したりしている。   Vacuum cooling is known as a method for cooling food and food materials (hereinafter simply referred to as food). Vacuum cooling is a method that promotes the evaporation of moisture from food by sucking and discharging the gas in the processing tank containing food to the outside and decompressing the inside of the processing tank, and cooling the food by the heat of vaporization. It is. The temperature at which the food is vacuum-cooled is set as appropriate, but is vacuum-cooled, for example, to 5 ° C. to maintain the quality of the food. When vacuum cooling to such a low temperature is to be attempted, a vacuum pump alone is not sufficient as a decompression means in the treatment tank. Usually, a steam ejector is installed upstream of the vacuum pump, or steam in the decompression line is condensed. Or installing an indirect heat exchanger.

真空冷却中、処理槽内が減圧されるに伴い、処理槽内の飽和蒸気温度は低下する。その際、処理槽内の飽和蒸気温度が食品の温度を大きく下回ることなどによって、食品が突沸を起こし、食品の外観や風味、歩留りを悪化させるおそれがある。また、同様な理由で、食品の内部に気泡が発生し、商品価値が失われることもある。そこで、従来、下記特許文献1に開示されるように、処理槽内の減圧開始からの経過時間と処理槽内の目標圧力との関係を目標減圧曲線(圧力制御パターン)として予め設定しておき、その目標減圧曲線に沿うように処理槽内の減圧を図る真空冷却方法が提案されている。   During vacuum cooling, as the inside of the treatment tank is depressurized, the saturated vapor temperature in the treatment tank decreases. At that time, when the saturated vapor temperature in the treatment tank is significantly lower than the temperature of the food, the food may bump, and the appearance, flavor, and yield of the food may be deteriorated. For the same reason, bubbles may be generated inside the food and the commercial value may be lost. Therefore, conventionally, as disclosed in Patent Document 1 below, the relationship between the elapsed time from the start of pressure reduction in the treatment tank and the target pressure in the treatment tank is set in advance as a target pressure reduction curve (pressure control pattern). A vacuum cooling method for reducing the pressure in the processing tank so as to follow the target pressure reduction curve has been proposed.

特許第3832354号公報Japanese Patent No. 3832354

従来の方法によれば、減圧手段の減圧能力が十分あり、目標減圧曲線に追従できる場合には問題がないが、減圧手段の減圧能力が不足し、目標減圧曲線に追従できない場合には、目標減圧曲線による目標圧力と処理槽内の実際圧力とに圧力差が生じることになる。   According to the conventional method, there is no problem when the decompression means has sufficient decompression capability and can follow the target decompression curve, but when the decompression means has insufficient decompression capability and cannot follow the target decompression curve, the target A pressure difference is generated between the target pressure based on the decompression curve and the actual pressure in the treatment tank.

また、前述したように、減圧手段として蒸気エゼクタ、間接熱交換器および水封式真空ポンプを用いた場合、運転開始当初は間接熱交換器と真空ポンプのみで処理槽内の減圧が図られるが、真空ポンプのみでは到達真空度に限界があるため、予め設定されたエゼクタ作動圧力になると蒸気エゼクタも作動させて、処理槽内のさらなる減圧が図られる。   In addition, as described above, when a steam ejector, an indirect heat exchanger, and a water-sealed vacuum pump are used as the depressurizing means, the pressure in the processing tank can be reduced only by the indirect heat exchanger and the vacuum pump at the beginning of operation. Since the ultimate vacuum degree is limited only by the vacuum pump, when the ejector operating pressure is set in advance, the steam ejector is also operated to further reduce the pressure in the processing tank.

しかしながら、この蒸気エゼクタ作動開始時に、目標減圧曲線による目標圧力と処理槽内の実際圧力との間に大きな圧力差が既に生じていた場合、蒸気エゼクタの作動で減圧能力が向上するため、蒸気エゼクタの作動と同時に、目標減圧曲線に追いつこうとして急激な圧力低下が起こり、処理槽内の減圧速度が予め規定された勾配を上回ってしまい、それに伴い処理槽内の飽和蒸気温度が食品の温度を大きく下回ってしまうおそれがある。その場合、前述したように、食品の突沸、その突沸に伴う食品の飛散、あるいは食品内に気泡が発生するおそれがあった。   However, when a large pressure difference has already occurred between the target pressure in the target decompression curve and the actual pressure in the processing tank at the start of the steam ejector operation, the decompression capability is improved by the operation of the steam ejector. At the same time, a rapid pressure drop occurs to catch up with the target depressurization curve, and the depressurization speed in the processing tank exceeds a predetermined gradient, and accordingly, the saturated steam temperature in the processing tank exceeds the temperature of the food. There is a risk of a significant drop. In this case, as described above, there is a possibility that the food is bumped, the food is scattered due to the bump, or bubbles are generated in the food.

本発明が解決しようとする課題は、目標減圧曲線による目標圧力と処理槽内の実際圧力との差を埋めようとする際に、処理槽内の圧力が急激に低下して、処理槽内の減圧速度が予め規定された勾配を上回ってしまうのを防止することにある。たとえば、蒸気エゼクタ作動開始時など減圧手段の減圧能力が変化する際に、処理槽内の圧力が急激に低下して、処理槽内の減圧速度が予め規定された勾配を上回ってしまうのを防止することにある。そして、それにより、食品の突沸、その突沸に伴う食品の飛散、あるいは食品内の気泡の発生を防止することを課題とする。   The problem to be solved by the present invention is that when the difference between the target pressure according to the target depressurization curve and the actual pressure in the treatment tank is to be filled, the pressure in the treatment tank rapidly decreases, It is to prevent the decompression speed from exceeding a predetermined gradient. For example, when the decompression capacity of the decompression means changes, such as when the steam ejector is started, the pressure in the treatment tank is abruptly reduced and the decompression speed in the treatment tank is prevented from exceeding a pre-defined gradient. There is to do. And it makes it a subject to prevent generation | occurrence | production of the boil of food, the scattering of the food accompanying the bump, or the bubble in food.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、被冷却物が収容された処理槽内の気体を外部へ吸引排出して前記処理槽内を減圧することで、前記被冷却物の冷却を図る冷却装置であって、前記処理槽内の減圧開始からの経過時間と前記処理槽内の目標圧力との関係を目標減圧曲線として予め設定されており、この目標減圧曲線に沿うように前記処理槽内の減圧を図ると共に、この減圧中の所定時、その所定時における実際圧力を起点として前記実際圧力以下の前記目標減曲線の時間軸を前記所定時までずらすと共に、前記所定時における前記実際圧力に続く新たな目標減圧曲線として再設定することを特徴とする冷却装置である。
The present invention has been made in order to solve the above-mentioned problems, and the invention according to claim 1 reduces the pressure in the processing tank by sucking and discharging the gas in the processing tank in which the object to be cooled is accommodated. Thus, a cooling device for cooling the object to be cooled, the relationship between the elapsed time from the start of pressure reduction in the processing tank and the target pressure in the processing tank is preset as a target pressure reduction curve The process tank is depressurized along the target depressurization curve, and a predetermined time during the depressurization, the time axis of the target decrease curve below the actual pressure starting from the actual pressure at the predetermined time is set as the predetermined The cooling device is characterized in that it is shifted to the time and reset as a new target decompression curve following the actual pressure at the predetermined time .

請求項1に記載の発明によれば、処理槽内を減圧中、適宜、その時点における実際圧力を起点とする目標減圧曲線の時間軸を前記時点までずらして(言い換えればその時点における実際圧力以下の目標減圧曲線の時間軸を前記時点までずらして)新たな目標減圧曲線として再設定することになる。これにより、目標減圧曲線による目標圧力と処理槽内の実際圧力との差を小さくすることができる。従って、たとえば、減圧中に減圧手段による減圧速度を変えて、目標圧力と実際圧力との差を埋めようとしても(つまり減圧能力の向上に伴い目標減圧曲線に追いつこうとしても)、処理槽内が急激に減圧されるのが防止され、処理槽内の減圧速度が予め規定された勾配を上回ってしまうのが防止される。これにより、被冷却物の突沸、その突沸に伴う被冷却物の飛散、あるいは被冷却物内の気泡の発生を防止することができる。   According to the first aspect of the present invention, the time axis of the target depressurization curve starting from the actual pressure at that time is appropriately shifted to the time point during depressurization in the treatment tank (in other words, below the actual pressure at that time point). The time axis of the target decompression curve is shifted to the time point) and reset as a new target decompression curve. Thereby, the difference of the target pressure by a target pressure-reduction curve and the actual pressure in a processing tank can be made small. Therefore, for example, even when trying to fill the difference between the target pressure and the actual pressure by changing the pressure reduction speed during the pressure reduction (that is, trying to catch up with the target pressure reduction curve as the pressure reduction capacity improves) Is prevented from being rapidly depressurized, and the depressurization rate in the treatment tank is prevented from exceeding a pre-defined gradient. As a result, bumping of the object to be cooled, scattering of the object to be cooled accompanying the bumping, or generation of bubbles in the object to be cooled can be prevented.

請求項2に記載の発明は、前記所定時とは、前記処理槽内の実際圧力と前記目標減圧曲線による目標圧力との差が設定範囲を超えた時であることを特徴とする請求項1に記載の冷却装置である。   According to a second aspect of the present invention, the predetermined time is a time when a difference between an actual pressure in the processing tank and a target pressure based on the target pressure reduction curve exceeds a set range. It is a cooling device as described in above.

請求項2に記載の発明によれば、目標圧力と実際圧力との差が設定範囲を超えると、目標減圧曲線を再設定することにより、目標圧力と実際圧力との差を小さくすることができる。これにより、処理槽内の減圧速度が予め規定された勾配を上回ってしまうのを防止しつつ、被冷却物の真空冷却を図ることができる。   According to the second aspect of the present invention, when the difference between the target pressure and the actual pressure exceeds the set range, the difference between the target pressure and the actual pressure can be reduced by resetting the target decompression curve. . Thereby, it is possible to achieve vacuum cooling of the object to be cooled while preventing the depressurization speed in the treatment tank from exceeding a predetermined gradient.

請求項3に記載の発明は、前記所定時とは、エゼクタ作動開始時、工程切替時、前記処理槽内が設定圧力になった時、前記被冷却物が設定温度になった時、および設定時間が経過した時の内、いずれか一以上の時であることを特徴とする請求項1または請求項2に記載の冷却装置である。   According to a third aspect of the present invention, the predetermined time is an ejector operation start time, a process switching time, a time when the inside of the processing tank reaches a set pressure, a time when the object to be cooled reaches a set temperature, and a setting time. 3. The cooling device according to claim 1, wherein the cooling device is any one or more of the times.

請求項3に記載の発明によれば、エゼクタ作動開始時、工程切替時、処理槽内が設定圧力になった時、被冷却物が設定温度になった時、および設定時間が経過した時の内、いずれか一以上の時に、目標減圧曲線を再設定することにより、目標圧力と実際圧力との差を小さくすることができる。これにより、処理槽内の減圧速度が予め規定された勾配を上回ってしまうのを防止しつつ、被冷却物の真空冷却を図ることができる。   According to the invention described in claim 3, when the ejector is started, when the process is switched, when the inside of the processing tank reaches a set pressure, when the object to be cooled reaches a set temperature, and when the set time has elapsed. Of these, the difference between the target pressure and the actual pressure can be reduced by resetting the target decompression curve at any one or more. Thereby, it is possible to achieve vacuum cooling of the object to be cooled while preventing the depressurization speed in the treatment tank from exceeding a predetermined gradient.

請求項4に記載の発明は、前記処理槽内の減圧手段として、真空ポンプとエゼクタとを備え、前記処理槽内の実際圧力がエゼクタ作動圧力になるまでは、前記真空ポンプを作動させるが前記エゼクタは作動させず、前記処理槽内の実際圧力が前記エゼクタ作動圧力以下になると、前記真空ポンプに加えて前記エゼクタも作動させ、前記所定時とは、前記エゼクタの作動開始時であることを特徴とする請求項1〜3のいずれか1項に記載の冷却装置である。   The invention described in claim 4 includes a vacuum pump and an ejector as pressure reducing means in the processing tank, and operates the vacuum pump until the actual pressure in the processing tank reaches the ejector operating pressure. When the actual pressure in the processing tank is equal to or lower than the ejector operating pressure without operating the ejector, the ejector is also operated in addition to the vacuum pump, and the predetermined time is when the ejector starts operating. It is a cooling device of any one of Claims 1-3 characterized by the above-mentioned.

請求項4に記載の発明によれば、エゼクタ作動開始時に予め目標減圧曲線を再設定しておくことで、目標圧力と実際圧力との差を小さくすることができる。これにより、エゼクタの作動開始により減圧速度を変えた際、目標圧力と実際圧力との差を埋めようとして処理槽内が急激に減圧されるのが防止され、処理槽内の減圧速度が予め規定された勾配を上回ってしまうのが防止される。   According to the fourth aspect of the present invention, the difference between the target pressure and the actual pressure can be reduced by resetting the target decompression curve in advance at the start of the ejector operation. As a result, when the decompression speed is changed due to the start of the ejector operation, it is prevented that the inside of the treatment tank is suddenly decompressed to fill the difference between the target pressure and the actual pressure, and the decompression speed in the treatment tank is specified in advance. It is prevented that the gradient is exceeded.

さらに、請求項5に記載の発明は、被冷却物が収容された処理槽内の気体を外部へ吸引排出して前記処理槽内を減圧することで、前記被冷却物の冷却を図る冷却方法であって、前記処理槽内の減圧開始からの経過時間と前記処理槽内の目標圧力との関係を目標減圧曲線として予め設定しておき、この目標減圧曲線に沿うように前記処理槽内の減圧を図ると共に、この減圧中の所定時、その所定時における実際圧力を起点として前記実際圧力以下の前記目標減圧曲線の時間軸を前記所定時までずらすと共に、前記所定時における前記実際圧力に続く新たな目標減圧曲線として再設定することを特徴とする冷却方法である。
Furthermore, the invention according to claim 5 is a cooling method for cooling the object to be cooled by sucking and discharging the gas in the processing tank in which the object to be cooled is stored to the outside and reducing the pressure in the processing tank. The relationship between the elapsed time from the start of pressure reduction in the processing tank and the target pressure in the processing tank is set in advance as a target pressure reduction curve, and the process tank is set to follow the target pressure reduction curve. While reducing the pressure, the time axis of the target pressure reducing curve below the actual pressure is shifted to the predetermined time starting from the actual pressure at the predetermined time during the depressurization, and continues to the actual pressure at the predetermined time. It is a cooling method characterized by resetting as a new target decompression curve.

請求項5に記載の発明によれば、処理槽内を減圧中、適宜、その時点における実際圧力を起点とする目標減圧曲線の時間軸を前記時点までずらして(言い換えればその時点における実際圧力以下の目標減圧曲線の時間軸を前記時点までずらして)新たな目標減圧曲線として再設定することになる。これにより、目標減圧曲線による目標圧力と処理槽内の実際圧力との差を小さくすることができる。従って、たとえば、減圧中に減圧手段による減圧速度を変えて、目標圧力と実際圧力との差を埋めようとしても(つまり減圧能力の向上に伴い目標減圧曲線に追いつこうとしても)、処理槽内が急激に減圧されるのが防止され、処理槽内の減圧速度が予め規定された勾配を上回ってしまうのが防止される。これにより、被冷却物の突沸、その突沸に伴う被冷却物の飛散、あるいは被冷却物内の気泡の発生を防止することができる。   According to the invention described in claim 5, during depressurization in the treatment tank, the time axis of the target depressurization curve starting from the actual pressure at that time is appropriately shifted to the time (in other words, below the actual pressure at that time). The time axis of the target decompression curve is shifted to the time point) and reset as a new target decompression curve. Thereby, the difference of the target pressure by a target pressure-reduction curve and the actual pressure in a processing tank can be made small. Therefore, for example, even when trying to fill the difference between the target pressure and the actual pressure by changing the pressure reduction speed during the pressure reduction (that is, trying to catch up with the target pressure reduction curve as the pressure reduction capacity improves) Is prevented from being rapidly depressurized, and the depressurization rate in the treatment tank is prevented from exceeding a pre-defined gradient. As a result, bumping of the object to be cooled, scattering of the object to be cooled accompanying the bumping, or generation of bubbles in the object to be cooled can be prevented.

本発明によれば、目標減圧曲線による目標圧力と処理槽内の実際圧力との差が埋めようとする際に、処理槽内の圧力が急激に低下して、処理槽内の減圧速度が予め規定された勾配を上回ってしまうのを防止することができる。特に、蒸気エゼクタ作動開始時など減圧手段の減圧能力が変化する際に、減圧能力の向上に伴い目標減圧曲線に追いつこうとして処理槽内の圧力が急激に低下して、処理槽内の減圧速度が予め規定された勾配を上回ってしまうのを防止することができる。そして、それにより、食品の突沸、その突沸に伴う食品の飛散、あるいは食品内の気泡の発生を防止することができる。   According to the present invention, when the difference between the target pressure according to the target depressurization curve and the actual pressure in the processing tank is about to be filled, the pressure in the processing tank is drastically decreased, and the depressurization speed in the processing tank is set in advance. It is possible to prevent the slope from exceeding a prescribed gradient. In particular, when the decompression capacity of the decompression means changes, such as when the steam ejector starts, the pressure in the treatment tank suddenly decreases to catch up with the target decompression curve as the decompression capacity improves, and the decompression speed in the treatment tank Can be prevented from exceeding a predetermined gradient. Thereby, it is possible to prevent the food from boiling, the scattering of the food accompanying the bumping, or the generation of bubbles in the food.

本発明の冷却装置の一実施例を示す概略構成図であり、真空冷却装置に適用した例を示している。It is a schematic block diagram which shows one Example of the cooling device of this invention, and has shown the example applied to the vacuum cooling device. 図1の冷却装置を用いた冷却方法の一例を示す図であり、処理槽内の減圧開始からの経過時間と処理槽内の圧力との関係を示している。It is a figure which shows an example of the cooling method using the cooling device of FIG. 1, and has shown the relationship between the elapsed time from the pressure reduction start in a processing tank, and the pressure in a processing tank. 図1の冷却装置を用いた冷却方法の他の例を示す図であり、処理槽内の減圧開始からの経過時間と処理槽内の圧力との関係を示している。It is a figure which shows the other example of the cooling method using the cooling device of FIG. 1, and has shown the relationship between the elapsed time from the pressure reduction start in a processing tank, and the pressure in a processing tank.

つぎに、本発明の実施の形態について説明する。
本発明は、真空冷却機能を有する各種冷却装置に適用される。冷却装置により冷却を図られる被冷却物は、特に問わないが、典型的には食品とされる。そのため、以下においては、被冷却物は食品であるとして説明する。
Next, an embodiment of the present invention will be described.
The present invention is applied to various cooling devices having a vacuum cooling function. The object to be cooled by the cooling device is not particularly limited, but is typically food. Therefore, in the following description, it is assumed that the object to be cooled is food.

真空冷却とは、処理槽内の気体を外部へ吸引排出して、処理槽内を減圧することで、処理槽内の飽和蒸気温度を低下させ、食品からの水分蒸発を促すことにより、その気化潜熱を利用して処理槽内の食品を冷却することをいう。   Vacuum cooling is the process of sucking and discharging the gas in the processing tank to the outside and reducing the pressure in the processing tank, thereby lowering the saturated vapor temperature in the processing tank and promoting the evaporation of moisture from food. It means cooling the food in the processing tank using latent heat.

真空冷却機能を有する装置には、たとえば、真空冷却装置、蒸煮冷却装置、飽和蒸気調理装置、冷風真空複合冷却装置が含まれる。真空冷却装置は、処理槽内を減圧して、処理槽内の食品の真空冷却を図る装置である。蒸煮冷却装置は、蒸気により処理槽内の食品の加熱を図った後、処理槽内を減圧して、処理槽内の食品の真空冷却を図る装置である。飽和蒸気調理装置は、処理槽内の圧力を調整することで、処理槽内の飽和蒸気温度を調整して、所望温度の飽和蒸気により処理槽内の食品の加熱を図る装置であり、加熱調理後には所望により、処理槽内を減圧して、処理槽内の食品の真空冷却を図ることができる装置である。さらに、冷風真空複合冷却装置は、処理槽内の食品へ冷風を吹き付けることによる冷風冷却と、食品を収容した処理槽内を減圧することによる真空冷却とを図ることができる装置である。   Devices having a vacuum cooling function include, for example, a vacuum cooling device, a steaming cooling device, a saturated steam cooking device, and a cold air vacuum combined cooling device. The vacuum cooling device is a device that depressurizes the inside of the processing tank and vacuum-cools the food in the processing tank. The steaming and cooling device is a device for vacuuming the food in the processing tank by heating the food in the processing tank with steam and then reducing the pressure in the processing tank. The saturated steam cooking device is a device that adjusts the saturated steam temperature in the processing tank by adjusting the pressure in the processing tank, and heats the food in the processing tank with saturated steam at a desired temperature. The apparatus is capable of reducing the pressure in the processing tank and cooling the food in the processing tank if desired. Furthermore, the cold air vacuum combined cooling device is a device capable of achieving cold air cooling by blowing cold air to food in the processing tank and vacuum cooling by reducing the pressure in the processing tank containing the food.

真空冷却装置、蒸煮冷却装置、飽和蒸気調理装置および冷風真空複合冷却装置などの内、いずれの場合でも、真空冷却機能に関する構成および運転は同様である。そこで、以下の実施例では、真空冷却機能のみを有する真空冷却装置について説明するが、蒸煮冷却装置、飽和蒸気調理装置および冷風真空複合冷却装置などにも同様に適用可能である。   In any case of the vacuum cooling device, the steaming cooling device, the saturated steam cooking device, the cold air vacuum combined cooling device, etc., the configuration and operation relating to the vacuum cooling function are the same. Therefore, in the following embodiments, a vacuum cooling device having only a vacuum cooling function will be described, but the present invention can be similarly applied to a steaming cooling device, a saturated steam cooking device, a cold air vacuum combined cooling device, and the like.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の冷却装置の一実施例の使用状態を示す概略構成図であり、一部を断面にして示している。本実施例の冷却装置は、真空冷却装置である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a use state of an embodiment of a cooling device of the present invention, and a part thereof is shown in cross section. The cooling device of the present embodiment is a vacuum cooling device.

この冷却装置1は、冷却を図りたい食品2が収容される処理槽3と、この処理槽3内の気体を外部へ吸引排出して処理槽3内を減圧する減圧手段4と、減圧された処理槽3内へ外気を導入して処理槽3内を復圧する復圧手段5と、処理槽3内の圧力を検出する圧力センサ6と、処理槽3内に収容される食品2の温度(品温)を検出する品温センサ7と、これらセンサ6,7の検出信号などに基づき前記各手段4,5を制御する制御手段8とを備える。   The cooling device 1 includes a processing tank 3 in which a food 2 to be cooled is accommodated, a decompression means 4 that sucks and discharges the gas in the processing tank 3 to the outside and decompresses the processing tank 3, and the pressure is reduced. Pressure return means 5 for introducing outside air into the treatment tank 3 to restore the pressure in the treatment tank 3, a pressure sensor 6 for detecting the pressure in the treatment tank 3, and the temperature of the food 2 stored in the treatment tank 3 ( A product temperature sensor 7 for detecting the product temperature) and a control means 8 for controlling the means 4 and 5 based on detection signals of the sensors 6 and 7.

本実施例の処理槽3は、正面へ開口して中空部を有する処理槽本体9と、この処理槽本体9の開口部を開閉する扉(図示省略)とを備えた金属製の缶体である。処理槽3内への食品2の収容は、処理槽3に出し入れされるワゴン(図示省略)を介して行ってもよいし、図示例のように処理槽3内に棚板10を設けることで対応してもよい。また、食品2は、適宜、ホテルパンなどの容器11に入れて、処理槽3内に収容される。処理槽3内に食品2を収容した後、扉を閉じることで処理槽本体9の中空部は密閉される。   The processing tank 3 of the present embodiment is a metal can body including a processing tank main body 9 that opens to the front and has a hollow portion, and a door (not shown) that opens and closes the opening of the processing tank main body 9. is there. The food 2 may be accommodated in the processing tank 3 via a wagon (not shown) that is taken in and out of the processing tank 3, or by providing a shelf board 10 in the processing tank 3 as shown in the example. May correspond. In addition, the food 2 is appropriately placed in a container 11 such as a hotel bread and stored in the processing tank 3. After accommodating the food 2 in the processing tank 3, the hollow part of the processing tank main body 9 is sealed by closing the door.

処理槽3には、前述したとおり、圧力センサ6と品温センサ7とが設けられる。本実施例の品温センサ7は、測温部を食品2に差し込んで、食品2の温度を検出する。   The processing tank 3 is provided with the pressure sensor 6 and the product temperature sensor 7 as described above. The product temperature sensor 7 of the present embodiment detects the temperature of the food 2 by inserting the temperature measuring unit into the food 2.

処理槽3には、処理槽3内の空気や蒸気を外部へ吸引排出して、処理槽3内を減圧する減圧手段4が接続される。本実施例では、処理槽3からの排気路12には、処理槽3の側から順に、蒸気エゼクタ13、熱交換器14、逆止弁15および水封式の真空ポンプ16が設けられる。   The processing tank 3 is connected to a decompression means 4 that sucks and discharges air and steam in the processing tank 3 to the outside and decompresses the processing tank 3. In this embodiment, a steam ejector 13, a heat exchanger 14, a check valve 15, and a water-sealed vacuum pump 16 are provided in the exhaust path 12 from the processing tank 3 in order from the processing tank 3 side.

蒸気エゼクタ13は、吸入口17が真空弁18を介して処理槽3に接続される。蒸気エゼクタ13には、入口19から出口20へ向けて、給蒸路21からの蒸気が噴出可能とされる。真空弁18を開けた状態で、入口19から出口20へ向けて蒸気を噴出させることで、処理槽3内の気体も出口へ向けて吸引排出される。給蒸路21に設けた給蒸弁22の開閉を操作することで、蒸気エゼクタ13の作動の有無を切り替えることができる。   The steam ejector 13 has a suction port 17 connected to the processing tank 3 via a vacuum valve 18. The steam ejector 13 can eject steam from the steam supply path 21 from the inlet 19 toward the outlet 20. In the state where the vacuum valve 18 is opened, the vapor in the processing tank 3 is also sucked and discharged toward the outlet by ejecting steam from the inlet 19 toward the outlet 20. By operating opening / closing of the steam supply valve 22 provided in the steam supply path 21, it is possible to switch the operation of the steam ejector 13.

熱交換器14は、排気路12内の蒸気を冷却し凝縮させる。そのために、熱交換器14には、熱交給水弁23を介して水が供給され排出される。排気路12内の蒸気を予め凝縮させることで、その後の真空ポンプ16の負荷を軽減して、処理槽3内の減圧を有効に図ることができる。   The heat exchanger 14 cools and condenses the steam in the exhaust passage 12. Therefore, water is supplied to the heat exchanger 14 via the heat exchange water supply valve 23 and discharged. By condensing the vapor in the exhaust passage 12 in advance, the subsequent load on the vacuum pump 16 can be reduced, and the pressure reduction in the processing tank 3 can be effectively achieved.

水封式の真空ポンプ16は、周知のとおり、封水と呼ばれる水が供給されて作動される。そのために、真空ポンプ16には、封水給水弁24を介して水が供給され排出される。真空ポンプ16を作動させる際、封水給水弁24は、真空ポンプ16に連動して開かれる。   As is well known, the water-sealed vacuum pump 16 is supplied with water called sealed water. Therefore, water is supplied to the vacuum pump 16 through the sealed water supply valve 24 and discharged. When the vacuum pump 16 is operated, the sealed water supply valve 24 is opened in conjunction with the vacuum pump 16.

処理槽3には、減圧された処理槽3内へ外気を導入して、処理槽3内を復圧する復圧手段5が接続される。本実施例では、処理槽3への給気路25には、処理槽3へ向けて順に、除菌フィルター26、給気弁27および逆止弁28が設けられる。従って、処理槽3内が減圧された状態で、給気弁27を開くと、フィルター26を介して外気を処理槽3内へ導入し、処理槽3内を復圧することができる。   The treatment tank 3 is connected to a decompression means 5 for introducing outside air into the decompressed treatment tank 3 and restoring the pressure in the treatment tank 3. In the present embodiment, a sterilization filter 26, an air supply valve 27, and a check valve 28 are sequentially provided in the air supply path 25 to the processing tank 3 toward the processing tank 3. Therefore, when the air supply valve 27 is opened while the inside of the processing tank 3 is decompressed, the outside air can be introduced into the processing tank 3 through the filter 26 and the inside of the processing tank 3 can be decompressed.

給気弁27は、開閉のみ可能な電磁弁でもよいが、開度調整可能な電動弁の方が好ましい。この場合、処理槽3内の減圧時または復圧時に、給気弁27の開度を調整することで、処理槽3内の圧力を徐々に変化させることができる。   The air supply valve 27 may be an electromagnetic valve that can only be opened and closed, but is preferably an electric valve that can be adjusted in opening. In this case, the pressure in the processing tank 3 can be gradually changed by adjusting the opening of the air supply valve 27 at the time of depressurization or return pressure in the processing tank 3.

減圧手段4および復圧手段5は、制御手段8により制御される。この制御手段8は、前記各センサ6,7の検出信号などに基づき、前記各手段4,5を制御する制御器29である。具体的には、真空弁18、給蒸弁22、熱交給水弁23、真空ポンプ16、封水給水弁24、給気弁27、圧力センサ6および品温センサ7は、制御器29に接続されている。そして、制御器29は、以下に述べるように、所定の手順(プログラム)に従い、処理槽3内の食品2の真空冷却を図る。   The decompression means 4 and the decompression means 5 are controlled by the control means 8. The control means 8 is a controller 29 that controls the means 4 and 5 based on the detection signals of the sensors 6 and 7. Specifically, the vacuum valve 18, the steam supply valve 22, the heat exchange water supply valve 23, the vacuum pump 16, the sealed water supply water valve 24, the air supply valve 27, the pressure sensor 6, and the product temperature sensor 7 are connected to the controller 29. Has been. And the controller 29 aims at the vacuum cooling of the foodstuff 2 in the processing tank 3 according to a predetermined | prescribed procedure (program) as described below.

以下、本実施例の冷却装置1を用いた冷却方法について具体的に説明する。本実施例の冷却方法は、処理槽3内の減圧開始からの経過時間と処理槽3内の目標圧力との関係を目標減圧曲線として予め設定しておくと共に、減圧中に目標減圧曲線を適宜再設定しつつ、最新の目標減圧曲線に沿うように処理槽3内の減圧を図ることで、処理槽3内の食品2の真空冷却を図る方法である。このような一連の真空冷却に先立ち、処理槽3内には冷却しようとする食品2が収容され、処理槽3の扉は閉じられる。処理槽3内に収容される食品2は、所望により他の冷却装置(ブラストチラーや差圧冷却装置)で予めある程度まで冷却されている場合もある。   Hereinafter, the cooling method using the cooling device 1 of the present embodiment will be specifically described. In the cooling method of the present embodiment, the relationship between the elapsed time from the start of depressurization in the processing tank 3 and the target pressure in the processing tank 3 is set in advance as a target depressurization curve, and the target depressurization curve is appropriately set during depressurization. In this method, the food 2 in the processing tank 3 is vacuum-cooled by reducing the pressure in the processing tank 3 along the latest target decompression curve while resetting. Prior to such a series of vacuum cooling, the processing tank 3 contains the food 2 to be cooled, and the door of the processing tank 3 is closed. The food 2 accommodated in the processing tank 3 may be cooled to some extent by another cooling device (blast chiller or differential pressure cooling device) as desired.

処理槽3内を大気圧から減圧するには、真空弁18および封水給水弁24は開いた状態で、真空ポンプ16を作動させればよい。通常、減圧開始時には熱交給水弁23は閉じて熱交換器14に水は流さず、一定時間が経過するかあるいは熱交換器14の出口温度(処理槽3からの排気路12の内、熱交換器14から真空ポンプ16への配管内の温度)が所定温度を超えた場合に、熱交給水弁23を開いて熱交換器14に水を流す。そして、さらに熱交換器14の出口温度が所定まで上昇した場合は、熱交換器14への冷却水として、予めチラー(図示省略)で冷却された水を流すのがよい。また、減圧開始時には給蒸弁22は閉じて蒸気エゼクタ13は作動させず、処理槽3内の減圧に伴い処理槽3内をさらに減圧するには真空ポンプ16では足りなくなってくるエゼクタ作動圧力(たとえば45hPa)未満になると、給蒸弁22を開いて蒸気エゼクタ13も作動させる。   In order to depressurize the inside of the processing tank 3 from the atmospheric pressure, the vacuum pump 16 may be operated with the vacuum valve 18 and the sealed water supply valve 24 open. Normally, at the start of pressure reduction, the heat exchange water supply valve 23 is closed and water does not flow into the heat exchanger 14, and a certain time elapses or the outlet temperature of the heat exchanger 14 (the heat in the exhaust passage 12 from the treatment tank 3 is heated). When the temperature in the pipe from the exchanger 14 to the vacuum pump 16) exceeds a predetermined temperature, the heat exchange water supply valve 23 is opened to allow water to flow through the heat exchanger 14. When the outlet temperature of the heat exchanger 14 further rises to a predetermined level, water cooled in advance by a chiller (not shown) is preferably flowed as cooling water to the heat exchanger 14. In addition, at the start of decompression, the steam supply valve 22 is closed and the steam ejector 13 is not operated, and the ejector operating pressure (the vacuum pump 16 is insufficient to further depressurize the interior of the treatment tank 3 due to the decompression of the treatment tank 3 ( For example, when the pressure is less than 45 hPa), the steam supply valve 22 is opened and the steam ejector 13 is also operated.

処理槽3内を減圧中、目標減圧曲線による目標圧力と、圧力センサ6により検出される処理槽3内の実際圧力との差を埋めるように、減圧能力(減圧速度ともいえる)が調整される。減圧能力の調整は、具体的には次のようにして行うことができる。すなわち、給気弁27が電磁弁であれば処理槽3内を所望に減圧するよう開閉すればよいし、給気弁27が電動弁であれば処理槽3内を所望に減圧するよう開度調整すればよい。   While the inside of the processing tank 3 is being depressurized, the decompression capacity (also referred to as the decompression speed) is adjusted so as to fill the difference between the target pressure based on the target decompression curve and the actual pressure in the processing tank 3 detected by the pressure sensor 6. . Specifically, the decompression capacity can be adjusted as follows. That is, if the air supply valve 27 is an electromagnetic valve, the processing tank 3 may be opened and closed as desired. If the air supply valve 27 is an electric valve, the opening degree of the processing tank 3 may be reduced as desired. Adjust it.

但し、減圧能力の調整は、これに限定されず適宜に変更可能である。たとえば、処理槽3内への給気路25を並列して複数設けると共に、それぞれの給気路25に給気弁27を設けておき、そのようにして設けられた複数の給気弁27の内、開く数を変えて制御してもよい。あるいは、排気路12の中途に外気導入路(図示省略)を接続し、その外気導入路に設けた外気導入弁(図示省略)の開閉や開度を調整してもよい。さらに、真空弁18の開度を調整したり、インバータを用いて真空ポンプ16の回転数を変えたりしてもよい。これらは、複数の方法を組み合わせてもよい。   However, the adjustment of the decompression capacity is not limited to this and can be changed as appropriate. For example, a plurality of air supply paths 25 into the processing tank 3 are provided in parallel, and an air supply valve 27 is provided in each of the air supply paths 25, and the plurality of air supply valves 27 thus provided are provided. Of these, the number of openings may be changed for control. Alternatively, an outside air introduction path (not shown) may be connected in the middle of the exhaust path 12, and the opening / closing and opening degree of an outside air introduction valve (not shown) provided in the outside air introduction path may be adjusted. Furthermore, the opening degree of the vacuum valve 18 may be adjusted, or the rotational speed of the vacuum pump 16 may be changed using an inverter. These may combine a plurality of methods.

目標減圧曲線の再設定は、処理槽3内の減圧中の所定時、その所定時における実際圧力を起点とする目標減圧曲線の時間軸を前記所定時までずらして新たな目標減圧曲線とすることでなされる。言い換えれば、処理槽3内の減圧中の所定時、その所定時における実際圧力以下の目標減圧曲線の時間軸を前記所定時までずらして新たな目標減圧曲線とすることでなされる。なお、処理槽3内の減圧中、処理槽3内の実際圧力は、圧力センサ6で監視される。   The target decompression curve is reset by setting a new target decompression curve by shifting the time axis of the target decompression curve starting from the actual pressure at the predetermined time during the decompression in the processing tank 3 to the predetermined time. Made in In other words, when the pressure in the treatment tank 3 is reduced, the time axis of the target pressure reduction curve below the actual pressure at the predetermined time is shifted to the predetermined time to obtain a new target pressure reduction curve. Note that the actual pressure in the processing tank 3 is monitored by the pressure sensor 6 during the decompression in the processing tank 3.

前記所定時とは、典型的には蒸気エゼクタ13の作動開始時である。より具体的には、給蒸弁22を開く時である。前述したように、本実施例では減圧手段4として真空ポンプ16とこれよりも排気能力のある蒸気エゼクタ13とを備え、処理槽3内の実際圧力がエゼクタ作動圧力になるまでは、真空ポンプ16は作動させるが蒸気エゼクタ13は作動させず、処理槽3内の実際圧力がエゼクタ作動圧力以下になると、真空ポンプ16に加えて蒸気エゼクタ13も作動させる。ところが、この蒸気エゼクタ13の作動開始時に、目標圧力と実際圧力との差が大きければ、蒸気エゼクタ13の作動に伴い、圧力差を埋めようとして処理槽3内が急激に減圧され、処理槽3内の減圧速度が予め規定された勾配を上回ってしまうおそれがある。そして、処理槽3内の減圧速度が予め規定された勾配を上回った場合、処理槽3内の飽和蒸気温度が食品2の温度を大きく下回るおそれがあり、それにより、食品2の突沸、その突沸に伴う食品2の飛散、あるいは食品2内に気泡が発生するおそれがある。そこで、本実施例では、蒸気エゼクタ13の作動開始時に、予め目標圧力と実際圧力との差をなくすように、目標減圧曲線を再設定するのである。なお、通常、処理槽3内の実際圧力(エゼクタ作動開始時における実際圧力はエゼクタ作動圧力でもある)は目標圧力よりも高くなっているが、その場合にのみ目標減圧曲線の再設定をすれば足りる。   The predetermined time is typically when the operation of the steam ejector 13 starts. More specifically, it is when the steam supply valve 22 is opened. As described above, in the present embodiment, the vacuum pump 16 and the steam ejector 13 having a higher exhaust capacity than the vacuum pump 16 are provided as the pressure reducing means 4, and the vacuum pump 16 is used until the actual pressure in the processing tank 3 becomes the ejector operating pressure. Is operated, but the steam ejector 13 is not operated. When the actual pressure in the processing tank 3 becomes equal to or lower than the ejector operating pressure, the steam ejector 13 is also operated in addition to the vacuum pump 16. However, if the difference between the target pressure and the actual pressure is large at the start of the operation of the steam ejector 13, the inside of the processing tank 3 is rapidly depressurized to fill the pressure difference with the operation of the steam ejector 13, and the processing tank 3 There is a possibility that the decompression speed of the inside will exceed a predetermined gradient. And when the pressure reduction speed in the processing tank 3 exceeds a predetermined gradient, there is a possibility that the saturated vapor temperature in the processing tank 3 is significantly lower than the temperature of the food 2. There is a possibility that the food 2 is scattered due to the occurrence of bubbles or bubbles are generated in the food 2. Therefore, in this embodiment, when the operation of the steam ejector 13 is started, the target decompression curve is reset in advance so as to eliminate the difference between the target pressure and the actual pressure. Normally, the actual pressure in the treatment tank 3 (the actual pressure at the start of ejector operation is also the ejector operating pressure) is higher than the target pressure, but only in that case, if the target decompression curve is reset It ’s enough.

図2は、本実施例の冷却装置1を用いた冷却方法の一例を示す図であり、処理槽3内の減圧開始からの経過時間と処理槽3内の圧力との関係を示している。この図において、実線L1およびそれに続く一点鎖線L2は、予め設定された当初の目標減圧曲線を示し、破線L3は、処理槽3内の実際圧力を示し、その破線L3に続く実線L2´は、再設定された目標減圧曲線を示している。   FIG. 2 is a diagram showing an example of a cooling method using the cooling device 1 of the present embodiment, and shows a relationship between an elapsed time from the start of pressure reduction in the processing tank 3 and a pressure in the processing tank 3. In this figure, a solid line L1 and an alternate long and short dash line L2 indicate a preset initial target decompression curve, a broken line L3 indicates an actual pressure in the processing tank 3, and a solid line L2 ′ following the broken line L3 indicates The reset target decompression curve is shown.

前述したように、処理槽3内の実際圧力が予め定めたエゼクタ作動圧力PEになると、給蒸弁22を開いて蒸気エゼクタ13を作動させるが、これにより減圧能力が急激に高まることになる。そのため、その時点までに目標圧力と実際圧力との圧力差が大きくなっている場合、蒸気エゼクタ13の作動に伴い、予め定めた目標減圧曲線に追いつこうとするために、図2において二点鎖線L4で示すように、処理槽3内は急激に減圧されるおそれがある。減圧速度の調整がたとえば給気弁27でなされる場合において、目標圧力と実際圧力との圧力差が大きいことに伴い給気弁27が全閉されていれば、なおさらである。このような場合、処理槽3内の圧力変化の勾配が、当初規定されていた勾配(当初予定していた目標減圧曲線L2で規定されている勾配)を超えてしまい、前述したように食品2の突沸などの不都合を生じることになる。   As described above, when the actual pressure in the treatment tank 3 reaches the predetermined ejector operating pressure PE, the steam supply valve 22 is opened and the steam ejector 13 is operated. Therefore, when the pressure difference between the target pressure and the actual pressure has increased by that time, the two-dot chain line L4 in FIG. 2 is used in order to catch up with a predetermined target decompression curve as the steam ejector 13 operates. As shown in the figure, the inside of the treatment tank 3 may be rapidly depressurized. This is especially true when the pressure reducing speed is adjusted by the air supply valve 27, for example, when the air supply valve 27 is fully closed due to a large pressure difference between the target pressure and the actual pressure. In such a case, the gradient of the pressure change in the treatment tank 3 exceeds the initially defined gradient (the gradient defined by the initially planned target decompression curve L2), and as described above, the food 2 This causes inconvenience such as bumping.

そこで、本実施例では、処理槽3内の実際圧力がエゼクタ作動圧力PEになり、蒸気エゼクタ13を作動させる際には、その時点における実際圧力以下の目標減圧曲線(一点鎖線L2)の時間軸をその時点までずらして新たな目標減圧曲線(実線L2´)として再設定する。すなわち、図2における一点鎖線L2の時間軸をずらして、破線L3に続く実線L2´のようにして、これを新たな目標減圧曲線とする。これにより、蒸気エゼクタ13を作動させても、処理槽3内が急激に減圧されるのが防止されることになる。   Therefore, in the present embodiment, the actual pressure in the treatment tank 3 becomes the ejector operating pressure PE, and when the steam ejector 13 is operated, the time axis of the target decompression curve (one-dot chain line L2) below the actual pressure at that time. Is shifted to that point and reset as a new target decompression curve (solid line L2 ′). That is, the time axis of the alternate long and short dash line L2 in FIG. 2 is shifted, and this is used as a new target decompression curve as shown by the solid line L2 ′ following the broken line L3. Thereby, even if the steam ejector 13 is operated, the inside of the processing tank 3 is prevented from being rapidly depressurized.

ところで、目標減圧曲線の再設定は、蒸気エゼクタ13の作動開始時に限らず、これに代えてまたはこれに加えて、次のいずれか一以上の時としてもよい。   By the way, the resetting of the target decompression curve is not limited to the time when the operation of the steam ejector 13 is started, but may be any one or more of the following times instead of or in addition to this.

まず、目標減圧曲線の再設定は、処理槽3内の実際圧力と目標減圧曲線による目標圧力との差が設定範囲を超えた時に行ってもよい。特に、大気圧からの減圧開始時には真空ポンプ16のみを作動させるが、処理槽3内の実際圧力と目標減圧曲線による目標圧力との差が設定範囲を超えると、減圧能力が低下したと判断して、真空ポンプ16に加えて蒸気エゼクタ13も作動させる場合において、その蒸気エゼクタ13の作動開始時がよい。   First, the resetting of the target decompression curve may be performed when the difference between the actual pressure in the processing tank 3 and the target pressure based on the target decompression curve exceeds the set range. In particular, only the vacuum pump 16 is operated at the start of pressure reduction from the atmospheric pressure. However, if the difference between the actual pressure in the processing tank 3 and the target pressure according to the target pressure reduction curve exceeds the set range, it is determined that the pressure reduction capability has decreased. When the steam ejector 13 is operated in addition to the vacuum pump 16, the operation of the steam ejector 13 is preferably started.

図3は、図2と同様に、本実施例の冷却装置1を用いた冷却方法の一例を示す図であり、処理槽3内の減圧開始からの経過時間と処理槽3内の圧力との関係を示している。この図においても、実線L1およびそれに続く一点鎖線L2は、予め設定された当初の目標減圧曲線を示し、破線L3は、処理槽3内の実際圧力を示し、その破線L3に続く実線L2´は、再設定された目標減圧曲線を示している。図2の場合と異なる点は、図2の場合には、処理槽3内がエゼクタ作動圧力PEになると目標減圧曲線の再設定を行ったが、この図3の場合には、処理槽3内の実際圧力(破線L3)と目標減圧曲線による目標圧力(実線L1)との差が設定範囲を超えると目標減圧曲線の再設定を行う点である。図3の場合も、時間T1において目標減圧曲線の再設定を行わなければ、二点鎖線L4で示すように処理槽3内が急減圧されるおそれがあるが、目標減圧曲線が再設定されることで、そのような不都合が回避される。   FIG. 3 is a diagram showing an example of a cooling method using the cooling device 1 of the present embodiment, as in FIG. 2, and shows the elapsed time from the start of pressure reduction in the processing tank 3 and the pressure in the processing tank 3. Showing the relationship. Also in this figure, the solid line L1 and the one-dot chain line L2 subsequent thereto indicate the initial target decompression curve set in advance, the broken line L3 indicates the actual pressure in the treatment tank 3, and the solid line L2 ′ following the broken line L3 indicates The reset target decompression curve is shown. The difference from the case of FIG. 2 is that in FIG. 2, when the inside of the treatment tank 3 reaches the ejector operating pressure PE, the target decompression curve was reset. In this case of FIG. When the difference between the actual pressure (broken line L3) and the target pressure (solid line L1) based on the target decompression curve exceeds the set range, the target decompression curve is reset. In the case of FIG. 3 as well, if the target decompression curve is not reset at time T1, the inside of the processing tank 3 may be suddenly decompressed as indicated by a two-dot chain line L4, but the target decompression curve is reset. This avoids such inconvenience.

さらに、目標減圧曲線の再設定は、次の場合に行ってもよい。すなわち、工程切替時(たとえば処理槽3内を一様に減圧するのではなく、処理槽3内の圧力を変化させる場合において、その変化時)、圧力センサ6により検出される処理槽3内の圧力が設定圧力になった時、品温センサ7による検出される処理槽3内の食品2の温度が設定温度になった時、および減圧開始から設定時間が経過した時などである。これらの場合も、それぞれの該当時に、蒸気エゼクタ13の作動を開始するなど、減圧手段4の減圧能力が高まる場合が、目標減圧曲線を再設定するのに特に有効といえる。   Further, the resetting of the target decompression curve may be performed in the following case. That is, when the process is switched (for example, when the pressure in the processing tank 3 is changed instead of reducing the pressure in the processing tank 3 uniformly), the pressure in the processing tank 3 detected by the pressure sensor 6 is changed. For example, when the pressure reaches the set pressure, when the temperature of the food 2 in the processing tank 3 detected by the product temperature sensor 7 reaches the set temperature, or when a set time has elapsed since the start of decompression. Also in these cases, it can be said that the case where the decompression capability of the decompression means 4 is increased, such as starting the operation of the steam ejector 13 at each corresponding time, is particularly effective for resetting the target decompression curve.

本発明の冷却装置および冷却方法は、前記実施例の構成に限らず、適宜変更可能である。特に、目標減圧曲線に沿うように処理槽3内を減圧中の所定時、その所定時における実際圧力を起点とする目標減圧曲線の時間軸を前記所定時までずらして新たな目標減圧曲線として再設定する構成であれば、その他の構成および制御は適宜に変更可能である。さらに、目標減圧曲線の再設定は、減圧中に複数回行ってもよいことはもちろんである。   The cooling device and the cooling method of the present invention are not limited to the configuration of the above embodiment, and can be changed as appropriate. In particular, when the inside of the treatment tank 3 is depressurized along the target depressurization curve, the time axis of the target depressurization curve starting from the actual pressure at the predetermined time is shifted to the predetermined time and re-created as a new target depressurization curve. As long as the configuration is set, other configurations and controls can be changed as appropriate. Further, the target decompression curve may be reset a plurality of times during decompression.

また、前記実施例では、真空冷却装置に適用した例を示したが、蒸煮冷却装置、飽和蒸気調理装置、冷風真空複合冷却装置などにも同様に適用可能である。すなわち、蒸煮冷却装置または飽和蒸気調理装置の場合には、前記実施例において、処理槽3内へ蒸気を供給する給蒸手段をさらに設置すればよい。これにより、給蒸手段により、処理槽3内へ蒸気を供給して食品2の加熱を図った後、減圧手段4により、処理槽3内を減圧して食品2の真空冷却を図ることができる。但し、給蒸手段は、ボイラなどからの蒸気を処理槽3内へ供給する以外に、処理槽3内に予め貯留しておいた水をヒータで蒸発させてもよい。また、冷風真空複合冷却装置の場合には、前記実施例において、処理槽3内に冷風を生じさせる手段(冷却機およびファン)をさらに設置すればよい。これにより、食品2を収容した処理槽3内を減圧することによる真空冷却と、処理槽3内の食品2へ冷風を吹き付けることによる冷風冷却とを図ることができる。   Moreover, in the said Example, although the example applied to the vacuum cooling device was shown, it is applicable similarly to a steaming cooling device, a saturated steam cooking device, a cold air vacuum compound cooling device, etc. That is, in the case of a steaming cooling device or a saturated steam cooking device, a steam supply means for supplying steam into the treatment tank 3 may be further installed in the above embodiment. Thereby, after steam is supplied into the processing tank 3 by the steam supply means and the food 2 is heated, the pressure in the processing tank 3 can be reduced by the decompression means 4 to achieve vacuum cooling of the food 2. . However, the steam supply means may evaporate the water previously stored in the processing tank 3 with a heater in addition to supplying steam from a boiler or the like into the processing tank 3. In the case of the cold air vacuum combined cooling device, means (cooler and fan) for generating cold air in the processing tank 3 may be further installed in the above embodiment. Thereby, the vacuum cooling by decompressing the inside of the processing tank 3 containing the food 2 and the cold air cooling by blowing cold air to the food 2 in the processing tank 3 can be achieved.

さらに、減圧手段4や復圧手段5の各構成は、前記実施例の構成に限定されない。たとえば、減圧手段4は、前記実施例において蒸気エゼクタ13に代えて水エゼクタを用いたりしてもよい。また、復圧手段5として、給気路25を並列して複数設けておき、それぞれに電磁弁を設けてもよい。   Furthermore, each structure of the decompression means 4 and the decompression means 5 is not limited to the structure of the said Example. For example, the decompression means 4 may use a water ejector in place of the steam ejector 13 in the above embodiment. Further, as the return pressure means 5, a plurality of air supply paths 25 may be provided in parallel, and an electromagnetic valve may be provided for each.

1 冷却装置(真空冷却装置)
2 食品(被冷却物)
3 処理槽
4 減圧手段
5 復圧手段
6 圧力センサ
7 品温センサ
13 蒸気エゼクタ
16 真空ポンプ
L1+L2 (当初の)目標減圧曲線
L2´ (再設定後の)目標減圧曲線
L3 処理槽内の実際圧力
PE エゼクタ作動圧力
1 Cooling device (vacuum cooling device)
2 Food (cooled object)
3 Processing tank 4 Pressure reducing means 5 Pressure reducing means 6 Pressure sensor 7 Product temperature sensor 13 Steam ejector 16 Vacuum pump L1 + L2 (original) target pressure reducing curve L2 '(after reset) target pressure reducing curve L3 Actual pressure in the processing tank PE Ejector operating pressure

Claims (5)

被冷却物が収容された処理槽内の気体を外部へ吸引排出して前記処理槽内を減圧することで、前記被冷却物の冷却を図る冷却装置であって、
前記処理槽内の減圧開始からの経過時間と前記処理槽内の目標圧力との関係を目標減圧曲線として予め設定されており、
この目標減圧曲線に沿うように前記処理槽内の減圧を図ると共に、この減圧中の所定時、その所定時における実際圧力を起点として前記実際圧力以下の前記目標減曲線の時間軸を前記所定時までずらすと共に、前記所定時における前記実際圧力に続く新たな目標減圧曲線として再設定する
ことを特徴とする冷却装置。
A cooling device for cooling the object to be cooled by sucking and discharging the gas in the processing tank in which the object to be cooled is stored to the outside and reducing the pressure in the processing tank,
The relationship between the elapsed time from the start of decompression in the treatment tank and the target pressure in the treatment tank is preset as a target decompression curve,
While reducing the pressure in the processing tank so as to follow the target pressure-decreasing curve, the time axis of the target decreasing curve below the actual pressure starting from the actual pressure at the predetermined time during the pressure-decreasing is set to the predetermined time. And re-set as a new target decompression curve following the actual pressure at the predetermined time .
前記所定時とは、前記処理槽内の実際圧力と前記目標減圧曲線による目標圧力との差が設定範囲を超えた時である
ことを特徴とする請求項1に記載の冷却装置。
The cooling device according to claim 1, wherein the predetermined time is a time when a difference between an actual pressure in the processing tank and a target pressure based on the target decompression curve exceeds a set range.
前記所定時とは、エゼクタ作動開始時、工程切替時、前記処理槽内が設定圧力になった時、前記被冷却物が設定温度になった時、および設定時間が経過した時の内、いずれか一以上の時である
ことを特徴とする請求項1または請求項2に記載の冷却装置。
The predetermined time refers to any of the following: when the ejector is started, when the process is switched, when the inside of the processing tank reaches a set pressure, when the object to be cooled reaches a set temperature, and when a set time elapses. The cooling device according to claim 1, wherein the cooling device is at least one time.
前記処理槽内の減圧手段として、真空ポンプとエゼクタとを備え、
前記処理槽内の実際圧力がエゼクタ作動圧力になるまでは、前記真空ポンプを作動させるが前記エゼクタは作動させず、
前記処理槽内の実際圧力が前記エゼクタ作動圧力以下になると、前記真空ポンプに加えて前記エゼクタも作動させ、
前記所定時間とは、前記エゼクタの作動開始時間である
ことを特徴とする請求項1〜3のいずれか1項に記載の冷却装置。
As a decompression means in the treatment tank, a vacuum pump and an ejector are provided,
Until the actual pressure in the processing tank reaches the ejector operating pressure, the vacuum pump is operated, but the ejector is not operated,
When the actual pressure in the processing tank is equal to or lower than the ejector operating pressure, the ejector is also operated in addition to the vacuum pump,
The cooling apparatus according to any one of claims 1 to 3, wherein the predetermined time is an operation start time of the ejector.
被冷却物が収容された処理槽内の気体を外部へ吸引排出して前記処理槽内を減圧することで、前記被冷却物の冷却を図る冷却方法であって、
前記処理槽内の減圧開始からの経過時間と前記処理槽内の目標圧力との関係を目標減圧曲線として予め設定しておき、
この目標減圧曲線に沿うように前記処理槽内の減圧を図ると共に、この減圧中の所定時、その所定時における実際圧力を起点として前記実際圧力以下の前記目標減圧曲線の時間軸を前記所定時までずらすと共に、前記所定時における前記実際圧力に続く新たな目標減圧曲線として再設定する
ことを特徴とする冷却方法。
A cooling method for cooling the object to be cooled by sucking and discharging the gas in the processing tank in which the object to be cooled is stored and reducing the pressure in the processing tank,
Pre-set the relationship between the elapsed time from the start of pressure reduction in the treatment tank and the target pressure in the treatment tank as a target pressure reduction curve,
While reducing the pressure in the processing tank so as to follow the target pressure reduction curve, the time axis of the target pressure reduction curve below the actual pressure is set to the predetermined time at the predetermined time during the pressure reduction, and the actual pressure at the predetermined time as a starting point. And re-set as a new target decompression curve following the actual pressure at the predetermined time .
JP2009022334A 2009-02-03 2009-02-03 Cooling device and cooling method Active JP5407378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022334A JP5407378B2 (en) 2009-02-03 2009-02-03 Cooling device and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022334A JP5407378B2 (en) 2009-02-03 2009-02-03 Cooling device and cooling method

Publications (2)

Publication Number Publication Date
JP2010181041A JP2010181041A (en) 2010-08-19
JP5407378B2 true JP5407378B2 (en) 2014-02-05

Family

ID=42762739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022334A Active JP5407378B2 (en) 2009-02-03 2009-02-03 Cooling device and cooling method

Country Status (1)

Country Link
JP (1) JP5407378B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898967B2 (en) * 2012-01-17 2016-04-06 株式会社サムソン Vacuum cooling device
JP2016023806A (en) * 2014-07-16 2016-02-08 株式会社テイエルブイ Cooling device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153001A (en) * 1979-05-16 1980-11-28 Omron Tateisi Electronics Co Process adjusting method
JPS6434662U (en) * 1987-08-26 1989-03-02
JP2743073B2 (en) * 1988-10-13 1998-04-22 株式会社日立製作所 Temperature control device
JPH07101207B2 (en) * 1988-12-15 1995-11-01 理学電機株式会社 Method for controlling sample temperature of thermal analysis apparatus and control apparatus thereof
JP3832354B2 (en) * 2002-02-20 2006-10-11 三浦工業株式会社 Vacuum cooling method
JP4134802B2 (en) * 2002-06-10 2008-08-20 三浦工業株式会社 Vacuum cooling method
JP2007162975A (en) * 2005-12-09 2007-06-28 Miura Co Ltd Food machine

Also Published As

Publication number Publication date
JP2010181041A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5251557B2 (en) Cooling device and cooling method
JP4924147B2 (en) Food machine with vacuum cooling function and its operation method
JP5407378B2 (en) Cooling device and cooling method
JP4055684B2 (en) Vacuum steam cooker
JP2006349287A (en) Vacuum cooling apparatus and method
JP6362467B2 (en) Vacuum cooling device
JP2004069289A (en) Vacuum cooling method
JP2005337699A (en) Vacuum cooling device
JP5370670B2 (en) Operation method of cooking device
JP2004218958A (en) Vacuum cooling method
JP2010133569A (en) Composite cooling device
JP4474680B2 (en) Defroster
WO2007094141A1 (en) Cooling device
JP2007198697A (en) Cooking method
JP4254521B2 (en) Cooking device operation control method and cooking device
JP2007268018A (en) Steam-heating apparatus
JP6748456B2 (en) Vacuum cooling device
JP2010144981A (en) Cooling method and cooling device
JP4736126B2 (en) Steam cooking equipment
JP4605541B2 (en) Steam cooking equipment
JP2018162960A (en) Food machine having vacuum cooling function
JP7035541B2 (en) Vacuum defroster
JP4716257B2 (en) Steam cooking equipment
JP7223319B2 (en) vacuum cooling system
JP2003235530A (en) Vacuum cooling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5407378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250