JP5384798B2 - Method for producing liquefiable storage fuel from by-product gas of steelworks - Google Patents

Method for producing liquefiable storage fuel from by-product gas of steelworks Download PDF

Info

Publication number
JP5384798B2
JP5384798B2 JP2007087034A JP2007087034A JP5384798B2 JP 5384798 B2 JP5384798 B2 JP 5384798B2 JP 2007087034 A JP2007087034 A JP 2007087034A JP 2007087034 A JP2007087034 A JP 2007087034A JP 5384798 B2 JP5384798 B2 JP 5384798B2
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
fuel
liquefiable
surplus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007087034A
Other languages
Japanese (ja)
Other versions
JP2008247929A (en
Inventor
たかし 原岡
二彦 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Original Assignee
JFE Steel Corp
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Engineering Corp filed Critical JFE Steel Corp
Priority to JP2007087034A priority Critical patent/JP5384798B2/en
Publication of JP2008247929A publication Critical patent/JP2008247929A/en
Application granted granted Critical
Publication of JP5384798B2 publication Critical patent/JP5384798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Industrial Gases (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、製鉄所で副生するガスを原料としてジメチルエーテル等の液化貯蔵可能な燃料を製造する方法に関するものである。   The present invention relates to a method for producing a liquefiable and storable fuel such as dimethyl ether by using a gas produced as a by-product at a steel mill as a raw material.

製鉄所ではコークス炉、高炉、転炉等の操業の際に、これらの設備より副生ガスと呼ばれる副産物のガスが発生する。このガスには水素、一酸化炭素、メタンといった燃料として利用可能な成分のほかに、窒素、二酸化炭素を含有しており、発電所、加熱炉などの燃焼によって発生する熱を利用する用途に使用されている。   In the steelworks, when a coke oven, blast furnace, converter, etc. are operated, a by-product gas called a by-product gas is generated from these facilities. In addition to components that can be used as fuels, such as hydrogen, carbon monoxide, and methane, this gas contains nitrogen and carbon dioxide, and is used for applications that use the heat generated by combustion in power plants, heating furnaces, etc. Has been.

これらの副生ガスは、その発生量、消費量ともに時々刻々と変動しており、その調整のために数万〜数十万m3の容積を有するガスホルダーが用いられているが、このようなガスホルダーをもってしても調整可能時間は30分に満たない。 The amount of these by-product gases that are generated and consumed fluctuates from moment to moment, and a gas holder having a volume of tens of thousands to hundreds of thousands of m 3 is used for the adjustment. Even with a simple gas holder, the adjustable time is less than 30 minutes.

そのため、需給調整能力向上を目的として、副生ガスの成分の一部を液体貯蔵可能な燃料に変えて用いる方法が提案されている。ここで液体貯蔵可能な燃料としてはメタノール、エタノールあるいはジメチルエーテル等があげられる。特に、これらの副生ガスを原料として触媒と接触させて、化学反応によりジメチルエーテルを製造する方法が、特許文献1〜3等で既に開示されている。
特開平10−212259号公報 特開2002−155003号公報 特開2002−155004号公報
Therefore, for the purpose of improving the supply and demand adjustment capability, a method has been proposed in which a part of the components of the by-product gas is changed to a fuel capable of storing liquid. Examples of the fuel capable of storing liquid include methanol, ethanol, dimethyl ether and the like. In particular, Patent Documents 1 to 3 and the like have already disclosed methods for producing dimethyl ether by a chemical reaction by bringing these by-product gases into contact with a catalyst as a raw material.
Japanese Patent Laid-Open No. 10-212259 JP 2002-155003 A JP 2002-155004 A

液化貯蔵可能な燃料であるメタノール、エタノールあるいはジメチルエーテル等は副生ガス中の水素と一酸化炭素を原料として合成されるため、窒素、メタン等は合成反応に関わらない不活性成分である。このため、水素と一酸化炭素の反応効率を上げるために反応後のガスを、原料の副生ガスに混合してリサイクルさせて合成を行なうと、これらの不活性成分の濃度が相対的に上昇し反応効率が低下する、という問題点があった。   Since methanol, ethanol, dimethyl ether, etc., which are liquefiable fuels, are synthesized using hydrogen and carbon monoxide in the by-product gas as raw materials, nitrogen, methane, etc. are inert components that are not involved in the synthesis reaction. For this reason, in order to increase the reaction efficiency of hydrogen and carbon monoxide, when the gas after reaction is mixed with the by-product gas of the raw material and recycled, the concentration of these inactive components is relatively increased. However, there is a problem that the reaction efficiency is lowered.

このような問題を解決する方法として、特許文献2では水素とメタンを主成分として含有する原料ガスから水素のみを分離回収する方法が提案されており、特許文献3ではメタンを水蒸気と炭酸ガスで改質して水素ガス濃度を増加させる方法が提案されている。   As a method for solving such a problem, Patent Document 2 proposes a method of separating and recovering only hydrogen from a raw material gas containing hydrogen and methane as main components, and Patent Document 3 proposes a method of separating methane with water vapor and carbon dioxide gas. A method for improving the hydrogen gas concentration by reforming has been proposed.

特許文献2、3に記載の方法は原料ガスの水素濃度を増大させる、あるいは、不活性成分の濃度を低減させることによって反応効率の低下を抑制するとともに、原料ガスを加圧するために必要な圧縮機の動力を相対的に低減させる、という意味で合理的である。   The methods described in Patent Documents 2 and 3 suppress the decrease in reaction efficiency by increasing the hydrogen concentration of the raw material gas or by reducing the concentration of the inert component, and the compression required to pressurize the raw material gas. It is reasonable in the sense of relatively reducing the machine power.

しかしながら、特許文献2の方法では水素PSA装置を使用してメタンを除去する必要があり、高価で運転費用がかさみ、特許文献3の方法では改質反応に900〜1300℃の高温を必要とし、設備の大型化や投入エネルギー増大は避けられず、いずれの方法も、さらなる改善の余地があった。   However, in the method of Patent Document 2, it is necessary to remove methane using a hydrogen PSA device, which is expensive and expensive to operate. In the method of Patent Document 3, a high temperature of 900 to 1300 ° C. is required for the reforming reaction, Larger equipment and increased input energy are inevitable, and both methods have room for further improvement.

一方で、これらの問題を回避するために、反応後のガスのうち、液化貯蔵可能な燃料を除去した残部のガス(余剰ガス)のリサイクルをせずに液化貯蔵可能な燃料との分離後に、別途利用することも考えられる。余剰ガスを利用するために、製鉄所内の副生ガスラインに戻す方法が考えられるが、反応によって水素や一酸化炭素などの燃料成分が減少している低熱量ガスを副生ガスラインに混入させることは、これを使用する発電所や工場において燃焼効率を低下させることになり、望ましくない。   On the other hand, in order to avoid these problems, after separation from the liquefiable and storable fuel without recycling the remaining gas (excess gas) from which the liquefiable and storable fuel has been removed, after the reaction, It can be used separately. In order to use surplus gas, a method of returning to the by-product gas line in the steel works is conceivable. However, a low calorific gas in which fuel components such as hydrogen and carbon monoxide are reduced by the reaction is mixed into the by-product gas line. This is undesirable because it reduces the combustion efficiency in power plants and factories that use it.

したがって本発明の目的は、このような従来技術の課題を解決し、製鉄所の副生ガス等を原料として液化貯蔵可能な燃料を製造する際に、液化貯蔵可能な燃料と分離したガスを有効に利用することで、より低コストで安定的に液化貯蔵可能な燃料を製造できる、製鉄所副生ガスからの液化貯蔵可能な燃料の製造方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and effectively use a gas separated from a liquefiable and storable fuel when producing a liquefiable and storable fuel by using a by-product gas of a steel mill as a raw material It is an object of the present invention to provide a method for producing a liquefiable and storable fuel from an ironworks byproduct gas, which can produce a liquefiable and stably storable fuel at a lower cost.

本発明者らは検討の結果、液化貯蔵可能な燃料を製造後に、液化貯蔵可能な燃料を分離した残部のガスである余剰ガスを、液化貯蔵可能な燃料製造の原料ガスとしてリサイクル利用せずに、炭酸ガス分離装置によって炭酸ガスを分離した後に、副生ガスラインに戻して通常の副生ガスとして使用する手法を採ることにより前述した課題の解決が図れることを見出した。   As a result of the study, the present inventors have studied that after manufacturing a liquefiable storage fuel, the surplus gas, which is the remaining gas separated from the liquefiable storage fuel, is not recycled as a raw material gas for liquefiable storage fuel production. The present inventors have found that the above-described problems can be solved by adopting a method in which carbon dioxide is separated by a carbon dioxide separator and then returned to the byproduct gas line and used as a normal byproduct gas.

すなわち、本発明では、例えば製鉄所で副生するガスの一部を触媒と接触させて液化貯蔵可能な燃料を製造する方法において、触媒接触後の余剰ガスをそのまま利用するのではなく、余剰ガスに含まれる炭酸ガス分を分離することによって熱量を増大させてから、副生ガスの残部に混合して利用するものである。   That is, in the present invention, for example, in a method for producing a fuel that can be liquefied and stored by bringing a part of gas produced as a by-product in an ironworks into contact with a catalyst, the surplus gas after contacting the catalyst is not used as it is. The amount of heat is increased by separating the carbon dioxide contained in the gas, and then mixed with the remainder of the by-product gas.

本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
(1)製鉄所で発生する副生ガスの一部を原料ガスとして用い、該原料ガスから液化貯蔵可能な燃料を製造し、製造された前記液化貯蔵可能な燃料を除去した前記原料ガスの残部である余剰ガスから炭酸ガスの少なくとも一部を分離して、前記原料ガスに比べ低下した該余剰ガスの単位体積当りの熱量を、前記原料ガスに比べて増大させ、該炭酸ガスの分離除去された余剰ガスであって、熱量の増大した余剰ガスを、前記副生ガスの残部に混合し、熱量の増大した余剰ガスが混合された副生ガスを発電所及び/または加熱炉で利用することを特徴とする、製鉄所副生ガスからの液化貯蔵可能な燃料の製造方法。
(2)余剰ガスからの炭酸ガスの除去率を、10〜100モル%とすることを特徴とする、(1)に記載の製鉄所副生ガスからの液化貯蔵可能な燃料の製造方法。
The present invention has been made based on such findings, and the features thereof are as follows.
(1) Using a part of by-product gas generated at a steel works as a raw material gas, producing a fuel that can be liquefied and stored from the raw material gas, and removing the produced liquefiable and storable fuel. Separating at least a part of the carbon dioxide gas from the surplus gas, and increasing the amount of heat per unit volume of the surplus gas , which is lower than that of the source gas, as compared with the source gas, so that the carbon dioxide gas is separated and removed. A surplus gas having an increased amount of heat is mixed with the remainder of the by-product gas, and the by-product gas mixed with the surplus gas having an increased amount of heat is used in a power plant and / or a heating furnace. A method for producing a liquefiable and storageable fuel from an ironworks byproduct gas.
(2) The method for producing a liquefiable fuel from an ironworks byproduct gas according to (1), wherein the carbon dioxide removal rate from the surplus gas is 10 to 100 mol%.

本発明によれば、製鉄所で副生するコークス炉ガス、転炉ガスまたは高炉ガスあるいはこれらの混合ガスである、副生ガスを原料として触媒反応等により液化貯蔵可能な燃料を製造する際に、液化貯蔵可能な燃料の製造後の余剰ガスを、当該ガスに含まれる炭酸ガス分を分離することによって熱量を増大させて副生ガスラインに送ることができる。これにより、製鉄所全体としての省エネルギーを図ることができ、製鉄所副生ガスを原料として液化貯蔵可能な燃料をより低エネルギーで製造できる。   According to the present invention, when a coke oven gas, a converter gas, a blast furnace gas, or a mixed gas thereof, which is by-produced at an ironworks, is produced, a fuel that can be liquefied and stored by a catalytic reaction using the by-product gas as a raw material. The surplus gas after the production of the liquefiable fuel can be sent to the by-product gas line by increasing the amount of heat by separating the carbon dioxide contained in the gas. Thereby, the energy saving as the whole steelworks can be aimed at, and the fuel which can be liquefied and stored can be manufactured with a low energy from the steelworks byproduct gas as a raw material.

図1を用いて、本発明の一実施形態を説明する。図1は製鉄所副生ガスから液化貯蔵可能な燃料を合成する装置のフローシートであり、本発明の一実施形態の概念図である。   An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a flow sheet of an apparatus for synthesizing a liquefiable and storeable fuel from a steelworks byproduct gas, and is a conceptual diagram of one embodiment of the present invention.

製鉄所副生ガスはコークス炉ガスa、転炉ガスb、高炉ガスcからなり、これらは所定量の混合比率で混合されたのち、副生ガスラインにより製鉄所内を輸送される。この副生ガスラインから副生ガスの一部が、交互に使用される二つのフィルター1でダスト、タールミストなどが除去された後、脱硫装置2に導入される。脱硫後のガスは減圧時のエネルギーを利用できるコンプレッサー3により昇圧されて反応器4に導入される。   The ironworks byproduct gas comprises coke oven gas a, converter gas b, and blast furnace gas c, which are mixed at a predetermined mixing ratio and then transported through the ironworks by the byproduct gas line. A part of the by-product gas from this by-product gas line is introduced into the desulfurization apparatus 2 after dust, tar mist and the like are removed by the two filters 1 used alternately. The gas after desulfurization is pressurized by a compressor 3 that can use energy during decompression and introduced into the reactor 4.

反応器4では副生ガス中の水素あるいは一酸化炭素が液化貯蔵可能な化合物に転換される。液化貯蔵可能な化合物の代表例としてはメタノール、エタノール、ジメチルエーテルがあげられるが、これ以外にも、メタノールが反応して生成する直鎖パラフィンや直鎖オレフィンなど、二酸化炭素よりも高温、低圧で液化する化合物であればいずれも適用可能であり、これらの混合物であってもよい。   In the reactor 4, hydrogen or carbon monoxide in the by-product gas is converted into a compound that can be stored in a liquid state. Typical examples of compounds that can be liquefied and stored include methanol, ethanol, and dimethyl ether. In addition to this, liquefaction can be performed at higher temperature and lower pressure than carbon dioxide, such as linear paraffin and linear olefin produced by the reaction of methanol. Any compound can be applied as long as it is a compound to be used, and a mixture thereof may be used.

これらの製造方法は従来公知の手法をいずれも適用可能であるが、一例としては触媒反応を利用するものがあり、反応条件として高圧、高温を必要とするが工業的には適用しやすい手法である。   These production methods can be applied to any conventionally known method, but as an example, there is a method utilizing a catalytic reaction, which requires high pressure and high temperature as reaction conditions, but is a method that is industrially easy to apply. is there.

反応器4から排出されるガスはコンプレッサー3(減圧器によるエネルギー回収機構つき)において減圧されて、凝縮器5に導入されて液化貯蔵可能な燃料とそれ以外のガス成分(余剰ガス)に分離される。分離された液化貯蔵可能な燃料は貯蔵容器6に貯蔵される。一方ガス成分は7の炭酸ガス分離装置で炭酸ガスdとそれ以外の成分eに分けられ、炭酸ガス濃度が低減され、熱量の増大したガスは、ガスホルダー8から工場発電所9へ副生ガスを送る副生ガスラインに戻される。これにより副生ガスラインの副生ガスの熱量は通常以上に維持されて、製鉄所内外で有効に利用することができる。   The gas discharged from the reactor 4 is decompressed in the compressor 3 (with an energy recovery mechanism using a decompressor) and introduced into the condenser 5 to be separated into fuel that can be liquefied and stored and other gas components (surplus gas). The The separated liquefiable fuel is stored in the storage container 6. On the other hand, the gas components are separated into carbon dioxide d and other components e by the carbon dioxide separator 7, and the gas with reduced carbon dioxide concentration and increased calorific value is transferred from the gas holder 8 to the factory power plant 9 as a by-product gas. Is returned to the by-product gas line. Thereby, the calorie | heat amount of the byproduct gas of a byproduct gas line is maintained more than usual, and it can utilize effectively inside and outside a steelworks.

炭酸ガス分離装置7には従来公知の手法が適用可能であり(例えば、湯川英明監修 「CO2固定化・削減・有効利用の最新技術」(株)シーエムシー出版 2004年、p.42−72参照。)、化学吸収法、物理吸着法(PSA法)、膜分離法などいずれも適用可能であるが、この方法で得られる余剰ガス中の二酸化炭素濃度が相対的に高いことから膜分離法を適用した場合にはより経済的である。 A conventionally known method can be applied to the carbon dioxide separator 7 (for example, “A latest technology of CO 2 fixation / reduction / effective use” supervised by Hideaki Yukawa, CMC Publishing Co., Ltd. 2004, p. 42-72. Any of the chemical absorption method, physical adsorption method (PSA method), membrane separation method, etc. can be applied. However, since the carbon dioxide concentration in the surplus gas obtained by this method is relatively high, the membrane separation method Is more economical when applied.

余剰ガスからの炭酸ガスの除去率は、10モル%以上、100モル%以下とすることが好ましい。図2は、COガスと、H2ガスとを1:1のモル比で配合して転化率(反応割合)を変化させてジメチルエーテルを製造する際に、余剰ガスからの炭酸ガスの除去率を変化させた場合の、炭酸ガス除去後の余剰ガスの熱量の変化を示すグラフである。図2によれば、COガス、H2ガスの転化率(反応割合)が高いほど炭酸ガス除去後の余剰ガスの熱量が増加する割合が大きく、炭酸ガス除去率が高いほど炭酸ガス除去後の余剰ガスの熱量が増加することが分かる。COガス、H2ガス混合ガスの反応前の熱量は約3200kcal/Nm3であり、炭酸ガス除去率が10モル%以上であれば、炭酸ガス除去後の余剰ガスの熱量は、炭酸ガスを除去しない場合に比較して十分に増加しているが、10モル%未満であると、熱量増加の効果が小さい。炭酸ガスの除去率にほぼ比例して処理後のガスの熱量が増加し、除去率が高いほどガスの熱量が増加するため望ましいが、多量の炭酸ガスの除去はコスト高となる場合がある。 The removal rate of carbon dioxide gas from the surplus gas is preferably 10 mol% or more and 100 mol% or less. FIG. 2 shows the removal rate of carbon dioxide gas from surplus gas when CO gas and H 2 gas are blended at a molar ratio of 1: 1 to change the conversion rate (reaction rate) to produce dimethyl ether. It is a graph which shows the change of the calorie | heat amount of the surplus gas after carbon dioxide gas removal at the time of changing. According to FIG. 2, the higher the conversion rate (reaction rate) of CO gas and H 2 gas, the greater the rate of increase in the amount of heat of the excess gas after carbon dioxide removal, and the higher the carbon dioxide removal rate, the higher the carbon dioxide removal rate. It turns out that the calorie | heat amount of surplus gas increases. The amount of heat before the reaction of the CO gas and H 2 gas mixed gas is about 3200 kcal / Nm 3 , and if the carbon dioxide removal rate is 10 mol% or more, the amount of heat of the excess gas after removing the carbon dioxide gas removes the carbon dioxide gas. Although it has increased sufficiently compared with the case where it is not, if it is less than 10 mol%, the effect of increasing the amount of heat is small. The amount of heat of the gas after treatment increases almost in proportion to the removal rate of carbon dioxide, and a higher removal rate is desirable because the amount of heat of gas increases. However, removal of a large amount of carbon dioxide may be costly.

製鉄所で発生する副生ガスを配合した原料ガスとして、転炉ガス(一酸化炭素:58モル%、水素:1モル%、二酸化炭素:17モル%、窒素:24モル%)、コークス炉ガス(一酸化炭素:7モル%、水素:54モル%、二酸化炭素:3モル%、窒素:7モル%、メタン:29モル%)を転炉ガス:コークス炉ガス=63:37の割合で混合したガス(水素:30モル%、一酸化炭素:30モル%、二酸化炭素:9モル%、窒素:15モル%、メタン:16モル%、熱量:3200kcal/Nm3)を、260℃、5MPaにまで加温、加圧したのち、触媒を充填した反応器に流量6000L/kg-cat/hrで導入した。 Converter gas (carbon monoxide: 58 mol%, hydrogen: 1 mol%, carbon dioxide: 17 mol%, nitrogen: 24 mol%), coke oven gas as raw material gas mixed with by-product gas generated at steelworks (Carbon monoxide: 7 mol%, hydrogen: 54 mol%, carbon dioxide: 3 mol%, nitrogen: 7 mol%, methane: 29 mol%) Converter gas: coke oven gas = 63:37 Gas (hydrogen: 30 mol%, carbon monoxide: 30 mol%, carbon dioxide: 9 mol%, nitrogen: 15 mol%, methane: 16 mol%, heat: 3200 kcal / Nm 3 ) at 260 ° C. and 5 MPa The mixture was heated and pressurized to a pressure of 6000 L / kg-cat / hr into the reactor filled with the catalyst.

反応器に充填される触媒には酸化銅−酸化亜鉛−アルミナからなるメタノール合成に使用される触媒とγ−アルミナからなるメタノール脱水触媒を使用した。   As the catalyst charged in the reactor, a catalyst used for methanol synthesis composed of copper oxide-zinc oxide-alumina and a methanol dehydration catalyst composed of γ-alumina were used.

触媒を通したガスは減圧器で減圧、冷却し、その後の凝縮器によって生成物の一部を液化させたのち、気液分離器にてガス成分と液体成分に分離した。この時点でガス成分の組成は一酸化炭素:17モル%、水素:7モル%、二酸化炭素:19モル%、窒素:19モル%、メタン:21モル%であり、二酸化炭素、窒素、メタンの濃度が原料ガスに比べて増大しており、体積当りの熱量は3100kcal/Nm3と原料ガスに比べ熱量が低下していた。 The gas passed through the catalyst was depressurized and cooled by a decompressor, and a part of the product was liquefied by a subsequent condenser, and then separated into a gas component and a liquid component by a gas-liquid separator. At this time, the composition of the gas components is carbon monoxide: 17 mol%, hydrogen: 7 mol%, carbon dioxide: 19 mol%, nitrogen: 19 mol%, methane: 21 mol%, carbon dioxide, nitrogen, methane The concentration increased compared to the raw material gas, and the calorie per volume was 3100 kcal / Nm 3, which was lower than the raw material gas.

次にこの分離されたガスを膜分離による炭酸ガス分離装置に導入してガス中の二酸化炭素を分離した。分離後のガス成分の組成は一酸化炭素:21モル%、水素:21モル%、二酸化炭素:0.5モル%、窒素:25モル%、メタン:28モル%となり、体積当りの熱量は3800kcal/Nm3と原料ガスに比べて約2割増大していた。 Next, this separated gas was introduced into a carbon dioxide separation device by membrane separation to separate carbon dioxide in the gas. The composition of the gas components after separation is carbon monoxide: 21 mol%, hydrogen: 21 mol%, carbon dioxide: 0.5 mol%, nitrogen: 25 mol%, methane: 28 mol%, and the heat per volume is 3800kcal / Nm 3 and about 20% increase compared to the source gas.

製鉄所副生ガスから液化貯蔵可能な燃料を合成する装置のフローシートである、本発明の一実施形態の概念図。The conceptual diagram of one Embodiment of this invention which is a flow sheet of the apparatus which synthesize | combines the fuel which can be liquefied and stored from steelworks byproduct gas. 余剰ガスからの炭酸ガスの除去率を変化させた場合の、炭酸ガス除去後の余剰ガスの熱量の変化を示すグラフ。The graph which shows the change of the calorie | heat amount of the surplus gas after carbon dioxide gas removal at the time of changing the removal rate of the carbon dioxide gas from surplus gas.

符号の説明Explanation of symbols

1 フィルター
2 脱硫装置
3 コンプレッサー
4 反応器
5 凝縮器
6 貯蔵容器
7 炭酸ガス分離装置
8 ガスホルダー
9 工場発電所
a コークス炉ガス
b 転炉ガス
c 高炉ガス
d 炭酸ガス
e それ以外の成分
DESCRIPTION OF SYMBOLS 1 Filter 2 Desulfurization device 3 Compressor 4 Reactor 5 Condenser 6 Storage container 7 Carbon dioxide gas separation device 8 Gas holder 9 Factory power plant a Coke oven gas b Converter gas c Blast furnace gas d Carbon dioxide gas e Other components

Claims (2)

製鉄所で発生する副生ガスの一部を原料ガスとして用い、該原料ガスから液化貯蔵可能な燃料を製造し、
製造された前記液化貯蔵可能な燃料を除去した前記原料ガスの残部である余剰ガスから炭酸ガスの少なくとも一部を分離して、前記原料ガスに比べ低下した該余剰ガスの単位体積当りの熱量を、前記原料ガスに比べて増大させ、
該炭酸ガスの分離除去された余剰ガスであって、熱量の増大した余剰ガスを、前記副生ガスの残部に混合し、
熱量の増大した余剰ガスが混合された副生ガスを発電所及び/または加熱炉で利用することを特徴とする、製鉄所副生ガスからの液化貯蔵可能な燃料の製造方法。
Using a part of the by-product gas generated at the steel works as a raw material gas, producing a fuel that can be liquefied and stored from the raw material gas,
Separating at least part of the carbon dioxide gas from the surplus gas that is the remainder of the raw material gas from which the liquefiable fuel that has been produced is removed , the amount of heat per unit volume of the surplus gas that is reduced compared to the raw material gas , Increased compared to the source gas ,
The surplus gas from which the carbon dioxide gas has been separated and removed, and the surplus gas having an increased amount of heat is mixed with the remainder of the by-product gas,
A method for producing a liquefiable fuel that can be liquefied and stored from an ironworks by-product gas, wherein the by-product gas mixed with surplus gas having an increased heat quantity is used in a power plant and / or a heating furnace.
余剰ガスからの炭酸ガスの除去率を、10〜100モル%とすることを特徴とする、請求項1に記載の製鉄所副生ガスからの液化貯蔵可能な燃料の製造方法。   The method for producing a liquefiable and storeable fuel from an ironworks byproduct gas according to claim 1, wherein the removal rate of carbon dioxide gas from surplus gas is 10 to 100 mol%.
JP2007087034A 2007-03-29 2007-03-29 Method for producing liquefiable storage fuel from by-product gas of steelworks Active JP5384798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087034A JP5384798B2 (en) 2007-03-29 2007-03-29 Method for producing liquefiable storage fuel from by-product gas of steelworks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087034A JP5384798B2 (en) 2007-03-29 2007-03-29 Method for producing liquefiable storage fuel from by-product gas of steelworks

Publications (2)

Publication Number Publication Date
JP2008247929A JP2008247929A (en) 2008-10-16
JP5384798B2 true JP5384798B2 (en) 2014-01-08

Family

ID=39973279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087034A Active JP5384798B2 (en) 2007-03-29 2007-03-29 Method for producing liquefiable storage fuel from by-product gas of steelworks

Country Status (1)

Country Link
JP (1) JP5384798B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU91558B1 (en) * 2009-04-28 2010-10-29 Wurth Paul Sa Method for feeding a burden to a blast furnace
LU91559B1 (en) * 2009-04-28 2010-10-29 Wurth Paul Sa Method for feeding a burden to a blast furnace

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212259A (en) * 1997-01-29 1998-08-11 Nkk Corp Production of dimethyl ether from by-product gas from iron mill
JPH11152241A (en) * 1997-11-19 1999-06-08 Nkk Corp Apparatus for recovering dimethyl ether and carbon dioxide
JP2000283658A (en) * 1999-03-30 2000-10-13 Kawasaki Steel Corp Method and apparatus for utilizing converter gas
JP2002155004A (en) * 2000-11-21 2002-05-28 Nkk Corp Method for producing dimethyl ether
JP4224240B2 (en) * 2002-02-07 2009-02-12 株式会社荏原製作所 Liquid fuel synthesis system
JP4003553B2 (en) * 2002-06-26 2007-11-07 Jfeスチール株式会社 Power generation method and power generation facility using by-product gas
JP2004091327A (en) * 2002-08-29 2004-03-25 Jfe Holdings Inc Method for separating dimethyl ether
JP2004224926A (en) * 2003-01-23 2004-08-12 Jfe Steel Kk Method for utilizing by-product gas of iron mill
JP2004309067A (en) * 2003-04-09 2004-11-04 Nippon Steel Corp Method of using blast furnace gas

Also Published As

Publication number Publication date
JP2008247929A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
Bermúdez et al. An overview of novel technologies to valorise coke oven gas surplus
US9085513B2 (en) Co-production of methanol and urea
EP2196448A1 (en) Method of coproducing methanol and ammonia
US6599491B2 (en) Bimodal hydrogen manufacture
US7459131B2 (en) Reduced temperature regernerating/calcining apparatus for hydrogen generation
JP2003081605A (en) Hydrogen producing method accompanying recovery of liquefied co2
JP4580310B2 (en) Generation method of high calorific gas
EA027871B1 (en) Process for producing ammonia and urea
CN103781724A (en) Apparatus for producing a synthetic gas including carbon monoxide and hydrogen, and method therefor
EA033955B1 (en) Integrated process for the production of formaldehyde-stabilized urea
JP2009120897A (en) Method for utilizing blast furnace gas
CN110869314A (en) Process for producing ammonia synthesis gas
KR101838094B1 (en) Process for improving the hydrogen content of a systhesis gas
KR101351317B1 (en) A method for preparing reducing gas by using cokes oven gas and by-product gas from steel works
KR102263022B1 (en) Method for producing hydrogen from hydrogen psa off-gas of coke oven gas
WO2012067222A1 (en) Methanol production process
WO2015151992A1 (en) System for manufacturing aromatic compound and method for manufacturing same
JP4030846B2 (en) Methanol production method and apparatus
JP5384798B2 (en) Method for producing liquefiable storage fuel from by-product gas of steelworks
JP2010173985A (en) Method and facility for manufacturing hydrocarbon fuel
MXPA01005335A (en) Process for making ammonia from heterogeneous feedstock.
JP2008143770A (en) System and apparatus for recovering waste heat
KR101501655B1 (en) A refoming process of cokes oven gas for reducing CO2
JP2008290927A (en) Method and apparatus for refining hydrogen by using organic hydride
RU2014128939A (en) COUNTER-FLOW GASIFICATION WITH SYNTHESIS GAS AS A WORKING ENVIRONMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131003

R150 Certificate of patent or registration of utility model

Ref document number: 5384798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250