JP2003081605A - Hydrogen producing method accompanying recovery of liquefied co2 - Google Patents

Hydrogen producing method accompanying recovery of liquefied co2

Info

Publication number
JP2003081605A
JP2003081605A JP2001268396A JP2001268396A JP2003081605A JP 2003081605 A JP2003081605 A JP 2003081605A JP 2001268396 A JP2001268396 A JP 2001268396A JP 2001268396 A JP2001268396 A JP 2001268396A JP 2003081605 A JP2003081605 A JP 2003081605A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
liquefied
combustion
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001268396A
Other languages
Japanese (ja)
Other versions
JP3670229B2 (en
Inventor
Yoshiaki Takatani
芳明 高谷
Seiichi Nakanishi
誠一 中西
Eiji Kawagoe
英司 川越
Kenjiro Haraguchi
憲次郎 原口
Shoji Kamiya
祥二 神谷
Masaru Ogawa
賢 小川
Hiroshi Honda
宏 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Kawasaki Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Kawasaki Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2001268396A priority Critical patent/JP3670229B2/en
Publication of JP2003081605A publication Critical patent/JP2003081605A/en
Application granted granted Critical
Publication of JP3670229B2 publication Critical patent/JP3670229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/02Separating impurities in general from the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PROBLEM TO BE SOLVED: To perform hydrogen production and CO2 recovery at the same time and to effectively utilize LNG cold. SOLUTION: In a method of producing hydrogen by steam reforming using liquefied natural gas (LNG) as a raw material to obtain purified hydrogen, the separation/recovery and the liquefaction of CO2 are facilitated by utilizing unrecovered combustible gas (PSA off-gas) produced in the purification process of hydrogen as fuel for heating a reformer and using high concentration oxygen preferably pure oxygen as an oxidizing agent for the combustion to obtain high concentration CO2 in the produced combustion gas. High concentration oxygen or pure oxygen is produced by the low-temperature separation process using the LNG cold effectively to be used as the oxidizing agent for a combustion furnace of the reformer and liquefied nitrogen is used for the liquefaction of pure hydrogen. Further, carbon dioxide is recovered in a liquefied state by using the LNG cold effectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、天然ガスを水蒸気
改質して水素を製造する方法において、原料である液化
天然ガス(LNG)が保有する冷熱を有効利用するとと
もに、改質器からの燃焼排ガスから容易に液化CO2
回収することができる水素製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for steam-reforming natural gas to produce hydrogen, by effectively utilizing the cold heat of liquefied natural gas (LNG), which is a raw material, and from a reformer. The present invention relates to a hydrogen production method capable of easily recovering liquefied CO 2 from combustion exhaust gas.

【0002】[0002]

【従来の技術】天然ガスを水蒸気改質して水素を製造す
るプロセスは、従来、化成品(メタノール、アンモニ
ア)製造などで広く工業化された技術である。このよう
な水素製造プラントは、海外立地の場合が多く、これら
の国で原料となる天然ガスはガスで供給されるのが通例
である。
2. Description of the Related Art The process of steam-reforming natural gas to produce hydrogen has hitherto been a widely industrialized technique for producing chemical products (methanol, ammonia). Such hydrogen production plants are often located in overseas locations, and natural gas, which is a raw material in these countries, is usually supplied by gas.

【0003】一方、日本では天然ガスの輸入は、液化し
てタンカー輸送されるのが通例であり、液化天然ガス
(LNG)の保有する冷熱は、一部は、冷熱発電、深冷
空気分離、LNGボイルオフガスの再冷却熱源として利
用され、周辺コンビナートの冷凍倉庫などへの冷熱供給
にも利用されるが、高々50%程度の利用率に留まって
いる。有効利用されていない冷熱は、海水や大気に無為
に捨てられている。また、海水でLNGを暖めるという
熱交換方法が、末端ユーザーへの天然ガス配送のために
採られるLNGガス化の手段であるが、冷却された海水
を沿岸にそのまま放出すると沿岸漁場への環境影響があ
る。このようにLNG冷熱は有効利用されないばかり
か、むしろ、その冷熱の処分に窮しているというのが本
質的な問題であった。
On the other hand, in Japan, imports of natural gas are usually liquefied and transported by tankers, and some of the cold heat of liquefied natural gas (LNG) is cold power generation, deep air separation, It is used as a heat source for re-cooling LNG boil-off gas and is also used for supplying cold heat to the frozen warehouses in the peripheral complex, but the utilization rate is at most about 50%. Cold heat that is not effectively used is dumped wastefully into seawater and the atmosphere. In addition, the heat exchange method of warming LNG with seawater is a means of LNG gasification that is used to deliver natural gas to end users. However, if cooled seawater is discharged directly to the coast, it will have an environmental impact on coastal fishing grounds. There is. As described above, the essential problem is that the LNG cold heat is not effectively utilized, but rather, the cold heat is poorly disposed.

【0004】また、天然ガスを改質して水素を製造した
場合、地球温暖化物質として二酸化炭素が発生する。従
来、二酸化炭素の大気放出に対する環境規制は特にはな
かったが、今後、CO2放出に関する規制やCO2の処理
義務が伴う社会情勢の到来が予想される。
When hydrogen is produced by reforming natural gas, carbon dioxide is generated as a global warming substance. Conventionally, environmental regulations against atmospheric discharge of carbon dioxide was not particularly future advent of social conditions with the processing duties of the regulations and CO 2 about CO 2 emission is expected.

【0005】[0005]

【発明が解決しようとする課題】従来、天然ガスを改質
して水素に富む改質ガスとし、改質ガスはPSA吸着分
離法などで水素を分離精製し、分離された可燃物を含む
オフガスを主燃料として改質器の加熱炉に用いる方法に
おいては、オフガス燃焼の酸化剤として空気が使用され
ている。しかし、空気で燃焼させると燃焼排ガス中の二
酸化炭素濃度は窒素で薄まってしまっているので、二酸
化炭素の分離回収が難しい。特に、LNG冷熱で冷却し
ても二酸化炭素分圧が低いと液化せずに固相域の状態、
つまりドライアイスにしかならず、回収した二酸化炭素
のハンドリングがやっかいになる。
Conventionally, natural gas is reformed into a hydrogen-rich reformed gas, and the reformed gas is an offgas containing combustibles separated and purified by separating and refining hydrogen by a PSA adsorption separation method or the like. In the method of using as a main fuel in a heating furnace of a reformer, air is used as an oxidant for off-gas combustion. However, when burning with air, the concentration of carbon dioxide in the flue gas has been diluted with nitrogen, making it difficult to separate and collect carbon dioxide. In particular, even if it is cooled with LNG cold heat, if the carbon dioxide partial pressure is low, it will not liquefy and will be in the solid phase region,
In other words, it is not only dry ice, but the handling of the collected carbon dioxide is troublesome.

【0006】本発明は上記の点に鑑みなされたもので、
本発明の目的は、純酸素(又は高濃度の酸素)をオフガ
ス燃焼の酸化剤として使用し、天然ガスを酸素燃焼加熱
により改質して水素を製造するシステムとすることによ
り、高濃度の二酸化炭素を含んだ燃焼排ガスが得られ、
加圧してLNG冷熱で冷却すれば容易に液化CO2とし
て回収でき、貯蔵や販売のための輸送など取り扱いが容
易になる水素製造方法を提供することにある。また、本
発明の目的は、LNGから天然ガス改質によって水素を
製造するシステムにおいて、LNG冷熱を利用した深冷
空気分離で製造した純酸素を天然ガスの改質プロセスで
有効利用するとともに、LNG冷熱を有効利用して燃焼
排ガスから液化CO2を回収することにより、LNG冷
熱のさらなる有効利用が実現できる水素製造方法を提供
することにある。
The present invention has been made in view of the above points,
An object of the present invention is to use pure oxygen (or a high concentration of oxygen) as an oxidizer for off-gas combustion, and to provide a system for producing hydrogen by reforming natural gas by oxygen combustion heating to produce a high concentration of dioxide. Combustion exhaust gas containing carbon is obtained,
An object of the present invention is to provide a hydrogen production method which can be easily recovered as liquefied CO 2 by pressurizing and cooling with LNG cold heat, and which can be easily handled such as storage and transportation for sale. Further, an object of the present invention is to effectively utilize pure oxygen produced by deep-air separation using LNG cold heat in a reforming process of natural gas in a system for producing hydrogen from LNG by reforming natural gas. It is an object of the present invention to provide a hydrogen production method capable of realizing more effective utilization of LNG cold heat by recovering liquefied CO 2 from combustion exhaust gas by effectively utilizing cold heat.

【0007】なお、特開平11−111320号公報に
は、LNGを原料として水蒸気改質により水素を製造
し、得られた水素を燃料電池で利用して電力を発生させ
るシステムにおいて、発電後の燃料電池からの窒素濃縮
ガスをPSA法により酸素と窒素に分離し、燃料電池か
らの炭酸ガスと未反応燃料はLNG冷熱で炭酸ガスを液
化して分離し、分離された酸素と未反応燃料は熱回収部
から抜き出した水蒸気とともに改質器に循環するという
構成が開示されているが、上記公報に記載された発明
は、燃料電池本体で発電後の排ガスを対象にしており、
また、本発明とは、目的、構成、機能・作用及び効果等
が全く異なっている。
Japanese Patent Laid-Open No. 11-113120 discloses a system in which hydrogen is produced by steam reforming using LNG as a raw material, and the obtained hydrogen is used in a fuel cell to generate electric power. Nitrogen-enriched gas from the cell is separated into oxygen and nitrogen by the PSA method, carbon dioxide gas and unreacted fuel from the fuel cell are separated by liquefying carbon dioxide gas with LNG cold heat, and separated oxygen and unreacted fuel are heated. Although a configuration is disclosed in which it is circulated to the reformer together with the steam extracted from the recovery unit, the invention described in the above publication is directed to the exhaust gas after power generation in the fuel cell body,
Further, the present invention is completely different from the present invention in the purpose, constitution, function / action, effect and the like.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の液化CO2回収を伴う水素製造方法は、
天然ガスを水蒸気改質して水素に富む改質ガスとし、こ
の改質ガスから水素を分離精製し、水素の精製工程で分
離された可燃物を含むオフガスを主燃料として改質工程
での燃焼加熱に用いる水素製造方法において、改質工程
でのオフガス燃焼のための酸化剤として高濃度の酸素、
好ましくは純酸素を導入し、この燃焼で発生する燃焼排
ガス中の炭酸ガスを高濃度にして、燃焼排ガスから炭酸
ガスを容易に液体状態で分離・回収するように構成され
ている。
In order to achieve the above object, the method for producing hydrogen with recovery of liquefied CO 2 of the present invention comprises:
Natural gas is steam reformed into hydrogen-rich reformed gas, hydrogen is separated and purified from this reformed gas, and the off-gas containing combustibles separated in the hydrogen purification process is used as the main fuel for combustion in the reforming process. In the hydrogen production method used for heating, high concentration oxygen as an oxidant for off-gas combustion in the reforming step,
Preferably, pure oxygen is introduced, the carbon dioxide gas in the combustion exhaust gas generated by this combustion is made to have a high concentration, and the carbon dioxide gas is easily separated and recovered from the combustion exhaust gas in a liquid state.

【0009】上記の方法において、天然ガスの供給形態
が液化天然ガス(LNG)であり、その液化冷熱を利用
した深冷空気分離により純酸素又は高濃度の酸素を製造
し、この酸素を改質工程でのオフガス燃焼のための酸化
剤として使用し、深冷空気分離で得られた液化窒素を精
製した水素の液化に利用することが好ましい。また、L
NG冷熱を有効利用して、オフガス燃焼で発生する燃焼
排ガスから炭酸ガスを液体状態で分離・回収することが
好ましい。
In the above method, the supply form of natural gas is liquefied natural gas (LNG), and pure oxygen or high-concentration oxygen is produced by cryogenic air separation using the liquefied cold heat, and this oxygen is reformed. It is preferable to use it as an oxidant for off-gas combustion in the process and utilize the liquefied nitrogen obtained by the cryogenic air separation for the liquefaction of purified hydrogen. Also, L
It is preferable to effectively utilize NG cold heat to separate and recover carbon dioxide gas in a liquid state from combustion exhaust gas generated by off-gas combustion.

【0010】また、上記の方法においては、高濃度の炭
酸ガスを含んだ燃焼排ガスから液化CO2を分離・回収
するに際し、前処理として燃焼排ガス中に含まれる水分
を除去した後、炭酸ガスの液化が可能な圧力に昇圧し、
液化天然ガスの冷熱を用いて冷却することにより液化C
2を得ることが好ましい。この場合、水分除去のため
の前処理として、水分を選択的に吸着する合成ゼオライ
ト3A型を用いて燃焼排ガス中に含まれる水分を除去す
ることが好ましい。
Further, in the above method, when the liquefied CO 2 is separated and recovered from the combustion exhaust gas containing a high concentration of carbon dioxide gas, after removing the water contained in the combustion exhaust gas as a pretreatment, Increase the pressure to liquefy,
Liquefied C by liquefying natural gas
It is preferred to obtain O 2 . In this case, as a pretreatment for removing water, it is preferable to remove the water contained in the combustion exhaust gas by using a synthetic zeolite 3A type that selectively adsorbs water.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明するが、本発明は下記の実施の形態に何ら限定さ
れるものではなく、適宜変更して実施することが可能な
ものである。図1は、本発明の実施の第1形態による液
化CO2回収を伴う水素製造方法を実施する装置の全体
システムの概要を示している。本実施の形態では、LN
Gから天然ガス改質によって水素を製造するシステムを
想定している。LNG基地全体での冷熱利用としては、
水素製造システムの系外に深冷空気分離設備10が設置
されているが、「深冷空気分離」の存在は何ら無理のな
い条件設定である。例えば、既存のLNG基地の冷熱利
用の現状は、最も進んだLNG冷熱利用の場合でも、そ
の利用率は高々50%である。一例として、その主な用
途は以下のような内訳になっている。冷熱発電;59.
5%、空気分離への冷熱利用;17.7%、LNGタン
クのボイルオフガス(BOG)再液化;17.5%、液
化炭酸製造;0.7%
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments, and can be appropriately modified and implemented. . FIG. 1 shows an outline of an entire system of an apparatus for carrying out a hydrogen production method with liquefied CO 2 recovery according to a first embodiment of the present invention. In this embodiment, the LN
A system for producing hydrogen from G by natural gas reforming is assumed. For the use of cold heat at the entire LNG base,
Although the deep air separation facility 10 is installed outside the hydrogen production system, the existence of "deep air separation" is a reasonable condition setting. For example, at present, the utilization of cold heat at existing LNG bases is 50% at most even in the most advanced use of LNG cold heat. As an example, the main uses are as follows. Cold heat generation; 59.
5%, utilization of cold heat for air separation; 17.7%, LNG tank boil-off gas (BOG) reliquefaction; 17.5%, liquefied carbon dioxide production; 0.7%

【0012】深冷空気分離設備10で生産される純酸素
を天然ガス改質器12の加熱炉(燃焼炉)の酸化剤とし
て利用する。LNG冷熱を利用した深冷空気分離で製造
した純酸素を天然ガスの改質プロセスで有効利用するこ
とによって、2次的なLNG冷熱の有効利用の需要プロ
セスを創出する。また、天然ガスを改質器12及びCO
シフト反応器14によって水素に富む改質ガスとし、水
素精製設備16でPSA吸着分離法により水素を分離精
製し、分離された可燃物を含むオフガスを改質器12の
加熱燃料として使用する。このように、改質器12の加
熱炉の主燃料は、PSAのオフガスであるが、従来の化
学工業用の水素製造法でのバランスは、補助燃料として
天然ガスを加えた燃料との混合ガスが燃料となる。しか
し、純酸素燃焼するならば、空気で燃焼する場合と異な
り、排ガス中に窒素が含まれないので、言い換えれば、
燃焼排ガスの窒素成分の持ち去り顕熱が少なくて済み、
結果的に天然ガス補助燃料の消費量を抑えるか、無くす
効果も期待できる。
Pure oxygen produced in the cryogenic air separation facility 10 is used as an oxidizer for the heating furnace (combustion furnace) of the natural gas reformer 12. By effectively using the pure oxygen produced by the deep air separation using LNG cold heat in the reforming process of natural gas, a demand process for effective use of secondary LNG cold heat is created. In addition, the natural gas is supplied to the reformer 12 and CO
The shift reactor 14 produces a reformed gas rich in hydrogen, and the hydrogen purification facility 16 separates and purifies the hydrogen by the PSA adsorption separation method, and the off gas containing the separated combustible material is used as a heating fuel for the reformer 12. As described above, the main fuel of the heating furnace of the reformer 12 is the off gas of PSA, but the balance in the conventional hydrogen production method for the chemical industry is a mixed gas with the fuel to which natural gas is added as an auxiliary fuel. Becomes fuel. However, in the case of pure oxygen combustion, unlike in the case of combustion with air, nitrogen is not contained in the exhaust gas, in other words,
The nitrogen component of the combustion exhaust gas is carried away and less sensible heat is required.
As a result, the effect of suppressing or eliminating the consumption of natural gas auxiliary fuel can be expected.

【0013】また、純酸素をオフガス燃焼の酸化剤とし
て使用することにより、燃焼排ガスは二酸化炭素、水
分、酸素だけになるので、この燃焼排ガスをLNG冷熱
を利用したCO2の深冷分離プロセス(CO2液化設備1
8)で処理すれば、水分は除湿器20での前処理で凝縮
・吸着除去されているので、燃焼用の過剰酸素と二酸化
炭素だけの排ガスとなって、分離プロセスに必要なエネ
ルギーが少なくて済む。さらに都合良く、二酸化炭素が
高濃度となるので、二酸化炭素の相平衡の状態図の関係
から、それほど全圧を高くしなくても液相となる分圧に
することができる。つまり、少ない処理ガス量を低い圧
力で圧縮・冷却すれば良いため、容易に液化CO2を製
造することができる。
Further, when pure oxygen is used as an oxidant for off-gas combustion, the combustion exhaust gas is only carbon dioxide, water and oxygen. Therefore, this combustion exhaust gas is subjected to a deep cooling separation process of CO 2 using LNG cold heat ( CO 2 liquefaction facility 1
If treated in 8), the water is condensed and adsorbed and removed by the pretreatment in the dehumidifier 20, so it becomes exhaust gas of only excess oxygen and carbon dioxide for combustion, and the energy required for the separation process is small. I'm done. More conveniently, since the carbon dioxide has a high concentration, it is possible to set the partial pressure to a liquid phase even if the total pressure is not so high from the relationship of the phase diagram of the phase equilibrium of carbon dioxide. That is, since it is sufficient to compress and cool a small amount of processing gas at a low pressure, it is possible to easily produce liquefied CO 2 .

【0014】精製した水素は、ガス貯蔵される場合と、
液化して貯蔵する場合とがある。精製水素を液化する場
合は、予冷却器22でLNG冷熱を用いて予冷した後、
前述の深冷空気分離によって得られた液体窒素を水素液
化のための冷媒として利用して冷却器24で水素を液化
する。従来の水素の製造だけを目的とした生産システム
では、二酸化炭素の回収を目的とした余分なプロセスを
付加することは、設備コストがかさむので、水素の製造
コストが上昇することになる。しかし、CO2処理を前
提としたような社会情勢、すなわち、CO2に対する課
税処置等が施行されるような国際的合意が整えば、水素
とある意味で付加価値を有する二酸化炭素がLNG冷熱
を有効利用して、同時に製造できるため、システム全体
のコストとしては、低減されることになる。
Purified hydrogen is stored in gas and
It may be liquefied and stored. When liquefying purified hydrogen, after precooling with LNG cold heat in the precooler 22,
The liquid nitrogen obtained by the above-described deep-air separation is used as a refrigerant for hydrogen liquefaction to liquefy hydrogen in the cooler 24. In a conventional production system only for producing hydrogen, adding an extra process for the purpose of recovering carbon dioxide increases the facility cost, resulting in an increase in hydrogen production cost. However, if there is a social situation on the premise of CO 2 treatment, that is, if there is an international agreement to implement tax treatment for CO 2 , hydrogen and carbon dioxide, which has a certain added value, will generate LNG cold heat. Since it can be effectively used and manufactured at the same time, the cost of the entire system is reduced.

【0015】図2は、本発明の実施の第2形態による液
化CO2回収を伴う水素製造方法を実施する装置を示し
ている。 改質ユニット 天然ガスから水素を製造するプロセスとしては、一般に
は水蒸気改質(スチームリフォーミング)と呼ばれる下
記の反応が適用される。 CH4+2H2O=CO2+4H2 …(1) ただし、上記の反応式(1)は、実際には下記の
(2)、(3)の反応式の平衡関係で反応率、組成が決
まる。 CH4+H2O=CO+3H2 …(2) CO+H2O=CO2+H2 …(3) つまり、操作圧力、温度、スチームカーボン比によっ
て、到達平衡条件が決定する。(2)式が吸熱反応、
(3)式が発熱反応であるから、温度が高いほど(2)
式は進行するのでメタンの反応率は向上するが、逆に温
度が高いと(3)式は逆方向に有利となるので、改質ガ
スのCO濃度は高くなる。一例として、改質器出口の改
質ガス温度で800℃となる設定でプロセスを構成す
る。
FIG. 2 shows an apparatus for carrying out the method for producing hydrogen with liquefied CO 2 recovery according to the second embodiment of the present invention. Reforming unit As a process for producing hydrogen from natural gas, the following reaction generally called steam reforming (steam reforming) is applied. CH 4 + 2H 2 O = CO 2 + 4H 2 (1) However, in the above reaction formula (1), the reaction rate and composition are actually determined by the equilibrium relationship of the following reaction formulas (2) and (3). . CH 4 + H 2 O = CO + 3H 2 (2) CO + H 2 O = CO 2 + H 2 (3) That is, the reaching equilibrium condition is determined by the operating pressure, temperature, and steam carbon ratio. Equation (2) is an endothermic reaction,
Since the equation (3) is an exothermic reaction, the higher the temperature, the (2)
Since the equation progresses, the reaction rate of methane improves, but on the contrary, if the temperature is high, the equation (3) is advantageous in the opposite direction, so that the CO concentration of the reformed gas increases. As an example, the process is configured such that the reformed gas temperature at the reformer outlet is 800 ° C.

【0016】操作圧力については、(2)式を見てわか
るようにモル数が増加するので、圧力が高くなるほど反
応は進みにくくなる。改質反応だけで言えば、大気圧で
操作する方が好ましいが、今回のシステムのように改質
プロセスの後流に水素精製のPSAであるとか、化学合
成プロセス等の加圧条件で操作するプロセスがつながる
場合には、システム全体の経済性を考えると改質圧力を
高圧系で操作することになることが多い。本実施の形態
では、一例として、16.93kg/cm2の改質ガス出口
圧力の設定を行う。
As for the operating pressure, since the number of moles increases as can be seen from the equation (2), the reaction becomes more difficult to proceed as the pressure increases. Speaking of the reforming reaction alone, it is preferable to operate at atmospheric pressure, but like this system, PSA for hydrogen purification is used in the downstream of the reforming process, or it is operated under pressure conditions such as chemical synthesis process. When the processes are connected, it is often the case that the reforming pressure is operated by a high pressure system in consideration of the economy of the entire system. In the present embodiment, as an example, the reformed gas outlet pressure of 16.93 kg / cm 2 is set.

【0017】この改質反応の副反応で、従来からあるト
ラブルの主要なものとして、カーボン析出反応の併発が
ある。 2CO=C+CO2 …(4) CH4=C+2H2 …(5) こういったカーボン析出反応はスチームの添加量を増加
させることで回避できる。ただし、スチーム消費量は、
熱損失、使用水量の増大に直結するため、少ない方が経
済性は向上するので、実績ベースで安全操業可能な範囲
で設定される。このカーボン析出反応は、触媒の種類に
よって異なるが、工業的に実績のあるニッケル系触媒で
は、通例、スチームカーボン比(H2Oと原料ガス中の
Cのモル比)は3〜4前後で設定される。本実施の形態
では、一例として、実績を基に3.3で設定する。以上
が、天然ガスのスチームリフォーミングの反応原理と本
実施形態の概念設計の主要な設定条件との関係である。
As a side reaction of this reforming reaction, a major problem that has existed in the past is the simultaneous occurrence of a carbon deposition reaction. 2CO = C + CO 2 (4) CH 4 = C + 2H 2 (5) Such a carbon deposition reaction can be avoided by increasing the addition amount of steam. However, steam consumption is
Since it is directly linked to heat loss and increase in the amount of water used, the smaller the amount, the better the economic efficiency. This carbon deposition reaction varies depending on the type of catalyst, but in a nickel-based catalyst that has an industrial track record, the steam carbon ratio (molar ratio of H 2 O and C in the raw material gas) is usually set to around 3 to 4. To be done. In the present embodiment, as an example, the value is set to 3.3 based on the actual result. The above is the relationship between the reaction principle of steam reforming of natural gas and the main setting conditions of the conceptual design of the present embodiment.

【0018】次に、改質器の物質の流れを説明する。後
述のCO2液化ユニットに設置されたエアフィン型の気
化・昇温器で大気温度となった天然ガスは、改質器42
の加熱炉26に設置される予熱器28で加熱される。一
方の反応原料のスチームは、ボイラ給水を加熱炉26に
設置された予熱器30で予熱した後、改質ガスの余熱を
回収するスチーム発生器(廃熱ボイラ)32でスチーム
を製造し、このスチームが天然ガスと混合される。34
は純水製造設備、36はボイラ用薬注設備、38は脱気
器、40は蒸気ドラムである。天然ガスとスチームの混
合ガスは、さらに加熱炉26で予熱され、500℃程度
に昇温して改質器42の触媒層に供給される。44はバ
ーナーである。この予熱温度500℃という設定は、使
用する触媒にもよるが、ニッケル系の触媒の反応開始温
度が400℃程度であるので、それ以上に昇温して供給
するためである。なお、触媒としては、ニッケル系触媒
(Ni/Al23、Ni/ZrO2等)の他に、ロジウ
ム系触媒(Rh/Al23、Rh/ZrO2等)、ルテ
ニウム系触媒(Ru/Al23、Ru/ZrO2等)な
どを用いることができる。
Next, the flow of substances in the reformer will be described. The air fin type vaporizer / heater installed in the CO 2 liquefaction unit, which will be described later, brings the natural gas to atmospheric temperature to the reformer 42.
It is heated by a preheater 28 installed in the heating furnace 26 of FIG. The steam of one of the reaction raw materials, after preheating the boiler feed water with the preheater 30 installed in the heating furnace 26, produces steam with the steam generator (waste heat boiler) 32 that recovers the residual heat of the reformed gas. Steam is mixed with natural gas. 34
Is a pure water production facility, 36 is a boiler chemical injection facility, 38 is a deaerator, and 40 is a steam drum. The mixed gas of natural gas and steam is further preheated in the heating furnace 26, heated to about 500 ° C., and supplied to the catalyst layer of the reformer 42. 44 is a burner. The setting of the preheating temperature of 500 ° C. depends on the catalyst used, but since the reaction start temperature of the nickel-based catalyst is about 400 ° C., the temperature is raised more than that and supplied. As the catalyst, in addition to nickel-based catalysts (Ni / Al 2 O 3 , Ni / ZrO 2, etc.), rhodium-based catalysts (Rh / Al 2 O 3 , Rh / ZrO 2 etc.), ruthenium-based catalysts (Ru) are used. / Al 2 O 3 , Ru / ZrO 2, etc.) can be used.

【0019】改質器42の加熱炉は、後述のPSA(水
素精製設備46)で水素を約78%分離した後の未回収
水素、CO及び微量の未反応メタンを含むPSAオフガ
スを主燃料とし、補助燃料として天然ガスを使用する。
加熱炉内の高温燃焼ガス温度分布を均一にして改質器に
熱供給するところがプロセスの重要な工夫点である。そ
の主要な特徴は、バーナー44の取付位置(加熱炉の側
壁に付けたり、底部にバーナーを設置するなど)や輻射
加熱を主体とするバーナー構造などである。
The heating furnace of the reformer 42 uses PSA off-gas containing unrecovered hydrogen, CO and a trace amount of unreacted methane as the main fuel after hydrogen is separated by about 78% in PSA (hydrogen purification equipment 46) described later. , Use natural gas as an auxiliary fuel.
An important point of the process is to make the temperature distribution of high temperature combustion gas in the heating furnace uniform and supply heat to the reformer. The main features are the mounting position of the burner 44 (attached to the side wall of the heating furnace or installing the burner at the bottom), the burner structure mainly including radiant heating, and the like.

【0020】再度、プロセスフローの改質ガスの流れに
戻って説明する。改質器42を出た改質ガスは、前述の
スチーム発生器(廃熱ボイラ)32でスチーム発生の熱
源として利用され、自身は温度を下げて次の反応工程で
ある一酸化炭素変成器(COシフト反応器)48に移
る。シフト反応は、改質反応のところで記載した反応式
と同じであるが、 CO+H2O=CO2+H2 …(3) の反応により、COを水素に変成(シフト)すること
で、水素の収率を高めるために設定される。前述の通
り、発熱反応なので、低温であるほど平衡上は反応が有
利になるが、触媒の活性はある程度以上の温度を必要と
する。一般に、高温シフトと呼ばれるFe系触媒を用い
る350℃程度の反応温度の反応器が用いられる。場合
によって、さらに水素収率を高める必要がある場合は、
もう一段低温にして、200℃程度の反応温度でCu系
触媒を用いた低温シフトを組み合わせることもある。本
実施の形態では、既存の実績に基づき、高温シフト1段
で構成している。
The process gas reforming gas flow will be described again. The reformed gas discharged from the reformer 42 is used as a heat source for steam generation in the above-mentioned steam generator (waste heat boiler) 32, and the temperature of the reformed gas itself is lowered to form the carbon monoxide shift converter ( CO shift reactor) 48. The shift reaction is the same as the reaction formula described in the reforming reaction, but by converting (shifting) CO into hydrogen by the reaction of CO + H 2 O = CO 2 + H 2 (3) Set to increase the rate. As mentioned above, since the reaction is exothermic, the reaction becomes more advantageous in equilibrium at lower temperatures, but the activity of the catalyst requires a certain temperature or higher. Generally, a reactor having a reaction temperature of about 350 ° C. using an Fe-based catalyst called a high temperature shift is used. In some cases, if it is necessary to further increase the hydrogen yield,
There is also a case where the temperature is lowered to another step and a low temperature shift using a Cu-based catalyst is combined at a reaction temperature of about 200 ° C. In the present embodiment, one high temperature shift is used based on the existing results.

【0021】水素精製ユニット COシフト反応器(高温シフト反応器)48を出た改質
ガスは、スチーム発生のためのボイラ給水の予熱器50
で熱回収した後、凝縮器52と水冷の冷却器54で改質
ガス中に含まれる過剰水分を飽和凝縮させる。これは、
後流のPSA吸着剤への負荷を低減するという目的があ
る。このように過剰な水分をドレンとして回収した後、
40℃程度の常温付近のガス温度で、改質ガスは水素精
製設備46、すなわち、PSAの吸着塔に供給される。
PSAはPressure Swing Adsorp
tionの略称であり、広く工業界で普及しており、今
や工業規模にとどまらず、少量の窒素発生のPSAも普
及している。操作原理の基本は、吸着剤へのガス吸着容
量が高圧で多く、低圧で少ないという吸着容量の差を利
用したものである。つまり、複数の塔で構成し、ある塔
を加圧で吸着工程に置き、別の塔では減圧して吸着した
ガスを脱着させる。このサイクルを循環することによっ
て、連続プロセスとしてガスの分離が可能になるという
ものである。
The reformed gas discharged from the hydrogen purifying unit CO shift reactor (high temperature shift reactor) 48 is a boiler feed water preheater 50 for generating steam.
After the heat is recovered by, the condenser 52 and the water-cooled cooler 54 saturate the excess water contained in the reformed gas. this is,
The purpose is to reduce the load on the downstream PSA adsorbent. After collecting excess water as drain like this,
The reformed gas is supplied to the hydrogen purification equipment 46, that is, the adsorption tower of the PSA at a gas temperature of about 40 ° C. near room temperature.
PSA is Pressure Swing Adsorb
It is an abbreviation of “ion” and is widely used in the industrial field. Now, PSA for generating a small amount of nitrogen is not only limited to the industrial scale. The operating principle is based on the fact that the gas adsorption capacity of the adsorbent is large at high pressure and small at low pressure. That is, it is composed of a plurality of columns, one column is placed under pressure in the adsorption step, and another column is decompressed to desorb the adsorbed gas. By circulating this cycle, it is possible to separate the gas as a continuous process.

【0022】本実施の形態では、4塔式の水素精製用の
PSAを採用している。なお、基本原理的には吸着と脱
着の2塔でも構成できるが、昇圧、減圧時のガスをプロ
セス内で利用して、均圧、パージなどの中間工程を盛り
込んで水素純度向上、収率向上を図ったものが4塔式P
SAであり、水素精製用としては最も一般的な形式であ
る。すなわち、図3に示すように、本実施形態の水素精
製設備46は、吸着塔56を4基設置したPSAユニッ
トであり、精製水素は精製水素・中間タンク58を経由
して回収され、PSAオフガス(二酸化炭素と未回収水
素)はPSAオフガスタンク60を経由して改質器のバ
ーナーに送られる。精製水素の一部は、脱着後の吸着塔
56内の残留不純物(CO2)のパージ及び吸着圧まで
の昇圧のために、精製水素・中間タンク58からリサイ
クルされる。
In the present embodiment, a 4-column PSA for hydrogen purification is adopted. In principle, it can be configured with two columns, one for adsorption and the other for desorption, but by using the gas at the time of pressurization and depressurization in the process, intermediate steps such as pressure equalization and purging are included to improve hydrogen purity and yield. 4 tower type P
SA, which is the most common format for hydrogen purification. That is, as shown in FIG. 3, the hydrogen purification equipment 46 of the present embodiment is a PSA unit in which four adsorption towers 56 are installed, and the purified hydrogen is recovered via the purified hydrogen / intermediate tank 58 and PSA off-gas. (Carbon dioxide and unrecovered hydrogen) are sent to the burner of the reformer via the PSA off-gas tank 60. Part of the purified hydrogen is recycled from the purified hydrogen / intermediate tank 58 in order to purge residual impurities (CO 2 ) in the adsorption tower 56 after desorption and increase the pressure up to the adsorption pressure.

【0023】上記のように、PSAで改質ガス中の水素
以外の成分は、オフガスとして除去され、前述の通り改
質器42の加熱炉の主燃料として有効利用される。例え
ば、精製水素の回収率は78%、純度は99.999%
以上となる。本発明では、従来の水素製造法のPSAを
用いたプロセスを基本とし、改質器42の加熱炉26の
酸化剤として純酸素を用いて高濃度CO2の燃焼排ガス
を製造する。このような純酸素燃焼の効果として、物質
収支を検討してみると、燃焼排ガス中の窒素などの持ち
去りによる熱損失が少なくなるので助燃用の天然ガスが
不要となって、PSAのオフガスのみで加熱炉の熱源が
まかなえる結果となる。また、燃焼排ガス中の二酸化炭
素は、除湿後は約96%の高濃度になるので、後述のC
2液化ユニットで加圧・冷却することにより比較的用
に液化炭酸ガスが製造できるシステムを構成できる。
As described above, the PSA removes the components other than hydrogen in the reformed gas as off-gas, and as described above, it is effectively used as the main fuel of the heating furnace of the reformer 42. For example, the recovery rate of purified hydrogen is 78%, and the purity is 99.999%.
That is all. In the present invention, a process using PSA of the conventional hydrogen production method is basically used, and pure oxygen is used as an oxidant of the heating furnace 26 of the reformer 42 to produce a combustion exhaust gas having a high concentration of CO 2 . As an effect of such pure oxyfuel combustion, when examining the mass balance, heat loss due to removal of nitrogen etc. in the combustion exhaust gas is reduced, so natural gas for supporting combustion becomes unnecessary, and only PSA off gas is required. The result is that the heat source of the heating furnace can be covered. Further, the carbon dioxide in the combustion exhaust gas has a high concentration of about 96% after dehumidification.
By pressurizing and cooling with the O 2 liquefaction unit, it is possible to construct a system in which liquefied carbon dioxide gas can be relatively produced.

【0024】水素貯蔵・出荷ユニット 水素ガスの貯蔵工程を説明する。ガス貯蔵の場合と水素
を液化して貯蔵する場合の2ケースについて説明する。 a.高圧水素ガス貯蔵、出荷システム 図2では一般的な高圧水素ガスの貯蔵、出荷システム例
を示す。水素精製設備46で精製された水素ガスは水素
ガスホルダー62に貯蔵し、圧縮機64で昇圧し高圧水
素ガストレーラに充填出荷される。66は充填設備であ
る。
Hydrogen Storage / Shipping Unit The hydrogen gas storage process will be described. Two cases will be described, one in the case of gas storage and the other in the case of liquefying and storing hydrogen. a. High-Pressure Hydrogen Gas Storage / Shipping System FIG. 2 shows an example of a general high-pressure hydrogen gas storage / shipping system. The hydrogen gas purified by the hydrogen purification equipment 46 is stored in the hydrogen gas holder 62, the pressure is increased by the compressor 64, and the high pressure hydrogen gas trailer is filled and shipped. 66 is a filling facility.

【0025】b.水素液化、貯蔵、出荷システム 水素を液化するためには水素ガスを液化温度まで冷却す
る設備が必要となる。水素液化プロセスには各種の方式
があるが、一般的な水素液化方法は以下のとおりであ
る。精製された水素ガスを圧縮機で昇圧し、アンモニア
冷凍機等による予冷段にて約−40℃まで冷却され、さ
らに液体窒素により約−196℃まで冷却される。その
後、膨張タービンと断熱膨張弁による冷却系により水素
が液化する温度まで冷却され液体水素が生成される。水
素液化機の液化能力が大きくなると、使用する液体窒素
量も多くなり、窒素再液化機が併設されるのが通例であ
る。
B. Hydrogen liquefaction, storage, and shipping system In order to liquefy hydrogen, equipment for cooling hydrogen gas to the liquefaction temperature is required. There are various types of hydrogen liquefaction processes, and the general hydrogen liquefaction method is as follows. The purified hydrogen gas is pressurized by a compressor, cooled to about -40 ° C in a precooling stage such as an ammonia refrigerator, and further cooled to about -196 ° C with liquid nitrogen. Thereafter, the cooling system including the expansion turbine and the adiabatic expansion valve cools the hydrogen to a temperature at which hydrogen is liquefied, and liquid hydrogen is generated. When the liquefaction capacity of the hydrogen liquefaction machine increases, the amount of liquid nitrogen used also increases, and it is customary to install a nitrogen reliquefaction machine side by side.

【0026】これに対して、本実施形態の採用例として
水素クロードサイクル方式の水素液化プロセスでの実施
例を図2に示す。精製後の原料水素ガスは常温にて水素
液化機68に導入された後、圧縮機70で昇圧され、つ
いで、LNG冷熱を利用して予冷却器72、74により
原料水素を予冷するシステムであり、アンモニア冷凍機
による予冷段をLNG冷熱にて予冷する予冷却器にする
ことにより、LNG冷熱の有効利用を図るものである。
さらに、隣接する空気深冷分離施設(図示略)より安価
な液体窒素を導入できることから、この液体窒素を利用
して冷却器76にて水素を冷却することができ、窒素再
液化機は設置する必要がない。冷却した水素は、膨張タ
ービン78と断熱膨張弁による冷却系により水素が液化
する温度まで冷却される。これらの改良法によって、水
素液化動力を従来法に比べて約40%低減することがで
きる。
On the other hand, FIG. 2 shows an example of a hydrogen liquefaction process of the hydrogen Claude cycle system as an example of adoption of this embodiment. The purified raw material hydrogen gas is introduced into the hydrogen liquefier 68 at room temperature, then pressurized by the compressor 70, and then the raw hydrogen is precooled by the precoolers 72 and 74 using LNG cold heat. By using a precooler for precooling the LNG cold heat as the precooling stage of the ammonia refrigerator, the LNG cold heat is effectively used.
Furthermore, since cheaper liquid nitrogen can be introduced from the adjacent air-cooling separation facility (not shown), hydrogen can be cooled by the cooler 76 using this liquid nitrogen, and a nitrogen reliquefaction machine is installed. No need. The cooled hydrogen is cooled to a temperature at which the hydrogen is liquefied by the cooling system including the expansion turbine 78 and the adiabatic expansion valve. With these improved methods, the hydrogen liquefaction power can be reduced by about 40% as compared with the conventional method.

【0027】なお、水素のオルソ・パラ変換は熱交換器
に触媒を充填した連続方式が採用されている。さらに、
不純物対策のため原料水素系とリサイクル系には切替式
の低温吸着器80が設けられている。82はリサイクル
圧縮機、84はボイルオフガス圧縮機である。液化され
た水素は、液体水素貯槽に貯蔵され、液体水素コンテナ
または液体水素タンクローリー等に充填し出荷される。
For the ortho-para conversion of hydrogen, a continuous system in which a heat exchanger is filled with a catalyst is adopted. further,
As a countermeasure against impurities, a low temperature adsorber 80 of a switching type is provided in the raw material hydrogen system and the recycle system. Reference numeral 82 is a recycle compressor, and 84 is a boil-off gas compressor. The liquefied hydrogen is stored in a liquid hydrogen storage tank, filled in a liquid hydrogen container or a liquid hydrogen tank truck, and shipped.

【0028】二酸化炭素液化ユニット 本実施の形態では、改質器42からの燃焼排ガスから二
酸化炭素を分離回収することを想定しており、上述した
ように純酸素をオフガス燃焼の酸化剤として使用するこ
とにより、二酸化炭素リッチな原料ガスとなる。図2の
二酸化炭素液化ユニットのプロセスフローに示すよう
に、改質器42からの燃焼排ガスは、冷却器(図2で
は、水冷の冷却器86及び低温天然ガスによる冷却器8
8)、除湿塔90、圧縮機92を経由して、一例とし
て、次のような組成と温度・圧力条件にされてCO2
化器94に導入される。なお、ガス温度は15℃であ
り、ガスの全圧は7.14kg/cm2である。 CO2ガス 102.0kmol/h(4490kg/h)分圧
6.83kg/cm22ガス 4.29kmol/h(137kg/h)分圧0.
29kg/cm22ガス 0.04kmol/h(0.98kg/h)分圧
0.002kg/cm2 なお、除湿塔90には、水分を選択的に吸着する吸着剤
が充填されており、例えば、合成ゼオライト3A型など
が用いられる。
Carbon dioxide liquefaction unit In the present embodiment, it is assumed that carbon dioxide is separated and recovered from the combustion exhaust gas from the reformer 42, and pure oxygen is used as an oxidant for off-gas combustion as described above. As a result, carbon dioxide-rich raw material gas is obtained. As shown in the process flow of the carbon dioxide liquefaction unit in FIG. 2, the combustion exhaust gas from the reformer 42 is cooled by a cooler (in FIG. 2, a water-cooled cooler 86 and a cooler 8 using low-temperature natural gas).
8), via the dehumidifying tower 90 and the compressor 92, as an example, the composition, temperature, and pressure conditions as described below are introduced into the CO 2 liquefier 94. The gas temperature is 15 ° C. and the total gas pressure is 7.14 kg / cm 2 . CO 2 gas 102.0 kmol / h (4490 kg / h) partial pressure 6.83 kg / cm 2 O 2 gas 4.29 kmol / h (137 kg / h) partial pressure 0.
29 kg / cm 2 N 2 gas 0.04 kmol / h (0.98 kg / h) partial pressure 0.002 kg / cm 2 The dehumidifying tower 90 is filled with an adsorbent that selectively adsorbs water, For example, synthetic zeolite 3A type is used.

【0029】この燃焼排ガス中のCO2ガス分圧はCO2
の3重点(気・液・固体共存温度/圧力点、5.28kg
/cm2,−56.6℃)の圧力よりも高いので、このま
まCO2液化器94内でのCO2液化運転が可能である。
従来のCO2液化方式はLNG冷熱によって一旦、中間
熱媒体を液化し、さらに液化中間熱媒体でCO2を液化
する方式であるのに対して、本発明ではLNG冷熱の直
接利用によるCO2液化方式である。ガス流はCO2液化
器94内入口側で予冷されて液化域に至る。CO2液化
器94において6.83kg/cm2のCO2ガス分圧に対応
する液化温度は−51.0℃であり、この温度でCO2
液化が始まる。このような方法によって、二酸化炭素が
ドライアイス化されることなく、ほぼ全量液化が可能と
なる。液化CO2は液化CO2タンク96に貯蔵され、必
要に応じて搬出される。
The partial pressure of CO 2 gas in this combustion exhaust gas is CO 2
Of three points (gas / liquid / solid coexisting temperature / pressure point, 5.28 kg
/ Cm 2, is higher than the pressure of -56.6 ° C.), it is possible to CO 2 liquefaction operation in this state CO 2 liquefier 94..
In the conventional CO 2 liquefaction method, the intermediate heat medium is once liquefied by LNG cold heat, and then CO 2 is liquefied by the liquefied intermediate heat medium, whereas in the present invention, CO 2 liquefaction is made by directly utilizing LNG cold heat. It is a method. The gas flow is precooled at the inlet side of the CO 2 liquefier 94 and reaches the liquefaction region. In the CO 2 liquefier 94, the liquefaction temperature corresponding to a CO 2 gas partial pressure of 6.83 kg / cm 2 is −51.0 ° C., and at this temperature CO 2
Liquefaction begins. By such a method, almost all of the carbon dioxide can be liquefied without being converted to dry ice. The liquefied CO 2 is stored in the liquefied CO 2 tank 96 and is carried out if necessary.

【0030】上記の例では、液化すべきCO2量は44
90kg/hであり、これを全量液化する冷却熱負荷は5
34.3kW(459.3Mcal/h)であり、所要のLN
G量は2430kg/hとなる。既存のLNG利用液化炭
酸ガスプラントでは、1トンの液化CO2を得るために
約1.1トンのLNGを使用しているが、本発明の方式
では1トンの液化CO2に対するLNG量は0.54ト
ンであり、熱効率の良い液化方式といえる。分離回収さ
れた液化CO2は、液化炭酸ガスローリーで外販出荷さ
れるものとし、上記の例の場合では、例えば、液化炭酸
ガス貯蔵タンク350トンを2基、ローリー出荷設備を
2式設置する。
In the above example, the amount of CO 2 to be liquefied is 44
90 kg / h, the cooling heat load for liquefying all of this is 5
34.3kW (459.3Mcal / h), required LN
The amount of G is 2430 kg / h. In the existing LNG utilizing liquefied carbon dioxide plant, about 1.1 tons of LNG is used to obtain 1 ton of liquefied CO 2 , but in the method of the present invention, the amount of LNG for 1 ton of liquefied CO 2 is 0. Since it is 0.54 tons, it can be said that it is a liquefaction method with good thermal efficiency. The separated and collected liquefied CO 2 is to be sold for sale outside as a liquefied carbon dioxide gas truck. In the case of the above example, for example, two liquefied carbon dioxide gas storage tanks (350 tons) and two sets of truck transportation equipment are installed.

【0031】[0031]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 純酸素(又は高濃度の酸素)をオフガス燃焼の
酸化剤として使用し、天然ガスを酸素燃焼加熱により改
質して水素を製造するシステムとすることにより、高濃
度の二酸化炭素を含んだ燃焼排ガスが得られるので、加
圧してLNG冷熱で冷却すれば容易に液化CO2として
回収でき、貯蔵や販売のための輸送など取り扱いが容易
になる。 (2) 液化天然ガス(LNG)を原料として水蒸気改
質により水素を製造するシステムにおいて、LNG冷熱
を利用した深冷空気分離で製造した純酸素を天然ガスの
改質プロセスで有効利用するとともに、深冷空気分離で
得られた液体窒素を精製水素の液化に利用することによ
り、2次的なLNG冷熱の有効利用の需要プロセスが創
出できる。 (3) LNGを原料として水蒸気改質により水素を製
造し、PSA吸着分離法などで水素を分離精製し、分離
された可燃物を含むオフガスを主燃料として改質器の加
熱炉に用いる方法において、純酸素をオフガス燃焼の酸
化剤として使用することで、高濃度の二酸化炭素を含有
する燃焼排ガスが得られることから、この燃焼排ガスに
含まれる水分を除去した後、CO2液化可能な圧力に昇
圧し、LNG冷熱を用いて冷却することにより、燃焼排
ガスから液化CO2を容易に分離回収することができ
る。 (4) 純酸素をオフガス燃焼の酸化剤として使用する
ことにより、空気で燃焼させる場合と比較して、燃焼排
ガス中の窒素などの持ち去りによる熱損失が少なくなる
ので、助燃用の天然ガスが不要となり、PSAのオフガ
スのみで改質器の加熱炉の熱源がまかなえる。 (5) 改質器で発生する燃焼排ガスから二酸化炭素を
液体状態で回収するに際し、水分除去のための前処理と
して、水分を選択的に吸着する合成ゼオライト3A型を
使用して燃焼排ガス中に含まれる水分を除去する場合
は、燃焼排ガスが効率よく除湿され、LNG冷熱の直接
利用によるCO2の液化が容易になる。
Since the present invention is configured as described above, it has the following effects. (1) Pure oxygen (or high-concentration oxygen) is used as an oxidant for off-gas combustion, and natural gas is reformed by oxygen combustion heating to produce hydrogen, thereby containing high-concentration carbon dioxide. Since flue gas is obtained, it can be easily recovered as liquefied CO 2 by pressurizing and cooling with LNG cold heat, and handling such as storage and transportation for sale becomes easy. (2) In a system for producing hydrogen by steam reforming using liquefied natural gas (LNG) as a raw material, pure oxygen produced by deep-air separation using LNG cold heat is effectively used in a natural gas reforming process, and By utilizing the liquid nitrogen obtained by the cryogenic air separation for the liquefaction of purified hydrogen, a demand process for effective utilization of secondary LNG cold heat can be created. (3) In a method in which hydrogen is produced by steam reforming using LNG as a raw material, hydrogen is separated and purified by a PSA adsorption separation method, etc., and offgas containing the separated combustible material is used as a main fuel in a heating furnace of a reformer. By using pure oxygen as an oxidant for off-gas combustion, a combustion exhaust gas containing a high concentration of carbon dioxide can be obtained. Therefore, after removing the water contained in this combustion exhaust gas, the CO 2 liquefaction pressure can be adjusted. By increasing the pressure and cooling with LNG cold heat, liquefied CO 2 can be easily separated and recovered from the combustion exhaust gas. (4) By using pure oxygen as an oxidant for off-gas combustion, heat loss due to removal of nitrogen and the like in combustion exhaust gas is reduced as compared with the case of combustion with air, so that natural gas for combustion support is used. It becomes unnecessary, and the heat source of the heating furnace of the reformer can be covered only by the offgas of PSA. (5) When recovering carbon dioxide in a liquid state from the combustion exhaust gas generated in the reformer, synthetic zeolite 3A that selectively adsorbs water is used in the combustion exhaust gas as a pretreatment for removing water. When removing the contained water, the combustion exhaust gas is efficiently dehumidified, and the liquefaction of CO 2 by the direct use of LNG cold heat is facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の第1形態による液化CO2回収
を伴う水素製造方法を実施する装置の全体システムを示
す概念構成説明図である。
FIG. 1 is a conceptual configuration explanatory diagram showing an overall system of an apparatus for carrying out a method for producing hydrogen with liquefied CO 2 recovery according to a first embodiment of the present invention.

【図2】本発明の実施の第2形態による液化CO2回収
を伴う水素製造方法を実施する装置を示す系統的概略構
成説明図である。
FIG. 2 is a systematic schematic configuration explanatory diagram showing an apparatus for carrying out a method for producing hydrogen with liquefied CO 2 recovery according to a second embodiment of the present invention.

【図3】本発明の実施の第2形態における水素精製設備
(PSAユニット)の詳細を示す構成説明図である。
FIG. 3 is a configuration explanatory view showing details of a hydrogen purification facility (PSA unit) according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 深冷空気分離設備 12、42 天然ガス改質器 14、48 COシフト反応器(一酸化炭素変成器) 16、46 水素精製設備 18 CO2液化設備 20 除湿器 22、72、74 予冷却器 24、76 冷却器 26 加熱炉 28、30、50 予熱器 32 スチーム発生器(廃熱ボイラ) 34 純水製造設備 36 ボイラ用薬注設備 38 脱気器 40 蒸気ドラム 44 バーナ 52 凝縮器 54、86 水冷の冷却器 56 PSAの吸着塔 58 精製水素・中間タンク 60 PSAオフガスタンク 62 水素ガスホルダー 64、70、92 圧縮機 66 充填設備 68 水素液化機 78 膨張タービン 80 低温吸着器 82 リサイクル圧縮機 84 ボイルオフガス圧縮機 88 低温天然ガスによる冷却器 90 除湿塔 94 CO2液化器 96 液化CO2タンク10 Chilled air separation facility 12, 42 Natural gas reformer 14, 48 CO shift reactor (carbon monoxide shifter) 16, 46 Hydrogen purification facility 18 CO 2 liquefaction facility 20 Dehumidifier 22, 72, 74 Precooler 24, 76 Cooler 26 Heating furnaces 28, 30, 50 Preheater 32 Steam generator (waste heat boiler) 34 Pure water production equipment 36 Chemical injection equipment for boiler 38 Deaerator 40 Steam drum 44 Burner 52 Condenser 54, 86 Water-cooled cooler 56 PSA adsorption tower 58 Purified hydrogen / intermediate tank 60 PSA off-gas tank 62 Hydrogen gas holders 64, 70, 92 Compressor 66 Filling equipment 68 Hydrogen liquefier 78 Expansion turbine 80 Low-temperature adsorber 82 Recycle compressor 84 Boil-off Gas compressor 88 Low-temperature natural gas cooler 90 Dehumidification tower 94 CO 2 liquefier 96 Liquefied CO 2 tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25J 3/04 F25J 3/04 B 101 101 (72)発明者 中西 誠一 神戸市中央区東川崎町3丁目1番1号 川 崎重工業株式会社神戸工場内 (72)発明者 川越 英司 千葉県野田市二ツ塚118番地 川崎重工業 株式会社野田工場内 (72)発明者 原口 憲次郎 千葉県野田市二ツ塚118番地 川崎重工業 株式会社野田工場内 (72)発明者 神谷 祥二 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 小川 賢 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 (72)発明者 本田 宏 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 Fターム(参考) 4D047 AA02 AA08 AB01 AB02 CA04 CA07 DA03 4D052 AA00 CD00 HA03 4G040 EA03 EA06 EB31 EB44 4G046 JB08 JB21 4G066 AA61B CA43 DA02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F25J 3/04 F25J 3/04 B 101 101 (72) Inventor Seiichi Nakanishi 3-chome, Higashikawasaki-cho, Chuo-ku, Kobe-shi No. 1 Kawasaki Heavy Industries, Ltd. Kobe Factory (72) Inventor Eiji Kawagoe 118 Futtsuka, Noda, Chiba Prefecture Kawasaki Heavy Industries Ltd. Noda Factory (72) Inventor Kenjiro Haraguchi 118, Futtsuka, Noda, Chiba Kawasaki Heavy Industries Ltd. Company Noda Factory (72) Inventor Shoji Kamiya 1-1 Kawasaki-cho Akashi-shi, Hyogo Prefecture Kawasaki Heavy Industries Ltd. Akashi Factory (72) Inventor Ken Ogawa 3-3-22 Nakanoshima, Kita-ku, Osaka Kansai Electric Power Co., Inc. In-house (72) Inventor Hiroshi Honda 3-22-2 Nakanoshima, Kita-ku, Osaka Kansai Electric Power Co., Inc. F-term (reference) 4D047 AA02 A A08 AB01 AB02 CA04 CA07 DA03 4D052 AA00 CD00 HA03 4G040 EA03 EA06 EB31 EB44 4G046 JB08 JB21 4G066 AA61B CA43 DA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 天然ガスを水蒸気改質して水素に富む改
質ガスとし、この改質ガスから水素を分離精製し、水素
の精製工程で分離された可燃物を含むオフガスを主燃料
として改質工程での燃焼加熱に用いる水素製造方法にお
いて、改質工程でのオフガス燃焼のための酸化剤として
純酸素又は高濃度の酸素を導入し、この燃焼で発生する
燃焼排ガス中の炭酸ガスを高濃度にして、燃焼排ガスか
ら炭酸ガスを容易に液体状態で分離・回収することを特
徴とする液化CO2回収を伴う水素製造方法。
1. A natural gas is steam-reformed into a hydrogen-rich reformed gas, hydrogen is separated and refined from the reformed gas, and an off-gas containing a combustible substance separated in the hydrogen refining step is used as a main fuel. In the hydrogen production method used for combustion heating in the quality process, pure oxygen or high-concentration oxygen is introduced as an oxidant for off-gas combustion in the reforming process, and the carbon dioxide gas in the combustion exhaust gas generated in this combustion is increased. A method for producing hydrogen with liquefied CO 2 recovery, wherein carbon dioxide gas is easily separated and recovered in a liquid state from a combustion exhaust gas in a concentration.
【請求項2】 天然ガスの供給形態が液化天然ガスであ
り、その液化冷熱を利用した深冷空気分離により純酸素
又は高濃度の酸素を製造し、この酸素を改質工程でのオ
フガス燃焼のための酸化剤として使用し、深冷空気分離
で得られた液化窒素を精製した水素の液化に利用する請
求項1記載の液化CO2回収を伴う水素製造方法。
2. The supply form of natural gas is liquefied natural gas, and pure oxygen or high-concentration oxygen is produced by cryogenic air separation using the liquefied cold heat, and this oxygen is used for off-gas combustion in a reforming process. The method for producing hydrogen with liquefied CO 2 recovery according to claim 1, wherein the liquefied nitrogen obtained by the cryogenic air separation is used for the liquefaction of purified hydrogen.
【請求項3】 天然ガスの供給形態が液化天然ガスであ
り、その液化冷熱を有効利用して、オフガス燃焼で発生
する燃焼排ガスから炭酸ガスを液体状態で分離・回収す
る請求項1又は2記載の液化CO2回収を伴う水素製造
方法。
3. A method of supplying natural gas in the form of liquefied natural gas, and by effectively utilizing the liquefied cold heat of the liquefied natural gas, carbon dioxide is separated and recovered in a liquid state from combustion exhaust gas generated by off-gas combustion. Method for producing hydrogen with recovery of liquefied CO 2 from
【請求項4】 高濃度の炭酸ガスを含んだ燃焼排ガスか
ら液化CO2を分離・回収するに際し、前処理として燃
焼排ガス中に含まれる水分を除去した後、炭酸ガスの液
化が可能な圧力に昇圧し、液化天然ガスの冷熱を用いて
冷却することにより液化CO2を得る請求項3記載の液
化CO2回収を伴う水素製造方法。
4. When separating and recovering liquefied CO 2 from a combustion exhaust gas containing a high concentration of carbon dioxide gas, after removing water contained in the combustion exhaust gas as a pretreatment, the pressure is adjusted to a liquefaction of carbon dioxide gas. boosted, hydrogen production methods involving liquefied CO 2 recovery according to claim 3, wherein obtaining a liquefied CO 2 by cooling with cold energy of the liquefied natural gas.
【請求項5】 水分除去のための前処理として、水分を
選択的に吸着する合成ゼオライト3A型を用いて燃焼排
ガス中に含まれる水分を除去する請求項4記載の液化C
2回収を伴う水素製造方法。
5. The liquefied C according to claim 4, wherein as a pretreatment for removing water, the water contained in the combustion exhaust gas is removed using a synthetic zeolite 3A type that selectively adsorbs water.
Hydrogen production method with O 2 recovery.
JP2001268396A 2001-09-05 2001-09-05 Method and apparatus for producing hydrogen with liquefied CO2 recovery Expired - Lifetime JP3670229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001268396A JP3670229B2 (en) 2001-09-05 2001-09-05 Method and apparatus for producing hydrogen with liquefied CO2 recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001268396A JP3670229B2 (en) 2001-09-05 2001-09-05 Method and apparatus for producing hydrogen with liquefied CO2 recovery

Publications (2)

Publication Number Publication Date
JP2003081605A true JP2003081605A (en) 2003-03-19
JP3670229B2 JP3670229B2 (en) 2005-07-13

Family

ID=19094384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001268396A Expired - Lifetime JP3670229B2 (en) 2001-09-05 2001-09-05 Method and apparatus for producing hydrogen with liquefied CO2 recovery

Country Status (1)

Country Link
JP (1) JP3670229B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027949A (en) * 2004-07-15 2006-02-02 Electric Power Dev Co Ltd Method of using carbon oxide-containing gas
WO2006112725A1 (en) * 2005-04-19 2006-10-26 Statoil Asa Process for production of electric energy and co2 from a hydrocarbon feedstock
WO2006112724A3 (en) * 2005-04-19 2007-02-22 Statoil Asa Process for production of electric energy and co2 from a hydrocarbon feedstock
JP2007254229A (en) * 2006-03-24 2007-10-04 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method and apparatus for producing hydrogen
JP2008515757A (en) * 2004-10-08 2008-05-15 ユニオン、エンジニアリング、アクティーゼルスカブ How to recover carbon dioxide from gas
WO2008123337A1 (en) * 2007-03-29 2008-10-16 Nippon Oil Corporation Method of hydrogen production and carbon dioxide recovery and apparatus therefor
JP2010143778A (en) * 2008-12-17 2010-07-01 Kobe Steel Ltd High purity hydrogen production apparatus
WO2010103680A1 (en) * 2009-03-11 2010-09-16 三菱重工業株式会社 Method and system for purifying gasified coal gas
JP2010228963A (en) * 2009-03-27 2010-10-14 Chugoku Electric Power Co Inc:The Carbon dioxide recovery unit
JP2010235358A (en) * 2009-03-30 2010-10-21 Tokyo Gas Co Ltd Hydrogen separation type hydrogen producing system using oxygen combustion technology
JP2011093719A (en) * 2009-10-27 2011-05-12 Tokyo Gas Co Ltd Method for producing and utilizing hydrogen
DE102011105972A1 (en) 2010-06-29 2011-12-29 Sumitomo Chemical Company, Ltd. Process for the preparation of methionine
KR101159211B1 (en) * 2009-12-24 2012-06-25 삼성중공업 주식회사 System for capturing carbon dioxide from exhaust gas
JP2013538772A (en) * 2010-07-09 2013-10-17 エコ テクノル プロプライエタリー リミテッド Generation of syngas by using membrane technology
WO2013175905A1 (en) * 2012-05-22 2013-11-28 川崎重工業株式会社 Liquid hydrogen production device
JP2016089942A (en) * 2014-11-04 2016-05-23 株式会社Ihi Cryogenic liquid gas facility
WO2019189409A1 (en) * 2018-03-29 2019-10-03 川崎重工業株式会社 Liquid hydrogen production facility and hydrogen gas production facility
CN110817798A (en) * 2019-10-28 2020-02-21 中科液态阳光(苏州)氢能科技发展有限公司 Methanol steam and hydrogen mixed gas integrated medium-pressure hydrogen production system and method thereof
CN110921622A (en) * 2019-10-28 2020-03-27 中科液态阳光(苏州)氢能科技发展有限公司 Methanol steam and hydrogen mixed gas integrated high-pressure hydrogen production system and method thereof
CN111006444A (en) * 2019-12-20 2020-04-14 中国舰船研究设计中心 Method for removing carbon dioxide gas by freezing liquid oxygen cold energy
JP2020087600A (en) * 2018-11-20 2020-06-04 東京瓦斯株式会社 Fuel cell power generation system
JP6951613B1 (en) * 2021-02-25 2021-10-20 株式会社 ユーリカ エンジニアリング Carbon dioxide recovery hydrogen production system utilizing LNG
CN113758147A (en) * 2021-09-29 2021-12-07 北京百利时能源技术股份有限公司 Carbon capture hydrogen plant before burning
CN114087846A (en) * 2022-01-17 2022-02-25 杭州制氧机集团股份有限公司 Device for producing dry ice by coupling photoelectric hydrogen production energy storage and cold energy recovery and use method
CN114142061A (en) * 2021-12-01 2022-03-04 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) Shipboard hydrogen fuel preparation system and hydrogen production method thereof
KR102379478B1 (en) * 2020-10-16 2022-03-31 삼성중공업 주식회사 Gas treatment system for ship
CN114712984A (en) * 2022-03-16 2022-07-08 四川天采科技有限责任公司 Substitution process for recycling CO2 through full-temperature-range pressure swing adsorption for amine absorption decarburization in natural gas SMB hydrogen production
KR102550070B1 (en) * 2022-11-29 2023-06-30 (주)빅텍스 Co2 capture and reuse system through blue hydrogen production including plate heat exchanger
WO2023148045A1 (en) * 2022-02-04 2023-08-10 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for cooling carbon dioxide and hydrogen
KR102578216B1 (en) * 2022-11-29 2023-09-13 (주)빅텍스 Co2 capture and reuse system through multiple processes from blue hydrogen production
KR102578218B1 (en) * 2022-11-29 2023-09-13 (주)빅텍스 Co2 capture and reuse system through blue hydrogen production including suction line accumulator
KR102578213B1 (en) * 2022-11-29 2023-09-13 (주)빅텍스 Co2 capture and reuse system through blue hydrogen production including air cooled type cooler
KR102578221B1 (en) * 2022-11-29 2023-09-13 (주)빅텍스 Swlwctively removable co2 capture and reuse system through blue hydrogen production
CN116920581A (en) * 2023-08-31 2023-10-24 浙江浙能迈领环境科技有限公司 Carbon dioxide recovery control system and method for natural gas power ship
CN116920581B (en) * 2023-08-31 2024-04-19 浙江浙能迈领环境科技有限公司 Carbon dioxide recovery control system and method for natural gas power ship

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3369703A4 (en) 2015-10-28 2019-03-20 Japan Blue Energy Co., Ltd. Hydrogen recovery method
US11273405B2 (en) 2016-08-23 2022-03-15 Japan Blue Energy Co., Ltd. Method for recovering hydrogen from biomass pyrolysis gas
KR102323734B1 (en) * 2019-12-31 2021-11-11 한국과학기술연구원 A production method and system of blue hydrogen
KR102486532B1 (en) * 2020-12-03 2023-01-06 부산대학교 산학협력단 System and method for producing hydrogen using exhaust gas and heat energy recovery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252305A (en) * 1990-02-28 1991-11-11 Mitsubishi Heavy Ind Ltd Method for recovering carbon dioxide by oxygen enriched combustion
JPH0448185A (en) * 1990-06-14 1992-02-18 Central Res Inst Of Electric Power Ind Recovering method of carbon dioxide discharged out of lng burning thermal power station
JP3001060U (en) * 1994-02-15 1994-08-16 岩谷産業株式会社 Liquefaction equipment for carbon dioxide recovery from industrial exhaust gas
JPH06287001A (en) * 1993-03-31 1994-10-11 Nippon Sanso Kk Production of hydrogen and carbon dioxide
JP2000247604A (en) * 1999-02-25 2000-09-12 Toshiba Corp Hydrogen producing device and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252305A (en) * 1990-02-28 1991-11-11 Mitsubishi Heavy Ind Ltd Method for recovering carbon dioxide by oxygen enriched combustion
JPH0448185A (en) * 1990-06-14 1992-02-18 Central Res Inst Of Electric Power Ind Recovering method of carbon dioxide discharged out of lng burning thermal power station
JPH06287001A (en) * 1993-03-31 1994-10-11 Nippon Sanso Kk Production of hydrogen and carbon dioxide
JP3001060U (en) * 1994-02-15 1994-08-16 岩谷産業株式会社 Liquefaction equipment for carbon dioxide recovery from industrial exhaust gas
JP2000247604A (en) * 1999-02-25 2000-09-12 Toshiba Corp Hydrogen producing device and method thereof

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027949A (en) * 2004-07-15 2006-02-02 Electric Power Dev Co Ltd Method of using carbon oxide-containing gas
JP2008515757A (en) * 2004-10-08 2008-05-15 ユニオン、エンジニアリング、アクティーゼルスカブ How to recover carbon dioxide from gas
US8475566B2 (en) 2004-10-08 2013-07-02 Union Engineering A/S Method for recovery of carbon dioxide from a gas
US7827804B2 (en) 2005-04-19 2010-11-09 Statoil Asa Process for production of electric energy and CO2 from a hydrocarbon feedstock
WO2006112725A1 (en) * 2005-04-19 2006-10-26 Statoil Asa Process for production of electric energy and co2 from a hydrocarbon feedstock
WO2006112724A3 (en) * 2005-04-19 2007-02-22 Statoil Asa Process for production of electric energy and co2 from a hydrocarbon feedstock
US8402766B2 (en) 2005-04-19 2013-03-26 Statoil Asa Process for production of electric energy and CO2 from a hydrocarbon feedstock
JP2007254229A (en) * 2006-03-24 2007-10-04 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method and apparatus for producing hydrogen
US8460630B2 (en) 2007-03-29 2013-06-11 Nippon Oil Corporation Method and apparatus for producing hydrogen and recovering carbon dioxide
EP2366447A1 (en) 2007-03-29 2011-09-21 Nippon Oil Corporation Method and apparatus for producing hydrogen and recovering carbon dioxide
WO2008123337A1 (en) * 2007-03-29 2008-10-16 Nippon Oil Corporation Method of hydrogen production and carbon dioxide recovery and apparatus therefor
JP2010143778A (en) * 2008-12-17 2010-07-01 Kobe Steel Ltd High purity hydrogen production apparatus
WO2010103680A1 (en) * 2009-03-11 2010-09-16 三菱重工業株式会社 Method and system for purifying gasified coal gas
JP2010228963A (en) * 2009-03-27 2010-10-14 Chugoku Electric Power Co Inc:The Carbon dioxide recovery unit
JP2010235358A (en) * 2009-03-30 2010-10-21 Tokyo Gas Co Ltd Hydrogen separation type hydrogen producing system using oxygen combustion technology
JP2011093719A (en) * 2009-10-27 2011-05-12 Tokyo Gas Co Ltd Method for producing and utilizing hydrogen
KR101159211B1 (en) * 2009-12-24 2012-06-25 삼성중공업 주식회사 System for capturing carbon dioxide from exhaust gas
DE102011105972A1 (en) 2010-06-29 2011-12-29 Sumitomo Chemical Company, Ltd. Process for the preparation of methionine
JP2012012316A (en) * 2010-06-29 2012-01-19 Sumitomo Chemical Co Ltd Method for producing methionine
US20110319659A1 (en) * 2010-06-29 2011-12-29 Motonobu Yoshikawa Method for producing methionine
BE1020423A5 (en) * 2010-06-29 2013-10-01 Sumitomo Chemical Co PROCESS FOR PRODUCING METHIONINE
JP2013538772A (en) * 2010-07-09 2013-10-17 エコ テクノル プロプライエタリー リミテッド Generation of syngas by using membrane technology
WO2013175905A1 (en) * 2012-05-22 2013-11-28 川崎重工業株式会社 Liquid hydrogen production device
JP2013242113A (en) * 2012-05-22 2013-12-05 Kawasaki Heavy Ind Ltd Liquid hydrogen production device
AU2013264211B2 (en) * 2012-05-22 2015-07-23 Kawasaki Jukogyo Kabushiki Kaisha Liquid hydrogen production device
RU2573423C1 (en) * 2012-05-22 2016-01-20 Кавасаки Юкогё Кабусики Каиса Liquid hydrogen producing device
JP2016089942A (en) * 2014-11-04 2016-05-23 株式会社Ihi Cryogenic liquid gas facility
JP2019174063A (en) * 2018-03-29 2019-10-10 川崎重工業株式会社 Liquid hydrogen manufacturing facility and hydrogen gas manufacturing facility
CN111919077A (en) * 2018-03-29 2020-11-10 川崎重工业株式会社 Liquid hydrogen production apparatus and hydrogen production apparatus
WO2019189409A1 (en) * 2018-03-29 2019-10-03 川崎重工業株式会社 Liquid hydrogen production facility and hydrogen gas production facility
AU2019243627B2 (en) * 2018-03-29 2021-10-28 Kawasaki Jukogyo Kabushiki Kaisha Liquid hydrogen production facility and hydrogen gas production facility
JP2020087600A (en) * 2018-11-20 2020-06-04 東京瓦斯株式会社 Fuel cell power generation system
JP7181060B2 (en) 2018-11-20 2022-11-30 東京瓦斯株式会社 fuel cell power generation system
CN110817798A (en) * 2019-10-28 2020-02-21 中科液态阳光(苏州)氢能科技发展有限公司 Methanol steam and hydrogen mixed gas integrated medium-pressure hydrogen production system and method thereof
CN110921622A (en) * 2019-10-28 2020-03-27 中科液态阳光(苏州)氢能科技发展有限公司 Methanol steam and hydrogen mixed gas integrated high-pressure hydrogen production system and method thereof
CN110921622B (en) * 2019-10-28 2023-06-30 中科液态阳光(苏州)氢能科技发展有限公司 High pressure hydrogen production process
CN110817798B (en) * 2019-10-28 2023-08-22 中科液态阳光(苏州)氢能科技发展有限公司 Medium pressure hydrogen production method
CN111006444B (en) * 2019-12-20 2021-07-13 中国舰船研究设计中心 Method for removing carbon dioxide gas by freezing liquid oxygen cold energy
CN111006444A (en) * 2019-12-20 2020-04-14 中国舰船研究设计中心 Method for removing carbon dioxide gas by freezing liquid oxygen cold energy
KR102379478B1 (en) * 2020-10-16 2022-03-31 삼성중공업 주식회사 Gas treatment system for ship
JP6951613B1 (en) * 2021-02-25 2021-10-20 株式会社 ユーリカ エンジニアリング Carbon dioxide recovery hydrogen production system utilizing LNG
WO2022180740A1 (en) * 2021-02-25 2022-09-01 株式会社 ユーリカ エンジニアリング Carbon dioxide gas recovery type hydrogen production system utilizing lng
CN113758147A (en) * 2021-09-29 2021-12-07 北京百利时能源技术股份有限公司 Carbon capture hydrogen plant before burning
CN114142061A (en) * 2021-12-01 2022-03-04 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) Shipboard hydrogen fuel preparation system and hydrogen production method thereof
CN114142061B (en) * 2021-12-01 2024-03-08 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) Shipboard hydrogen fuel preparation system and hydrogen production method thereof
CN114087846A (en) * 2022-01-17 2022-02-25 杭州制氧机集团股份有限公司 Device for producing dry ice by coupling photoelectric hydrogen production energy storage and cold energy recovery and use method
CN114087846B (en) * 2022-01-17 2022-06-07 杭氧集团股份有限公司 Device for producing dry ice by coupling photoelectric hydrogen production energy storage and cold energy recovery and use method
FR3132566A1 (en) * 2022-02-04 2023-08-11 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for cooling carbon dioxide and hydrogen
WO2023148045A1 (en) * 2022-02-04 2023-08-10 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for cooling carbon dioxide and hydrogen
CN114712984B (en) * 2022-03-16 2023-03-03 四川天采科技有限责任公司 Substitution process for recycling CO2 through full-temperature-range pressure swing adsorption for amine absorption decarburization in natural gas SMB hydrogen production
CN114712984A (en) * 2022-03-16 2022-07-08 四川天采科技有限责任公司 Substitution process for recycling CO2 through full-temperature-range pressure swing adsorption for amine absorption decarburization in natural gas SMB hydrogen production
KR102550070B1 (en) * 2022-11-29 2023-06-30 (주)빅텍스 Co2 capture and reuse system through blue hydrogen production including plate heat exchanger
KR102578216B1 (en) * 2022-11-29 2023-09-13 (주)빅텍스 Co2 capture and reuse system through multiple processes from blue hydrogen production
KR102578218B1 (en) * 2022-11-29 2023-09-13 (주)빅텍스 Co2 capture and reuse system through blue hydrogen production including suction line accumulator
KR102578213B1 (en) * 2022-11-29 2023-09-13 (주)빅텍스 Co2 capture and reuse system through blue hydrogen production including air cooled type cooler
KR102578221B1 (en) * 2022-11-29 2023-09-13 (주)빅텍스 Swlwctively removable co2 capture and reuse system through blue hydrogen production
CN116920581A (en) * 2023-08-31 2023-10-24 浙江浙能迈领环境科技有限公司 Carbon dioxide recovery control system and method for natural gas power ship
CN116920581B (en) * 2023-08-31 2024-04-19 浙江浙能迈领环境科技有限公司 Carbon dioxide recovery control system and method for natural gas power ship

Also Published As

Publication number Publication date
JP3670229B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JP3670229B2 (en) Method and apparatus for producing hydrogen with liquefied CO2 recovery
EP2543743B1 (en) Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
US8241400B2 (en) Process for the production of carbon dioxide utilizing a co-purge pressure swing adsorption unit
US8685358B2 (en) Producing ammonia using ultrapure, high pressure hydrogen
JP5355062B2 (en) Co-production method of methanol and ammonia
US9327972B2 (en) Systems and processes for producing ultrapure, high pressure hydrogen
JP5640803B2 (en) How to operate a blast furnace or steelworks
US9481573B2 (en) Steam reformer based hydrogen plant scheme for enhanced carbon dioxide recovery
US6929668B2 (en) Process for production of hydrogen by partial oxidation of hydrocarbons
CA3082075A1 (en) Systems and methods for production and separation of hydrogen and carbon dioxide
AU2011258160A1 (en) Producing ammonia using ultrapure, high pressure hydrogen
JPH1143306A (en) Obtaining carbon monoxide and hydrogen
JP5039407B2 (en) Hydrogen production and carbon dioxide recovery method and apparatus
JP2000129327A (en) Method for integrating blast furnace and direct reduction acting vessel using extra-low temperature rectifying method
JP2008247636A (en) Method and device for hydrogen production and carbon dioxide recovery
JPH10273301A (en) Hydrogen manufacturing equipment
JPH09330731A (en) Method for recovering and fixing carbon dioxide gas, nitrogen gas and argon gas in fuel cell power generation
JP2000233918A (en) Production of carbon monoxide
JP2000072404A (en) Production of hydrogen-nitrogen gaseous mixture and device therefor
JPH11111320A (en) Recovery and fixing method for carbon dioxide, nitrogen gas, and argon gas in fuel cell power generation using internal combustion type reformer
JPH05287284A (en) Process for reforming liquefied natural gas
JP2002241817A (en) Device for utilizing air for blasting into blast furnace at high degree in hot stove for blast furnace and its utilizing method
JP2000233917A (en) Method of producing carbon monoxide from carbon dioxide
JP2002274811A (en) Hydrogen preparation process and device used for the same
WO2023042535A1 (en) Gas separation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050413

R150 Certificate of patent or registration of utility model

Ref document number: 3670229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term