JP5381084B2 - コジェネレーションシステムおよび貯湯システム - Google Patents

コジェネレーションシステムおよび貯湯システム Download PDF

Info

Publication number
JP5381084B2
JP5381084B2 JP2008328763A JP2008328763A JP5381084B2 JP 5381084 B2 JP5381084 B2 JP 5381084B2 JP 2008328763 A JP2008328763 A JP 2008328763A JP 2008328763 A JP2008328763 A JP 2008328763A JP 5381084 B2 JP5381084 B2 JP 5381084B2
Authority
JP
Japan
Prior art keywords
hot water
amount
power generation
offset
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008328763A
Other languages
English (en)
Other versions
JP2010153146A (ja
Inventor
将城 福川
浩明 加藤
雅彦 甲村
隆志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2008328763A priority Critical patent/JP5381084B2/ja
Publication of JP2010153146A publication Critical patent/JP2010153146A/ja
Application granted granted Critical
Publication of JP5381084B2 publication Critical patent/JP5381084B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Fuel Cell (AREA)

Description

本発明は、コジェネレーションシステムおよび貯湯システムに関する。
コジェネレーションシステムの一例としては、特許文献1の図1に示されているように、負荷装置(電力負荷16)に電力を供給する発電装置(燃料電池6を有する熱電併給装置2)と、発電量指示値に応じた発電量となるように発電装置を制御する運転制御装置(制御手段70)と、発電装置の排熱を回収した湯水を貯湯する貯湯槽(貯湯タンク22)と、貯湯槽内の残湯量が所定量以下となると、貯湯槽の湯水を導入して加熱して導出する補助加熱装置(ボイラ手段42)と、を備えたものが知られている。
このコジェネレーションシステムにおいては、貯湯タンク22の予測貯湯蓄熱量が設定最低蓄熱量以下になるということは、貯湯タンク22内の所定温度(例えば、80℃)の温水を消費して温水が残っていないということであり、かかる場合、ボイラ手段42が稼働して温水が生成され、ボイラ手段42にて生成された温水が温水出湯流路40を通して供給され、ボイラ手段42にて燃料が消費されるようになり、このようなボイラ手段42の無駄な稼働を抑えるように増加修正モードが設定され、仮運転パターンの増加修正が行われる(ステップS11)。
仮運転パターンの増加修正においては、特許文献1の図8に示されているように、熱不足時間帯が選定され(S11−1)、その熱不足時間帯における熱不足量が予測貯湯熱量増加目標値として演算され(S11−2)、その熱不足時間帯より前の時間帯範囲での各時間帯について予測エネルギー削減比率の演算が行われる(ステップS11−3)。この予測エネルギー削減比率の演算は、予測貯湯熱量を用いて設定された仮運転パターンの発電出力よりも大きい発電出力範囲について演算される。次に、予測エネルギー削減比率の演算に関連して、予測増加貯湯熱量の演算が行われる(ステップS11−4)。この演算においては、設定された仮運転パターンの発電出力よりも大きい発電出力範囲について、仮運転パターンの発電出力にて発生する予測熱出力よりも増加する増加熱量、即ち予測増加貯湯熱量を演算する。次に、予測エネルギー削減比率のピックアップが行われる(ステップS11−5)。このピックアップは、熱不足が発生しないようにするための増加側修正であるので、前記熱不足時間帯の前の時間帯範囲、即ち予測エネルギー削減比率及び予測増加貯湯熱量を演算した時間帯範囲であって、仮運転パターンの発電出力より大きい発電出力範囲について行われる。このようにピックアップすると、燃料電池6の発電出力が上昇する(300Wから600Wに)ことにより、それに伴ってその予測熱出力も増加するので、予測貯湯蓄熱量演算手段80は出力上昇に伴う貯湯タンク22の予測貯湯蓄熱量を演算する(ステップS11−6)。次いで、予測増加貯湯熱量積算手段118が予測増加貯湯熱量を積算し(ステップS11−8)、この積算値が予測貯湯熱量増加目標値に達したかが判断される(ステップS11−9)。このように、発電出力を増加させるように仮運転パターンの増加修正が行われるようになっている。
特開2006−97677号公報
ところで、特許文献1に記載のコジェネレーションシステムにおいては、補助加熱装置であるボイラ手段42の無駄な稼働を抑えるために、発電出力を増加させるように仮運転パターンの増加修正が行われ、その仮運転パターンに基づいて運転されるようになっている。この場合、ボイラ手段42の無駄な稼働を抑えてシステム全体で省エネを図ることができるものの、発電装置である燃料電池6を比較的高い発電出力(例えば燃料電池6の最大発電出力付近の発電出力)で運転させる時間が長くなるため、燃料電池6にかかる負担が大きくなるという問題があった。
本発明は、上述した各問題を解消するためになされたもので、補助加熱装置を有するコジェネレーションにおいて、補助加熱装置の無駄な稼動を抑制しつつ発電装置の負担を軽減することを目的とする。
上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、負荷装置に電力を供給する発電装置と、発電装置の排熱を回収した湯水を貯湯するとともに湯水使用装置に該湯水を供給する貯湯槽と、運転計画に従って発電装置を制御するとともに発電量指示値に応じた発電量となるように発電装置を制御する運転制御装置と、貯湯槽内の残湯量が所定量以下となると、貯湯槽の湯水を導入して加熱して導出する補助加熱装置と、を備え、運転制御装置は、貯湯槽内の実際の残湯量を導出する実残湯量導出手段と、実残湯量導出手段によって導出された貯湯槽内の実際の残湯量からオフセット量を減算して得られる貯湯槽内のオフセット残湯量を導出するオフセット残湯量導出手段と、負荷装置で消費される電力量の消費パターン、湯水使用装置で消費される湯水量の消費パターン、およびオフセット残湯量導出手段で導出されたオフセット残湯量に基づいて、発電装置の発電が停止される発電停止時間帯と、負荷装置の電力消費量に追従する発電装置の連続発電運転が実施される発電運転時間帯とからなる運転計画を導出する運転計画導出手段と、を備え、オフセット量は、補助加熱装置の加熱開始閾値である所定量より大きい値に設定されることである。
また請求項2に係る発明の構成上の特徴は、請求項1において、オフセット量は、湯水使用装置で使用された実際の湯水量のデータのうち1使用あたりの使用量から学習することにより設定されることである。
また請求項3に係る発明の構成上の特徴は、請求項1または請求項2において、オフセット量を0から増大させた際に得られる、該オフセット量と補助加熱装置の加熱動作のために消費されるエネルギー量との関係において、補助加熱装置の加熱動作のために消費されるエネルギー量が減少から一定となったときのオフセット量を、オフセット残湯量導出手段で使用するオフセット量に設定することである。
また請求項4に係る発明の構成上の特徴は、湯水を生成する湯水生成装置と、湯水を貯湯するとともに湯水使用装置に該湯水を供給する貯湯槽と、湯水生成装置を制御するとともに貯湯槽を制御する運転制御装置と、貯湯槽内の残湯量が所定量以下となると、貯湯槽の湯水を導入して加熱して導出する補助加熱装置と、を備え、運転制御装置は、貯湯槽内の実際の残湯量を導出する実残湯量導出手段と、実残湯量導出手段によって導出された貯湯槽内の実際の残湯量からオフセット量を減算して得られる貯湯槽内のオフセット残湯量を導出するオフセット残湯量導出手段と、湯水使用装置で消費される湯水量の消費パターン、およびオフセット残湯量導出手段で導出されたオフセット残湯量に基づいて、湯水生成装置の運転計画を導出する運転計画導出手段と、を備え、オフセット量は、補助加熱装置の加熱開始閾値である所定量より大きい値に設定されることである。
上記のように構成した請求項1に係る発明においては、実残湯量導出手段が、貯湯槽内の実際の残湯量を導出し、オフセット残湯量導出手段が、実残湯量導出手段によって導出された貯湯槽内の実際の残湯量からオフセット量を減算して得られる貯湯槽内のオフセット残湯量を導出し、運転計画導出手段が、負荷装置で消費される電力量の消費パターン、湯水使用装置で消費される湯水量の消費パターン、およびオフセット残湯量導出手段で導出されたオフセット残湯量に基づいて、発電装置の発電が停止される発電停止時間帯と、負荷装置の電力消費量に追従する発電装置の連続発電運転が実施される発電運転時間帯とからなる運転計画を導出する。そして、運転制御装置は、その運転計画に従って発電装置を制御するとともに発電量指示値に応じた発電量となるように発電装置を制御する。
これにより、実際の貯湯槽の残湯量からオフセット量を減算したオフセット残湯量を使用して導出された運転計画を実施することにより、貯湯槽の残湯量は最低でもオフセット量は残っていることとなる。すなわち、貯湯槽の残湯量は少なくともオフセット量は確保することができる。したがって、このオフセット量が補助加熱装置の加熱開始閾値より大きい値に設定されていれば、貯湯槽の湯水を使い切るような状況になっても補助加熱装置の加熱動作をできるだけ抑制することができる。さらに、従来のように発電装置の出力電力を増大させることなく、オフセット量に相当する時間だけ発電運転時間帯を長くすることにより、残湯量を増大させることができる。したがって、発電装置を比較的高い発電出力で運転するのを抑制することで発電装置にかかる負担を軽減することができる。このように、本発明に係るコジェネレーションによれば、補助加熱装置の無駄な稼動を抑制しつつ発電装置の負担を軽減することができる。
これに加えて、貯湯槽内の残湯量が所定量以下となると、貯湯槽の湯水を導入して加熱して導出する補助加熱装置をさらに備え、オフセット量は、補助加熱装置の加熱開始閾値である所定量より大きい値に設定される。これにより、貯湯槽の残湯量は補助加熱装置の加熱開始閾値より多い量を確実に確保することができ、貯湯槽の湯水を使い切るような状況になっても補助加熱装置の加熱動作をできるだけ抑制することができる。
上記のように構成した請求項2に係る発明においては、請求項1において、オフセット量は、湯水使用装置で使用された実際の湯水量のデータのうち1使用あたりの使用量から学習することにより設定される。これにより、使用量がオフセット量より少なく湯水量の消費パターンにも定期的に現れない突発的な使用(例えば、うがいするのにお湯を使用するなど)する場合においても、そのような使用量をオフセット量でカバーすることができる。この場合、その一回の使用量に応じてオフセット量を設定することができるので、突発的な少量の湯水使用時においても省エネ性を向上させることができる。
上記のように構成した請求項3に係る発明においては、請求項1または請求項2において、オフセット量を0から増大させた際に得られる、該オフセット量と補助加熱装置の加熱動作のために消費されるエネルギー量との関係において、補助加熱装置の加熱動作のために消費されるエネルギー量が減少から一定となったときのオフセット量を、オフセット残湯量導出手段で使用するオフセット量に設定する。これにより、補助加熱装置で消費されるエネルギーとオフセット量分の湯水を生成するためのエネルギーのそれぞれに対する省エネ量が最も高いオフセット量を使用することができるので、コジェネレーションシステム全体として省エネ性を高く維持することができる。
上記のように構成した請求項4に係る発明においては、実残湯量導出手段が、貯湯槽内の実際の残湯量を導出し、オフセット残湯量導出手段が、実残湯量導出手段によって導出された貯湯槽内の実際の残湯量からオフセット量を減算して得られる貯湯槽内のオフセット残湯量を導出し、運転計画導出手段が、湯水使用装置で消費される湯水量の消費パターン、およびオフセット残湯量導出手段で導出されたオフセット残湯量に基づいて、湯水生成装置の運転計画を導出する。そして、運転制御装置は、その運転計画に従って湯水生成装置を制御するとともに貯湯槽を制御する。
これにより、実際の貯湯槽の残湯量からオフセット量を減算したオフセット残湯量を使用して導出された運転計画を実施することにより、貯湯槽の残湯量は最低でもオフセット量は残っていることとなる。すなわち、貯湯槽の残湯量は少なくともオフセット量は確保することができる。したがって、このオフセット量が補助加熱装置の加熱開始閾値より大きい値に設定されていれば、貯湯槽の湯水を使い切るような状況になっても補助加熱装置の加熱動作をできるだけ抑制することができる。ひいては、オフセット量を適切に設定可能となり、補助加熱装置自体を設けなくてもよくなるので、システムの価格を低減することができる。
これに加えて、貯湯槽内の残湯量が所定量以下となると、貯湯槽の湯水を導入して加熱して導出する補助加熱装置をさらに備え、オフセット量は、補助加熱装置の加熱開始閾値である所定量より大きい値に設定される。これにより、貯湯槽の残湯量は補助加熱装置の加熱開始閾値より多い量を確実に確保することができ、貯湯槽の湯水を使い切るような状況になっても補助加熱装置の加熱動作をできるだけ抑制することができる。

以下、本発明によるコジェネレーションシステムの一実施形態について説明する。図1はこのコジェネレーションシステムの概要を示す概要図である。このコジェネレーションシステムは、負荷装置21に電力を供給する発電装置10と、発電装置10の排熱を回収した湯水を貯湯する貯湯槽30と、貯湯槽30の湯水を導入して加熱して導出する補助加熱装置40と、発電量指示値に応じた発電量となるように発電装置10を制御する運転制御装置50とを備えている。
発電装置10は、燃料電池発電装置であり、直流電力を発生する発電器11と、発電器11から供給された直流電力を交流電力に変換して出力する変換器(例えばインバータ)12とを備えている。なお、発電装置10としては、燃料電池発電装置の他に、ディーゼルエンジン、ガスエンジン、ガスタービン、マイクロガスタービンなどの原動機とこの原動機によって駆動される発電機から構成されたものでもよい。
発電器11は、改質装置、一酸化炭素低減装置(以下CO低減装置という)および燃料電池から構成されている。改質装置は、燃料供給装置13から供給される燃料を水供給装置14から供給される水で水蒸気改質して水素リッチな改質ガスを生成してCO低減装置に導出するものである。CO低減装置は、改質ガスに含まれる一酸化炭素を低減して燃料電池に導出するものである。燃料電池は、燃料極に供給された改質ガス中の水素および空気極に供給された酸化剤ガスである空気を用いて発電するものである。
燃料供給装置13と発電器11の間には、発電器11に投入される燃料量を検出する燃料投入量検出手段である流量計13aが設けられており、流量計13aは検出した燃料投入量を運転制御装置50に送信するようになっている。なお、燃料電池発電装置の場合の燃料投入量は、改質装置に供給される燃料の投入量を指す。
変換器12は、電力使用場所20に設置されている複数の負荷装置21に送電線15を介してそれぞれ接続されており、変換器12から出力される交流電力は必要に応じて各負荷装置21に供給されている。変換器12には、発電装置10から出力される発電出力量を検出する発電出力量検出手段である電力計10aが設けられており、電力計10aは検出した発電出力量を運転制御装置50に送信するようになっている。
負荷装置21は、電灯、アイロン、テレビ、洗濯機、電気コタツ、電気カーペット、エアコン、冷蔵庫などの電気器具である。なお、変換器12と電力使用場所20とを接続する送電線15には電力会社の系統電源16も接続されており(系統連系)、発電装置10の発電量より負荷装置21の総電力消費量が上回った場合、その不足電力を系統電源16から受電して補うようになっている。電力計22は、負荷装置21にて消費された電力消費量を検出する電力消費量検出手段であり、電力使用場所20で使用される全ての負荷装置21の合計電力消費量を検出して、運転制御装置50に送信するようになっている。
また、発電器11には、発電器11の排熱を回収して発電器11を冷却する熱媒体が循環する冷却回路31が接続されている。冷却回路31上には、発電器11、熱交換器32、ラジエータ37およびポンプ31aが配設されている。ラジエータ37は、冷却回路31を循環する熱媒体を冷却する冷却手段であり、運転制御装置50の指令によってオン・オフ制御されており、オン状態のときには熱媒体を冷却し、オフ状態のときには冷却しないものである。ポンプ31aは、冷却回路31の熱媒体を図示矢印方向へ循環させるものであり、運転制御装置50によって制御されてその吐出量(送出量)が制御されるようになっている。
一方、後述する貯湯槽30には、貯湯槽30内の湯水(貯湯水)を加熱するための湯水循環回路33が接続されている。湯水循環回路33の一端は貯湯槽30の下部に、他端は貯湯槽30の上部に接続されている。湯水循環回路33上には、貯湯槽30、ポンプ33a、および熱交換器32が、貯湯槽30を起点としてこの順番で配設されている。ポンプ33aは、貯湯槽30の下部の湯水を吸い込んで湯水循環回路33を図示矢印方向へ通水させて貯湯槽30の上部に送出するものであり、運転制御装置50によって制御されてその吐出量(送出量)が制御されるようになっている。熱交換器32は、冷却回路31を循環する熱媒体と湯水循環回路33を循環する湯水との間で熱交換が行われるものである。
これにより、発電器11の発電中に、ポンプ31aが駆動されて冷却回路31を熱媒体が循環し、ポンプ33aが駆動されて湯水循環回路33を湯水が循環する。発電器11の排熱は、熱媒体に回収される。熱媒体と湯水は熱交換器32で熱交換が行われる。熱交換器32では熱媒体に回収された発電器11の排熱が湯水に回収されて湯水が加熱されるようになっている。発電器11の排熱とは、例えば、燃料電池発電装置の場合、燃料電池スタックの排熱や改質装置の排熱などをいい、エンジン発電装置の場合、エンジンの排熱などが挙げられる。しかし、それに限定せず発電機それ自体の熱など回収可能な排熱なら何でも利用できる。
貯湯槽30は、1つの柱状容器を備えており、その内部に温水が層状に、すなわち上部の温水が最も高温であり下部にいくにしたがって低温となり下部の温水が最も低温であるように貯留されるようになっている。貯湯槽30に貯留されている高温の温水が貯湯槽30の柱状容器の上部から導出され、その導出された分を補給するように水供給装置14からの水道水などの水(低温の水)が貯湯槽30の柱状容器の下部から導入されるようになっている。このような貯湯槽30は、発電装置10の近くに設置されている。
貯湯槽30の内部には残湯量検出センサである温度センサ群34が設けられている。温度センサ群34は複数(本実施形態においては10個)の温度センサ34−1,34−2,34−3,・・・,34−10から構成されており、上下方向(鉛直方向)に沿って等間隔(貯湯槽30内の上下方向高さの九分の一の距離)にて配設されている。温度センサ34−1は貯湯槽30の内部上面位置に配置されている。各温度センサ34−1,34−2,34−3,・・・,34−10はその位置の貯湯槽30内の液体(温水または水)の温度をそれぞれ検出するものである。この温度センサ群による各位置での湯温の検出結果に基づいて貯湯槽30内の残湯量が導出されるようになっている。残湯量は、貯湯槽30内に蓄えられた熱量を表している。
さらに、貯湯槽30には、貯湯槽30内の湯水(貯湯水)を加熱するための補助加熱回路41が接続されている。補助加熱回路41の一端は貯湯槽30の上下方向の途中(本実施形態では上下方向中央部)に、他端は貯湯槽30の上部に接続されている。補助加熱回路41上には、貯湯槽30、ポンプ41a、補助加熱装置40が、貯湯槽30を起点としてこの順番で配設されている。ポンプ41aは、貯湯槽30の上下方向中央部の湯水(多くの場合は低温の湯水)を吸い込んで補助加熱回路41を図示矢印方向へ通水させて貯湯槽30の上部に送出するものであり、運転制御装置50によって制御されてその吐出量(送出量)が制御されるようになっている。
補助加熱装置40は、貯湯槽30内の残湯量が所定量以下となると、貯湯槽30の湯水を導入して加熱して導出するものである。本実施の形態では、補助加熱装置40としてガスバーナが使用されているが、電気式の加熱装置でもよい。補助加熱装置40は、運転制御装置50の指令に従って運転制御されるものである。すなわち、運転制御装置50は、貯湯槽30内の残湯量を検出し、その検出値が所定量より多ければ補助加熱装置40の燃焼運転をさせない(燃料の供給を停止し燃焼させない)。
一方、運転制御装置50は、検出した残湯量が所定量以下であれば補助加熱装置40を燃焼運転させる(燃料の供給を開始し着火して燃焼させる)。なお、燃料は、燃料供給装置13からの燃料でよい。
具体的には、残湯量が所定量以下となった場合、運転制御装置50は、補助加熱装置40を燃焼運転させる。すなわち、残湯量が所定量以下となった場合、補助加熱装置40の燃焼運転を開始し、ポンプ41aを駆動する。これにより、貯湯槽30の上下方向中央部の湯水(低温の湯水)が補助加熱装置40を通過する際に加熱され、その後貯湯槽30の上部に戻される。その後、残湯量が所定量に達すると、運転制御装置50は補助加熱装置40の燃焼運転を停止する(ポンプ41aも停止させる。)。
なお、補助加熱装置40は、運転制御装置40によって運転制御されるものではなく、装置自身が独立した温度センサ(貯湯槽30内の残湯量を検出できるセンサ)を有しその検出値に基づいて燃焼運転を制御する自律制御が可能なもので構成するようにしてもよい。
貯湯槽30と水供給装置14の間には貯湯槽30に供給される水(例えば水道水)の温度を検出する温度センサ38が設けられている。温度センサ38の検出結果(水道水温度)は運転制御装置50に送信されるようになっている。
貯湯槽30には、給湯管35が接続されている。給湯管35には、上流から順番に温度センサ(図示省略)および流量センサ36が配設されている。温度センサは貯湯槽30から流出した後の湯水の温度を検出するものであり、その検出信号は運転制御装置50に送信されるようになっている。また、図示していないが、給湯管35には貯湯槽30の導出口と温度センサとの間に水供給装置14からの水道水が合流するようになっている。これにより、温度センサで検出した湯水の温度が設定された給湯温度以上である場合には、給湯温度となるように水道水を供給して貯湯槽30からの湯水を降温している。流量センサ36は、貯湯槽30から供給されている湯水消費量(給湯量)を検出するものである。流量センサ36の検出信号は運転制御装置50に送信されるようになっている。
給湯管35には、貯湯槽30に貯留している湯水を給湯として利用する湯水使用場所25に設置されている複数の湯利用機器26aが接続されている。この湯利用機器26aとしては、浴槽、シャワ、キッチン(キッチンの蛇口)、洗面所(洗面所の蛇口)などがある。また、給湯管35には、貯湯槽30の湯水を熱源として利用する湯水使用場所25に設置されている熱利用機器26bが接続されている。この熱利用機器26bとしては、浴室暖房、床暖房、浴槽の湯の追い炊き機構などがある。なお、熱利用機器26bは貯湯槽30の湯水を直接利用する場合や貯湯槽30の湯水を間接的に利用する場合がある。湯利用機器26aおよび熱利用機器26bは湯水使用装置である。
運転制御装置50は、マイクロコンピュータ(図示省略)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続された入出力インターフェース、CPU、RAMおよびROM(いずれも図示省略)を備えている。CPUは、図2〜図7のフローチャートに対応したプログラムを実行して、発電装置の運転計画を導出して更新記憶し、該更新記憶した運転計画に従って運転するとともに発電量指示値に応じた発電量となるように発電装置を制御している。RAMは同プログラムの実行に必要な変数を一時的に記憶するものであり、ROMは前記プログラムを記憶するものである。
次に、上述したコジェネレーションシステムの作動について図2〜図7を参照して説明する。運転制御装置50は、図示しない主電源が投入されると、ステップ100にてプログラムを起動しプログラムをステップ102に進める。運転制御装置50は、図1に示すステップ102〜112の処理によって運転計画を一日のうち第1所定時間T1毎に導出して更新記憶する。また、運転制御装置50は、更新記憶した運転計画に従って図7に示すステップ602〜608の処理によって発電装置を運転する。すなわち、運転計画にしたがって発電装置10の運転(発電)を停止したり連続発電したりする。
第1所定時間T1は、24時間(1日)より小さい時間に設定されており、本実施形態では30分である。この第1所定時間T1は、運転制御装置50が運転計画を導出するのに必要十分な時間、かつ湯水量の消費パターンにしたがっていない予定外の湯水の使用に対して貯湯槽30による熱回収が対応できる時間となるように設定されている。
運転制御装置50が運転計画を導出するのに必要十分な時間は、運転制御装置50の演算能力にもよるが、5分以上、10分以上、20分以上あればよい。湯推量の消費パターンにしたがっていない予定外の湯水の使用に対して貯湯槽30による熱回収に対応できる時間は、予定外の使用状況にもよるが、40分以下、50分以下、60分以下であることが好ましい。したがって、運転制御装置50が運転計画を導出するのに必要十分な時間と、予定外の湯水の使用に対して貯湯槽30による熱回収に対応できる時間との各組合せにより、第1所定時間T1の好ましい範囲とすることができる。
運転制御装置50は、ステップ102において、図3に示す電力消費パターン作成ルーチンに沿ってプログラムを実行し、一日分の電力消費パターンを作成して更新記憶する。この電力消費パターンは、一定期間(例えば1週間)の過去の電力消費データから電力消費パターンを予測したものである。
運転制御装置50は、電力消費パターンを作成するための行列Eo_tempを初期化する(ステップ202)。運転制御装置50は、行列Eo_tempの各要素に7日分の各時間帯の電力消費量を代入する。代入した結果の一例を図8に示している。なお、本システムを設置当初においては、家族構成、地域などの条件から予め作成された平均的な消費モデルパターンの数値を代入する。また、少なくとも1週間運転した後は、実際に発電停止時間帯毎に測定した電力消費量から作成され更新記憶された前回の電力消費パターンの数値を代入する。
行列Eo_tempにおいては、図8に示すように、列が何日前のデータであることを示し、行が一日のうちの時間帯を示している。1行1列の要素は、1日前の0:00に計測した電力消費量すなわち2日前の23:30から1日前の0:00までに計測した電力消費量の平均値であり、例えば図8では300Wである。2行1列の要素は、1日前の0:30に計測した電力消費量すなわち1日前の0:00から0:30までに計測した電力消費量の平均値であり、例えば図8では400Wである。1行2列の要素は、2日前の0:00に計測した電力消費量すなわち3日前の23:30から2日前の0:00までに計測した電力消費量の平均値であり、例えば図8では250Wである。なお、1日前のデータのなかには、本日のデータと前日のデータが混在している。同様に2日前のデータのなかには、前日のデータと前前日のデータが混在している。
運転制御装置50は、電力計22によって電力消費量を制御周期毎に計測し(ステップ204)、計測した電力消費量をフィルタ処理する(ステップ206)。運転制御装置50は、ステップ206において、電力消費量を計測する度にその計測したデータおよび記憶されている過去数件分(本実施形態においては29件分)のデータに基づいて下記数1によってフィルタ処理を実行している。上記制御周期は後述する第2所定時間T2と同一であり、本実施形態では1分である。
Figure 0005381084
なお、u[k]およびy[k]は現時点でのデータ例えば時刻kの入力データおよび出力値(処理値)であり、zは遅れ演算子である。
運転制御装置50は、電力消費量の計測開始時点から30分経過するまでの間、ステップ208で「NO」と判定し続け、上記電力消費量の計測とそのフィルタ処理を繰り返し実行して、その30分間の電力消費量をフィルタ処理して平均値を算出する。
そして、運転制御装置50は、電力消費量の計測開始時点から30分経過した時点にて、ステップ208で「YES」と判定し、現在の時刻を読み込む(ステップ210)。例えば、現在の時刻が0:00であり、それまで30分間(23:00〜0:00)のフィルタ処理値が500Wであるとする。
運転制御装置50は、行列Eo_tempにおいて、7日前の同時刻(電力消費量を計測しフィルタ処理が完了した時刻)のデータを消去するとともに、同時刻(同行)の残っているデータを一つずつ右に移動させる(ステップ212)。例えば、今回の時刻は0:00であるので、図9に示すように、7日前の0:00のデータである1行7列の要素の440Wを消去する。そして、1日前の0:00のデータである1行1列の要素の300Wを1行2列に移動させ、2日前の0:00のデータである1行2列の要素の250Wを1行3列に移動させ、その他の1行3列から1行6列までの各要素も同様に移動させる。
そして、運転制御装置50は、図9に示すように、上述のように導出したフィルタ処理値(例えば500W)を行列Eo_tempの空いている1行1列に追加する(ステップ214)。運転制御装置50は、このように作成された行列Eo_tempの各行のデータを平均化することにより電力消費予測値すなわち電力消費パターンを導出して更新記憶する(ステップ216)。導出された電力消費予測値の一例を図10に示す。0:00の電力消費量は340Wであり、0:30の電力消費量は420Wであり、・・・、23:30の電力消費量は900Wである。この電力消費パターンの一例を図12に示す。
次に、運転制御装置50は、ステップ104において、図4に示す湯水消費パターン作成ルーチンに沿ってプログラムを実行し、一日分の湯水消費パターンを作成して更新記憶する。この湯水消費パターンは、一定期間(例えば1週間)の過去の湯水消費データから湯水消費パターンを予測したものである。
すなわち、運転制御装置50は、上述したステップ202〜216の処理と同様に、ステップ302〜316の処理によって湯水消費パターンを作成する。具体的には、運転制御装置50は、湯水消費パターンを作成するための行列Qout_tempを初期化する(ステップ302)。行列Qout_tempは、行列Eo_tempと同様に列が何日前のデータであることを示し、行が一日のうちの時間帯を示している。
運転制御装置50は、流量センサ36によって湯水消費量を制御周期毎に計測し(ステップ304)、計測した湯水消費量をフィルタ処理する(ステップ306)。運転制御装置50は、湯水消費量の計測開始時点から30分経過するまでの間、ステップ308で「NO」と判定し続け、上記湯水消費量の計測とそのフィルタ処理を繰り返し実行して、その30分間の湯水消費量をフィルタ処理して平均値を算出する。
そして、運転制御装置50は、湯水消費量の計測開始時点から30分経過した時点にて、ステップ308で「YES」と判定し、現在の時刻を読み込む(ステップ310)。運転制御装置50は、行列Qout_tempにおいて、7日前の同時刻のデータを消去するとともに、同時刻(同行)の残っているデータを一つずつ右に移動させる(ステップ312)。そして、運転制御装置50は、ステップ306で導出したフィルタ処理値を行列Qout_tempの空いている1行1列に追加する(ステップ314)。運転制御装置50は、このように作成された行列Qout_tempの各行のデータを平均化することにより湯水消費予測値すなわち湯水消費パターンを導出して更新記憶する(ステップ316)。この湯水消費パターンの一例を図13に示す。
次に、運転制御装置50は、ステップ106において、図5に示す貯湯槽残湯量推定ルーチンに沿ってプログラムを実行し、現在時刻の貯湯槽30の実際の残湯量を導出して記憶する(実残湯量導出手段)。具体的には、運転制御装置50は、温度センサ38によって貯湯槽30に補給される水(例えば水道水)の温度を計測する(ステップ402)。運転制御装置50は、各温度センサ34−1〜34−10によって貯湯槽30内の各位置の湯水の温度を計測する(ステップ404)。そして、運転制御装置50は、補給される水の温度および貯湯槽30内の各位置の温度を下記数2に代入して貯湯槽30の残湯量を導出する(ステップ406)。
Figure 0005381084
ここで、Qは貯湯槽30に蓄えられている熱量[J]であり、Cpは水の比熱(4.189×10−3[J/(kg・K)])であり、Vは貯湯槽30の容積(本実施形態では150l=150kg)であり、Twは水道水の温度であり、Tiは貯湯槽30内の上からi番目の温度である。
次に、運転制御装置50は、ステップ108において、先にステップ106で導出された貯湯槽30内の実際の残湯量からオフセット量を減算して得られる貯湯槽30内のオフセット残湯量を導出する(オフセット残湯量導出手段)。なお、実際の残湯量がオフセット量以下である場合には、オフセット残湯量は0に設定される。オフセット残湯量が0以下になるのを防ぐためである。
オフセット量は、補助加熱装置40の加熱開始閾値である所定量より大きい値に設定されている。なお、加熱開始閾値は、補助加熱装置40の加熱が開始される判定閾値である。
オフセット量の決定方法について説明する。複数の家庭、さまざまな季節に対してデータを取り、その収集したデータに基づいてオフセット量を決定した。収集するデータとしては、補助加熱装置40の投入燃料量、発電装置10の運転に使用された燃料量、電力消費量、湯水使用量などである。収集したデータをまとめると、図11に示すように、オフセット量と補助加熱装置40の加熱動作のために消費されるエネルギー量(投入燃料量)との関係(図11において細い線で示す)と、オフセット量とコジェネレーション全体の省エネ量との関係(図11において太い線で示す)とを得ることができる。このとき、オフセット量を0から増大させた際に得られる、該オフセット量と補助加熱装置40の加熱動作のために消費されるエネルギー量との関係において、補助加熱装置40の加熱動作のために消費されるエネルギー量(燃料量)が減少から一定となったときのオフセット量を、オフセット残湯量を導出するのに使用するオフセット量に設定するようにしてもよい。
図11から明らかなように、オフセット量を0から増加させると、補助加熱装置40の動作量は最初は下がるがオフセット量が一定値(Oa)以上となると横ばいになるとわかった。前段階(オフセット量がOa以下)では、狙いであるお湯使いきり時の補助加熱装置40の動作抑制が効いているところであり、後段階(オフセット量がOa以上)の横ばいの理由は、家庭でのお湯使用量が排熱回収量を大きく上回った結果、補助加熱装置40が動作したことによる。
一方、省エネ量でみても、山型の形になっているおり、そのピークも補助加熱装置40への燃料投入量が下付きした点に一致している(オフセット量がOaのとき)。山型となる理由を述べると、前段階ではオフセット量の増加に伴い、お湯使い切り時の補助加熱装置40の作動量が減少した結果、省エネ率が向上した。また、後段階の省エネ率の減少理由は、オフセット量増加に対してそれだけのお湯を沸かす必要が発生した為である。また、影響度は微小であるがオフセット量が増加したことによって、大気中への放熱量が増加した影響もある。
また、オフセット量は、上述した湯水使用装置で使用された実際の湯水量のデータのうち1使用あたりの使用量から学習することにより設定されるようにしてもよい。すなわち、ユーザーのお湯使用バラツキを学習することにより推定してオフセット量を大小変更させても良い。上述したようにお湯の使用パターンにおいてはユーザーのお湯使用方法(パターン)を過去の使用履歴から学習するが、日常のちょっとしたお湯の使用(例えば、うがいをするのにお湯を使ったなど)まではフォローすることができない。この場合、従来はそういう使い方をされる度に補助加熱装置が動作したが、貯湯槽30内の残湯量にオフセットを持たせた結果、そうした使用量はオフセット分でカバー(タンクからお湯を供給)でき省エネ率を向上させる効果を得ることができる。なお、1使用あたりの使用量とは湯水使用装置を一回使用した際の使用量であり、例えば手を洗うためにお湯を使用する場合の使用を一回の使用とする。また、1使用あたりの使用量とは、システムを起動させて停止させるまでの間の湯水の使用回数のこととしてもよい。この場合、例えば所定期間(例えば2週間)の間の補助加熱装置の作動回数(使用回数)を検知し、作動回数(使用回数)が多い場合にはオフセット量を大きくするようにしてもよい。この場合、オフセット量の上限が設けられている。
説明を図2のフローチャートに戻す。運転制御装置50は、ステップ110において、図6に示す運転計画導出・更新記憶ルーチンに沿ってプログラムを実行し、発電装置10の運転計画を導出して(立てて)、その運転計画を更新記憶する(運転計画導出手段)。
運転制御装置50は、上記ステップ102で作成して記憶されている電力消費パターン(図12に示すパターン)、および上記ステップ104で作成して記憶されている湯水消費パターン(図13に示すパターン)を読み込み(ステップ502)、上記ステップ108で導出したオフセット残湯量を読み込む(ステップ504)。そして、運転制御装置50は、ステップ506〜518の処理によりそれら読み込んだ最新の情報を使用して最適な運転計画を立てる。
運転制御装置50は、発電を停止する(発電停止を開始する)停止時刻と発電を開始する(発電停止を終了する)開始時刻を変更して発電停止時間帯を設定する(ステップ506)。例えば、1日(0:00〜24:00)の中で30分刻みで停止時刻と開始時刻を変更させる。これにより、発電停止時間帯の全組み合わせは、0:00〜0:00(停止しない)、0:00〜0:30、0:00〜1:00、・・・、0:00〜24:00、0:30〜1:00、・・・、0:30〜24:00、・・・、23:00〜23:30、・・・、23:00〜24:00、および23:30〜24:00となり、1177通り(=49+1)設定することができる。
運転制御装置50は、このすべての組み合わせの一つずつについて省エネ効果指標値を導出する(ステップ508〜514)。まず、運転制御装置50は、ステップ506で設定した発電停止時間帯、ステップ502で読み込んだ電力消費パターン、および下記数3から、電力消費パターンの設定時間単位(本実施形態では24時間)で各時刻の排熱回収量を導出する(ステップ508)。例えば、一回目の計算では、一つ目の組み合わせ0:00〜0:00についての排熱回収量を導出する。また、発電停止時間帯が4:00から17:00までである運転計画が最適な運転計画として導出された場合、排熱回収量の予測値は図14に示すように導出される。
Figure 0005381084
ここで、Qin[k]はk時刻(時間)での排熱回収量[J]であり、Eoは電力消費パターン[W]であり、tdは予測の間隔(本実施形態では30分)である。aは排熱回収特性[W/W]であり、aは排熱回収特性[W]であり、いずれの値も実機を使用して得た実験データから算出されるものである。なお、排熱回収特性aの単位のうち分母は電気のワットを示し分子は熱のワットを示している。
上記数3によれば、毎時正時と30分の排熱回収量を導出することができる。また、それらの時間が設定された発電停止時間帯でなければ(発電運転時間帯であれば)、数3の上の式を使用して排熱回収量を導出することができる。設定された発電停止時間帯であれば、数3の下の式を使用して排熱回収量を導出することができる。すなわち、発電していないので、排熱回収量は0である。
なお、電力消費パターンの電力消費量が発電器11の最大発電量を超えない場合、上記数3において電力消費パターンEoをそのまま使用することができるが、超える場合、上記数3において電力消費パターンEoの代わりに発電器11の最大発電量を使用する。
運転制御装置50は、ステップ506で設定した発電停止時間帯による運転計画で貯湯槽30のオフセット残湯量の推移を導出(予測)する(ステップ510)。運転制御装置50は、ステップ502で読み込んだ湯水消費パターンQout、ステップ504で読み込んだオフセット残湯量、およびステップ508で導出した排熱回収量Qinを下記数4に代入して貯湯槽30のオフセット残湯量の推移を導出する。例えば、一回目の計算では、一つ目の組み合わせ0:00〜0:00についての貯湯槽30のオフセット残湯量の推移を導出する。また、発電停止時間帯が4:00から17:00までである運転計画が最適な運転計画として導出された場合、オフセット残湯量の予測値は図15の細い線に示すように導出される。
Figure 0005381084
ここで、Q[k]は貯湯槽30のオフセット残湯量の推移予測値である。この推移予測値は、湯水消費パターンに対応する時間(本実施形態では24時間)を単位として導出される。
なお、図15には、前述したオフセット残湯量を使用しないで実際の残湯量を使用して導出した貯湯槽30の残湯量の推移予測値を太い線で示している。この実際の残湯量を使用して導出した貯湯槽30の残湯量の推移予測値は、ステップ510において、オフセット残湯量の代わりに実際の残湯量(ステップ106で推定したもの)を使用して導出すればよい。オフセット残湯量を使用して導出された推移予測値と、実際の残湯量を使用して導出された推移予測値とを比較して説明する。オフセット残湯量を使用して導出された推移予測値は、実際の残湯量を使用して導出された推移予測値にオフセット量が加算されたものとなる。すなわち、推移予測では、お湯を使い切ったと推定される場合でも、実際には貯湯槽30内には湯水をオフセット量だけ残すことができる。したがって、実際の残湯量を使用して導出された場合には、時刻Taにおいて残湯量が所定量(補助加熱装置40の加熱開始閾値)に到達するため、補助加熱装置40の加熱が開始される。これに対し、オフセット残湯量を使用して導出された場合には、時刻Taにおいて、推移予測でお湯を使い切ったと推定される場合でも、実際には貯湯槽30内には残湯量は少なくともオフセット量あるので、残湯量が所定量に到達しないため、補助加熱装置40の加熱開始を抑制することができる。このように、オフセット残湯量の推移予測では、補助加熱装置40の加熱開始を見込んでいるため、不必要な補助加熱装置40の加熱を抑制することができ、省エネ性を向上させることができる。
運転制御装置50は、ステップ506で設定した発電停止時間帯による運転計画で省エネ効果指標値である評価関数Jを導出する(ステップ512)。運転制御装置50は、ステップ510で導出した貯湯槽30のオフセット残湯量の推移予測値Q[k]、ステップ502で読み込んだ電力消費パターンEo、および下記数5から、評価関数Jを導出する。この評価関数はJは各時刻の省エネ効果を1日分加算した値である。例えば、一回目の計算では、一つ目の組み合わせ0:00〜0:00についての1日分の総省エネ効果を導出する。本実施形態の評価関数(省エネ効果指標値)は、一次エネルギー(発電装置10に供給される燃料)の削減量である。例えば、発電停止時間帯が0:00〜0:00である場合、評価関数値は19686(J)である。
Figure 0005381084
ここで、J[k]はk時刻の省エネ効果であり、Eoは電力消費パターンであり、Qfullは最大貯湯槽熱量である。bは省エネ効果換算値[J/W]であり、bは省エネ効果換算値[J]であり、いずれの値も実機を使用して得た実験データから算出されるものである。cは貯湯槽30が温度的に満タンである場合の省エネ効果換算値[J/W]であり、cは貯湯槽30が温度的に満タンである場合の省エネ効果換算値[J]であり、いずれの値も実機を使用して得た実験データおよびラジエータ37の特性から算出されるものである。
Qfullは下記数6で導出される。
Figure 0005381084
ここで、Cpは水の比熱(4.189×10−3[J/(kg・K)])であり、Vは貯湯槽30の容積(本実施形態では150l=150kg)であり、Tmaxは排熱回収最高温度(例えば70℃)であり、Twは水道水の温度である。
そして、運転制御装置50は、ステップ506で設定した発電停止時間帯とステップ512で導出した評価関数値(省エネ効果指標値)とを関連付けて記憶装置に記憶する(ステップ514)。
運転制御装置50は、上述した発電停止時間帯のすべての組み合わせについて上述したステップ506〜514の処理を繰り返し実施する(ステップ516で「NO」と判定し続ける)。すべての組み合わせについて発電停止時間帯と省エネ効果指標値との関連付けが終了すると、運転制御装置50は、ステップ516で「YES」と判定し、プログラムをステップ518に進める。
運転制御装置50は、ステップ518において、それまで記憶した発電停止時間帯と省エネ効果指標値との関連付けのなかから、省エネ効果指標値が最大となるものを選択する。記憶している発電停止時間帯と省エネ効果指標値との関連付けを3次元グラフで表したものを図16に示す。図16において、横軸が発電の停止時刻を示し、縦軸が発電の開始時刻を示している。両軸とも0:00から24:00まで30分刻みで示してある。省エネ効果指標値は、等高線で示している。等高線L1で示す範囲が省エネ効果指標値が最も大きい範囲である。等高線L1から外側にいくにしたがって省エネ効果指標値が小さくなっている。
この図16から明らかなように、停止時刻が3:00〜5:00で、開始時刻が16:00〜18:00である場合、省エネ効果指標値が最大となる。運転制御装置50は、そのなかでも最も省エネ効果指標値が大きい値となる停止時刻4:00と開始時刻17:00との組み合わせからなる発電停止時間帯を有する運転計画を最適な運転計画として導出する。そして、運転制御装置50は、その導出した運転計画を更新記憶する(ステップ520)。
そして、運転制御装置50は、ステップ112にて、運転計画を導出して更新記憶した後、第1所定時間T1が経過するのを待って次回の運転計画の導出、更新記憶の処理を開始する。
また、運転制御装置50は、上述した運転計画の導出、更新記憶の処理とは別に、発電器11が発電可能な状態となると、図7に示すように、発電停止運転と連続発電運転とを切り替えて発電装置10の運転を制御している。運転制御装置50は、ステップ602〜608の処理を第2所定時間T2毎(例えば60秒毎)に繰り返し実行している。第2所定時間T2は比較的短時間な値に設定されるものであり、上述した第1所定時間より十分小さい値である。
具体的には、運転制御装置50は、ステップ602において、現在の時刻が上記導出された最新の発電停止時間帯であるか否かを判定する。運転制御装置50は、現在時刻がその発電停止時間帯であれば、ステップ602にて「YES」と判定しプログラムをステップ604に進める。運転制御装置50は、ステップ604において、発電装置10の発電停止運転を実施する。すなわち、運転制御装置50は、発電量指示値を0に設定し、発電装置10の発電を停止する。
一方、現在時刻が発電停止時間帯でない場合(発電運転時間帯である場合)には、ステップ602にて「NO」と判定しプログラムをステップ606に進める。運転制御装置50は、ステップ606において、発電装置10の連続発電運転を実施する。すなわち、運転制御装置50は、電力計22によって電力消費量を第2所定時間T2(制御周期)毎に計測し、計測した電力消費量をフィルタ処理する。このフィルタ処理は、電力消費量を計測する度にその計測したデータおよび記憶されている過去数件分(本実施形態においては4件分)のデータに基づいて上記数1と同様の下記数7によってフィルタ処理を実行している。
Figure 0005381084
運転制御装置50は、このフィルタ処理値を発電量指示値に設定し、その発電量指示値を発電器11に指示する。これにより、発電装置10は、基本的に電力消費量に追従して発電を行う。そして、電力消費量が急激に変化する場合には、フィルタ処理によって発電量を電力消費量に応じて急激に変化させることなく、発電量の振動を抑制することができるため効率のよい発電が可能となる。
上述した制御によれば、図17に示すように電力消費量が変化する場合において、4:00から17:00までの間は発電が停止されるので発電量は0である。0:00から4:00まで間と17:00から24:00までの間は電力消費量に追従して発電されている。この運転計画によれば、省エネ効果を最大限得ることができる。図17においては、太い濃い実線で電力消費量を示し、細い薄い線で発電量を示している。
上述した説明から明らかなように、本実施形態においては、実残湯量導出手段(ステップ106)が、貯湯槽30内の実際の残湯量を導出し、オフセット残湯量導出手段(ステップ108)が、実残湯量導出手段によって導出された貯湯槽30内の実際の残湯量からオフセット量を減算して得られる貯湯槽30内のオフセット残湯量を導出し、運転計画導出手段(ステップ110)が、負荷装置21で消費される電力量の消費パターン、湯水使用装置(26a,26b)で消費される湯水量の消費パターン、およびオフセット残湯量導出手段で導出されたオフセット残湯量に基づいて、発電装置10の発電が停止される発電停止時間帯と、負荷装置21の電力消費量に追従する発電装置10の連続発電運転が実施される発電運転時間帯とからなる運転計画を導出する。そして、運転制御装置50は、その運転計画に従って発電装置10を制御するとともに発電量指示値に応じた発電量となるように発電装置10を制御する。
これにより、実際の貯湯槽30の残湯量からオフセット量を減算したオフセット残湯量を使用して導出された運転計画を実施することにより、貯湯槽30の残湯量は最低でもオフセット量は残っていることとなる。すなわち、貯湯槽30の残湯量は少なくともオフセット量は確保することができる。したがって、このオフセット量が補助加熱装置40の加熱開始閾値より大きい値に設定されていれば、貯湯槽30の湯水を使い切るような状況になっても補助加熱装置40の加熱動作をできるだけ抑制することができる。さらに、従来のように発電装置10の出力電力を増大させることなく、オフセット量に相当する時間だけ発電運転時間帯を長くすることにより、残湯量を増大させることができる。したがって、発電装置10を比較的高い発電出力で運転するのを抑制することで発電装置10にかかる負担を軽減することができる。このように、本発明に係るコジェネレーションによれば、補助加熱装置40の無駄な稼動を抑制しつつ発電装置10の負担を軽減することができる。
また、オフセット量は、補助加熱装置40の加熱開始閾値である所定量より大きい値に設定される。これにより、貯湯槽30の残湯量は補助加熱装置40の加熱開始閾値より多い量を確実に確保することができ、貯湯槽30の湯水を使い切るような状況になっても補助加熱装置40の加熱動作をできるだけ抑制することができる。
また、オフセット量は、湯水使用装置26a,26bで使用された実際の湯水量のデータのうち1使用あたりの使用量から学習することにより設定される。これにより、使用量がオフセット量より少なく湯水量の消費パターンにも定期的に現れない突発的な使用(例えば、うがいするのにお湯を使用するなど)する場合においても、そのような使用量をオフセット量でカバーすることができる。この場合、その一回の使用量に応じてオフセット量を設定することができるので、突発的な少量の湯水使用時においても補助加熱装置40の稼動をできるだけ抑制することができ、省エネ性を向上させることができる。
また、オフセット量を0から増大させた際に得られる、該オフセット量と補助加熱装置40の加熱動作のために消費されるエネルギー量との関係において、補助加熱装置40の加熱動作のために消費されるエネルギー量が減少から一定となったときのオフセット量を、オフセット残湯量導出手段(ステップ108)で使用するオフセット量に設定する。これにより、補助加熱装置40で消費されるエネルギーとオフセット量分の湯水を生成するためのエネルギーのそれぞれに対する省エネ量が最も高いオフセット量を使用することができるので、コジェネレーションシステム全体として省エネ性を高く維持することができる。
なお、本発明を貯湯システムに適用することもできる。貯湯システムとしては、上述したコジェネレーションシステム以外に夜間電力やエコキュートなどの電力を利用した貯湯槽、太陽光の熱を利用した貯湯槽、ガス湯沸かし器を利用した貯湯槽を有するシステムがある。この場合、貯湯システムは、湯水を生成する湯水生成装置(上述した実施の形態の発電器11)と、湯水を貯湯するとともに湯水使用装置に該湯水を供給する貯湯槽(上述した実施の形態の貯湯槽30)と、貯湯槽内に上下方向に複数設けられ、その位置の湯水の温度を検出する温度センサ(上述した実施の形態の温度センサ34−1〜34−10)と、湯水生成装置を制御するとともに貯湯槽を制御する運転制御装置(上述した実施の形態の運転制御装置50)と、を備えている。また、本発明は、補助加熱装置がない貯湯槽に対しても適用できる。
この場合、上述した実施の形態と同様に、実残湯量導出手段が、貯湯槽内の実際の残湯量を導出し、オフセット残湯量導出手段が、実残湯量導出手段によって導出された貯湯槽内の実際の残湯量からオフセット量を減算して得られる貯湯槽内のオフセット残湯量を導出し、運転計画導出手段が、湯水使用装置で消費される湯水量の消費パターン、およびオフセット残湯量導出手段で導出されたオフセット残湯量に基づいて、湯水生成装置の運転計画を導出する。そして、運転制御装置は、その運転計画に従って湯水生成装置を制御するとともに貯湯槽を制御する。
これにより、実際の貯湯槽の残湯量からオフセット量を減算したオフセット残湯量を使用して導出された運転計画を実施することにより、貯湯槽の残湯量は最低でもオフセット量は残っていることとなる。すなわち、貯湯槽の残湯量は少なくともオフセット量は確保することができる。したがって、このオフセット量が補助加熱装置の加熱開始閾値より大きい値に設定されていれば、貯湯槽の湯水を使い切るような状況になっても補助加熱装置の加熱動作をできるだけ抑制することができる。ひいては、オフセット量を適切に設定可能となり、補助加熱装置自体を設けなくてもよくなるので、システムの価格を低減することができる。
また、上述した実施の形態では、補助加熱装置40を補助加熱回路41に設け、貯湯槽30の残湯量が所定量以下となった場合に貯湯槽30の上下方向中央部の低温の湯水を補助加熱装置40で加熱して貯湯槽30の上部に戻すようにしたが、補助加熱装置40を給湯管35に設けるようにしてもよい(図18参照)。
給湯管35には、上流から順番に補助加熱装置40、温度センサ(図示省略)および流量センサ36が配設されている。温度センサは補助加熱装置40を通過した後の湯水の温度を検出するものであり、その検出信号は運転制御装置50に送信されるようになっている。すなわち、温度センサで検出した湯水の温度が設定された給湯温度となるように、運転制御装置50は補助加熱装置40を加熱運転する。したがって、貯湯槽30の残湯量が所定量以下となった場合には、補助加熱装置40で加熱される。また、図示していないが、給湯管35には貯湯槽30の導出口と温度センサとの間に水供給装置14からの水道水が合流するようになっている。これにより、貯湯槽30からの湯水を降温している。なお、補助加熱装置40を通過した後に検出した温度ではなく、貯湯槽30の温度センサで検出した温度に基づいて補助加熱装置40の制御するようにしてもよい。
また、上述した実施形態においては、省エネルギー効果の指標としてエネルギー量を上げたが、他の指標(例えばCO削減量、家庭の光熱費)を採用するようにしてもよい。また、発電装置10としては、発電器11が交流電力を発生して交換器12を介さずに直接出力するものもある。
本発明によるコジェネレーションシステムの一実施形態の概要を示す概要図である。 図1に示した運転制御装置にて実行される制御プログラムのフローチャートである。 図1に示した運転制御装置にて実行される電力消費パターン作成ルーチンのフローチャートである。 図1に示した運転制御装置にて実行される湯水消費パターン作成ルーチンのフローチャートである。 図1に示した運転制御装置にて実行される貯湯槽残湯量推定ルーチンのフローチャートである。 図1に示した運転制御装置にて実行される運転計画導出・更新記憶ルーチンのフローチャートである。 図1に示した運転制御装置にて実行される制御プログラムのフローチャートである。 行列Eo_tempを示す図である。 行列Eo_tempの更新状況を示す図である。 電力消費予測値を行列で示した図である。 オフセット量と補助加熱装置の加熱動作のために消費されるエネルギー量(投入燃料量)との関係を細い線で示し、オフセット量とコジェネレーション全体の省エネ量との関係を太い線で示す図である。 電力消費パターンの一例を示すグラフである。 湯水消費パターンの一例を示すグラフである。 発電停止時間帯が4:00から17:00までである運転計画が最適な運転計画として導出された場合の排熱回収量の予測値を示すグラフである。 発電停止時間帯が4:00から17:00までである運転計画が最適な運転計画として導出された場合において、実際の残湯量を使用して導出された残湯量予測値(太い線で示す)とオフセット残湯量を使用して導出された残湯量予測値(細い線で示す)を示すグラフである。 発電停止時間帯の停止時刻および開始時刻と省エネ効果指標値との関係の一例を示すグラフである。 変動する電力消費量および発電量を示すグラフである。 補助加熱装置を給湯管に設けた他の実施例を示す図である。
符号の説明
10…発電装置、10a…電力計、11…発電器、12…変換器、13…燃料供給装置、13a…流量計、14…水供給装置、15…送電線、16…系統電源、21…負荷装置、26a…湯利用機器、26b…熱利用機器、30…貯湯槽、34…温度センサ群、36…流量センサ、40…補助加熱装置、50…運転制御装置。

Claims (4)

  1. 負荷装置に電力を供給する発電装置と、
    前記発電装置の排熱を回収した湯水を貯湯するとともに湯水使用装置に該湯水を供給する貯湯槽と、
    運転計画に従って前記発電装置を制御するとともに発電量指示値に応じた発電量となるように前記発電装置を制御する運転制御装置と、
    前記貯湯槽内の残湯量が所定量以下となると、前記貯湯槽の湯水を導入して加熱して導出する補助加熱装置と、
    を備え、
    前記運転制御装置は、
    前記貯湯槽内の実際の残湯量を導出する実残湯量導出手段と、
    前記実残湯量導出手段によって導出された貯湯槽内の実際の残湯量からオフセット量を減算して得られる前記貯湯槽内のオフセット残湯量を導出するオフセット残湯量導出手段と、
    前記負荷装置で消費される電力量の消費パターン、前記湯水使用装置で消費される湯水量の消費パターン、および前記オフセット残湯量導出手段で導出されたオフセット残湯量に基づいて、前記発電装置の発電が停止される発電停止時間帯と、前記負荷装置の電力消費量に追従する前記発電装置の連続発電運転が実施される発電運転時間帯とからなる前記運転計画を導出する運転計画導出手段と、
    を備え
    前記オフセット量は、前記補助加熱装置の加熱開始閾値である前記所定量より大きい値に設定されることを特徴とするコジェネレーションシステム。
  2. 請求項1において、前記オフセット量は、前記湯水使用装置で使用された実際の湯水量のデータのうち1使用あたりの使用量から学習することにより設定されることを特徴とするコジェネレーションシステム。
  3. 請求項1または請求項2において、オフセット量を0から増大させた際に得られる、該オフセット量と前記補助加熱装置の加熱動作のために消費されるエネルギー量との関係において、前記補助加熱装置の加熱動作のために消費されるエネルギー量が減少から一定となったときのオフセット量を前記オフセット量に設定することを特徴とするコジェネレーションシステム。
  4. 湯水を生成する湯水生成装置と、
    前記湯水を貯湯するとともに湯水使用装置に該湯水を供給する貯湯槽と、
    前記湯水生成装置を制御するとともに前記貯湯槽を制御する運転制御装置と、
    前記貯湯槽内の残湯量が所定量以下となると、前記貯湯槽の湯水を導入して加熱して導出する補助加熱装置と、
    を備え、
    前記運転制御装置は、
    前記貯湯槽内の実際の残湯量を導出する実残湯量導出手段と、
    前記実残湯量導出手段によって導出された貯湯槽内の実際の残湯量からオフセット量を減算して得られる前記貯湯槽内のオフセット残湯量を導出するオフセット残湯量導出手段と、
    前記湯水使用装置で消費される湯水量の消費パターン、および前記オフセット残湯量導出手段で導出されたオフセット残湯量に基づいて、前記湯水生成装置の運転計画を導出する運転計画導出手段と、
    を備え
    前記オフセット量は、前記補助加熱装置の加熱開始閾値である前記所定量より大きい値に設定されることを特徴とする貯湯システム。
JP2008328763A 2008-12-24 2008-12-24 コジェネレーションシステムおよび貯湯システム Expired - Fee Related JP5381084B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328763A JP5381084B2 (ja) 2008-12-24 2008-12-24 コジェネレーションシステムおよび貯湯システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328763A JP5381084B2 (ja) 2008-12-24 2008-12-24 コジェネレーションシステムおよび貯湯システム

Publications (2)

Publication Number Publication Date
JP2010153146A JP2010153146A (ja) 2010-07-08
JP5381084B2 true JP5381084B2 (ja) 2014-01-08

Family

ID=42572027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328763A Expired - Fee Related JP5381084B2 (ja) 2008-12-24 2008-12-24 コジェネレーションシステムおよび貯湯システム

Country Status (1)

Country Link
JP (1) JP5381084B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5571514B2 (ja) * 2010-09-17 2014-08-13 日立アプライアンス株式会社 液体加熱供給装置
WO2012091094A1 (ja) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 燃料電池システム
WO2012101996A1 (ja) * 2011-01-24 2012-08-02 パナソニック株式会社 熱電併給システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4208802B2 (ja) * 2004-05-28 2009-01-14 大阪瓦斯株式会社 熱源システム
JP4678728B2 (ja) * 2004-08-31 2011-04-27 大阪瓦斯株式会社 コージェネレーションシステム
JP2007032904A (ja) * 2005-07-26 2007-02-08 Aisin Seiki Co Ltd コジェネレーションシステム
JP2008057854A (ja) * 2006-08-31 2008-03-13 Aisin Seiki Co Ltd コジェネレーションシステム
JP2008261581A (ja) * 2007-04-13 2008-10-30 Matsushita Electric Ind Co Ltd 給湯装置
JP2008267747A (ja) * 2007-04-24 2008-11-06 Chugoku Electric Power Co Inc:The 温水供給システム

Also Published As

Publication number Publication date
JP2010153146A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
JP4473269B2 (ja) コージェネレーションシステム
JP3620701B2 (ja) コジェネレーション装置
JP2008057854A (ja) コジェネレーションシステム
JP2006286450A (ja) 燃料電池システム、その制御方法および装置
JP5191636B2 (ja) コージェネレーションシステム
JP2013104579A (ja) 貯湯式給湯システム及びその運転制御方法
JP5381084B2 (ja) コジェネレーションシステムおよび貯湯システム
JP4810786B2 (ja) 燃料電池コージェネレーションシステム
JP2005012906A (ja) コージェネレーション・システムの出力制御装置及び出力制御方法
JP5222100B2 (ja) 貯湯式の給湯装置
JP5336962B2 (ja) コージェネシステム
JP5245807B2 (ja) コジェネレーションシステムおよび貯湯システム
JP5239583B2 (ja) コジェネレーションシステム
JP4656521B2 (ja) コジェネレーションシステム
JP2008121936A (ja) コジェネレーションシステム
JP4620550B2 (ja) コジェネレーションシステム
JP5332312B2 (ja) コジェネレーションシステム
JP5105382B2 (ja) コジェネレーションシステム
JP2005009781A (ja) コージェネレーション・システムの出力制御装置及び出力制御方法
JP4912837B2 (ja) コージェネレーションシステム
JP2002048005A (ja) コージェネレーションシステム
JP2009058219A (ja) 複合給湯熱源システム
JP5551942B2 (ja) コージェネレーションシステム
JP2011033246A (ja) コージェネシステム
JP2006250380A (ja) コージェネレーションシステムの暖房負荷予測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees