JP5380790B2 - Alkaline earth metal aluminate phosphor and fluorescent lamp using the same - Google Patents

Alkaline earth metal aluminate phosphor and fluorescent lamp using the same Download PDF

Info

Publication number
JP5380790B2
JP5380790B2 JP2007153546A JP2007153546A JP5380790B2 JP 5380790 B2 JP5380790 B2 JP 5380790B2 JP 2007153546 A JP2007153546 A JP 2007153546A JP 2007153546 A JP2007153546 A JP 2007153546A JP 5380790 B2 JP5380790 B2 JP 5380790B2
Authority
JP
Japan
Prior art keywords
phosphor
fluorescent lamp
alkaline earth
earth metal
metal aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007153546A
Other languages
Japanese (ja)
Other versions
JP2008208325A (en
Inventor
正明 綱野
敬一郎 林
正芳 寺井
英男 成川
忠 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2007153546A priority Critical patent/JP5380790B2/en
Publication of JP2008208325A publication Critical patent/JP2008208325A/en
Application granted granted Critical
Publication of JP5380790B2 publication Critical patent/JP5380790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

本発明は、アルカリ土類金属アルミン酸塩蛍光体及びそれを用いた蛍光ランプに関し、特に液晶表示装置のバックライトに使用される冷陰極蛍光ランプに関する。   The present invention relates to an alkaline earth metal aluminate phosphor and a fluorescent lamp using the same, and more particularly to a cold cathode fluorescent lamp used for a backlight of a liquid crystal display device.

液晶表示装置は液晶シャッターとバックライトとの組合わせによりパネル上に画像を表示する非発光形表示装置であって、バックライトには主として細管化しやすい冷陰極蛍光ランプが用いられている。そして、このようなバックライトに用いられる冷陰極蛍光ランプには、高光束で色再現範囲が広いことが求められている。また、冷陰極蛍光ランプ用蛍光体としては従来から3波長蛍光体が使用されており、青色発光蛍光体としてユウロピウム付活アルカリ土類金属アルミン酸塩蛍光体や、青緑色〜緑色発光蛍光体としてユウロピウム及びマンガン付活アルカリ土類金属アルミン酸塩蛍光体などが使用されている。しかしながら、これらのアルカリ土類金属アルミン酸塩蛍光体は蛍光ランプ作製時のベーキング工程において輝度低下や色度変化の問題があり、これらの蛍光体を用いた蛍光ランプはランプ光束が経時的に低下するという問題があった。   The liquid crystal display device is a non-light-emitting display device that displays an image on a panel by a combination of a liquid crystal shutter and a backlight, and a cold cathode fluorescent lamp that is easily thinned is mainly used for the backlight. A cold cathode fluorescent lamp used for such a backlight is required to have a high luminous flux and a wide color reproduction range. Further, as phosphors for cold cathode fluorescent lamps, three-wavelength phosphors are conventionally used. As blue light emitting phosphors, europium-activated alkaline earth metal aluminate phosphors and blue green to green light emitting phosphors are used. Europium and manganese activated alkaline earth metal aluminate phosphors are used. However, these alkaline earth metal aluminate phosphors have problems of luminance reduction and chromaticity change in the baking process when making fluorescent lamps, and fluorescent lamps using these phosphors have a decrease in lamp luminous flux over time. There was a problem to do.

ベーキング工程の輝度低下の問題に対し、特開平8−143863号公報等に、Smなどの希土類元素を添加したユウロピウム付活アルカリ土類金属アルミン酸塩蛍光体やユウロピウム及びマンガン付活アルカリ土類金属アルミン酸塩蛍光体が開示されているが、いずれも十分ではなく改良が求められていた。
特開平8−143863号公報
In order to solve the problem of luminance reduction in the baking process, JP-A-8-143863, etc. discloses europium-activated alkaline earth metal aluminate phosphors or europium and manganese-activated alkaline earth metals to which rare earth elements such as Sm are added. Aluminate phosphors have been disclosed, but none of them are sufficient and improvements have been sought.
JP-A-8-143863

本発明は、このような問題点を解決するためになされたものである。本発明の目的は、発光強度及びベーキング輝度維持率が高いアルカリ土類金属アルミン酸塩蛍光体を提供することであり、さらには、ランプ光束及び光束維持率が高く、色再現範囲の広い蛍光ランプを提供することである。   The present invention has been made to solve such problems. An object of the present invention is to provide an alkaline earth metal aluminate phosphor having a high emission intensity and a high baking luminance maintenance rate, and further, a fluorescent lamp having a high lamp luminous flux and a high luminous flux maintenance factor and a wide color reproduction range. Is to provide.

上記目的を達成するために本発明者らは鋭意検討を重ねた結果、特定の組成を有するアルカリ土類金属アルミン酸塩蛍光体は発光強度及びベーキング輝度維持率が高く、この蛍光体を用いた蛍光ランプはランプ光束及び光束維持率が高く、色再現範囲が広いことを新たに見いだし本発明を完成させるに至った。   In order to achieve the above object, the present inventors have conducted extensive studies, and as a result, the alkaline earth metal aluminate phosphor having a specific composition has high emission intensity and baking luminance maintenance rate, and this phosphor was used. The fluorescent lamp has a high lamp luminous flux and a luminous flux maintenance factor, and has newly found that the color reproduction range is wide, and has completed the present invention.

(1)本発明のアルカリ土類金属アルミン酸塩蛍光体は、母体元素がバリウム、ストロンチウム及びカルシウムから選択される少なくとも1種の元素と、マグネシウム及び亜鉛から選択される少なくとも1種の元素と、アルミニウムと、酸素からなり、付活剤元素がユウロピウム又はユウロピウム及びマンガンからなるアルカリ土類金属アルミン酸塩蛍光体において、蛍光体に対してリチウム、ナトリウム及びカリウムから選択される少なくとも1種の元素を0.15〜1.60モル%、フッ素、塩素、臭素及びヨウ素から選択される少なくとも1種の元素を0.07〜2.10モル%含有することを特徴とする。 (1) The alkaline earth metal aluminate phosphor of the present invention has at least one element selected from barium, strontium and calcium as a host element, and at least one element selected from magnesium and zinc; In an alkaline earth metal aluminate phosphor made of aluminum and oxygen and having an activator element made of europium or europium and manganese, at least one element selected from lithium, sodium and potassium is used for the phosphor It is characterized by containing 0.07 to 2.10 mol% of at least one element selected from 0.15 to 1.60 mol%, fluorine, chlorine, bromine and iodine.

(2)本発明のアルカリ土類金属アルミン酸塩蛍光体は、(1)に記載のアルカリ土類金属アルミン酸塩蛍光体であって、一般式が次式で表されることを特徴とする。
a(M 1−xEu)O・(M 1−yMn)O・bAl
(但し、MはBa、Sr及びCaから選択される少なくとも1種の元素、MはMg及びZnから選択される少なくとも1種の元素、0.8≦a≦1.2、4.6≦b≦5.4、0.03≦x≦0.2、0≦y≦0.35)
(2) The alkaline earth metal aluminate phosphor of the present invention is the alkaline earth metal aluminate phosphor according to (1), wherein the general formula is represented by the following formula: .
a (M 1 1-x Eu x ) O. (M 2 1-y Mn y ) O.bAl 2 O 3
(However, M 1 is at least one element selected from Ba, Sr and Ca, M 2 is at least one element selected from Mg and Zn, 0.8 ≦ a ≦ 1.2, 4.6 ≦ b ≦ 5.4, 0.03 ≦ x ≦ 0.2, 0 ≦ y ≦ 0.35)

(3)本発明のアルカリ土類金属アルミン酸塩蛍光体は、(1)又は(2)に記載のアルカリ土類金属アルミン酸塩蛍光体であって、リチウム、ナトリウム及びカリウムから選択される少なくとも1種の元素の含有量mモル%と、フッ素、塩素、臭素及びヨウ素から選択される少なくとも1種の元素の含有量nモル%は、次式の関係を満たすことを特徴とする。
2.0≦3m+2n≦5.2
(3) The alkaline earth metal aluminate phosphor of the present invention is the alkaline earth metal aluminate phosphor according to (1) or (2), which is at least selected from lithium, sodium and potassium The content m mol% of one element and the content n mol% of at least one element selected from fluorine, chlorine, bromine and iodine satisfy the relationship of the following formula.
2.0 ≦ 3m + 2n ≦ 5.2

(4)本発明のアルカリ土類金属アルミン酸塩蛍光体は、(1)又は(3)に記載のアルカリ土類金属アルミン酸塩蛍光体であって、前記蛍光体の平均粒径が5.5〜7.5μmの範囲にあり、中央粒径が7.5〜11.0μmの範囲にあることを特徴とする。 (4) The alkaline earth metal aluminate phosphor of the present invention is the alkaline earth metal aluminate phosphor according to (1) or (3), wherein the phosphor has an average particle size of 5. It is in the range of 5 to 7.5 μm, and the median particle size is in the range of 7.5 to 11.0 μm.

(5)本発明のアルカリ土類金属アルミン酸塩蛍光体は、(1)又は(4)に記載のアルカリ土類金属アルミン酸塩蛍光体であって、前記蛍光体を580℃で15分間ベーキングしたときの、ベーキング輝度維持率が85%以上であり、色度xの変化量Δx、色度yの変化量Δyがそれぞれ下記の数値範囲を満たすことを特徴とする。
lΔxl≦0.0015、lΔyl≦0.0095
(5) The alkaline earth metal aluminate phosphor of the present invention is the alkaline earth metal aluminate phosphor according to (1) or (4), wherein the phosphor is baked at 580 ° C. for 15 minutes. In this case, the baking luminance maintenance ratio is 85% or more, and the change amount Δx of chromaticity x and the change amount Δy of chromaticity y satisfy the following numerical ranges, respectively.
lΔxl ≦ 0.0015, lΔyl ≦ 0.0095

(6)本発明の蛍光ランプは、透光性気密容器と、透光性気密容器内に形成された蛍光体層と、透光性気密容器内に封入された放電媒体と、電極とを具備する蛍光ランプにおいて、前記蛍光体層は(1)乃至(5)に記載のアルカリ土類金属アルミン酸塩蛍光体を含むことを特徴とする。 (6) The fluorescent lamp of the present invention includes a light-transmitting airtight container, a phosphor layer formed in the light-transmitting airtight container, a discharge medium sealed in the light-transmitting airtight container, and an electrode. In the fluorescent lamp, the phosphor layer includes the alkaline earth metal aluminate phosphor described in (1) to (5).

(7)本発明の蛍光ランプは、(6)に記載の蛍光ランプであり、前記蛍光体層が(1)乃至(5)に記載のアルカリ土類金属アルミン酸塩蛍光体のみからなる蛍光ランプであって、100時間点灯後の光束維持率が95%以上であることを特徴とする。 (7) The fluorescent lamp according to the present invention is the fluorescent lamp according to (6), wherein the phosphor layer is composed only of the alkaline earth metal aluminate phosphor according to (1) to (5). The luminous flux maintenance factor after lighting for 100 hours is 95% or more.

(8)本発明の蛍光ランプは、(6)又は(7)に記載の蛍光ランプであって、前記蛍光ランプが冷陰極蛍光ランプであることを特徴とする。 (8) The fluorescent lamp of the present invention is the fluorescent lamp described in (6) or (7), wherein the fluorescent lamp is a cold cathode fluorescent lamp.

本発明の蛍光体は、紫外線励起による発光強度が高く、さらに蛍光ランプ作製時のベーキング工程において輝度低下や色度変化が少ないアルカリ土類金属アルミン酸塩蛍光体であり、本発明の蛍光体を用いることによって、ランプ光束及び光束維持率が高く、色再現範囲の広い蛍光ランプを提供することができる。   The phosphor of the present invention is an alkaline earth metal aluminate phosphor that has high emission intensity due to ultraviolet light excitation, and that has little reduction in luminance and change in chromaticity in the baking process when producing a fluorescent lamp. By using it, it is possible to provide a fluorescent lamp having a high lamp luminous flux and a luminous flux maintenance factor and a wide color reproduction range.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するためのアルカリ土類金属アルミン酸塩蛍光体及びそれを用いた蛍光ランプを例示するものであって、本発明はアルカリ土類金属アルミン酸塩蛍光体及びそれを用いた蛍光ランプを以下のものに特定しない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies an alkaline earth metal aluminate phosphor for embodying the technical idea of the present invention and a fluorescent lamp using the same. The metal group aluminate phosphor and the fluorescent lamp using the same are not specified as follows.

ここで、本発明の一実施の形態に係るアルカリ土類金属アルミン酸塩蛍光体の製造方法について詳細に説明する。蛍光体原料として、バリウム、ストロンチウム及びカルシウムから選択される少なくとも1種の元素の化合物と、マグネシウム及び亜鉛から選択される少なくとも1種の元素の化合物と、アルミニウム化合物と、ユウロピウム化合物又はユウロピウム化合物及びマンガン化合物と、リチウム、ナトリウム及びカリウムから選択される少なくとも1種の元素の化合物と、フッ素、塩素、臭素及びヨウ素から選択される少なくとも1種の元素の化合物を混合し、原料混合物を得る。この原料混合物をルツボに充填後、炉内に入れ、還元性雰囲気中1200〜1600℃で焼成する。冷却後、焼成品を湿式で分散処理した後、分離乾燥して本発明のアルカリ土類金属アルミン酸塩蛍光体を得る。   Here, a method for producing an alkaline earth metal aluminate phosphor according to an embodiment of the present invention will be described in detail. As a phosphor raw material, a compound of at least one element selected from barium, strontium and calcium, a compound of at least one element selected from magnesium and zinc, an aluminum compound, a europium compound or a europium compound and manganese A compound, a compound of at least one element selected from lithium, sodium and potassium and a compound of at least one element selected from fluorine, chlorine, bromine and iodine are mixed to obtain a raw material mixture. After filling this raw material mixture into a crucible, it is placed in a furnace and fired at 1200 to 1600 ° C. in a reducing atmosphere. After cooling, the fired product is wet-dispersed and then separated and dried to obtain the alkaline earth metal aluminate phosphor of the present invention.

バリウム、ストロンチウム及びカルシウムから選択される少なくとも1種の元素の化合物と、マグネシウム及び亜鉛から選択される少なくとも1種の元素の化合物と、アルミニウム化合物と、ユウロピウム化合物又はユウロピウム化合物及びマンガン化合物については、酸化物又は熱分解により酸化物となる化合物が好ましく用いられる。例えば、炭酸塩、水酸化物、硝酸塩、シュウ酸塩などの高温で分解し酸化物となる化合物が好ましい。また、蛍光体を構成する元素を全部又は一部含む共沈物やこれらを仮焼して得られる酸化物を用いることもできる。リチウム、ナトリウム及びカリウムから選択される少なくとも1種の元素の化合物については、これらのアルカリ金属のハロゲン化物が好ましく用いられる。フッ素、塩素、臭素及びヨウ素から選択される少なくとも1種の元素の化合物については、バリウム、ストロンチウム、カルシウムなどのアルカリ土類金属のハロゲン化物が好ましく用いられる。これらの蛍光体原料をボールミル、V型混合機などで混合した後、アルミナ、石英、炭化珪素などのルツボに充填し、還元性雰囲気中、1200〜1600℃で2〜20時間焼成することが好ましい。焼成温度が1200℃より低いと反応が進まず、1600℃より高いと焼結が過剰に進んで分散処理が困難となる。   For compounds of at least one element selected from barium, strontium and calcium, compounds of at least one element selected from magnesium and zinc, aluminum compounds, europium compounds or europium compounds and manganese compounds, oxidation Or a compound that becomes an oxide by thermal decomposition is preferably used. For example, a compound which decomposes at a high temperature and becomes an oxide such as carbonate, hydroxide, nitrate, oxalate is preferable. Further, a coprecipitate containing all or part of the elements constituting the phosphor or an oxide obtained by calcining these can be used. For the compound of at least one element selected from lithium, sodium and potassium, these alkali metal halides are preferably used. As the compound of at least one element selected from fluorine, chlorine, bromine and iodine, halides of alkaline earth metals such as barium, strontium and calcium are preferably used. After mixing these phosphor raw materials with a ball mill, a V-type mixer or the like, it is preferable to fill in a crucible such as alumina, quartz, or silicon carbide, and to fire in a reducing atmosphere at 1200 to 1600 ° C. for 2 to 20 hours. . If the firing temperature is lower than 1200 ° C., the reaction does not proceed. If the firing temperature is higher than 1600 ° C., the sintering proceeds excessively and the dispersion treatment becomes difficult.

このようにして、蛍光体に対してリチウム、ナトリウム及びカリウムから選択される少なくとも1種の元素を0.15〜1.60モル%、フッ素、塩素、臭素及びヨウ素から選択される少なくとも1種の元素を0.07〜2.10モル%含有することで、紫外線励起による発光強度が高く、さらに蛍光ランプ作製時のベーキング工程において輝度低下や色度変化が少ない本発明のアルカリ土類金属アルミン酸塩蛍光体を得ることができる。   Thus, at least one element selected from 0.15 to 1.60 mol%, fluorine, chlorine, bromine and iodine is selected from at least one element selected from lithium, sodium and potassium with respect to the phosphor. By containing 0.07 to 2.10 mol% of the element, the alkaline earth metal aluminate of the present invention has high light emission intensity due to ultraviolet excitation, and less luminance reduction and chromaticity change in the baking process when producing a fluorescent lamp. A salt phosphor can be obtained.

次に、本発明のアルカリ土類金属アルミン酸塩蛍光体を用いて冷陰極蛍光ランプを作製する。先ず、蛍光体とピロリン酸カルシウム、カルシウムバリウムボレート等の結着剤をニトロセルロース/酢酸ブチル溶液に添加し、これらを混合し懸濁させて蛍光体塗布懸濁液を調製する。得られた蛍光体塗布懸濁液をガラス管の内面に流し込み、その後これに温風を通じることで乾燥させ、ベーキング、排気、フィラメントの装着、口金の取り付けを行い、冷陰極蛍光ランプを得る。このようにして、ランプ光束及び光束維持率が高く、色再現範囲の広い冷陰極蛍光ランプを得ることができる。   Next, a cold cathode fluorescent lamp is produced using the alkaline earth metal aluminate phosphor of the present invention. First, a phosphor and a binder such as calcium pyrophosphate and calcium barium borate are added to a nitrocellulose / butyl acetate solution, and these are mixed and suspended to prepare a phosphor-coated suspension. The obtained phosphor-coated suspension is poured into the inner surface of the glass tube, and then dried by passing warm air through the glass tube, followed by baking, exhausting, attaching a filament, and attaching a base to obtain a cold cathode fluorescent lamp. In this way, a cold cathode fluorescent lamp having a high lamp luminous flux and a luminous flux maintenance factor and a wide color reproduction range can be obtained.

図1に、本発明の冷陰極蛍光ランプの一例を示す。ガラス等から成る透光性気密容器11の内壁には一種以上の蛍光体と結着剤から成る蛍光体層12が形成される。透光性気密容器11の内部にはネオン等の希ガス及び水銀蒸気から成る放電媒体13が封入され、透光性気密容器11の両端は一対の電極14a、14bによって封止される。両電極間に電圧をかけて放電媒体13に放電を起こさせ、その際励起された水銀から紫外線が放出され、該紫外線により蛍光体層12の蛍光体が励起されて発光する。   FIG. 1 shows an example of the cold cathode fluorescent lamp of the present invention. A phosphor layer 12 made of one or more phosphors and a binder is formed on the inner wall of the light-transmitting hermetic container 11 made of glass or the like. Inside the translucent airtight container 11, a discharge medium 13 made of a rare gas such as neon and mercury vapor is sealed, and both ends of the translucent airtight container 11 are sealed by a pair of electrodes 14a and 14b. A voltage is applied between both electrodes to cause discharge in the discharge medium 13, and ultraviolet rays are emitted from the excited mercury, and the phosphors in the phosphor layer 12 are excited by the ultraviolet rays to emit light.

次に、本発明のアルカリ土類金属アルミン酸塩蛍光体の特性について図を用いて説明する。図2に、実施例1においてNaFの添加量を変化させて得られる(Ba0.85Eu0.15)O・(Mg0.7Mn0.3)O・5Al蛍光体について、580℃で15分間ベーキングしたときのベーキング輝度維持率と3m+2nとの関係を示した。ここで、mとnは、それぞれ蛍光体中のNa含有量(mモル%)とF含有量(nモル%)の値である。ここでNa含有量は原子吸光分析法により、F含有量はイオンクロマトグラフ法により測定した値である。この図から、ベーキング輝度維持率は3m+2nが2.0≦3m+2n≦5.2の範囲で高く、2.4≦3m+2n≦4.8の範囲でより高く、3.0≦3m+2n≦4.0の範囲でさらに高くなっていることがわかる。 Next, characteristics of the alkaline earth metal aluminate phosphor of the present invention will be described with reference to the drawings. FIG. 2 shows the (Ba 0.85 Eu 0.15 ) O. (Mg 0.7 Mn 0.3 ) O.5Al 2 O 3 phosphor obtained by changing the amount of NaF added in Example 1. The relationship between the baking luminance maintenance rate and 3m + 2n when baked at 580 ° C. for 15 minutes was shown. Here, m and n are values of Na content (m mol%) and F content (n mol%) in the phosphor, respectively. Here, the Na content is a value measured by atomic absorption spectrometry, and the F content is a value measured by ion chromatography. From this figure, the baking luminance maintenance rate is higher in the range of 3m + 2n in the range of 2.0 ≦ 3m + 2n ≦ 5.2, higher in the range of 2.4 ≦ 3m + 2n ≦ 4.8, and 3.0 ≦ 3m + 2n ≦ 4.0. It can be seen that the range is even higher.

図3に、上記蛍光体について、580℃で15分間ベーキングしたときの色度xの変化量lΔxlと3m+2nとの関係を示した。ここで、lΔxlはΔxの絶対値である。この図から、色度xの変化は3m+2nが2.0≦3m+2n≦5.2の範囲で少ないことがわかる。   FIG. 3 shows the relationship between the amount of change 1Δxl in chromaticity x and 3m + 2n when the phosphor is baked at 580 ° C. for 15 minutes. Here, lΔxl is the absolute value of Δx. From this figure, it can be seen that the change in chromaticity x is small when 3m + 2n is in the range of 2.0 ≦ 3m + 2n ≦ 5.2.

図4に、上記蛍光体について、580℃で15分間ベーキングしたときの色度yの変化量lΔylと3m+2nとの関係を示した。ここで、lΔylはΔyの絶対値である。この図から、色度yの変化も3m+2nが2.0≦3m+2n≦5.2の範囲で少ないことがわかる。   FIG. 4 shows the relationship between the amount of change 1Δyl in chromaticity y and 3m + 2n when the phosphor is baked at 580 ° C. for 15 minutes. Here, lΔyl is the absolute value of Δy. From this figure, it can be seen that the change in chromaticity y is also small when 3m + 2n is in the range of 2.0 ≦ 3m + 2n ≦ 5.2.

図5に、上記蛍光体について、蛍光体の平均粒径と3m+2nとの関係を示した。ここで、平均粒径は空気透過法によるフィッシャー・サブ・シーブ・サイザー(F.S.S.S)を用いて測定した値であり、一次粒子の大きさを示す。この図から、3m+2nが2.0≦3m+2n≦5.2の範囲において、蛍光体の平均粒径は5.5〜7.5μmの範囲にあることがわかる。従来、青色発光するユウロピウム付活アルカリ土類金属アルミン酸塩蛍光体や青緑色〜緑色発光するユウロピウム及びマンガン付活アルカリ土類金属アルミン酸塩蛍光体を白色蛍光ランプに用いた場合、他の発光色の蛍光体に比べて比重が小さいため、蛍光体塗布懸濁液中の沈降速度が遅くなって、蛍光ランプの中央部と端部で色差が生じるという問題があった。このような管端色差の問題に対し、アルカリ土類金属アルミン酸塩蛍光体の粒径を他の発光色の蛍光体に比べて大きくし、平均粒径の範囲を5.5〜7.5μmの範囲とすることで改善できる。   FIG. 5 shows the relationship between the average particle diameter of the phosphor and 3m + 2n for the phosphor. Here, the average particle diameter is a value measured using a Fischer sub-sieve sizer (FSSS) by the air permeation method, and indicates the size of primary particles. From this figure, it can be seen that the average particle diameter of the phosphor is in the range of 5.5 to 7.5 μm when 3m + 2n is in the range of 2.0 ≦ 3m + 2n ≦ 5.2. Conventionally, when europium-activated alkaline earth metal aluminate phosphors emitting blue light or europium and manganese-activated alkaline earth metal aluminate phosphors emitting blue-green to green are used in white fluorescent lamps, other light emission Since the specific gravity is smaller than that of the color phosphor, the sedimentation rate in the phosphor coating suspension is slow, and there is a problem that a color difference occurs between the central portion and the end portion of the fluorescent lamp. To solve the problem of the color difference at the end of the tube, the particle size of the alkaline earth metal aluminate phosphor is made larger than those of other luminescent color phosphors, and the average particle size range is 5.5 to 7.5 μm. It can be improved by setting the range.

図6に、上記蛍光体について、蛍光体の中央粒径と3m+2nとの関係を示した。ここで、中央粒径は電気抵抗法のコールターマルチサイザーII(コールター社製)を用いて測定した値であり、50%粒子径(体積基準)を示す。この場合、粒子が強く凝集していると一次粒子にまで分散させることは難しく、凝集した二次粒子が測定にかかる。この図から、3m+2nが2.0≦3m+2n≦5.2の範囲において、蛍光体の中央粒径は7.5〜11.0μmの範囲にあることがわかる。   FIG. 6 shows the relationship between the median particle diameter of the phosphor and 3m + 2n for the phosphor. Here, the median particle diameter is a value measured using an electric resistance method of Coulter Multisizer II (manufactured by Coulter), and indicates a 50% particle diameter (volume basis). In this case, if the particles are strongly aggregated, it is difficult to disperse them to the primary particles, and the aggregated secondary particles are taken for measurement. From this figure, it can be seen that when 3m + 2n is in the range of 2.0 ≦ 3m + 2n ≦ 5.2, the median particle diameter of the phosphor is in the range of 7.5 to 11.0 μm.

上記蛍光体について、実施例1と同様にして単色蛍光ランプを作製し、初期ランプ光束と100時間点灯後のランプ光束を測定し、初期ランプ光束を100%にしたときの100時間点灯後のランプ光束の値を、100時間点灯後の光束維持率として求めた。図7に、単色蛍光ランプの100時間点灯後の光束維持率と3m+2nとの関係を示した。この図から、100時間点灯後の光束維持率は、3m+2nが2.0≦3m+2n≦5.2の範囲において高く、ランプ光束の低下が少ないことがわかる。   With respect to the phosphor, a monochromatic fluorescent lamp was produced in the same manner as in Example 1, the initial lamp light flux and the lamp light flux after 100 hours of lighting were measured, and the lamp after 100 hours of lighting when the initial lamp light flux was 100%. The value of the luminous flux was determined as the luminous flux maintenance factor after 100 hours of lighting. FIG. 7 shows the relationship between the luminous flux maintenance factor after lighting the monochromatic fluorescent lamp for 100 hours and 3m + 2n. From this figure, it can be seen that the luminous flux maintenance factor after 100 hours of lighting is high when 3 m + 2n is in the range of 2.0 ≦ 3 m + 2n ≦ 5.2, and the decrease in lamp luminous flux is small.

緑色蛍光体(G)として上記蛍光体を、青色蛍光体(B)として(Sr,Ca,Ba)10(POCl:Eu蛍光体を、赤色蛍光体(R)としてY:Eu蛍光体を用い、それぞれ重量比でB:G:R=50:20:30の割合で混合した。この混合蛍光体について、実施例1と同様にして白色蛍光ランプを作製し、初期ランプ光束と100時間点灯後のランプ光束を測定し、初期ランプ光束を100%にしたときの100時間点灯後のランプ光束の値を、100時間点灯後の光束維持率として求めた。図8に、白色蛍光ランプの100時間点灯後の光束維持率と3m+2nとの関係を示した。この図からも、100時間点灯後の光束維持率は、3m+2nが2.0≦3m+2n≦5.2の範囲において高く、ランプ光束の低下が少ないことがわかる。 The phosphor described above as the green phosphor (G), (Sr, Ca, Ba) 10 (PO 4 ) 6 Cl 2 : Eu phosphor as the blue phosphor (B), and Y 2 O as the red phosphor (R). 3 : Eu phosphors were used and mixed at a weight ratio of B: G: R = 50: 20: 30. For this mixed phosphor, a white fluorescent lamp was prepared in the same manner as in Example 1, the initial lamp light flux and the lamp light flux after 100 hours of lighting were measured, and after 100 hours of lighting when the initial lamp light flux was 100%. The value of the lamp luminous flux was determined as the luminous flux maintenance factor after 100 hours of lighting. FIG. 8 shows the relationship between the luminous flux maintenance factor after lighting the white fluorescent lamp for 100 hours and 3m + 2n. Also from this figure, it can be seen that the luminous flux maintenance factor after 100 hours of lighting is high when 3 m + 2n is in the range of 2.0 ≦ 3 m + 2n ≦ 5.2, and the decrease in lamp luminous flux is small.

以下、本発明の実施例について説明するが、本発明は具体的実施例のみに限定されるものではないことは言うまでもない。   Examples of the present invention will be described below, but it goes without saying that the present invention is not limited to specific examples.

[実施例1]
<蛍光体>
原料としてBaCO0.85mol、Eu0.075mol、MgCO0.70mol、MnCO0.30mol、Al5.0mol、NaF0.0062mol、及びMgF0.057molをボールミルで混合し、この原料混合物をアルミナルツボに充填して還元雰囲気中(2%H/N)で1400℃で6時間焼成する。冷却後、水洗して過剰のハロゲン化物を洗浄し、分散処理を行い、篩を通した後、脱水乾燥して、一般式が(Ba0.85Eu0.15)O・(Mg0.70Mn0.30)O・5Alで表されるアルカリ土類金属アルミン酸塩蛍光体を得る。この蛍光体は、蛍光体に対しNa元素を0.59モル%、F元素を0.90モル%含有し、254nm紫外線励起で緑色に発光する。この場合、3m+2n=3×0.59+2×0.90=3.57である。
[Example 1]
<Phosphor>
BaCO 3 0.85 mol, Eu 2 O 3 0.075 mol, MgCO 3 0.70 mol, MnCO 3 0.30 mol, Al 2 O 3 5.0 mol, NaF 0.0062 mol, and MgF 2 0.057 mol were mixed in a ball mill as raw materials. Then, the raw material mixture is filled in an alumina crucible and fired at 1400 ° C. for 6 hours in a reducing atmosphere (2% H 2 / N 2 ). After cooling, washing with water to remove excess halide, dispersing, passing through a sieve, dehydrating and drying, the general formula is (Ba 0.85 Eu 0.15 ) O. (Mg 0.70 An alkaline earth metal aluminate phosphor represented by Mn 0.30 ) O.5Al 2 O 3 is obtained. This phosphor contains 0.59 mol% Na element and 0.90 mol% F element with respect to the phosphor, and emits green light when excited with UV light at 254 nm. In this case, 3m + 2n = 3 × 0.59 + 2 × 0.90 = 3.57.

<単色蛍光ランプ>
このようにして得られる蛍光体と結着剤をニトロセルロース/酢酸ブチル溶液に添加し、これらを混合して蛍光体塗布スラリーを調製する。これを管径3mm、長さ400mmのガラス管に流し込み、その内面に塗布し、温風を通じて乾燥し、580℃で15分間塗布バルブをベーキングして、蛍光膜を形成する。その後、通常の方法に従い、排気、電極のマウント、口金の取り付けを行い、緑色に発光する単色冷陰極蛍光ランプを得る。
<Single color fluorescent lamp>
The phosphor thus obtained and the binder are added to a nitrocellulose / butyl acetate solution and mixed to prepare a phosphor coating slurry. This is poured into a glass tube having a tube diameter of 3 mm and a length of 400 mm, applied to the inner surface, dried through warm air, and baked at 580 ° C. for 15 minutes to form a fluorescent film. Then, according to a normal method, exhaust, electrode mounting, and attachment of a base are performed to obtain a monochrome cold cathode fluorescent lamp that emits green light.

<白色蛍光ランプ>
次に、緑色発光の上記アルカリ土類金属アルミン酸塩蛍光体と、(Sr,Ca,Ba)10(POCl:Eu青色発光蛍光体と、Y:Eu赤色発光蛍光体を重量比で青色:緑色:赤色=50:20:30の割合で混合する。この混合蛍光体と結着剤をニトロセルロース/酢酸ブチル溶液に添加し、混合して蛍光体塗布スラリーを調製する。これを管径3mm、長さ400mmのガラス管に流し込み、その内面に塗布し、温風を通じて乾燥し、580℃で15分間塗布バルブをベーキングして、蛍光膜を形成する。その後、通常の方法に従い、排気、電極のマウント、口金の取り付けを行い、白色冷陰極蛍光ランプを得る。
上記アルカリ土類金属アルミン酸塩蛍光体、単色蛍光ランプ、及び白色蛍光ランプの測定結果を、表2及び表3に示す。
<White fluorescent lamp>
Next, the alkaline earth metal aluminate phosphor emitting green light, (Sr, Ca, Ba) 10 (PO 4 ) 6 Cl 2 : Eu blue light emitting phosphor, and Y 2 O 3 : Eu red light emitting fluorescence. The body is mixed in a weight ratio of blue: green: red = 50: 20: 30. This mixed phosphor and binder are added to a nitrocellulose / butyl acetate solution and mixed to prepare a phosphor-coated slurry. This is poured into a glass tube having a tube diameter of 3 mm and a length of 400 mm, applied to the inner surface, dried through warm air, and baked at 580 ° C. for 15 minutes to form a fluorescent film. Then, according to a normal method, exhaust, electrode mounting, and attachment of a base are performed to obtain a white cold cathode fluorescent lamp.
Tables 2 and 3 show the measurement results of the alkaline earth metal aluminate phosphor, the monochromatic fluorescent lamp, and the white fluorescent lamp.

[実施例2〜4]
蛍光体原料のうちNaFとMgFを表1に示した量で混合する以外は実施例1と同様にして、アルカリ土類金属アルミン酸塩蛍光体、単色蛍光ランプ、及び白色蛍光ランプを作製し、測定結果を表2及び表3に示す。
[Examples 2 to 4]
An alkaline earth metal aluminate phosphor, a single color fluorescent lamp, and a white fluorescent lamp were prepared in the same manner as in Example 1 except that NaF and MgF 2 were mixed in the amounts shown in Table 1 among the phosphor raw materials. The measurement results are shown in Tables 2 and 3.

[実施例5]
蛍光体原料のうちNaFの代わりにLiFを0.0062mol使用する以外は実施例1と同様にして、アルカリ土類金属アルミン酸塩蛍光体を作製する。この蛍光体の平均粒径は5.3μm、中央粒径は7.6μmである。
[Example 5]
An alkaline earth metal aluminate phosphor is produced in the same manner as in Example 1 except that 0.0062 mol of LiF is used instead of NaF among the phosphor raw materials. This phosphor has an average particle size of 5.3 μm and a median particle size of 7.6 μm.

[実施例6]
蛍光体原料のうちNaFの代わりにKFを0.0062mol使用する以外は実施例1と同様にして、アルカリ土類金属アルミン酸塩蛍光体を作製する。この蛍光体の平均粒径は7.3μm、中央粒径は10.3μmである。
[Example 6]
An alkaline earth metal aluminate phosphor is produced in the same manner as in Example 1 except that 0.0062 mol of KF is used instead of NaF in the phosphor raw material. This phosphor has an average particle size of 7.3 μm and a median particle size of 10.3 μm.

[比較例1]
蛍光体原料のうちNaFとMgFを表1に示した量で混合する以外は実施例1と同様にして、アルカリ土類金属アルミン酸塩蛍光体、単色蛍光ランプ、及び白色蛍光ランプを作製し、測定結果を表2及び表3に示す。
[Comparative Example 1]
An alkaline earth metal aluminate phosphor, a single color fluorescent lamp, and a white fluorescent lamp were prepared in the same manner as in Example 1 except that NaF and MgF 2 were mixed in the amounts shown in Table 1 among the phosphor raw materials. The measurement results are shown in Tables 2 and 3.

Figure 0005380790
Figure 0005380790

実施例1〜4及び比較例1で得られるアルカリ土類金属アルミン酸塩蛍光体について、蛍光体中のNa含有量(mモル%)とF含有量(nモル%)の値を表2に示す。また、蛍光体の平均粒径、中央粒径も表2に示す。この表から、本発明の蛍光体の平均粒径が5.5〜7.5μmの範囲にあり、中央粒径が7.5〜11.0μmの範囲にあることがわかる。さらに、これらの蛍光体について、580℃で15分間ベーキングしたときの、ベーキング輝度維持率、色度xの変化量lΔxl、色度yの変化量lΔylも表2に示す。この表から、本発明の蛍光体は下記の数値範囲を満たすことがわかる。
lΔxl≦0.0015、lΔyl≦0.0095
Regarding the alkaline earth metal aluminate phosphors obtained in Examples 1 to 4 and Comparative Example 1, Table 2 shows the values of Na content (mmol%) and F content (nmol%) in the phosphor. Show. Table 2 also shows the average particle diameter and the median particle diameter of the phosphor. From this table, it can be seen that the average particle size of the phosphor of the present invention is in the range of 5.5 to 7.5 μm and the median particle size is in the range of 7.5 to 11.0 μm. Further, Table 2 also shows the baking luminance maintenance ratio, the chromaticity x change amount lΔxl, and the chromaticity y change amount lΔyl when these phosphors are baked at 580 ° C. for 15 minutes. From this table, it can be seen that the phosphor of the present invention satisfies the following numerical range.
lΔxl ≦ 0.0015, lΔyl ≦ 0.0095

Figure 0005380790
Figure 0005380790

実施例1〜4及び比較例1で得られる単色蛍光ランプ及び白色蛍光ランプについて、100時間点灯後の光束維持率を表3に示す。この表から、本発明の実施例の蛍光ランプはいずれも100時間点灯後の光束維持率が95%以上であり、比較例の蛍光ランプに比べて光束維持率が高いことがわかる。   Table 3 shows the luminous flux maintenance factor after lighting for 100 hours for the monochromatic fluorescent lamp and the white fluorescent lamp obtained in Examples 1 to 4 and Comparative Example 1. From this table, it can be seen that the fluorescent lamps of the examples of the present invention all have a luminous flux maintenance factor of 95% or more after lighting for 100 hours, and the luminous flux maintenance factor is higher than that of the fluorescent lamp of the comparative example.

Figure 0005380790
Figure 0005380790

以上に述べたように、本発明によって、紫外線励起による発光強度が高く、さらに蛍光ランプ作製時のベーキング工程において輝度低下や色度変化が少ないアルカリ土類金属アルミン酸塩蛍光体を提供することができ、さらに、ランプ光束及び光束維持率が高く、色再現範囲の広い蛍光ランプを提供することができる。   As described above, according to the present invention, it is possible to provide an alkaline earth metal aluminate phosphor that has high emission intensity due to ultraviolet excitation and that has little reduction in luminance and change in chromaticity in the baking process when producing a fluorescent lamp. Further, it is possible to provide a fluorescent lamp having a high lamp luminous flux and a luminous flux maintenance factor and a wide color reproduction range.

本発明の冷陰極蛍光ランプの一例を示す図である。It is a figure which shows an example of the cold cathode fluorescent lamp of this invention. 本発明の蛍光体のベーキング輝度維持率と3m+2nとの関係を示す図である。It is a figure which shows the relationship between the baking luminance maintenance factor of the fluorescent substance of this invention, and 3m + 2n. 本発明の蛍光体をベーキングしたときの色度xの変化量lΔxlと3m+2nとの関係を示す図である。It is a figure which shows the relationship between the variation | change_quantity l (DELTA) xl of chromaticity x when baking the fluorescent substance of this invention, and 3m + 2n. 本発明の蛍光体をベーキングしたときの色度yの変化量lΔylと3m+2nとの関係を示す図である。It is a figure which shows the relationship between the variation | change_quantity l (DELTA) yl of chromaticity y when baking the fluorescent substance of this invention, and 3m + 2n. 本発明の蛍光体の平均粒径と3m+2nとの関係を示す図である。It is a figure which shows the relationship between the average particle diameter of the fluorescent substance of this invention, and 3m + 2n. 本発明の蛍光体の中央粒径と3m+2nとの関係を示す図である。It is a figure which shows the relationship between the median particle diameter of the fluorescent substance of this invention, and 3m + 2n. 本発明の単色蛍光ランプの100時間点灯後の光束維持率と3m+2nとの関係を示す図である。It is a figure which shows the relationship between the luminous flux maintenance factor after 100-hour lighting of the monochromatic fluorescent lamp of this invention, and 3m + 2n. 本発明の白色蛍光ランプの100時間点灯後の光束維持率と3m+2nとの関係を示す図である。It is a figure which shows the relationship between the luminous flux maintenance factor after 100-hour lighting of the white fluorescent lamp of this invention, and 3m + 2n.

符号の説明Explanation of symbols

11 透光性気密容器
12 蛍光体層
13 放電媒体
14a、14b 電極
11 Translucent airtight container
12 Phosphor layer
13 Discharge medium
14a, 14b electrode

Claims (6)

一般式が次式で表されるアルカリ土類金属アルミン酸塩蛍光体であって、
a(M 1−xEu)O・(Mg1−yMn)O・bAl
(但し、Mは、Baであり、a、b、x、yについて、0.8≦a≦1.2、4.6≦b≦5.4、0.03≦x≦0.2、0<y≦0.35である。)
蛍光体に対してナトリウムを0.15〜1.60モル%含有し、フッ素を0.07〜2.10モル%含有しており、
ナトリウムの含有量mモル%と、フッ素の含有量nモル%は、2.0≦3m+2n≦5.2の関係を満たすことを特徴とするアルカリ土類金属アルミン酸塩蛍光体。
An alkaline earth metal aluminate phosphor represented by the following general formula:
a (M 1 1-x Eu x ) O. (Mg 1-y M n y ) O.bAl 2 O 3
(However, M 1 is a Ba, a, b, x, for y, 0.8 ≦ a ≦ 1.2,4.6 ≦ b ≦ 5.4,0.03 ≦ x ≦ 0.2, 0 <y ≦ 0.35.)
Containing 0.15 to 1.60 mol% sodium and 0.07 to 2.10 mol% fluorine with respect to the phosphor,
An alkaline earth metal aluminate phosphor, wherein the sodium content (m mol%) and the fluorine content (n mol%) satisfy a relationship of 2.0 ≦ 3 m + 2n ≦ 5.2.
前記蛍光体の平均粒径が5.5〜7.5μmの範囲にあり、中央粒径が7.5〜11.0μmの範囲にある請求項1に記載のアルカリ土類金属アルミン酸塩蛍光体。   2. The alkaline earth metal aluminate phosphor according to claim 1, wherein the phosphor has an average particle size in the range of 5.5 to 7.5 [mu] m and a median particle size in the range of 7.5 to 11.0 [mu] m. . 前記蛍光体を580℃で15分間ベーキングしたときの、ベーキング輝度維持率が85%以上であり、色度xの変化量Δx、色度yの変化量Δyがそれぞれ下記の数値範囲を満たす請求項1または2に記載のアルカリ土類金属アルミン酸塩蛍光体。
|Δx|≦0.0015、|Δy|≦0.0095
A baking luminance maintenance ratio when the phosphor is baked at 580 ° C. for 15 minutes is 85% or more, and a change amount Δx of chromaticity x and a change amount Δy of chromaticity y satisfy the following numerical ranges, respectively. 3. The alkaline earth metal aluminate phosphor according to 1 or 2.
| Δx | ≦ 0.0015, | Δy | ≦ 0.0095
透光性気密容器と、透光性気密容器内に形成された蛍光体層と、透光性気密容器内に封入された放電媒体と、電極とを具備する蛍光ランプにおいて、前記蛍光体層は、請求項1から3のいずれか一項に記載のアルカリ土類金属アルミン酸塩蛍光体を含むことを特徴とする蛍光ランプ。   In a fluorescent lamp comprising a translucent airtight container, a phosphor layer formed in the translucent airtight container, a discharge medium enclosed in the translucent airtight container, and an electrode, the phosphor layer is A fluorescent lamp comprising the alkaline earth metal aluminate phosphor according to any one of claims 1 to 3. 前記蛍光体層は、請求項1から3のいずれか一項に記載のアルカリ土類金属アルミン酸塩蛍光体のみからなる蛍光ランプであって、100時間点灯後の光束維持率が95%以上である請求項4に記載の蛍光ランプ。   The phosphor layer is a fluorescent lamp made of only the alkaline earth metal aluminate phosphor according to any one of claims 1 to 3, wherein the luminous flux maintenance factor after 100 hours of lighting is 95% or more. The fluorescent lamp according to claim 4. 前記蛍光ランプが冷陰極蛍光ランプである請求項4または5に記載の蛍光ランプ。   The fluorescent lamp according to claim 4 or 5, wherein the fluorescent lamp is a cold cathode fluorescent lamp.
JP2007153546A 2007-01-30 2007-06-11 Alkaline earth metal aluminate phosphor and fluorescent lamp using the same Active JP5380790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153546A JP5380790B2 (en) 2007-01-30 2007-06-11 Alkaline earth metal aluminate phosphor and fluorescent lamp using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007018945 2007-01-30
JP2007018945 2007-01-30
JP2007153546A JP5380790B2 (en) 2007-01-30 2007-06-11 Alkaline earth metal aluminate phosphor and fluorescent lamp using the same

Publications (2)

Publication Number Publication Date
JP2008208325A JP2008208325A (en) 2008-09-11
JP5380790B2 true JP5380790B2 (en) 2014-01-08

Family

ID=39784914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153546A Active JP5380790B2 (en) 2007-01-30 2007-06-11 Alkaline earth metal aluminate phosphor and fluorescent lamp using the same

Country Status (1)

Country Link
JP (1) JP5380790B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619812B (en) * 2012-09-11 2016-08-24 海洋王照明科技股份有限公司 23K-S luminescent material and preparation method thereof
WO2014067113A1 (en) * 2012-10-31 2014-05-08 海洋王照明科技股份有限公司 Silicate luminescent material and preparation method therefor
JP6540784B2 (en) * 2017-03-15 2019-07-10 日亜化学工業株式会社 Method for producing aluminate phosphor, aluminate phosphor and light emitting device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL160869C (en) * 1972-11-03 Philips Nv LUMINESCENT SCREEN, AS WELL AS DISCHARGE LAMP AND KATHODE BEAM TUBE, FITTED WITH SUCH SCREEN.
JPS51119388A (en) * 1975-03-19 1976-10-19 Gte Sylvania Inc Fluorescent substances
JPS5943507B2 (en) * 1976-05-27 1984-10-22 大日本塗料株式会社 Method for manufacturing blue-emitting phosphor
JPS5354184A (en) * 1976-10-28 1978-05-17 Dainippon Toryo Co Ltd Fluorescent substance and fluorescent lamp
JPS5434573A (en) * 1978-08-14 1979-03-14 Dainippon Toryo Co Ltd Fluorescent lamp
JPS5445685A (en) * 1978-08-23 1979-04-11 Dainippon Toryo Co Ltd Fluorescent lamp
JP2004162057A (en) * 2002-10-25 2004-06-10 Mitsubishi Chemicals Corp Phosphor
FR2855169B1 (en) * 2003-05-23 2006-06-16 Rhodia Elect & Catalysis PRECURSOR COMPOUNDS OF ALKALINO-EARTH OR RARE EARTH ALUMINATES, PROCESS FOR THEIR PREPARATION AND THEIR USE AS A LUMINOPHORE PRECURSOR, IN PARTICULAR
JP2005281526A (en) * 2004-03-30 2005-10-13 Nichia Chem Ind Ltd Vacuum ultraviolet-exciting aluminate fluorescent substance, vacuum ultraviolet-exciting aluminate fluorescent substance paste composition, vacuum ultraviolet-exciting luminescent device and plasma display panel display device
US7390437B2 (en) * 2004-08-04 2008-06-24 Intematix Corporation Aluminate-based blue phosphors
JP2006083296A (en) * 2004-09-16 2006-03-30 Konica Minolta Medical & Graphic Inc Method for producing fluorescent substance, fluorescent substance and plasma display panel
FR2877663B1 (en) * 2004-11-10 2007-11-30 Rhodia Chimie Sa PRECURSOR COMPOUND AND CRYSTALLIZED ALKALINO-TERROUS ALUMINATE COMPOUND, PROCESSES FOR THE PREPARATION AND USE OF THE CRYSTALLIZED COMPOUND AS LUMINOPHORE
US7541728B2 (en) * 2005-01-14 2009-06-02 Intematix Corporation Display device with aluminate-based green phosphors
EP2141215A4 (en) * 2007-03-30 2011-11-30 Mitsubishi Chem Corp Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, image display device, and illuminating device

Also Published As

Publication number Publication date
JP2008208325A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP4122752B2 (en) Light emitting device
JP4561194B2 (en) Alkaline earth aluminate phosphor for cold cathode fluorescent lamp and cold cathode fluorescent lamp
KR101573104B1 (en) Light-emitting laminate
JP5380790B2 (en) Alkaline earth metal aluminate phosphor and fluorescent lamp using the same
JP2009074090A (en) Phosphor for vacuum-ultraviolet ray-excited light-emitting element
JP2005272831A (en) Method for producing silicate phosphor
JP4702565B2 (en) Manganese-activated rare earth aluminate phosphor and fluorescent lamp using the same
JP4032173B2 (en) Phosphor and light emitting device
JP4157324B2 (en) Alkaline earth aluminate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device
JP3187952B2 (en) Three-wavelength phosphor and fluorescent lamp using the same
JP2008195807A (en) Vacuum ultraviolet light-excited aluminate phosphor and device for emitting vacuum ultraviolet light-excited light by using the same
JP2004231786A (en) Phosphor and light-emitting device
JP2001335777A (en) Vacuum ultraviolet ray-excited fluorophor and light emitting device using the same
JP4517783B2 (en) Rare earth boroaluminate phosphor and light emitting device using the same
JP4329651B2 (en) Fluorescent lamp
JP2003027054A (en) Aluminosilicate phosphor excitable with vacuum ultraviolet ray, method for producing the same, and vacuum-ultraviolet-ray-excitable luminescent element using the same
JP4303989B2 (en) Fluorescent substance and fluorescent lamp
JP2000026855A (en) Phosphor paste composition and vacuum-ultraviolet- excited light-emitting element
JP2003183644A (en) Method of production for silicate fluorescent substance
TW200528537A (en) Method for producing silicate phosphor and vacuum ultraviolet excited light-emitting devicemethod for producing silicate phosphor and vacuum ultraviolet excited light-emitting device
JP4244265B2 (en) Aluminate phosphor, phosphor paste composition, and vacuum ultraviolet light-excited light emitting device
JPH0570774A (en) Phosphor and fluorescent lamp
JP5029332B2 (en) Fluorescent lamp
JP2010192254A (en) Cold-cathode fluorescent lamp, and aluminate-based phosphor
JP2008037883A (en) Rare earth phosphovanadate fluorescent substance and fluorescent lamp by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5380790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250