JP5375128B2 - Catalyst and catalyst layer for fuel cell - Google Patents

Catalyst and catalyst layer for fuel cell Download PDF

Info

Publication number
JP5375128B2
JP5375128B2 JP2009013219A JP2009013219A JP5375128B2 JP 5375128 B2 JP5375128 B2 JP 5375128B2 JP 2009013219 A JP2009013219 A JP 2009013219A JP 2009013219 A JP2009013219 A JP 2009013219A JP 5375128 B2 JP5375128 B2 JP 5375128B2
Authority
JP
Japan
Prior art keywords
catalyst
fine particles
pores
carrier
catalyst fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009013219A
Other languages
Japanese (ja)
Other versions
JP2010167379A (en
Inventor
菜 早川
宏樹 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2009013219A priority Critical patent/JP5375128B2/en
Priority to CN2010800053827A priority patent/CN102300640A/en
Priority to PCT/JP2010/000389 priority patent/WO2010084773A1/en
Publication of JP2010167379A publication Critical patent/JP2010167379A/en
Application granted granted Critical
Publication of JP5375128B2 publication Critical patent/JP5375128B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は燃料電池に用いられる触媒及びこの触媒を含んだ触媒層の改良に関する。   The present invention relates to a catalyst used in a fuel cell and an improvement of a catalyst layer containing the catalyst.

燃料電池の電極の触媒層は、白金等からなる触媒微粒子を担体に担持させてなる触媒と高分子電解質とを混合して形成していた。燃料電池の性能を向上させるには、反応の活性点の密度の向上が必要と考え、担体の比表面積を大きくするとともに、これへより多くの触媒微粒子を高い分散率で担持させることを目指してきた。
例えば担体として比表面積が800m/g以上のカーボンブラックを採用し、これに白金触媒微粒子を50wt%以上担持させることにより白金触媒微粒子の比表面積を100m/g−Pt以上とすることができた。かかるカーボンブラックとして、ケッチェンブラックEC(ケッチェン・ブラック・インターナショナル社製の商品名、以下同じ)及びケッチェンブラックEC−600JD(ケッチェン・ブラック・インターナショナル社製の商品名以下同じ、この明細書においてKB600JDと略することがある。)を挙げることができる。
The catalyst layer of the electrode of the fuel cell is formed by mixing a catalyst in which catalyst fine particles made of platinum or the like are supported on a carrier and a polymer electrolyte. In order to improve the performance of the fuel cell, it is necessary to increase the density of active sites of the reaction, and while aiming to increase the specific surface area of the support and to support a larger amount of catalyst fine particles on this, the catalyst has a higher dispersion rate. It was.
For example, carbon black having a specific surface area of 800 m 2 / g or more is used as a carrier, and the platinum catalyst fine particles can be supported by 50 wt% or more on the carbon black so that the specific surface area of the platinum catalyst fine particles can be 100 m 2 / g-Pt or more. It was. As such carbon black, Ketjen Black EC (trade name made by Ketjen Black International Co., Ltd., hereinafter the same) and Ketjen Black EC-600JD (trade name made by Ketjen Black International Co., Ltd., the same below, KB600JD in this specification) May be abbreviated.).

白金触媒微粒子の担持量を多くすることで触媒層の薄膜化が可能となり、高活性でかつ濃度過電圧の低いMEA(Membrane Electrode Assembly、膜電極接合体)を提供できる。
本件に関連する技術を開示する文献として非特許文献1がある。この非特許文献1には0.04μm及び0.1μm径の細孔を有するカーボン担体が開示されている。
By increasing the amount of platinum catalyst fine particles supported, the catalyst layer can be made thin, and a highly active MEA (Membrane Electrode Assembly) with a low concentration overvoltage can be provided.
There is Non-Patent Document 1 as a document disclosing the technology related to the present case. Non-Patent Document 1 discloses a carbon support having pores having a diameter of 0.04 μm and 0.1 μm.

J. Electrochem. Soc., Vol. 142, No. 12, December 1995, P4146, right column.J. Electrochem. Soc., Vol. 142, No. 12, December 1995, P4146, right column.

白金触媒微粒子は高価であるので、これを高濃度かつ高分散させると触媒層ひいてはMEAの製造コストを増大させることとなる。
本発明者らは白金触媒微粒子の使用量を削減すべく鋭意検討を重ねてきた。その結果、下記の知見を見出した。
図1は担体としてのKB600JDにPt60wt%担持した触媒の3D−TEM観察結果を示す。図1の3方向スライス像から担体内部に白金触媒微粒子が存在することが確認される。観察対象のPt60%/KB600JDでは白金触媒微粒子数の約6割が担体内部に存在し、その結果、活性点となる白金触媒微粒子の表面の約5割の面積が担体の内部にあることとなる。
この担体内部に存在している白金触媒微粒子が発電に寄与していないのなら、担持した白金触媒微粒子のうちのかなりの割合が無駄に存在していることになる。
触媒微粒子担持量が十分に多ければ、担体外表面に存在する白金触媒微粒子のみで充分な高性能を得られるが、触媒微粒子量低減のために触媒微粒子担持量を減らして、かつ、性能を維持するためには白金触媒微粒子が担体内部に存在する比率をできるだけ少なくして、触媒微粒子利用率を上げる必要がある。
Since the platinum catalyst fine particles are expensive, if they are dispersed at a high concentration and high concentration, the production cost of the catalyst layer and thus the MEA is increased.
The present inventors have intensively studied to reduce the amount of platinum catalyst fine particles used. As a result, the following knowledge was found.
FIG. 1 shows the results of 3D-TEM observation of a catalyst in which Pt 60 wt% is supported on KB600JD as a support. It is confirmed from the three-directional slice image of FIG. 1 that platinum catalyst fine particles are present inside the carrier. In the Pt 60% / KB600JD to be observed, about 60% of the number of platinum catalyst fine particles is present inside the carrier, and as a result, about 50% of the surface of the platinum catalyst fine particles serving as active sites is inside the carrier. .
If the platinum catalyst fine particles present inside the carrier do not contribute to power generation, a considerable proportion of the supported platinum catalyst fine particles exists in vain.
If the amount of catalyst fine particles supported is sufficiently large, sufficient performance can be obtained with only the platinum catalyst fine particles present on the outer surface of the carrier, but the amount of catalyst fine particles supported is reduced to maintain the performance in order to reduce the amount of catalyst fine particles. In order to achieve this, it is necessary to increase the utilization ratio of the catalyst fine particles by reducing the ratio of the platinum catalyst fine particles present inside the carrier as much as possible.

図2はN/C比を変えて作製した触媒層のN吸着測定結果である。N/C比を大きくしたとき減少する細孔容積は主に細孔径4nm以上の細孔径によるもので、担体内部の細孔に由来する約3.5nmの細孔による細孔容積はほとんど変化しない。このことから、担体内部の細孔は高分子電解質によって殆どふさがれていないことがわかる。
図3は、図2の結果に基づき、担体(カーボン製)の細孔容積と電解質添加量(N/C比)との関係をグラフ化したものである。図3より、N/C比を大きくしたとき減少する細孔容積は主に細孔径4nm以上のもので、4nm未満の細孔による細孔容積はほとんど変化しないという結果が得られた。
FIG. 2 shows N 2 adsorption measurement results of catalyst layers produced by changing the N / C ratio. The pore volume that decreases when the N / C ratio is increased is mainly due to the pore diameter of 4 nm or more, and the pore volume due to pores of about 3.5 nm derived from the pores inside the carrier hardly changes. . This shows that the pores inside the carrier are hardly blocked by the polymer electrolyte.
FIG. 3 is a graph showing the relationship between the pore volume of the support (made of carbon) and the amount of electrolyte added (N / C ratio) based on the results of FIG. FIG. 3 shows that the pore volume that decreases when the N / C ratio is increased is mainly those with a pore diameter of 4 nm or more, and the pore volume due to pores of less than 4 nm hardly changes.

以上から、高分子電解質はカーボン担体における4nm未満の細孔には入らず、4nm未満の細孔に存在する白金触媒微粒子は電解質に接することができない。このような白金触媒微粒子の周囲には三相界面が形成されず、発電に寄与することができなくなる。
かかる白金触媒微粒子に対して電解質を接触させる方策として、高分子電解質を微細化、あるいは低分子化して、細孔内部まで高分子電解質が入り込めるようにするということが考えられる。
しかし、プロトン導電性の確保のためには高分子電解質の連続性が必要であり、細孔内部での高分子電解質の構造制御は難しい。さらには、4nm未満のような極めて小径な細孔内部において、そもそも白金触媒微粒子に酸素を十分供給し、かつ生成水を排出するといった物質移動が円滑に実行されるか否か疑問のところもある。
From the above, the polymer electrolyte does not enter the pores of less than 4 nm in the carbon support, and the platinum catalyst fine particles existing in the pores of less than 4 nm cannot contact the electrolyte. A three-phase interface is not formed around such platinum catalyst fine particles, and cannot contribute to power generation.
As a measure for bringing the electrolyte into contact with the platinum catalyst fine particles, it is conceivable that the polymer electrolyte is made fine or low in molecular weight so that the polymer electrolyte can enter the pores.
However, in order to ensure proton conductivity, the continuity of the polymer electrolyte is necessary, and it is difficult to control the structure of the polymer electrolyte inside the pores. Furthermore, there is a question as to whether mass transfer such as supplying oxygen sufficiently to the platinum catalyst fine particles and discharging generated water in the extremely small pores of less than 4 nm is performed. .

この発明は本発明者らが見出した上記知見に基づいてなされたものである。即ち、
細孔径が4nm以上の細孔のみを有する担体に触媒微粒子が担持されていることを特徴とする触媒。
高分子電解質が入り込めない細孔に触媒微粒子が入ることを防ぐため、予め4nm未満の細孔を持たない担体を用いることで触媒微粒子利用率を高めることができ、結果として高価な触媒微粒子の使用量削減が可能になる。
The present invention has been made based on the above findings found by the present inventors. That is,
A catalyst characterized in that catalyst fine particles are supported on a carrier having only pores having a pore diameter of 4 nm or more.
In order to prevent the catalyst fine particles from entering the pores into which the polymer electrolyte cannot enter, the catalyst fine particle utilization rate can be increased by using a carrier having no pores smaller than 4 nm in advance. The amount of usage can be reduced.

しかし、このような担体の比表面積は小さく、従来の高性能触媒のような高い担持率にすると触媒微粒子径が大きくて、触媒微粒子比表面積が小さい重量比活性の低い触媒になってしまい、触媒微粒子使用量の低減をすることができない。
そこで、(高比表面積担体に高担持・高分散担持することで、大きい触媒微粒子表面積を確保した高性能触媒とは逆に)、低触媒担持率にすることで触媒微粒子径を小さくし、もって触媒微粒子表面積を確保しつつ重量比活性の低下を回避する対策をとる。触媒微粒子使用量の削減、即ち触媒層中の触媒微粒子量(担持量あるいは目付量)を少なくする場合には、低担持率触媒でも触媒層の厚さを高性能触媒と同等に抑えれば濃度過電圧増加の懸念はない。
However, the specific surface area of such a carrier is small, and when a high loading ratio such as a conventional high-performance catalyst is used, the catalyst fine particle diameter is large and the catalyst fine particle specific surface area is small, resulting in a catalyst having a low weight specific activity. The amount of fine particles used cannot be reduced.
Therefore (as opposed to a high-performance catalyst that ensures a large surface area of catalyst fine particles by carrying high and high dispersion on a high specific surface area carrier), the catalyst fine particle diameter can be reduced by reducing the catalyst loading ratio. Measures are taken to avoid a decrease in weight specific activity while ensuring a catalyst fine particle surface area. To reduce the amount of catalyst fine particles used, that is, to reduce the amount of catalyst fine particles (supported amount or basis weight) in the catalyst layer, the concentration can be reduced even if the catalyst layer thickness is suppressed to the same level as the high performance catalyst even with a low supported catalyst. There is no concern about an increase in overvoltage.

図1は約3.5nmの細孔を有する比較例のカーボン担体における白金触媒微粒子の分布を示す3D−TEM像である。FIG. 1 is a 3D-TEM image showing the distribution of platinum catalyst fine particles on a carbon support of a comparative example having pores of about 3.5 nm. 図2はN/C比を変化させたときの比較例の触媒層の細孔分布を示す。FIG. 2 shows the pore distribution of the catalyst layer of the comparative example when the N / C ratio is changed. 図3は触媒層の細孔容積とN/C比との関係を示す。FIG. 3 shows the relationship between the pore volume of the catalyst layer and the N / C ratio. 図4は実施例と比較例のカーボン担体における比表面積を示す。FIG. 4 shows the specific surface areas of the carbon carriers of Examples and Comparative Examples. 図5は実施例のMEAと比較例のMEAとのIV特性図である。FIG. 5 is an IV characteristic diagram of the MEA of the example and the MEA of the comparative example.

図4に、実施例の担体として用いるカーボンブラックのN吸着測定結果を示す。BJH法によって求めた細孔径1.7nm〜300nmのメソ細孔の比表面積と細孔径4nm〜300nmの比表面積とをそれぞれ棒グラフで示している。実施例の担体では、細孔径1.7nm〜300nmのメソ細孔の比表面積と細孔径4nm〜300nmの比表面積とがほぼ等しい。その結果、4nm未満の細孔が殆ど存在しないことがわかる。
比較例として示したKB600JDでは、4nm未満の細孔が全比表面積の半分以上を占めている。
実施例の担体としてCABOT社製のBP880(商品名)を用いることができる。
FIG. 4 shows the N 2 adsorption measurement result of carbon black used as the carrier of the example. The specific surface area of mesopores having a pore diameter of 1.7 nm to 300 nm and the specific surface area of pore diameters of 4 nm to 300 nm determined by the BJH method are respectively shown by bar graphs. In the carrier of the example, the specific surface area of mesopores having a pore diameter of 1.7 nm to 300 nm and the specific surface area of pore diameters of 4 nm to 300 nm are substantially equal. As a result, it can be seen that there are almost no pores of less than 4 nm.
In KB600JD shown as a comparative example, pores of less than 4 nm account for more than half of the total specific surface area.
BP880 (trade name) manufactured by CABOT can be used as the carrier of the examples.

実施例の担体の比表面積に対する白金触媒微粒子重量と白金触媒微粒子径の関係から、白金触媒微粒子表面積を維持できる白金触媒微粒子担持率を決める。実施例のカーボン担体の細孔径4nm以上の細孔からなる比表面積は185m2/g-Cで、白金触媒微粒子担持率を20wt%にすれば、比較例であるKB600JD60wt%担持触媒と同等の白金触媒微粒子径にすることができる。
実際に作製した白金触媒微粒子の粒径は表1のようになり、発電前後ともに60wt%担持KB600JD触媒(比較例)とほぼ同等の白金触媒微粒子比表面積を確保できた。
表1の結果から、白金触媒微粒子の平均粒径は4.0nm未満とすることが好ましい。
From the relationship between the platinum catalyst fine particle weight and the platinum catalyst fine particle diameter with respect to the specific surface area of the carrier of the example, the platinum catalyst fine particle supporting rate capable of maintaining the platinum catalyst fine particle surface area is determined. The specific surface area consisting of pores having a pore diameter of 4 nm or more of the carbon support of the example is 185 m 2 / gC, and platinum catalyst fine particles equivalent to KB600JD 60 wt% supported catalyst as a comparative example if the platinum catalyst fine particle loading ratio is 20 wt%. The diameter can be set.
The particle diameters of the actually produced platinum catalyst fine particles are as shown in Table 1. The platinum catalyst fine particle specific surface area almost the same as that of the 60 wt% supported KB600JD catalyst (comparative example) was ensured before and after power generation.
From the results shown in Table 1, it is preferable that the average particle diameter of the platinum catalyst fine particles is less than 4.0 nm.

表1に示した比較例の触媒(白金触媒微粒子/担体)と実施例の触媒(白金触媒微粒子/担体)とでそれぞれ作製したMEAの50℃フル加湿での性能比較を行う。
実施例の触媒と電解質溶液とを混合してペーストを作製し、これをカーボン布等へスクリーン印刷法で塗布して触媒層を形成し、これをカソード電極とする。このカソード電極、電解質膜(Nafion(商標名)製)、アノード電極を接合してMEAを作製する。本試験に使用したカソード電極の白金触媒微粒子担持量は0.1mg/cmである。
比較例の触媒についても上記と同様にしてMEAを作製する。比較例のカソード電極の白金触媒微粒子担持量は同じく0.1mg/cm2である。
50℃フル加湿の空気性能の比較を図5に示す。同じ白金触媒微粒子担持量(重量ベース)の比較では全電流域で実施例のMEAの性能が高かった。
また、低電流領域の性能比較(表2)では、面積比活性、重量比活性ともに実施例のMEAが比較例のMEAを上回った。
The performance comparison at 50 ° C. full humidification of the MEAs prepared with the catalyst of the comparative example (platinum catalyst fine particles / support) and the catalyst of the example (platinum catalyst fine particles / support) shown in Table 1 is performed.
The catalyst of the example and the electrolyte solution are mixed to prepare a paste, which is applied to a carbon cloth or the like by a screen printing method to form a catalyst layer, which is used as a cathode electrode. The cathode electrode, the electrolyte membrane (manufactured by Nafion (trade name)), and the anode electrode are joined to produce an MEA. The amount of platinum catalyst fine particles supported on the cathode electrode used in this test is 0.1 mg / cm 2 .
An MEA is prepared in the same manner as described above for the catalyst of the comparative example. The amount of platinum catalyst fine particles supported on the cathode electrode of the comparative example is also 0.1 mg / cm 2 .
FIG. 5 shows a comparison of air performance at 50 ° C. full humidification. In comparison of the same platinum catalyst fine particle loading (weight basis), the performance of the MEA of the example was high in the entire current range.
Further, in the performance comparison in the low current region (Table 2), the MEA of the example exceeded the MEA of the comparative example in both area specific activity and weight specific activity.

実施例の触媒と比較例の触媒を用いてそれぞれ作製したMEAのフル加湿での電気化学的比表面積をCV測定で求め、Pt利用率を計算した。結果は表3に示す。
表3の結果から、実施例の触媒を利用したMEAの白金触媒微粒子利用率が比較例のそれより高いことがわかる。
The electrochemical specific surface area of each MEA produced using the catalyst of Example and the catalyst of Comparative Example under full humidification was determined by CV measurement, and the Pt utilization rate was calculated. The results are shown in Table 3.
From the results of Table 3, it can be seen that the MEA platinum catalyst fine particle utilization rate using the catalyst of the example is higher than that of the comparative example.

上記において、この発明における触媒微粒子とは、白金微粒子自体に限定されず、白金合金からなる粒子及びその他の金属及び合金からなる粒子など、燃料電池反応に利用できる全ての材料からなる微粒子を含むものとする。
なお、上記明細書の記載において、4nm以上の細孔、4nm未満の細孔、3.5nmの細孔とは、それぞれ担体の細孔の開口部の直径が4nm以上の細孔、4nm未満の細孔、3.5nmの細孔を指す。
この発明を規定するにあたり、担体の細孔の開口部の直径を4nm以上と規定しているが、これは高分子電解質が入り込めない細孔の開口部の直径を規定せんがために発明者らが自らの実験に基づき特定した値である。
したがって、この発明の担体を用いた触媒層においては、担体における実質的に全ての細孔内に触媒粒子が担持されるとともに、当該細孔は高分子電解質で充填されている。
担体には高い電導性と耐蝕性を有し、触媒微粒子を担持できる物理的特性を有する材料を使用することができる。かかる材料として、実施例で使用したカーボン担体の他、酸化スズ、酸化チタン、酸化亜鉛等の金属酸化物、SrVO等のペロブスカイト型酸化物などを挙げることができる。
In the above, the catalyst fine particles in the present invention are not limited to the platinum fine particles themselves, but include fine particles made of all materials that can be used for the fuel cell reaction, such as particles made of platinum alloys and particles made of other metals and alloys. .
In the description of the above specification, the pores of 4 nm or more, the pores of less than 4 nm, and the pores of 3.5 nm are pores having pore diameters of 4 nm or more and pores of less than 4 nm, respectively. Pore, refers to a pore of 3.5 nm.
In defining this invention, the diameter of the pore opening of the support is defined as 4 nm or more. This is because the diameter of the opening of the pore into which the polymer electrolyte cannot enter is defined by the inventor. This is the value that they identified based on their own experiments.
Therefore, in the catalyst layer using the carrier of the present invention, catalyst particles are supported in substantially all the pores in the carrier, and the pores are filled with the polymer electrolyte.
As the carrier, a material having high electrical conductivity and corrosion resistance and having physical characteristics capable of supporting catalyst fine particles can be used. Examples of such materials include the carbon support used in the examples, metal oxides such as tin oxide, titanium oxide, and zinc oxide, and perovskite oxides such as SrVO 3 .

本発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も本発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

Claims (3)

細孔径が4nm〜300nmの細孔を有する担体に平均粒径が4nm未満である触媒微粒子が担持されている触媒と高分子電解質とを含み、前記担体に含まれる細孔は4nm未満の細孔径を有さない、燃料電池用触媒層。 Pore size observed contains a catalyst and a polymer electrolyte catalytic fine particles are carried a average particle size of less than 4nm in carrier having pores 4Nm~300nm, pores included in the carrier of less than 4nm fine A fuel cell catalyst layer having no pore diameter . 燃料電池用触媒層であって、
平均粒径が4nm未満である触媒微粒子を担体に担持させた触媒と高分子電解質とを含み、
前記担体に形成された、実質的に全ての細孔内に、前記高分子電解質が充填されており、前記全ての細孔の細孔径は4nm〜300nmである、ことを特徴とする燃料電池用触媒層。
A fuel cell catalyst layer comprising:
Including a catalyst in which catalyst fine particles having an average particle size of less than 4 nm are supported on a carrier and a polymer electrolyte;
Formed in said carrier, substantially in all pores, said and polymer electrolyte is filled, the pore size of all the pores Ru 4nm~300nm der, fuel cell characterized by Catalyst layer.
細孔径が4nm〜300nmの細孔を有する担体に平均粒径が4nm未満である触媒微粒子が担持されている触媒で、前記担体に含まれる細孔は4nm未満の細孔径を有さない、燃料電池用触媒層に用いられる触媒。A catalyst in which catalyst fine particles having an average particle diameter of less than 4 nm are supported on a carrier having pores having a pore diameter of 4 nm to 300 nm, and the pores contained in the carrier do not have a pore diameter of less than 4 nm A catalyst used for a battery catalyst layer.
JP2009013219A 2009-01-23 2009-01-23 Catalyst and catalyst layer for fuel cell Expired - Fee Related JP5375128B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009013219A JP5375128B2 (en) 2009-01-23 2009-01-23 Catalyst and catalyst layer for fuel cell
CN2010800053827A CN102300640A (en) 2009-01-23 2010-01-25 Catalyst layer for fuel cell and catalyst for use therein
PCT/JP2010/000389 WO2010084773A1 (en) 2009-01-23 2010-01-25 Catalyst layer for fuel cell and catalyst for use therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013219A JP5375128B2 (en) 2009-01-23 2009-01-23 Catalyst and catalyst layer for fuel cell

Publications (2)

Publication Number Publication Date
JP2010167379A JP2010167379A (en) 2010-08-05
JP5375128B2 true JP5375128B2 (en) 2013-12-25

Family

ID=42700014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013219A Expired - Fee Related JP5375128B2 (en) 2009-01-23 2009-01-23 Catalyst and catalyst layer for fuel cell

Country Status (1)

Country Link
JP (1) JP5375128B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488132B2 (en) * 2009-11-04 2014-05-14 株式会社エクォス・リサーチ Fuel cell catalyst layer and membrane electrode assembly
JP5387418B2 (en) * 2010-01-07 2014-01-15 株式会社エクォス・リサーチ Catalyst layer for fuel cell, method for producing catalyst layer for fuel cell, and membrane electrode assembly
JP5555615B2 (en) * 2010-12-15 2014-07-23 株式会社キャタラー Fuel cell supported catalyst and fuel cell
JP5900015B2 (en) * 2012-02-28 2016-04-06 日産自動車株式会社 Fuel cell
US20160064744A1 (en) * 2013-04-25 2016-03-03 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer for fuel cell having the catalyst
JP6496531B2 (en) * 2014-11-25 2019-04-03 新日鐵住金株式会社 Polymer Electrolyte Fuel Cell Catalyst
JPWO2021132103A1 (en) 2019-12-24 2021-07-01

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015120A (en) * 1999-06-30 2001-01-19 Tanaka Kikinzoku Kogyo Kk Catalyst for polymer solid electrolyte type fuel cell and polymer solid electrolyte type fuel cell
JP2007194197A (en) * 2005-12-22 2007-08-02 Canon Inc Catalyst electrode and its manufacturing method, and polymer electrolyte fuel cell
JP2007220384A (en) * 2006-02-15 2007-08-30 Toyota Motor Corp Catalyst carrier, electrode catalyst for fuel battery, fuel battery electrode, and fuel battery as well as fuel battery cell
US20100092830A1 (en) * 2007-02-01 2010-04-15 National Institute Of Advanced Industrial Science Electrode catalyst for a fuel cell, and fuel cell using the same

Also Published As

Publication number Publication date
JP2010167379A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
Jung et al. Electrochemical studies of an unsupported PtIr electrocatalyst as a bifunctional oxygen electrode in a unitized regenerative fuel cell
JP6232505B2 (en) Fuel cell electrode catalyst and method for producing the same
JP6728127B2 (en) Cathode design for electrochemical cells
JP5375128B2 (en) Catalyst and catalyst layer for fuel cell
JP7105226B2 (en) Cathode electrode design for electrochemical fuel cells
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
Hou et al. Enhanced low-humidity performance in a proton exchange membrane fuel cell by the insertion of microcrystalline cellulose between the gas diffusion layer and the anode catalyst layer
Zhuo et al. Electrode structure optimization combined with water feeding modes for Bi-Functional Unitized Regenerative Fuel Cells
US20170104222A1 (en) Fuel cell catalyst layer, and fuel cell
JP5488132B2 (en) Fuel cell catalyst layer and membrane electrode assembly
JP2009026501A (en) Electrolyte membrane-electrode assembly
JP6727263B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP5375152B2 (en) Fuel cell catalyst layer
JP5482074B2 (en) Fuel cell catalyst layer
JP2011113739A (en) Cathode electrode catalyst of fuel cell
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP7116665B2 (en) catalyst layer
JP6727264B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP6819688B2 (en) Method for manufacturing membrane-electrode assembly, membrane-electrode assembly manufactured from now on, and fuel cell containing this
Zeng et al. Binary oxide-doped Pt/RuO2–SiOx/C catalyst with high performance and self-humidification capability: the promotion of ruthenium oxide
Inoue et al. Experimental analyses of low humidity operation properties of SiO2-containing catalyst layers for polymer electrolyte fuel cells
Yan et al. A novel cathode architecture with a thin reaction layer alleviates mixed potentials and catalyst poisoning in direct methanol fuel cells
WO2010084773A1 (en) Catalyst layer for fuel cell and catalyst for use therein
JP5481297B2 (en) Membrane electrode assembly and fuel cell
JP6536454B2 (en) Fuel cell catalyst layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5375128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees