JP5375152B2 - Fuel cell catalyst layer - Google Patents

Fuel cell catalyst layer Download PDF

Info

Publication number
JP5375152B2
JP5375152B2 JP2009031001A JP2009031001A JP5375152B2 JP 5375152 B2 JP5375152 B2 JP 5375152B2 JP 2009031001 A JP2009031001 A JP 2009031001A JP 2009031001 A JP2009031001 A JP 2009031001A JP 5375152 B2 JP5375152 B2 JP 5375152B2
Authority
JP
Japan
Prior art keywords
catalyst
carrier
catalyst layer
fine particles
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009031001A
Other languages
Japanese (ja)
Other versions
JP2010186678A (en
Inventor
宏樹 塚本
菜 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2009031001A priority Critical patent/JP5375152B2/en
Priority to CN2010800053827A priority patent/CN102300640A/en
Priority to PCT/JP2010/000389 priority patent/WO2010084773A1/en
Publication of JP2010186678A publication Critical patent/JP2010186678A/en
Application granted granted Critical
Publication of JP5375152B2 publication Critical patent/JP5375152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To enhance a utilization rate of platinum catalyst fine particles by using a carrier not possessing pores of less than 4 nm in catalyst for a fuel cell, to propose a superb mode of the catalyst and polymer electrolyte in structuring a catalyst layer using the catalyst. <P>SOLUTION: Of the catalyst layer for the fuel cell mixing the catalyst with catalyst fine particles carried on a carrier having only pores of a diameter at an opening part of 4 nm or more with polymer electrolyte, a weight ratio (B)/(A) of the carrier (A) to the polymer electrolyte (B) is to be not more than a value multiplying by 0.5 a ratio (C)/(D) of a true density (C) of carbon to that (D) of the carrier. Further, a volume of a pore of 1 &mu;m or less in the above carrier is to be not more than a value multiplying by 0.7 a ratio (C)/(D) of a true density (C) of the carbon and that (D) of the carrier. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は燃料電池用触媒層の改良に関する。更に詳しくは、触媒層の触媒を構成する担体の改良に関する。   The present invention relates to an improvement in a catalyst layer for a fuel cell. More specifically, the present invention relates to an improvement of the carrier constituting the catalyst of the catalyst layer.

燃料電池の電極の触媒層は、白金触媒微粒子を担体に担持させてなる触媒と高分子電解質とを混合して形成していた。燃料電池の性能を向上させるには、反応の活性点の密度の向上が必要と考え、担体の比表面積を大きくするとともに、これへより多くの白金触媒微粒子を高い分散率で担持させることを目指してきた。
例えば担体として比表面積が800m/g以上のカーボンブラックを採用し、これに白金触媒微粒子を50wt%以上担持させることにより白金触媒微粒子の比表面積を100m/g−Pt以上とすることができた。かかるカーボンブラックとして、ケッチェンブラックEC(ケッチェン・ブラック・インターナショナル社製の商品名、以下同じ)及びケッチェンブラックEC−600JD(ケッチェン・ブラック・インターナショナル社製の商品名以下同じ、この明細書においてKB600JDと略することがある。)を挙げることができる。
The catalyst layer of the electrode of the fuel cell is formed by mixing a catalyst in which platinum catalyst fine particles are supported on a carrier and a polymer electrolyte. In order to improve the performance of the fuel cell, it is necessary to improve the density of active sites of the reaction, aiming to increase the specific surface area of the support and to support more platinum catalyst fine particles on this with a high dispersion rate. I came.
For example, carbon black having a specific surface area of 800 m 2 / g or more is used as a carrier, and the platinum catalyst fine particles can be supported by 50 wt% or more on the carbon black so that the specific surface area of the platinum catalyst fine particles can be 100 m 2 / g-Pt or more. It was. As such carbon black, Ketjen Black EC (trade name made by Ketjen Black International Co., Ltd., hereinafter the same) and Ketjen Black EC-600JD (trade name made by Ketjen Black International Co., Ltd., the same below, KB600JD in this specification) May be abbreviated.).

白金触媒微粒子の担持量を多くすることで触媒層の薄膜化が可能となり、高活性でかつ濃度過電圧の低いMEA(Membrane Electrode Assembly、膜電極接合体)を提供できる。
本件に関連する技術を開示する文献として非特許文献1がある。この非特許文献1には0.04μm及び0.1μm径の細孔を有するカーボン担体が開示されている。
By increasing the amount of platinum catalyst fine particles supported, the catalyst layer can be made thin, and a highly active MEA (Membrane Electrode Assembly) with a low concentration overvoltage can be provided.
There is Non-Patent Document 1 as a document disclosing the technology related to the present case. Non-Patent Document 1 discloses a carbon support having pores having a diameter of 0.04 μm and 0.1 μm.

J. Electrochem. Soc., Vol. 142, No. 12, December 1995, P4146, right column.J. Electrochem. Soc., Vol. 142, No. 12, December 1995, P4146, right column.

白金触媒微粒子は高価であるので、これを高濃度かつ高分散させると触媒層ひいてはMEAの製造コストを増大させることとなる。
本発明者らは白金触媒微粒子の使用量を削減すべく鋭意検討を重ねてきた。その結果、下記の知見を見出した。
図1はカーボン担体としてのKB600JDにPt60wt%担持した触媒の3D−TEM観察結果を示す。図1の3方向スライス像から担体内部に白金触媒微粒子が存在することが確認される。観察対象のPt60%/KB600JDでは白金触媒微粒子数の約6割が担体内部に存在し、その結果、活性点となる白金触媒微粒子の表面の約5割の面積が担体の内部にあることとなる。
この担体内部に存在している白金触媒微粒子が発電に寄与していないのなら、担持した白金触媒微粒子のうちのかなりの割合が無駄に存在していることになる。
触媒微粒子担持量が十分に多ければ、担体外表面に存在する白金触媒微粒子のみで充分な性能を得られるが、触媒微粒子量低減のために触媒微粒子担持量を減らして、かつ、性能を維持するためには白金触媒微粒子が担体内部に存在する比率をできるだけ少なくして、触媒微粒子利用率を上げる必要がある。
Since the platinum catalyst fine particles are expensive, if they are dispersed at a high concentration and high concentration, the production cost of the catalyst layer and thus the MEA is increased.
The present inventors have intensively studied to reduce the amount of platinum catalyst fine particles used. As a result, the following knowledge was found.
FIG. 1 shows a 3D-TEM observation result of a catalyst in which Pt 60 wt% is supported on KB600JD as a carbon support. It is confirmed from the three-directional slice image of FIG. 1 that platinum catalyst fine particles are present inside the carrier. In the Pt 60% / KB600JD to be observed, about 60% of the number of platinum catalyst fine particles is present inside the carrier, and as a result, about 50% of the surface of the platinum catalyst fine particles serving as active sites is inside the carrier. .
If the platinum catalyst fine particles present inside the carrier do not contribute to power generation, a considerable proportion of the supported platinum catalyst fine particles exists in vain.
If the amount of catalyst fine particles supported is sufficiently large, sufficient performance can be obtained with only the platinum catalyst fine particles present on the outer surface of the carrier, but the amount of catalyst fine particles supported is reduced and the performance is maintained to reduce the amount of catalyst fine particles. For this purpose, it is necessary to increase the utilization ratio of the catalyst fine particles by reducing the ratio of the platinum catalyst fine particles present inside the carrier as much as possible.

図2はN/C比を変えて作製した触媒層のN吸着測定結果である。N/C比を大きくしたとき減少する細孔容積は主に細孔径4nm以上の細孔径によるもので、担体内部の細孔に由来する約3.5nmの細孔による細孔容積はほとんど変化しない。このことから、担体内部の細孔は高分子電解質によって殆どふさがれていないことがわかる。
図3は、図2の結果に基づき、担体の細孔容積と電解質添加量(N/C比)との関係をグラフ化したものである。図3より、N/C比を大きくしたとき減少する細孔容積は主に細孔径4nm以上のもので、4nm未満の細孔による細孔容積はほとんど変化しないという結果が得られた。
FIG. 2 shows N 2 adsorption measurement results of catalyst layers produced by changing the N / C ratio. The pore volume that decreases when the N / C ratio is increased is mainly due to the pore diameter of 4 nm or more, and the pore volume due to pores of about 3.5 nm derived from the pores inside the carrier hardly changes. . This shows that the pores inside the carrier are hardly blocked by the polymer electrolyte.
FIG. 3 is a graph showing the relationship between the pore volume of the support and the amount of electrolyte added (N / C ratio) based on the results of FIG. FIG. 3 shows that the pore volume that decreases when the N / C ratio is increased is mainly those with a pore diameter of 4 nm or more, and the pore volume due to pores of less than 4 nm hardly changes.

以上から、高分子電解質は触媒層における4nm未満の細孔には入らず、4nm未満の細孔に存在する白金触媒微粒子は電解質に接することができない。このような白金触媒微粒子の周囲には三相界面が形成されず、発電に寄与することができなくなる。
かかる白金触媒微粒子に対して電解質を接触させる方策として、高分子電解質を微細化、あるいは低分子化して、細孔内部まで高分子電解質が入り込めるようにするということが考えられる。
しかし、プロトン導電性の確保のためには高分子電解質の連続性が必要であり、細孔内部での高分子電解質の構造制御は難しい。さらには、4nm未満のような極めて小径な細孔内部において、そもそも白金触媒微粒子に酸素を十分供給し、かつ生成水を排出するといった物質移動が円滑に実行されるか否か疑問のところもある。
From the above, the polymer electrolyte does not enter the pores of less than 4 nm in the catalyst layer, and the platinum catalyst fine particles existing in the pores of less than 4 nm cannot contact the electrolyte. A three-phase interface is not formed around such platinum catalyst fine particles, and cannot contribute to power generation.
As a measure for bringing the electrolyte into contact with the platinum catalyst fine particles, it is conceivable that the polymer electrolyte is made fine or low in molecular weight so that the polymer electrolyte can enter the pores.
However, in order to ensure proton conductivity, the continuity of the polymer electrolyte is necessary, and it is difficult to control the structure of the polymer electrolyte inside the pores. Furthermore, there is a question as to whether mass transfer such as supplying oxygen sufficiently to the platinum catalyst fine particles and discharging generated water in the extremely small pores of less than 4 nm is performed. .

本発明者らの上記の知見に基づき、燃料電池用の触媒として、細孔径が4nm以上の細孔のみを有する担体に触媒微粒子を担持させてなるものが好適なことに気がついた。
かかる触媒によれば、高分子電解質が入り込めない細孔に白金触媒微粒子が入ることを防ぐため、4nm未満の細孔を持たない担体を用いることで白金触媒微粒子利用率を高めることができ、結果として白金の使用量削減が可能になるからである。
かかる触媒は汎用的なものと比べてその物理的特性が異なるため、これを従来の条件にしたがって高分子電解質と混合して触媒層としても、その触媒層はベストパフォーマンスを奏するものとはならない。
Based on the above findings of the present inventors, it has been found that a catalyst having fine catalyst particles supported on a carrier having only pores having a pore diameter of 4 nm or more is suitable as a fuel cell catalyst.
According to such a catalyst, in order to prevent the platinum catalyst fine particles from entering the pores into which the polymer electrolyte cannot enter, the utilization rate of the platinum catalyst fine particles can be increased by using a carrier having no pores of less than 4 nm, As a result, the amount of platinum used can be reduced.
Since such catalysts have different physical characteristics compared to general-purpose catalysts, even if they are mixed with a polymer electrolyte according to conventional conditions to form a catalyst layer, the catalyst layer does not exhibit the best performance.

本発明者らは上記の触媒を用いて触媒層を構成するため、カーボンブラック等のカーボン製の担体に注目し、かかる担体へ触媒微粒子を担持してなる触媒と高分子電解質とを混合する好適な条件につき検討を重ねてきた。その結果、触媒と高分子電解質との混合比に好適な範囲があること、及び触媒を構成する担体にも備えるべき好適な物理的特性があることを見出し、下記に規定する発明に想到した。
即ち、この発明の第1の局面は次のように規定される。
開口部の直径が4nm以上の細孔のみを有する担体に触媒微粒子を担持させてなる触媒と高分子電解質とが混合されている燃料電池用触媒層であって、
前記担体(A)と前記高分子電解質(B)との重量比(B)/(A)が、カーボンの真密度(C)と前記担体の真密度(D)の比(C)/(D)に0.5を乗じた値以下である、燃料電池用触媒層。
Since the present inventors configure the catalyst layer using the above-mentioned catalyst, it is preferable to pay attention to a carbon carrier such as carbon black and to mix a catalyst in which catalyst fine particles are supported on the carrier and a polymer electrolyte. We have repeatedly examined various conditions. As a result, the inventors have found that there is a suitable range for the mixing ratio of the catalyst and the polymer electrolyte, and that there are suitable physical characteristics that should also be provided for the carrier constituting the catalyst, and the inventors have arrived at the invention defined below.
That is, the first aspect of the present invention is defined as follows.
A catalyst layer for a fuel cell in which a catalyst in which catalyst fine particles are supported on a support having only pores having a diameter of 4 nm or more in an opening and a polymer electrolyte are mixed,
The weight ratio (B) / (A) between the carrier (A) and the polymer electrolyte (B) is the ratio of the true density (C) of carbon to the true density (D) of the carrier (C) / (D ) And a value equal to or less than 0.5 multiplied by 0.5.

このように規定される第1の局面の燃料電池用触媒層によれば、4nm未満の細孔を持たない担体を採用することで、高分子電解質が入り込めないような微細孔に触媒微粒子が入り込むことが防止される。換言すれば、担体の有する細孔にはすべて高分子電解質が充填され、細孔内面に担持された触媒微粒子を被覆する。これにより、触媒微粒子利用率を高めることができ、結果として触媒微粒子の使用量削減が可能になる。
そして、触媒と高分子電解質との混合比(高分子電解質/触媒)を0.5以下とすることにより、触媒層における燃料電池反応が円滑に進行し、燃料電池触媒層はその機能を充分に発揮できる。
According to the fuel cell catalyst layer of the first aspect defined as described above, by adopting a carrier having no pores of less than 4 nm, the catalyst fine particles are placed in the fine pores where the polymer electrolyte cannot enter. Intrusion is prevented. In other words, all the pores of the carrier are filled with the polymer electrolyte, and the catalyst fine particles supported on the inner surfaces of the pores are coated. Thereby, the utilization rate of catalyst fine particles can be increased, and as a result, the amount of catalyst fine particles used can be reduced.
By setting the mixing ratio of the catalyst and the polymer electrolyte (polymer electrolyte / catalyst) to 0.5 or less, the fuel cell reaction in the catalyst layer proceeds smoothly, and the fuel cell catalyst layer has sufficient function. Can demonstrate.

この発明の第2の局面は次のように規定される。即ち、
第1の局面に規定される燃料電池用触媒層であって、前記担体における1μm以下の細孔容積は、カーボンの真密度(C)と前記担体の真密度(D)の比(C)/(D)に0.7を乗じた値以下である。
このように規定された燃料電池用触媒層は、第1の局面で説明した作用に加えて、無加湿特性に優れる。
The second aspect of the present invention is defined as follows. That is,
The catalyst layer for a fuel cell defined in the first aspect, wherein the pore volume of 1 μm or less in the carrier is a ratio of the true carbon density (C) to the true density (D) of the carrier (C) / It is below the value which multiplied (D) by 0.7.
The fuel cell catalyst layer thus defined is excellent in non-humidifying properties in addition to the action described in the first aspect.

この発明の第3の局面は次のように規定される。即ち、
開口部の直径が4nm以上の細孔のみを有する担体に触媒微粒子を担持させてなる触媒と高分子電解質とが混合されている燃料電池用触媒層であって、
前記担体における1μm以下の細孔容積は、カーボンの真密度(C)と前記担体の真密度(D)の比(C)/(D)に0.7を乗じた値以下である、燃料電池用触媒層。
このように規定された第3の局面の発明によれば、4nm未満の細孔を持たない担体を採用することで、高分子電解質が入り込めないような微細孔に触媒微粒子が入り込むことが防止される。それにより、触媒微粒子利用率を高めることができ、結果として白金の使用量削減が可能になる。
そして、担体における1μm以下の細孔容積をカーボンの真密度(C)と前記担体の真密度(D)の比(C)/(D)に0.7を乗じた値以下とすることにより、無加湿特性に優れた燃料電池用触媒層となる。
The third aspect of the present invention is defined as follows. That is,
A catalyst layer for a fuel cell in which a catalyst in which catalyst fine particles are supported on a support having only pores having a diameter of 4 nm or more in an opening and a polymer electrolyte are mixed,
The pore volume of 1 μm or less in the carrier is not more than a value obtained by multiplying the ratio (C) / (D) of the true density (C) of carbon to the true density (D) of the carrier by 0.7. Catalyst layer.
According to the invention of the third aspect defined as described above, by adopting a carrier having no pores of less than 4 nm, it is possible to prevent catalyst fine particles from entering into fine pores where polymer electrolyte cannot enter. Is done. Thereby, the utilization rate of catalyst fine particles can be increased, and as a result, the amount of platinum used can be reduced.
And by setting the pore volume of 1 μm or less in the carrier to a value obtained by multiplying the ratio (C) / (D) of the true density of carbon (C) and the true density of the carrier (D) by 0.7, The fuel cell catalyst layer is excellent in non-humidification characteristics.

この発明の第4の局面は次のように規定される。即ち、
第1〜第3の局面で規定される燃料電池用触媒層において前記触媒微粒子の平均粒径が4nm未満である。
このように規定された第4の局面の燃料電池用触媒層によれば、触媒微粒子の平均粒径が、担体の細孔の開口部径より小さくされているので、触媒微粒子は担体の、その細孔内面も含めて、全表面に行渡り、そこに担持される。
The fourth aspect of the present invention is defined as follows. That is,
In the fuel cell catalyst layer defined in the first to third aspects, the catalyst fine particles have an average particle size of less than 4 nm.
According to the fuel cell catalyst layer of the fourth aspect defined as described above, since the average particle diameter of the catalyst fine particles is made smaller than the opening diameter of the pores of the carrier, the catalyst fine particles are those of the carrier. The entire surface, including the inner surface of the pores, is distributed and supported thereon.

図1は約3.5nmの細孔を有する比較例1のカーボン担体における白金触媒粒子の分布を示す3D−TEM像である。FIG. 1 is a 3D-TEM image showing the distribution of platinum catalyst particles on the carbon support of Comparative Example 1 having pores of about 3.5 nm. 図2はN/C比を変化させたときの比較例1の触媒層の細孔分布を示す。FIG. 2 shows the pore distribution of the catalyst layer of Comparative Example 1 when the N / C ratio is changed. 図3は触媒層の細孔容積とN/C比との関係を示す。FIG. 3 shows the relationship between the pore volume of the catalyst layer and the N / C ratio. 図4は実施例1と比較例1のカーボン担体における比表面積を示す。FIG. 4 shows specific surface areas of the carbon carriers of Example 1 and Comparative Example 1. 図5は実施例1のMEAと比較例1のMEAとのIV特性図である。FIG. 5 is an IV characteristic diagram of the MEA of Example 1 and the MEA of Comparative Example 1. 図6は実施例2及び比較例2、試験例1のMEAにおけるIV特性図である。6 is an IV characteristic diagram of the MEAs of Example 2, Comparative Example 2, and Test Example 1. FIG. 図7は実施例2及び比較例2、試験例1のMEAにおける面積比活性を示す。FIG. 7 shows the area specific activity in the MEAs of Example 2, Comparative Example 2, and Test Example 1. 図8は実施例2及び比較例2、試験例1のMEAにおけるIV特性図である。FIG. 8 is an IV characteristic diagram of the MEAs of Example 2, Comparative Example 2, and Test Example 1.

まずは、触媒について説明する。
上記において、4nm未満の細孔を持たない担体の比表面積は小さく、従来の高性能触媒のような高い担持率にすると触媒微粒子径が大きくて、触媒微粒子比表面積が小さい重量比活性の低い触媒になってしまい、触媒微粒子使用量の低減をすることができない。
そこで、(高比表面積担体に高担持・高分散担持することで、大きい触媒微粒子表面積を確保した高性能触媒とは逆に)、低触媒微粒子担持率にすることで触媒微粒子径を小さくし、もって触媒微粒子表面積を確保しつつ重量比活性の低下を回避する対策をとる。触媒微粒子使用量の削減、即ち触媒層中の触媒微粒子量(担持量あるいは目付量)を少なくする場合には、低担持率触媒でも触媒層の厚さを高性能触媒と同等に抑えれば濃度過電圧増加の懸念はない。
First, the catalyst will be described.
In the above, the specific surface area of the support having no pores smaller than 4 nm is small, and the catalyst fine particle diameter is large and the catalyst fine particle specific surface area is small when the loading ratio is high as in the case of a conventional high performance catalyst. As a result, the amount of catalyst fine particles used cannot be reduced.
Therefore, (as opposed to a high performance catalyst that ensures a large catalyst fine particle surface area by carrying a high specific surface area carrier with high loading and high dispersion), by making the catalyst fine particle loading ratio low, the catalyst fine particle diameter is reduced, Therefore, measures are taken to avoid a decrease in the weight specific activity while ensuring the catalyst fine particle surface area. To reduce the amount of catalyst fine particles used, that is, to reduce the amount of catalyst fine particles (supported amount or basis weight) in the catalyst layer, the concentration can be reduced even if the catalyst layer thickness is suppressed to the same level as the high performance catalyst even with a low supported catalyst. There is no concern about an increase in overvoltage.

図4に、実施例の担体として用いるカーボンブラックのN吸着測定結果を示す。BJH法によって求めた細孔径1.7nm〜300nmのメソ細孔の比表面積と細孔径4nm〜300nmの比表面積とをそれぞれ棒グラフで示している。実施例の担体では、細孔径1.7nm〜300nmのメソ細孔の比表面積と細孔径4nm〜300nmの比表面積とがほぼ等しい。その結果、4nm未満の細孔が殆ど存在しないことがわかる。
比較例として示したKB600JDでは、4nm未満の細孔が全比表面積の半分以上を占めている。
実施例の担体としてCABOT社製のBP880(商品名)を用いることができる。
FIG. 4 shows the N 2 adsorption measurement result of carbon black used as the carrier of the example. The specific surface area of mesopores having a pore diameter of 1.7 nm to 300 nm and the specific surface area of pore diameters of 4 nm to 300 nm determined by the BJH method are respectively shown by bar graphs. In the carrier of the example, the specific surface area of mesopores having a pore diameter of 1.7 nm to 300 nm and the specific surface area of pore diameters of 4 nm to 300 nm are substantially equal. As a result, it can be seen that there are almost no pores of less than 4 nm.
In KB600JD shown as a comparative example, pores of less than 4 nm account for more than half of the total specific surface area.
BP880 (trade name) manufactured by CABOT can be used as the carrier of the examples.

実施例の担体の比表面積に対する触媒微粒子重量と触媒微粒子径の関係から、触媒微粒子表面積を維持できる触媒微粒子担持率を決める。実施例のカーボン担体の細孔径4nm以上の細孔からなる比表面積は185m2/g-Cで、触媒微粒子担持率を20wt%にすれば、比較例であるKB600JD60wt%担持触媒と同等の触媒微粒子径にすることができる。
実際に作製した触媒微粒子の粒径は表1のようになり、発電前後ともに60wt%担持KB600JD触媒(比較例)とほぼ同等の触媒微粒子比表面積を確保できた。
表1の結果から、触媒微粒子の平均粒径は4.0nm未満とすることが好ましい。
From the relationship between the catalyst fine particle weight and the catalyst fine particle diameter with respect to the specific surface area of the carrier of the example, the catalyst fine particle supporting rate capable of maintaining the catalyst fine particle surface area is determined. The specific surface area consisting of pores having a pore diameter of 4 nm or more of the carbon support of the example is 185 m 2 / gC, and if the catalyst fine particle loading ratio is 20 wt%, the catalyst fine particle diameter is equivalent to the KB600JD 60 wt% supported catalyst of the comparative example. can do.
The particle diameters of the actually produced catalyst fine particles are as shown in Table 1, and the specific surface area of the catalyst fine particles was almost the same as that of the 60 wt% supported KB600JD catalyst (comparative example) before and after power generation.
From the results in Table 1, the average particle size of the catalyst fine particles is preferably less than 4.0 nm.

表1に示した比較例の触媒(白金触媒微粒子/担体)と実施例1の触媒(白金触媒微粒子/担体)とでそれぞれ作製した触媒層を有するMEAの50℃フル加湿での性能比較を行う。
実施例の触媒と電解質溶液とを混合してペーストを作製し、これをカーボン布等へスクリーン印刷法で塗布して実施例1の触媒層を形成し、これをカソード電極とする。このカソード電極、電解質膜(Nafion(商標名)製)、アノード電極を接合してMEAを作製する。本試験に使用したカソード電極の白金触媒微粒子担持量は0.1mg/cmである。
比較例の触媒についても上記と同様にして触媒層を形成し、更にMEAを作製する。比較例のカソード電極の白金触媒微粒子担持量は同じく0.1mg/cm2である。
50℃フル加湿の空気性能の比較を図5に示す。同じ白金触媒微粒子担持量(重量ベース)の比較では全電流域で実施例の触媒層を備えたMEAの性能が高かった。
また、低電流領域の性能比較(表2)では、面積比活性、重量比活性ともに実施例の触媒層を備えたMEAが比較例の触媒層を備えたMEAを上回った。
Comparison of performance of a MEA having a catalyst layer prepared with the catalyst of the comparative example (platinum catalyst fine particle / support) shown in Table 1 and the catalyst of the example 1 (platinum catalyst fine particle / support) at 50 ° C. full humidification is performed. .
The catalyst of the example and the electrolyte solution are mixed to prepare a paste, and this is applied to a carbon cloth or the like by screen printing to form the catalyst layer of Example 1, which is used as a cathode electrode. The cathode electrode, the electrolyte membrane (manufactured by Nafion (trade name)), and the anode electrode are joined to produce an MEA. The amount of platinum catalyst fine particles supported on the cathode electrode used in this test is 0.1 mg / cm 2 .
For the catalyst of the comparative example, a catalyst layer is formed in the same manner as described above, and an MEA is further produced. The amount of platinum catalyst fine particles supported on the cathode electrode of the comparative example is also 0.1 mg / cm 2 .
FIG. 5 shows a comparison of air performance at 50 ° C. full humidification. In the comparison of the same platinum catalyst fine particle carrying amount (weight basis), the performance of the MEA including the catalyst layer of the example was high in the entire current range.
Further, in the performance comparison in the low current region (Table 2), the MEA including the catalyst layer of the example exceeded the MEA including the catalyst layer of the comparative example in both area specific activity and weight specific activity.

実施例の触媒と比較例の触媒を用いてそれぞれ作製した触媒層のフル加湿での電気化学的比表面積をCV測定で求め、Pt利用率を計算した。結果は表3に示す。
表3の結果から、実施例の触媒層の白金触媒微粒子利用率が比較例のそれより高いことがわかる。
The electrochemical specific surface area of each catalyst layer prepared using the catalyst of Example and the catalyst of Comparative Example under full humidification was determined by CV measurement, and the Pt utilization rate was calculated. The results are shown in Table 3.
From the results in Table 3, it can be seen that the utilization ratio of platinum catalyst fine particles in the catalyst layer of the example is higher than that of the comparative example.

上記において、この発明における触媒微粒子とは、白金微粒子自体に限定されず、白金合金からなる粒子及びその他の金属及び合金からなる粒子など、燃料電池反応に利用できる全ての材料からなる微粒子粒子を含むものとする。
なお、上記明細書の記載において、4nm以上の細孔、4nm未満の細孔、3.5nmの細孔とは、それぞれ担体の細孔の開口部の直径が4nm以上の細孔、4nm未満の細孔、3.5nmの細孔を指す。
この発明を規定するにあたり、担体の細孔の開口部の直径を4nm以上と規定しているが、これは高分子電解質が入り込めない細孔の開口部の直径を規定せんがために発明者らが自らの実験に基づき特定した値である。
したがって、この発明の担体を用いた触媒層においては、担体における実質的に全ての細孔内に触媒粒子が担持されるとともに、当該細孔は高分子電解質で充填されている。
担体には高い電導性と耐蝕性を有し、触媒微粒子を担持できる物理的特性を有する材料を使用することができる。かかる材料として、実施例で使用したカーボン担体の他、酸化スズ、酸化チタン、酸化亜鉛等の金属酸化物、SrVO等のペロブスカイト型酸化物などを挙げることができる。
In the above, the catalyst fine particles in the present invention are not limited to platinum fine particles per se, but include fine particles made of all materials that can be used for the fuel cell reaction, such as particles made of platinum alloys and particles made of other metals and alloys. Shall be.
In the description of the above specification, the pores of 4 nm or more, the pores of less than 4 nm, and the pores of 3.5 nm are pores having pore diameters of 4 nm or more and pores of less than 4 nm, respectively. Pore, refers to a pore of 3.5 nm.
In defining this invention, the diameter of the pore opening of the support is defined as 4 nm or more. This is because the diameter of the opening of the pore into which the polymer electrolyte cannot enter is defined by the inventor. This is the value that they identified based on their own experiments.
Therefore, in the catalyst layer using the carrier of the present invention, catalyst particles are supported in substantially all the pores in the carrier, and the pores are filled with the polymer electrolyte.
As the carrier, a material having high electrical conductivity and corrosion resistance and having physical characteristics capable of supporting catalyst fine particles can be used. Examples of such materials include the carbon support used in the examples, metal oxides such as tin oxide, titanium oxide, and zinc oxide, and perovskite oxides such as SrVO 3 .

以上説明してきた触媒を高分子電解質と混合させるときの態様について説明する。
実施例2の触媒層は、カーボン製の担体と高分子電解質の重量比(高分子電解質の質量/担体の質量=N/C、以下同じ)が0.25g−高分子電解質/g−Cとなるよう、実施例1の場合と同様な方法で形成されている。なお、実施例2の触媒層では、担体として、実施例1と同様の低比表面積カーボン担体であるBP800を用いた。
実施例3の触媒層では、担体として東海カーボン製トーカブラック#3885を用いた。
実施例2、3の触媒層及び比較例2、試験例1の触媒層の特性を表4に示す。各実施例及び比較例、試験例とも同一条件でMEAを構成するものとする。
担体としてこれらの材料を用いる場合、カーボン担体の真密度(C)と各材料の真密度(D)の比(C)/(D)を第1〜第3の局面で述べた「触媒担体と高分子電解質の混合比」、および、「触媒担体の1μm以下の細孔容積」に乗じて得た補正値を用いることで対応できる。
例えば、担体として酸化スズ(SnO)を用いる場合、カーボン担体の密度2g/cm、SnOの密度7g/cmより、
N/Cは、 0.5×2/7=0.14
細孔容積は、0.7×2/7=0.2[cc/g−担体] となる。
A mode when the catalyst described above is mixed with the polymer electrolyte will be described.
In the catalyst layer of Example 2, the weight ratio of the carbon support to the polymer electrolyte (the weight of the polymer electrolyte / the weight of the support = N / C, the same applies hereinafter) is 0.25 g-polymer electrolyte / g-C. In this way, it is formed by the same method as in the first embodiment. In the catalyst layer of Example 2, BP800, which is the same low specific surface area carbon support as in Example 1, was used as the support.
In the catalyst layer of Example 3, Toka Black # 3885 made by Tokai Carbon was used as a carrier.
Table 4 shows the characteristics of the catalyst layers of Examples 2 and 3, and the catalyst layers of Comparative Example 2 and Test Example 1. Each example, comparative example, and test example shall constitute MEA under the same conditions.
When these materials are used as the carrier, the ratio (C) / (D) of the true density (C) of the carbon carrier and the true density (D) of each material is described in “Catalyst carrier and This can be dealt with by using a correction value obtained by multiplying the “mixing ratio of the polymer electrolyte” and the “pore volume of 1 μm or less of the catalyst carrier”.
For example, when using tin oxide (SnO 2 ) as the carrier, the density of the carbon carrier is 2 g / cm 3 and the density of SnO 2 is 7 g / cm 3 .
N / C is 0.5 × 2/7 = 0.14
The pore volume is 0.7 × 2/7 = 0.2 [cc / g-carrier].

各触媒層を備えたMEAを50℃フル加湿したときの電流電圧特性を図6に示す。図6において「空気」とあるのは酸化ガスとして空気を使用したときの特性であり、「酸素」とあるのは酸化ガスとして酸素ガスを使用したときの特性である。なお、酸化ガスの流量は3.37NLMで充分に加湿されている。他方、水素ガスの流量は0.5NLMであり充分に加湿されている。
酸化ガスとして空気を採用したとき、実施例2と試験例1との比較により、実施例2の触媒層を備えたMEAが高N/Cとした試験例1の触媒層を備えたMEAを上回る結果が得られた。
酸化ガスとして酸素ガスを採用したとき、同じ白金触媒担持量(重量ベース)の比較では全電流域で実施例2の触媒層を備えたMEAの性能が比較例2及び試験例1の触媒層を備えたMEAに比べ高かった。
また図7に示すように、実施例2の触媒層の触媒のPt比表面積と比較例2の触媒層の触媒のPt比表面積がほぼ同じであることを考慮し、酸素ガス供給時における面積比活性を比較すると、実施例2の触媒層では比較例2の触媒層に比べ約15%のPt量の削減が可能であることが示される結果が得られた。
FIG. 6 shows current-voltage characteristics when the MEA provided with each catalyst layer is fully humidified at 50 ° C. In FIG. 6, “air” is a characteristic when air is used as the oxidizing gas, and “oxygen” is a characteristic when oxygen gas is used as the oxidizing gas. Note that the flow rate of the oxidizing gas is sufficiently humidified at 3.37 NLM. On the other hand, the flow rate of hydrogen gas is 0.5 NLM and is sufficiently humidified.
When air is employed as the oxidizing gas, the comparison between Example 2 and Test Example 1 shows that the MEA with the catalyst layer of Example 2 exceeds the MEA with the catalyst layer of Test Example 1 with high N / C. Results were obtained.
When oxygen gas is used as the oxidizing gas, the performance of the MEA having the catalyst layer of Example 2 in the entire current range is the same as that of the catalyst layer of Comparative Example 2 and Test Example 1 in the same platinum catalyst loading (weight basis). It was higher than MEA provided.
Further, as shown in FIG. 7, considering that the Pt specific surface area of the catalyst of the catalyst layer of Example 2 and the Pt specific surface area of the catalyst of the catalyst layer of Comparative Example 2 are substantially the same, the area ratio at the time of supplying oxygen gas When the activities were compared, the results showed that the catalyst layer of Example 2 can reduce the Pt amount by about 15% compared to the catalyst layer of Comparative Example 2.

一方、酸化ガスとして無加湿の空気を用いたときの電流電圧特性を図8に示す(水素ガスは加湿、セル温度:70℃)。無加湿の空気を用いる場合、実施例2の触媒層は比較例2の触媒層とほぼ同じかあるいはやや悪い特性となり、試験例1の触媒層が最も良い特性であった。表4に示すように、各実施例及び比較例、試験例の触媒層に含まれる担体においてカーボン製の担体1gあたりの開口径が1μm以下の細孔容積は、実施例2が約0.9[cc/g−C]、比較例2が約1.0[cc/g−C]とほぼ同じであるのに対し、試験例1は約0.6[cc/g−C]と低い。これは、各担体において開口径が1μm以下(かつ4nm以上)の細孔が触媒層の空隙を構成し、このように規定される空隙のボリュームが実施例2及び比較例2の触媒層に対し試験例1の触媒層では少ないため、後者の触媒層は乾燥に強い結果が得られたと考えられる。このように得られた結果から、触媒層に含まれる担体の細孔容積は固体差を考慮の上、0.7[cc/g−C]以下が適正と考えられる。   On the other hand, FIG. 8 shows current-voltage characteristics when non-humidified air is used as the oxidizing gas (hydrogen gas is humidified, cell temperature: 70 ° C.). When non-humidified air was used, the catalyst layer of Example 2 had almost the same or slightly worse characteristics as the catalyst layer of Comparative Example 2, and the catalyst layer of Test Example 1 had the best characteristics. As shown in Table 4, in the supports included in the catalyst layers of Examples, Comparative Examples, and Test Examples, the pore volume having an opening diameter of 1 μm or less per 1 g of the carbon support is about 0.9 in Example 2. [Cc / g-C], Comparative Example 2 is almost the same as about 1.0 [cc / g-C], whereas Test Example 1 is as low as about 0.6 [cc / g-C]. This is because pores having an opening diameter of 1 μm or less (and 4 nm or more) in each carrier constitute the voids of the catalyst layer, and the volume of voids defined in this way is larger than that of the catalyst layers of Example 2 and Comparative Example 2. Since the number of catalyst layers in Test Example 1 is small, it is considered that the latter catalyst layer obtained a strong result in drying. From the results thus obtained, it is considered that the pore volume of the support contained in the catalyst layer is appropriately 0.7 [cc / g-C] or less in consideration of the solid difference.

本発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も本発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

Claims (4)

開口部の直径が4nm以上の細孔のみを有する担体に触媒微粒子を担持させてなる触媒と高分子電解質とが混合されている燃料電池用触媒層であって、
前記担体(A)と前記高分子電解質(B)との重量比(B)/(A)が、カーボンの真密度(C)と前記担体の真密度(D)の比(C)/(D)に0.5を乗じた値以下である、燃料電池用触媒層。
A catalyst layer for a fuel cell in which a catalyst in which catalyst fine particles are supported on a support having only pores having a diameter of 4 nm or more in an opening and a polymer electrolyte are mixed,
The weight ratio (B) / (A) between the carrier (A) and the polymer electrolyte (B) is the ratio of the true density (C) of carbon to the true density (D) of the carrier (C) / (D ) And a value equal to or less than 0.5 multiplied by 0.5.
前記担体における1μm以下の細孔容積(cm /g−C)は、カーボンの真密度(C)と前記担体の真密度(D)の比(C)/(D)に0.7を乗じた値以下である、ことを特徴とする請求項1に記載の燃料電池用触媒層。 The pore volume (cm 3 / g-C) of 1 μm or less in the carrier is obtained by multiplying 0.7 by the ratio (C) / (D) of the true density (C) of carbon and the true density (D) of the carrier. The fuel cell catalyst layer according to claim 1, wherein the catalyst layer is a fuel cell catalyst layer according to claim 1. 開口部の直径が4nm以上の細孔のみを有する担体に触媒微粒子を担持させてなる触媒と高分子電解質とが混合されている燃料電池用触媒層であって、
前記担体における1μm以下の細孔容積(cm /g−C)は、カーボンの真密度(C)と前記担体の真密度(D)の比(C)/(D)に0.7を乗じた値以下である、燃料電池用触媒層。
A catalyst layer for a fuel cell in which a catalyst in which catalyst fine particles are supported on a support having only pores having a diameter of 4 nm or more in an opening and a polymer electrolyte are mixed,
The pore volume (cm 3 / g-C) of 1 μm or less in the carrier is obtained by multiplying 0.7 by the ratio (C) / (D) of the true density (C) of carbon and the true density (D) of the carrier. The fuel cell catalyst layer is less than or equal to the above value.
前記触媒微粒子の平均粒径が4nm未満である、ことを特徴とする請求項1〜3のいずれか1項に記載の燃料電池用触媒層。   4. The fuel cell catalyst layer according to claim 1, wherein an average particle diameter of the catalyst fine particles is less than 4 nm.
JP2009031001A 2009-01-23 2009-02-13 Fuel cell catalyst layer Expired - Fee Related JP5375152B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009031001A JP5375152B2 (en) 2009-02-13 2009-02-13 Fuel cell catalyst layer
CN2010800053827A CN102300640A (en) 2009-01-23 2010-01-25 Catalyst layer for fuel cell and catalyst for use therein
PCT/JP2010/000389 WO2010084773A1 (en) 2009-01-23 2010-01-25 Catalyst layer for fuel cell and catalyst for use therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009031001A JP5375152B2 (en) 2009-02-13 2009-02-13 Fuel cell catalyst layer

Publications (2)

Publication Number Publication Date
JP2010186678A JP2010186678A (en) 2010-08-26
JP5375152B2 true JP5375152B2 (en) 2013-12-25

Family

ID=42767212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031001A Expired - Fee Related JP5375152B2 (en) 2009-01-23 2009-02-13 Fuel cell catalyst layer

Country Status (1)

Country Link
JP (1) JP5375152B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6231477B2 (en) * 2012-07-23 2017-11-15 トヨタ自動車株式会社 Fuel cell system and operation method thereof
JP2019008864A (en) * 2015-11-10 2019-01-17 デンカ株式会社 Catalyst for gas electrode and battery
JPWO2021132103A1 (en) 2019-12-24 2021-07-01

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015120A (en) * 1999-06-30 2001-01-19 Tanaka Kikinzoku Kogyo Kk Catalyst for polymer solid electrolyte type fuel cell and polymer solid electrolyte type fuel cell
JP2007194197A (en) * 2005-12-22 2007-08-02 Canon Inc Catalyst electrode and its manufacturing method, and polymer electrolyte fuel cell
JP2007220384A (en) * 2006-02-15 2007-08-30 Toyota Motor Corp Catalyst carrier, electrode catalyst for fuel battery, fuel battery electrode, and fuel battery as well as fuel battery cell
US20100092830A1 (en) * 2007-02-01 2010-04-15 National Institute Of Advanced Industrial Science Electrode catalyst for a fuel cell, and fuel cell using the same

Also Published As

Publication number Publication date
JP2010186678A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
Uchida et al. Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells
JP6728127B2 (en) Cathode design for electrochemical cells
JP7105226B2 (en) Cathode electrode design for electrochemical fuel cells
JP5375128B2 (en) Catalyst and catalyst layer for fuel cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP5488132B2 (en) Fuel cell catalyst layer and membrane electrode assembly
KR20170123285A (en) Membrane electrode assembly for fuel cell
JP5669432B2 (en) Membrane electrode assembly, fuel cell, and fuel cell activation method
JP2019140010A (en) Catalyst layer for fuel cell, electrolyte membrane-electrode assembly, and fuel cell
JP5375152B2 (en) Fuel cell catalyst layer
JP2020047429A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP5151210B2 (en) Electrode for polymer electrolyte fuel cell
JP5482074B2 (en) Fuel cell catalyst layer
JP7116665B2 (en) catalyst layer
JP2011113739A (en) Cathode electrode catalyst of fuel cell
JP2008027847A (en) Solid polymer fuel cell, and electronic equipment using it
WO2010084773A1 (en) Catalyst layer for fuel cell and catalyst for use therein
JP2020047432A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2020047430A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP6536454B2 (en) Fuel cell catalyst layer
JP2012022960A (en) Membrane electrode assembly and fuel cell
JP4179847B2 (en) Electrode structure for polymer electrolyte fuel cell
JP2010238513A (en) Catalyst particle containing aggregate body for solid polymer fuel cell
JP2010073419A (en) Electrolyte membrane-electrode assembly for fuel cell
TW200908426A (en) Modified carbonized substrate and its manufacturing method and use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5375152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees