JP5373112B2 - 光ピックアップ装置および光ディスク装置 - Google Patents

光ピックアップ装置および光ディスク装置 Download PDF

Info

Publication number
JP5373112B2
JP5373112B2 JP2011543103A JP2011543103A JP5373112B2 JP 5373112 B2 JP5373112 B2 JP 5373112B2 JP 2011543103 A JP2011543103 A JP 2011543103A JP 2011543103 A JP2011543103 A JP 2011543103A JP 5373112 B2 JP5373112 B2 JP 5373112B2
Authority
JP
Japan
Prior art keywords
light
layer
reflected light
reflected
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011543103A
Other languages
English (en)
Other versions
JPWO2011064992A1 (ja
Inventor
雄一 高橋
和雄 百尾
寛昭 松宮
潤一 麻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011543103A priority Critical patent/JP5373112B2/ja
Publication of JPWO2011064992A1 publication Critical patent/JPWO2011064992A1/ja
Application granted granted Critical
Publication of JP5373112B2 publication Critical patent/JP5373112B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • G11B7/0903Multi-beam tracking systems

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

本発明は、光ディスクなどの記録媒体に対して、光学的に情報の記録、又は、再生を行う技術に関する。
近年、記録媒体に光学的に情報を記録し、または光学的に記録された情報を再生する光ディスク装置が広く普及している。そのような記録媒体として、例えば、コンパクトディスク(以下、「CD」と略称する。)、Digital Versatile Disc(以下、「DVD」と略称する。)、Blu−ray Disc(以下、「BD」と略称する。)などの光ディスクが知られている。光ディスクには、映像や画像、音声などの各種情報が記録され得る。
特に映画などの、情報量が多い映像情報の記録用途が想定されるDVDやBDに関しては、長時間の作品を1枚のディスクに格納したいという要求や、各種特典映像を格納することによりパッケージメディアとしての付加価値を高めるといったニーズが高い。そこで、格納できる情報の容量を拡大するために、記録層を2層化した光ディスクが既に実用に供されており、市場で広く使用されている。中でも高品位な映像情報を記録できるBDでは、更なる容量の拡大を図るために、記録層の多層化の検討が進められており、3層化、あるいは4層化したディスクや装置の規格化が検討されている。
たとえば、光ディスクから情報を再生するためには、目的となる記録層にレーザ光を収束させ、光検出器を用いてその反射光を検出する必要がある。ところが、ディスクの多層化を進めていくと、情報を再生している層とは別の層からの反射光(以下、「他層からの迷光」と呼ぶ。)が光検出器に入射してノイズとなり、再生信号や制御用信号の品質を低下させてしまうという課題がある。
具体的に一般的な光ピックアップ装置の構成として、シリンドリカルレンズを用いた非点収差法によるフォーカス信号検出を行う構成と、3ビーム法を用いたトラッキング信号検出を行う構成を利用して、上述の課題を説明する。
図28は、一般的な光ピックアップの構成例を示す。光源である半導体レーザ1から出射された光は、3ビーム生成用の回折格子13を透過し、偏光ビームスプリッタ2で反射され、コリメートレンズ3により略平行光束に変換される。この平行光束は、ミラー4で反射され、波長板5を透過し、対物レンズ6により記録媒体である光ディスク7に集光される。
光ディスク7は、少なくとも3つの記録層を有している。本明細書においては、隣接する3つの記録層を、対物レンズ6から見て手前の層から順に記録層7a、7b、7cとする。以下、記録層7a、7b、7cをそれぞれL2層、L1層、L0層と呼ぶ。
図28には記録層7bに集光された光の光路が示されている。L1層(記録層7b)からの反射光は、逆の経路を辿って偏光ビームスプリッタ2へ到達する。このとき、波長板5の作用により、反射光の偏光状態は往路の偏光状態とは異なる状態に変換されているため、偏光ビームスプリッタ2へ到達した光の多くは透過し、シリンドリカルレンズ11を通過し、光検出器15へ入射する。光検出器15に入射する光を、以下、「検出光9」と呼ぶ。検出光9は3つのビーム、すなわちメインビーム9a、サブビーム9bおよび9cを含んでいる。
図29は、光検出器15の構成を示す。メインビーム9aは受光部151へ、サブビーム9b、9cはそれぞれ受光部152、153へと入射する。RF信号は受光部151において検出されたメインビーム9aの光量信号から生成される。一方、フォーカスエラー信号やトラッキングエラー信号は受光部151において検出されたメインビーム9aの光量信号に加え、受光部152および受光部153においてそれぞれ検出されたサブビーム9bおよび9cの光量信号を用いて生成される。RF信号、フォーカスエラー信号、トラッキングエラー信号の検出原理は既に公知であり、また、これらの検出原理自体は本発明の本質ではないため詳細な説明は省略する。
図30は、情報を記録あるいは再生するための光がL1層(記録層7b)に集光しているときの、奥に隣接するL0層(記録層7c)からの反射光の光路を示す。L0層からの反射光はコリメータレンズ3と光検出器15の間で一度合焦するため、大きくデフォーカスした状態で光検出器15へと入射する。図31は、光検出器15上におけるL0層からの反射光9dを示す。反射光9dはデフォーカスしており、光検出器15上で大きく拡大し、受光部151〜153に掛かっている。そのため、反射光9dは、RF信号やフォーカス、トラッキングエラー信号を生成するメインビーム9a、サブビーム9b、9cと干渉を生じている。
また、図32は、光がL1層(記録層7b)に集光しているときの、手前に隣接するL2層(記録層7a)からの反射光の光路を示す。L2層からの反射光は光検出器15までで合焦せず、大きくデフォーカスした状態で光検出器15へと入射する。
図33は、光検出器15上におけるL2層からの反射光9eを示す。反射光9eはデフォーカスしており、光検出器15上で大きく拡大し、受光部151〜153に掛かっている。そのため、反射光9eは、RF信号やフォーカス、トラッキングエラー信号を生成するメインビーム9a、サブビーム9b、9cと干渉を生じている。
製造誤差などの影響により、L1層およびL2層の層間の厚さは常に一定ではなく、局所的に変動し得る。そのため、ディスクが1回転する間に光路長は変化する。その結果、干渉状態も常に変化する。よって、このような構成の光ピックアップで3層以上の多層ディスクを利用して情報を再生し、記録すると、前後の層からの迷光がメインビーム9a、サブビーム9bおよび9cと干渉することにより、RF信号やフォーカス、トラッキングエラー信号の振幅やオフセットは常に変化する状態となる。これは、再生信号や制御用信号の品質を著しく低下させる原因となる。
この課題における、他層からの迷光が制御用信号に影響を与えることに関しては、特許文献1に示すような解決策が提案されている。図34は特許文献1に記載された光ピックアップ装置の構成および動作を説明するための図である。
特許文献1では、他層からの反射光が入射しない位置にトラッキングエラー信号検出用の受光部を配置し、回折素子を用いてその位置へトラッキングエラーの生成に用いられるビームを方向付けるよう構成している。これにより、他層からの反射光の影響を受けない高品位なトラッキングエラー信号を検出して、多層ディスクにおけるトラッキング動作の安定性を確保することが可能となる。以下具体的に説明する。
光源である半導体レーザ1から出射した光は、偏光ビームスプリッタ2で反射され、コリメートレンズ3により略平行光束に変換される。この平行光束は、ミラー4で反射され、波長板5を透過し、対物レンズ6により記録媒体である光ディスク7に集光される。図34にはL1層に集光された光の光路が示されている。
L1層からの反射光は、逆の経路を辿って偏光ビームスプリッタ2へ到達する。このとき、先の例と同様、偏光状態が変換されているため、偏光ビームスプリッタ2へ到達した光の多くは透過し、さらに回折素子8へと入射する。
回折素子8によって回折されない検出光9(0次光)は直進し、シリンドリカルレンズ11を通過して光検出器12へ入射する。一方、回折素子8によって回折された検出光10(回折光)は光検出器12上の検出光9とは異なる位置へと入射する。
図35は、光検出器12の構成を示す。検出光9は4分割された受光部121へと入射する。検出光9を用いて、RF信号の検出と非点収差法によるフォーカスエラー信号の検出が行われる。一方、検出光10は回折素子8により領域によって10a、10b、10c、10dの4つのビームに分けられ、それぞれ受光部102a、102b、102c、102dへと入射する。検出光10を構成するビーム10a、10b、10c、10dを用いて、トラッキングエラー信号の検出が行われる。RF信号、フォーカスエラー信号の検出原理(非点収差法)は既に公知の技術であり、また、トラッキングエラー信号の検出原理については特許文献1に詳細に記載されおり、これらの検出原理自体は本発明の本質ではないため説明は省略する。
図36は、光がL1層に集光しているときの、奥に隣接するL0層からの反射光の光路を示す。L0層からの反射光はコリメータレンズ3と光検出器12の間で一度合焦し、大きくデフォーカスした状態で光検出器12へと入射する。
図37は、光検出器12上におけるL0層からの反射光9dを示す。反射光9dはデフォーカスしているため受光部121から大きくはみ出している。しかしながら、トラッキングエラー信号検出用の受光部102a〜102dは反射光9dの外側に配置されているため反射光9dは入射しない。このため、トラッキングエラー信号は隣接する奥の記録層からの反射光の影響を受けない。
また、図38は、光がL1層に集光しているときの、手前に隣接するL2層からの反射光の動作を示す。L2層で反射された光は光検出器12ではまだ合焦に至らず、大きくデフォーカスした状態で光検出器12へと入射する。
図39は、光検出器12上におけるL2層からの反射光9eを示す。
反射光9eはデフォーカスしているため受光部121から大きくはみ出している。しかしながら、トラッキングエラー信号検出用の受光部102a〜102dは反射光9eの外側に配置されているため反射光9dは入射しない。このため、トラッキングエラー信号は隣接する手前の記録層からの反射光の影響を受けない。
特開2008−135151号公報
従来の構成ではトラッキングエラー信号に関しては他層からの反射光の影響を排除することができる。
しかしながら、RF信号やフォーカスエラー信号を検出するためのメインビームの受光部には、他層からの反射光が入射してしまう。特に、3層以上の多層ディスクになると、記録層1層あたりの反射率が下がり、信号光に対する前後の層からの不要な反射光の量が相対的に増える。そのため、メインビーム(0次光)を検出するための受光部に入射する他層からの反射光と、当該メインビーム(再生光)との干渉により、ノイズ増加や振幅変動などが発生する。その結果、RF信号やフォーカスエラー信号品質の劣化が発生し、安定な信号再生やフォーカス制御が困難になるという課題を有していた。
本発明は、上記のような課題を解決するためになされたものであり、その目的は、複数の記録層を有する記録媒体のある層から情報を読み出す、又は、ある層に情報を記録する場合において、他層からの反射光の影響を低減あるいは除去し、より安定したRF信号又はフォーカスエラー信号を得るための構成を提供することにある。
本発明による光ピックアップ装置は、3層の記録層を有する光ディスクに光を集光して情報の記録または再生を行うための光ピックアップ装置であって、前記光ピックアップ装置は、光を放射する光源と、前記光源から放射された前記光を略平行光へ変換するコリメータレンズと、前記略平行光に変換された前記光を前記光ディスクに集光する対物レンズと、前記光ディスクからの反射光を、前記コリメータレンズを介して受光する光検出器と、前記コリメータレンズと前記光検出器との間の光路中に設けられ、前記反射光の一部を遮光し、残りを透過させる遮光部材とを備え、前記光ディスクの記録層のうちの隣接する第1層および第2層であって、前記対物レンズに近い側から前記第1層および前記第2層が配置されているときにおいて、前記光が前記第1層に集光されたとき、前記光検出器から前記遮光部材までの光路長をdとし、前記検出器から、前記第2層からの反射光が前記コリメータレンズと前記光検出器との間で合焦する位置までの距離をd1としたとき、前記遮光部材は、d>d1の条件を満たす位置に配置されて、前記第2層からの反射光の一部を遮光する。
前記記録媒体が、前記対物レンズに近い側から、前記第1層、前記第2層および第3層を有しているとし、前記対物レンズによって前記第2層に前記光が集光されたとき、前記検出器から、前記第3層からの反射光が前記コリメータレンズと前記光検出器との間で合焦する位置までの距離をd2としたとき、前記遮光部材は、d≧2×d1×d2/(d1+d2)の条件を満たす位置に配置されてもよい。
前記遮光部材は、前記反射光の一部を遮光する略円形の遮光部を有しており、前記遮光部が、前記第1層に前記光が集光されたときの前記第2層からの反射光、および、前記第2層に前記光が集光されたときの前記第3層からの反射光を完全に遮光するときにおいて、前記遮光部の半径は、前記光が前記第n層(n:1、2、3)に集光されたときの、前記遮光部材に入射する前記第n層からの反射光の半径の30%以下であってもよい。
前記遮光部材は、前記反射光の一部を遮光する略円形の遮光部を有しており、前記遮光部は、前記第1層に前記光が集光されたときの前記第2層からの反射光、または、前記第2層に前記光が集光されたときの前記第3層からの反射光のいずれかの50%以下を遮光してもよい。
前記光ピックアップ装置は、前記遮光部材よりも前記光検出器に近い位置に配置され、前記光が前記第n層(n:1、2、3)に集光されたときの、前記第n層からの反射光の一部を回折させる回折素子をさらに備え、前記遮光部材は、前記反射光の一部を遮光する略円形の遮光部を有しており、前記光検出器は、前記第n層に前記光が集光されたときの前記第n層以外の記録層からの反射光が入射しない位置に、回折された前記第n層からの反射光の少なくとも一部を受光する受光部を有していてもよい。
前記回折素子は、前記第n層からの反射光の一部を回折させ、残りを回折させず、前記光検出器は、回折されなかった前記第n層からの反射光を受光する受光部をさらに有しており、前記遮光部は、前記第n層に前記光が集光されたときの前記第n層以外の記録層からの反射光のうち、回折されなかった前記第n層からの反射光に重なる反射光を遮光してもよい。
本発明による他の光ピックアップ装置は、3層の記録層を有する光ディスクに光を集光して情報の記録または再生を行う光ピックアップ装置であって、前記光ピックアップ装置は、光を放射する光源と、前記光源から放射された前記光を略平行光へ変換するコリメータレンズと、前記略平行光に変換された前記光の偏光状態を、前記光が入射した位置に応じて変化させる波長板と、前記光を前記光ディスクに集光する対物レンズと、前記光ディスクからの反射光を、前記波長板および前記コリメータレンズを介して受光する光検出器とを備え、前記波長板を透過することにより、前記光ディスクからの反射光のうちの、前記光が前記第n層(n:1、2、3)に集光されたときの前記第n層からの反射光は第1偏光状態となる部分を有し、前記第n層以外の記録層からの反射光は、前記第1偏光状態と異なる第2偏光状態となる部分を有し、前記光検出器は、前記第1偏光状態の反射光を受光し、前記第2偏光状態の反射光を受光しない。
前記光ピックアップ装置は、前記波長板と前記光検出器との間に設けられ、前記第1偏光状態の光と前記第2偏光状態の光とを異なる方向に分離する光学素子をさらに備え、前記光学素子は、前記第1偏光状態の反射光を前記光検出器に透過させてもよい。
前記波長板は、入射した光の光軸が透過する中心領域および前記中心領域を囲む周辺領域とを有しており、前記中心領域は位相差0もしくはλ/2波長板となるよう形成されており、前記周辺領域はλ/4波長板となるよう形成されており、前記第n層からの反射光は、前記中心領域および前記周辺領域を透過して、前記第2偏光状態および前記第1偏光状態となる部分をそれぞれ有し、前記第n層以外の記録層からの反射光は、前記中心領域を透過して第2偏光状態となり、前記光学素子は、前記第n層からの反射光のうち、前記周辺領域を透過して前記第1偏光状態となった反射光を前記光検出器に透過させてもよい。
本発明によるさらに他の光ピックアップ装置は、3層の記録層を有する光ディスクに光を集光して情報の記録または再生を行う光ピックアップ装置であって、前記光ピックアップ装置は、光を放射する光源と、前記光源から放射された前記光を略平行光へ変換するコリメータレンズと、入射した光の光軸が透過する中心領域および前記中心領域を囲む周辺領域を有する回折素子であって、前記中心領域に入射した光が第1偏光状態のときは前記入射した光を回折させず、前記第1偏光状態と異なる第2偏光状態のときは前記入射した光を回折させる回折素子と、前記光を前記光ディスクに集光する対物レンズと、前記光ディスクからの反射光を、前記波長板および前記コリメータレンズを介して受光する光検出器とを備え、前記コリメータレンズからの前記略平行光の光は前記第1偏光状態の光であり、前記対物レンズによって集光された光が前記第n層(n:1、2、3)に集光されたときの前記第n層以外の記録層からの反射光は、前記第2偏光状態で、かつ、前記中心領域を透過し、前記回折素子が前記第n層以外の記録層からの反射光を回折させることにより、前記光検出器は、前記第n層からの反射光を受光し、前記前記第n層以外の反射光を受光しない。
本発明による光ディスク装置は、上述の光ピックアップ装置と、前記光ピックアップ装置を移動させる移送モータと、前記光ディスクを回転させるスピンドルモータと、前記移送モータおよび前記スピンドルモータを駆動する駆動回路と、前記駆動回路に、前記移送モータ、および、前記スピンドルモータの駆動量を指示する制御部とを備えている。
本発明によれば、光ピックアップ装置が、複数の記録層を有する記録媒体に対してある層から情報を読み出す、又は、ある層に情報を記録する場合において、他層からの反射光の影響を低減あるいは除去し、より安定したRF信号又はフォーカスエラー信号を得ることができる。
本発明の実施形態1による光ピックアップ装置100の構成を示す図である。 遮光部材14の構成を示す図である。 光検出器15の構成を示す図である。 情報を記録あるいは再生するための光がL1層に集光しているときの、奥に隣接するL0層からの反射光の光路を示す図である。 光検出器15に入射するメインビーム9a、サブビーム9bおよび9cを示す図である。 L1層に集光しているときに、手前に隣接するL2層からの反射光の光路を示す図である。 光検出器15上におけるL2層からの反射光9eを示す図である。 光がL2層に集光されているときの、L0、L1、L2層からの各反射光を示す図である。 光がL1層に集光されているときの、L0、L1、L2層からの各反射光を示す図である。 光がL0層に集光されているときの、L0、L1、L2層からの各反射光を示す図である。 光検出器面からの距離Dを横軸にとり、ビーム半径を縦軸としてプロットした結果を示す図である。 L1−L0光とL2−L1光とを完全に遮光する最小サイズの遮光部17を配置したときの、集光層からの光の遮光率(遮光部の半径/集光層からの光の半径)を、遮光部を配置する位置dを横軸にとってプロットした結果を示す図である。 遮光部材を配置する際、反射光112及び反射光113を遮光しようとした場合に、遮光部材を最も小さくすることのできる位置を示す図である。 L2−L1光113をD=0のポイントで半径55μmの領域を遮光するために必要な遮光部のサイズを示す図である。 表1で示した構成における集光層からの光の遮光率を、遮光部材14または遮光部17を配置する位置dを横軸にとってプロットした結果を示す図である。 本発明の実施形態2による光ピックアップ装置200の構成を示す図である。 実施形態2にかかる光検出器12の構成を示す図である。 光がL1層に集光しているときの、奥に隣接するL0層からの反射光の光路を示す図である。 光検出器12上におけるL0層からの反射光9dを示す図である。 光がL1層に集光しているときに手前に隣接するL2層からの反射光の動作を示す図である。 光検出器12上におけるL2層からの反射光9eを示す図である。 本発明の実施形態3による光ピックアップ装置300の構成を示す図である。 波長板18を通過する際のビーム全体19の径φと、中心部20の径φmを表す図である。 L1層に集光しているときのL1−L1光、L1−L0光、L1−L2光が受光部121に入射するときの、波長板18上でのサイズを示す図である。 本発明の実施形態4による光ピックアップ装置400の構成を示す図である。 偏光選択性回折素子24を通過する際のビーム全体16の径と、中心部25の径φmを表す図である。 本発明の実施形態5による光ディスク装置500の構成を示す図である。 一般的な光ピックアップの構成例を示す図である。 光検出器15の構成を示す図である。 情報を記録あるいは再生するための光がL1層(記録層7b)に集光しているときの、奥に隣接するL0層(記録層7c)からの反射光の光路を示す図である。 光検出器15上におけるL0層からの反射光9dを示す図である。 光がL1層(記録層7b)に集光しているときの、手前に隣接するL2層(記録層7a)からの反射光の光路を示す図である。 光検出器15上におけるL2層からの反射光9eを示す図である。 特許文献1に記載された光ピックアップ装置の構成および動作を説明するための図である。 光検出器12の構成を示す図である。 光がL1層に集光しているときの、奥に隣接するL0層からの反射光の光路を示す図である。 光検出器12上におけるL0層からの反射光9dを示す図である。 光がL1層に集光しているときの、手前に隣接するL2層からの反射光の動作を示す図である。 光検出器12上におけるL2層からの反射光9eを示す図である。
以下、添付の図面を参照しながら、本発明による光ピックアップ装置および光ディスク装置の実施形態を説明する。なお、図面において同等のまたは近似する機能および/または構成を有する要素には、同じ参照符号を付す。尚、以下の実施形態は、本発明を具現化した一例であって本発明の技術的範囲を限定するものではない。
(実施形態1)
図1は、本実施形態による光ピックアップ装置100の構成を示す。
光源である半導体レーザ1から放射された光は、3ビーム生成用の回折格子13を透過し、偏光ビームスプリッタ2で反射され、コリメータレンズ3により略平行光束に変換される。この平行光束は、ミラー4で反射され、波長板5を透過し、対物レンズ6により記録媒体である光ディスク7に集光される。図1にはL1層に集光された光の光路が示されている。
L1層からの反射光は、逆の経路を辿って偏光ビームスプリッタ2へ到達する。このとき、波長板5の作用により、反射光の偏光状態は往路の偏光状態とは異なる状態に変換されているため、偏光ビームスプリッタ2へ到達した光の多くは透過し、遮光部材14へと入射する。
図2は遮光部材14の構成を示す。図2の遮光部材14は、光ピックアップ装置100の偏光ビームスプリッタ2とシリンドリカルレンズ11との間に配置される。光ピックアップ装置100に配置されたときの光軸は、紙面に垂直な方向である。
遮光部材14は、光を遮る機能を有する遮光部17と、それ以外の領域(透過部)とを備えている。遮光部17は、たとえばSiO2(二酸化ケイ素)とTa25(タンタルオキサイド)の多層膜によって構成される反射膜で形成されている。遮光部17の形状は、略円形である。遮光部材14の透過部は、そのまま光を透過させる。
図2では、遮光部材14を通過する際の3ビームのメインビームの断面16の直径を「φs」で表しており、遮光部17の直径を「φm」で表している。φsやφmの具体的数値に関しては後述する。
遮光部材14の遮光部17以外の領域を透過した光はシリンドリカルレンズ11を通過し、光検出器15へ入射する。
図3は、光検出器15の構成を示す。光検出器15は、受光部151、152および153を有している。検出光9は3つのビーム、すなわちメインビーム9a、サブビーム9bおよび9cを含む。メインビーム9aは受光部151へ入射し、サブビーム9b、9cはそれぞれ受光部152,153へと入射する。RF信号は受光部151において検出されたメインビーム9aの光量信号から生成される。一方、フォーカスエラー信号やトラッキングエラー信号は受光部151において検出されたメインビーム9aの光量信号に加え、受光部152および受光部153においてそれぞれ検出されたサブビーム9bおよび9cの光量信号を用いて生成される。RF信号、フォーカスエラー信号、トラッキングエラー信号の検出原理は既に公知であり、また、これらの検出原理自体は本発明の本質ではないため詳細な説明は省略する。
図4は、情報を記録あるいは再生するための光がL1層に集光しているときの、奥に隣接するL0層からの反射光の光路を示す。L0層で反射された光はコリメータレンズ3と光検出器15の間で一度集光するが、その集光点付近に遮光部17が位置するよう、遮光部材14が配置されている。そのため、ほとんどの光は遮光され、L0層からの反射光は光検出器15へ入射しない。つまり、受光部151〜153にL0層からの反射光は入射しない。
図5は、光検出器15に入射するメインビーム9a、サブビーム9bおよび9cを示している。参考のため、遮光部17が存在しなければ入射するはずのL0層からの反射光9dを、破線によって示している。反射光9dが存在しないため、メインビーム9a、サブビーム9bおよび9cの光量信号から生成されるRF信号、フォーカスエラー信号、トラッキングエラー信号のいずれからも、L0層からの反射光の影響を取り除くことができる。その結果、多層ディスクの再生や記録時の信号品質の改善を図ることができる。
次に、図6は、L1層に集光しているときに、手前に隣接するL2層からの反射光の光路を示す。L2層で反射された光の一部は、遮光部材14の遮光部17によって遮られるが、その他は透過して光検出器15に入射する。このとき、光検出器15ではまだ合焦しておらず、大きくデフォーカスした状態で入射する。
図7は、光検出器15上におけるL2層からの反射光9eを示す。反射光9eはデフォーカスしており、光検出器15の検出面上に大きく広がっている。上述のとおり、遮光部材14の遮光部17により、反射光9eの中心部の光は遮光されている。その結果、受光部151に入射する反射光9eの多くは除去される。
その一方、記録または再生対象となるL1層からの反射光のメインビーム9aは、遮光部17によってその一部が遮られるものの、その他は光検出器15上で合焦する。検出されるメインビーム9aの光量は、RF信号等を生成するには十分な光量である。これにより、多層ディスクの再生や記録時の信号品質の改善を図ることができる。
次に、本実施形態における遮光部材14が設けられる位置と遮光部17のサイズについて説明する。
図8は、光がL2層に集光されているときの、L0、L1、L2層からの各反射光を示す。説明の便宜のため図8では、コリメータレンズ3から光検出器15までの部分を示す。以下で説明する図9および図10も同様である。図8〜図10では、光検出器15が配置されている位置を基準位置0として、光検出器15からの距離をDとおく。また、遮光部17までの距離をdとする。なお、図8の例では光検出器15からの距離Dは直線で測ることが可能であるが、直線で計測される必要はないことに留意されたい。距離Dは光が感じる距離、言い換えると光路長であればよい。したがって、ミラーなどで向きが変更されたとしても距離Dを定義することが可能である。
L0層からの反射光は偏光ビームスプリッタ2と遮光部材14の間の位置d0で集光され、L1層からの反射光はシリンドリカルレンズ11と光検出器15の間の位置d1で集光される。L1層からの反射光の集光点は、L0層からの反射光の集光点よりも光検出器15に近い位置となる。すなわち、d1<d0となる。
L2層からの反射光は信号光として光検出器15上の各受光部に集光する(D=0)。
多層ディスクにおいては、情報を再生あるいは記録する層に隣接する前後の層からの迷光は大きな問題となるが、2層以上離れた層からの迷光はほとんど問題とはならない。その理由は、そのような迷光は、光検出器上では非常に大きくデフォーカスすることや、ディスクから反射してくる光量自体も隣接迷光に比べて小さいためである。
よって、図8に示す場合(3層ディスクのL2層に集光している状態)で、特に問題となるのは隣接するL1層からの迷光である。
図9は、光がL1層に集光されているときの、L0、L1、L2層からの各反射光を示す。このときには、L0層とL2層、両方からの反射光が隣接迷光として問題になる。L0層からの反射光は遮光部材14と検出レンズ11の間の位置d2で集光し、L2層からの反射光は光検出器15ではまだ合焦に至らず、デフォーカスした状態で光検出器15へと入射する。
図10は、光がL0層に集光されているときの、L0、L1、L2層からの各反射光を示す。このときには、L1層からの反射光が隣接迷光として問題になる。L1層からの反射光は光検出器15ではまだ合焦に至らず、デフォーカスした状態で光検出器15へと入射する。L2層からの反射光はL1層からの反射光より更にデフォーカスした状態で光検出器15へと入射する。
ここで、光ピックアップ装置100の各構成要素の光学パラメータを以下のように設定したときの例を説明する。すなわち、対物レンズ6の焦点距離f1=1.3、開口数NA=0.85、コリメートレンズ3と検出レンズ11の合成焦点距離(シリンドリカル面を含まない)f2=14とする。
図11は、光検出器面からの距離Dを横軸にとり、ビーム半径を縦軸としてプロットした結果を示す。以下では、LX層に集光しているときのLY層からの反射光を「LX−LY光」と表記する。たとえば、「L1−L2光」とは、L1層に集光しているときのL2層からの反射光を意味する。また、「L1−L1光」とは、L1層に集光しているときのL1層からの反射光を意味する。本願明細書では、「LX−LX光」のことを「集光層からの光」(light from a focused layer)または「信号光」(a signal light)とも呼ぶことがある。「集光層」(a focused layer)とは対物レンズ6による光の合焦点が存在する記録層をいう。
図11において集光層からの光111(L2−L2光、L1−L1光、L0−L0光)は3本ともほぼ重なっており、D=0の光検出器面に集光している。L1−L0光112はD=d2=2.9mm付近で集光し、L2−L1光113はD=d1=1.8mm付近で集光している。この例において遮光部17を配置する位置をD=dとして好ましいポイントを考える。
図12は、L1−L0光とL2−L1光とを完全に遮光する最小サイズの遮光部17を配置したときの集光層からの光の遮光率(遮光部の半径/集光層からの光の半径)を、遮光部を配置する位置dを横軸にとってプロットした結果を示す。集光層からの光の遮光率が小さいほど、遮光部17のサイズが小さいといえる。
図12によれば、L1−L0光とL2−L1光を完全に遮光するという前提のもとで、集光層からの光の遮光率を最も小さくすることが可能な遮光部17の位置は、d=2.2mm付近であることが分かる。このときのdは、d=2×d1×d2/(d1+d2)で近似的に求めることができる。
以下、上記近似的に求めることのできる式の導出方法を、図13を用いて説明する。図13は、遮光部材を配置する際、反射光112及び反射光113を遮光しようとした場合に、遮光部材を最も小さくすることのできる位置を示す。図13の幾何学的関係は、図11のデータを用いて説明される。
例えば、光検出器15のW0の領域を遮光しようとする場合、距離dの位置において、Wdの遮光を行えばよい。このとき、以下の関係が成り立つ。
WO:d1=Wd:(d−d1)
WO:d2=Wd:(d2−d)
このように、dとWdとを定義すると、図13に示す幾何学的関係から、上述の比例式が成り立つ。そして、この比例式を解くと、d=2×d1×d2/(d1+d2)が求まる。
しかし、実際の光ピックアップ装置100の構成においては、様々な物理的制約からd=2×d1×d2/(d1+d2)の位置に遮光部材を配置できない場合も考えられる。
そこで、図12を参酌してその前後の位置が適切かどうかを見てみると、d<2.2mmでは急激に集光層からの光の遮光率が高くなっているのに対し、d>2.2mmでは集光層からの光の遮光率の増加は緩やかであることがわかる。よって、遮光部を配置する位置dはd≧2×d1×d2/(d1+d2)とすることが好ましいといえる。
このような位置に遮光部を配置することにより、集光層からの光を遮光することによるロスを抑制しつつ、4種類の隣接迷光のうち2つを完全に遮光することが可能となる。また、L0−L1光、L1−L2光については受光部に一部入射するが、光量の強い中心部の光は同様に遮光部17により遮光されているため、メインビーム受光部151から生成されるRF信号やフォーカスエラー信号に与えるノイズの低減が期待される。これらのことから、本構成により多層ディスクにおける記録再生性能の向上を図ることができる。
次に、L1−L0光とL2−L1光を完全に遮光するのではなく、メインビーム受光部151に入射する部分のみを遮光する構成について考察する。
図11によれば、D=0のポイントにおけるL2−L1光113の半径は約190μmであるが、受光部151のサイズを110μm四方とすると、D=0のポイントでビーム半径55μm以下の領域のみを遮光すれば受光部151へ入射する、他層からの迷光を除去できる。図14は、L2−L1光113をD=0のポイントで半径55μmの領域を遮光するために必要な遮光部のサイズを点線で示す。この点線で示すサイズの遮光部を配置したときのL1−L0光112とL2−L1光113の遮光率と、D=0のポイントでの遮光半径を下記の表1に示す。
Figure 0005373112
L2−L1光の遮光率およびD=0での遮光半径は一定であるが、L1−L0光の遮光率およびD=0での遮光半径の値は遮光部17が設けられる位置dによって変化する。表1によれば、d>2.3の領域でD=0におけるL1−L0光の遮光半径は55μmを超えており、L1−L0光が受光部151に入射しないことがわかる。表1は受光部151のサイズを110μm四方としたときの結果である。表2は、受光部151のサイズを140μm四方としたときの結果を表2に示す。
Figure 0005373112
この場合もd>2.3の領域ではD=0におけるL1−L0光の遮光半径は70μmを超えており、L1−L0光が受光部151に入射しないことがわかる。
受光部151のサイズは100μm四方〜150μm四方程度が一般的である。そのため、L2−L1光の遮光率を概ね50%以下に設定して、d>d1とすれば、メインビーム受光部にはL1−L0光とL2−L1光が入射しない構成とすることが可能である。
すなわち、表1及び2によれば、d>d1の範囲において、受光部151に対するL2−L1光の遮光割合を決めて遮光するように構成すれば、おのずと、L1−L2光も必要な範囲の遮光を実現できるようになる。
図15は、表1で示した構成における集光層からの光の遮光率を、遮光部材14または遮光部17を配置する位置dを横軸にとってプロットした結果を示す。図12に比べて集光層からの光の遮光率が大幅に低下しているのがわかる。この構成の場合、サブビームの受光部にはL1−L0光とL2−L1光が入射するため、トラッキングエラー信号には他層からの迷光の影響が含まれる。しかしながら、メインビームはL1−L0光とL2−L1光が入射せず、加えて、L0−L1光、L1−L2光については、光量の強い中心部の光は遮光部17により遮光されるため、受光部151が検出するメインビームの光量信号から生成されるRF信号やフォーカスエラー信号に与えるノイズは大幅に軽減される。よって、本構成によりRF信号やフォーカスエラー信号に対する他層からの迷光ノイズを除去し、かつ、集光層からの光を遮光することによるロス(RF信号情報の欠落)を抑制した、多層ディスク記録再生に適した光ピックアップを提供することが可能となる。
(実施形態2)
実施形態1においては、遮光部材に遮光部を設け、他層からの反射光を遮り、光検出器に入射しないように構成した。
本実施形態においては、さらに回折素子を利用し、他層からの反射光の全ての部分または多くの部分を、光検出器上の各受光部に入射しないよう回折させる。
図16は、本実施形態による光ピックアップ装置200の構成を示す。
本実施形態による光ピックアップ装置200は、実施形態1による光ピックアップ装置100に回折素子8を付加して構成されている。以下、回折素子8に関連する構成を説明する。
まず、光源である半導体レーザ1から放射された光は、偏光ビームスプリッタ2で反射され、コリメートレンズ3により略平行光束に変換される。この平行光束は、ミラー4で反射され、波長板5を透過し、対物レンズ6により記録媒体である光ディスク7に集光される。ここで図16には、L1層に集光された光の光路が示されている。
L1層からの反射光は、逆の経路を辿って偏光ビームスプリッタ2へ到達する。このとき、波長板5の作用により、反射光の偏光状態は往路の偏光状態とは異なる状態に変換されているため、偏光ビームスプリッタ2へ到達した光の多くは透過し、遮光部材17へ入射する。
実施形態1で説明したと同様、遮光部17は、L1−L0光とL2−L1光を全て遮光するのではなく、それらのうちの、受光部121へ入射するメインビーム(0次光)と重なる部分のみを遮光するサイズに設定する。たとえば表1および表2に関連して説明したように、L2−L1光の遮光率を概ね50%以下になるよう、遮光部17のサイズを設定している。
遮光部材17を通過する際に、遮光部17により中心部の光は遮光され、回折素子8へと入射する。本実施形態においては、回折素子8により回折されない0次光9(本実施形態において「メインビーム9」と呼ぶ。)は直進し、シリンドリカルレンズ11を通過して光検出器12へ入射する。一方、回折素子8により回折された回折光10(本実施形態において「サブビーム10」と呼ぶ。)は光検出器12上の、メインビーム9とは異なる位置へと入射する。
図17は、本実施形態にかかる光検出器12の構成を示す。メインビーム9は4分割された受光部121へと入射する。受光部121によって検出されたメインビーム9の光量信号から、RF信号および非点収差法によるフォーカスエラー信号が生成される。一方、サブビーム10は、回折素子8に設けられた領域に応じて分割された、4つのビーム10a、10b、10c、10dを含んでいる。4つのビーム10a、10b、10c、10dは、それぞれ受光部102a、102b、102c、102dへと入射する。受光部102a、102b、102c、102dの各々が検出した光量信号を用いて、トラッキングエラー信号が生成される。
図18は、光がL1層に集光しているときの、奥に隣接するL0層からの反射光の光路を示す。L0層で反射された光はコリメータレンズ3と光検出器12の間で一度合焦し、大きくデフォーカスした状態で光検出器12へと入射する。
図19は、光検出器12上におけるL0層からの反射光9dを示す。
反射光9dはデフォーカスしているため受光部121よりもはるかに大きな範囲に広がっている。しかしながら、トラッキングエラー信号の生成に利用される光量信号を検出する受光部102a〜102dは反射光9dの外側に配置されているため反射光9dは入射しない。このため、トラッキングエラー信号は隣接する奥の記録層からの反射光の影響を受けない。また、遮光部17は実施形態1で説明したように、L1−L0光とL2−L1光を全て遮光するのではなく、受光部121へ入射するメインビーム(0次光)と重なる部分のみを遮光するサイズに設定してある。よって、本実施形態の構成によれば全ての受光部に対してL1−L0光とL2−L1光が入射しない構成が可能となる。
図20は、光がL1層に集光しているときに手前に隣接するL2層からの反射光の動作を示す。L2層で反射された光は光検出器12ではまだ集光に至らず、大きくデフォーカスした状態で光検出器12へと入射する。
図21は、光検出器12上におけるL2層からの反射光9eを示す。
反射光9eはデフォーカスしているため受光部121よりもはるかに大きな範囲に広がっている。しかしながら、トラッキングエラー信号の生成に利用される光量信号を検出する受光部102a〜102dは、反射光9eの外側に配置されているため反射光9eは入射しない。このため、トラッキングエラー信号は隣接する手前の記録層からの反射光の影響を受けない。受光部121へはL0−L1光、L1−L2光の一部が入射するが、光量の強い中心部の光は遮光部17により遮光されているため、RF信号やフォーカスエラー信号に与えるノイズは大幅に軽減される。よって、本構成によりRF信号、フォーカスエラー信号、トラッキングエラー信号のすべてに対し、他層からの迷光の影響を除去または大幅に抑制した高性能な光ピックアップを実現することができる。
尚、ここでは遮光部材17と回折素子8とは独立した部材として説明したが、2つを一体で構成することも可能である。これにより光ピックアップ装置の簡素化や低価格化を図ることができる。
また、本例では回折素子8によってトラッキングエラー信号を生成する光を、他層からの迷光入射領域の外側に配置した受光部に方向付ける構成を説明した。しかしながら、実施形態1で説明した3ビーム方式の構成であっても、受光部152、153を他層からの迷光入射領域の外側に配置し、回折格子13の格子ピッチを受光部152、153の位置に合うように変更することにより、本例同様の効果が期待できる。
また、回折素子8により、集光層からの光の一部を回折させず、一部を回折させるとしたが、これは一例である。他層からの迷光が受光されない位置に入射させることができる限り、メインビームおよびサブビームの両方を回折させてもよい。
(実施形態3)
実施形態2においては、遮光部および回折素子を利用して、他層からの迷光が入射しない位置に光検出部の受光部を設け、迷光の影響を排除した。
本実施形態においては、入射領域に応じて入射光の偏光状態を変える波長板を利用し、他層からの迷光の偏光状態を利用して当該迷光を光検出器に入射させず、一方、集光層からの光についてはその偏光状態を利用して光検出器に入射させる。
図22は、本実施形態による光ピックアップ装置300の構成を示す。
光源である半導体レーザ1から放射された光は、偏光ビームスプリッタ2で反射され、コリメータレンズ3により略平行光束に変換される。この平行光束は、ミラー4で反射され、波長板18を透過し、対物レンズ6により光ディスク7に集光される。ここで図22は、光がL1層に集光したときの光の光路が示されている。
波長板18を透過した光は、波長板18によってその偏光状態が変換される。この波長板18の中心部20(光軸を含む中心領域)とそれ以外の領域(中心部20の外側を囲む周辺領域)とでは光学軸方位もしくは位相差が異なっている。そのため、波長板18の通過領域に応じて、偏光状態がどのように変換されるか(偏光状態変換量)が異なる。本実施形態では、図23に示すように、波長板18を通過する際のビーム全体19の径をφ、中心部20の径をφmとする。本実施形態では、中心部20のφmの領域20は位相差0もしくはλ/2波長板となるよう形成されており、中心部20以外の領域は、λ/4波長板となるよう形成されている。
L1層からの反射光は、逆の経路を辿って偏光ビームスプリッタ2へ到達する。このとき、波長板18の中心部20以外の領域(λ/4波長板領域)を透過した反射光は、復路通過後は往路とは偏光方位が直交する直線偏光へと変換される。その結果、偏光ビームスプリッタ2へ到達した光の多くは透過し、回折素子8へと入射する。回折素子8に入射した光のうち、回折されない0次光(メインビーム9)は直進し、シリンドリカルレンズ11を通過して光検出器12へ入射する。一方、回折素子8により回折された回折光(サブビーム10)は光検出器12上の検出光9とは異なる位置へと入射する。
一方、中心部20(位相差0もしくはλ/2板領域)を透過した反射光は、復路通過後も往路と同じ偏光状態となるため、復路光は偏光ビームスプリッタ2で光源1の方向に略全反射される。
なお、本実施形態では、中心部20を位相差が0〜λ/4、もしくはλ/4〜λ/2となるよう形成し、中心部20以外の領域との相対的な位相差がシングルパスで0〜λ/4の間の値となるように形成してもよい。このようにすれば、中心部20と中心部20以外の領域の屈折率差に起因する波面収差の問題を生じにくくすることができる。このとき、中心部20の領域の復路光は偏光ビームスプリッタ2を透過し始めるが、その透過率は中心部20以外の領域の復路光が偏光ビームスプリッタ2を透過する際の透過率より小さくすることができる。
光検出器12の構成や光検出の動作は実施形態2の図17で示したものと同様である。ここで、図24(a)〜(c)は、L1層に集光しているときのL1−L1光、L1−L0光、L1−L2光が受光部121に入射するときの、波長板18上でのサイズを示す。
図24(a)は、波長板18に入射したL1−L1光(集光層からの光)21を示す。L1−L1光21は中心部20を除いた全ビームが受光部121へ入射するため、集光層からの光のサイズと受光部121へ入射するビームのサイズとは等しい。
図24(b)は、波長板18上の領域22を示している。領域22に入射したL1−L0光は、受光部121へ入射する。ただしL1−L0光は光検出器12に入射する前に一度集光するため、光検出器12上では大きくデフォーカスする。そのため、波長板18上では、領域22は集光層からの光が入射する領域21に比べて非常に小さくなる。
図24(c)は、波長板18上の領域23を示している。領域23に入射したL1−L2光は、受光部121へ入射する。ただしL1−L2光は光検出器12上ではやはりデフォーカスするため、波長板18上では、領域23は集光層からの光が入射する領域21に比べて小さくなる。
表3は波長板18上での各他層からの迷光の受光部121へ入射するサイズが集光層からの光のサイズに占める割合を示す。また、表4には実施形態1や実施形態2で述べた構成のように、光検出器12とコリメータレンズ3との間の光路に遮光部材を配置した場合に、各他層からの迷光の受光部121へ入射するサイズが集光層からの光に占める割合を示す。
Figure 0005373112
Figure 0005373112
記録層が3つの場合、除去すべき隣接迷光のタイプは、表4に示すように4種類存在する。4種類の隣接迷光を除去するためには、遮光領域を設定する面上で最大サイズの他層からの迷光に相当する領域を設定することが必要である。よって、上記表3および表4には、4種類の隣接迷光の最大サイズが集光層からの光サイズに占める割合を記している。
上記表より、遮光領域は波長板18上で設定した方が4種類の隣接迷光の最大サイズを小さく抑えられることがわかる。よって、表3に示したように集光層からの光に対して約25%の直径比で、その中心部分の領域を通過する光の偏光状態変換量をそれ以外の領域と変えておけば、4種類の隣接迷光のすべてにおいて他層からの迷光が受光部121に入射することを防ぐことができる。そして、トラッキングエラー信号を受光する受光部102a、102b、102c、102dは実施形態2で説明したように他層からの迷光が入射しないビーム中心から離れた位置に配置しておけば、すべての隣接迷光の影響を受けない。よって、本構成によれば、光検出器12上のすべての受光部において完全に隣接迷光の影響を排除することが可能となる。これにより、多層ディスクへの記録や再生時の他層からの迷光によるノイズの影響を全く受けない、非常に安定で高性能な光ピックアップ装置の実現が可能となる。
また、本例で示したように波長板18で遮光領域を設定する場合には、対物レンズアクチュエータ内に波長板18を設置すれば、遮光領域設定部材を対物レンズと一体で可動させることが可能となる。これにより、トラッキング動作で対物レンズが横シフトした場合でも遮光領域は常にビーム中心を維持することができるため、トラッキングによる対物レンズシフトが大きい場合、つまり偏芯の大きいディスクへ記録、再生を行う場合にも他層からの迷光の除去の効果が損なわれないという優れた利点が得られる。
また表3に示したように、本構成例では集光層からの光に対して直径比で25%の遮光領域を設定することにより、隣接迷光がメインビームを受光する受光部へ入射することを防ぐことが可能となった。この直径比は光学系の倍率(対物レンズ焦点距離とコリメータレンズおよび検出レンズの合成焦点距離の比)によって変化する。ただし、集光層からの光の遮光ロスによる再生品質劣化の観点からは、中心部遮光の場合、遮光サイズは直径比で30%以下に抑えることが好ましい。これ以上のサイズを遮光してしまうと、RF信号成分の欠落の影響が顕在化し、再生信号の歪みやジッターの劣化などの弊害が無視できなくなり、装置性能を損なってしまう可能性を有するためである。よって、遮光領域設定は直径比で集光層からの光の30%以下に抑えるべきであり、光学系の倍率についても隣接迷光がメインビーム受光部へ入射するのを防ぐための遮光領域が直径比で集光層からの光の30%以下となるような倍率を選択することが好ましい。
すなわち、表3及び表4によれば、対物レンズとコリメータレンズの間に、遮光領域設定部材(波長板18が一例)を設けた方が、コリメータレンズと光検出器の間に、遮光部(遮光部材14が一例)を設けるよりも、遮光又は減光のサイズを小さくできることがわかる。これによって、検出部151に入射する光のうち、信号光が遮光又は減光されるのをより軽減できる。
(実施形態4)
実施形態3では波長板の位相差や光学軸を変えることと偏光ビームスプリッタの組合せにより遮光もしくは減光領域の設定と他の領域の光との分離を行う構成例を示した。この波長板の代わりに偏光回折格子を用いてもよい。このような構成の一例を、図25を参照しながら説明する。
図25は、本実施形態による光ピックアップ装置400の構成を示す。
光源である半導体レーザ1から放射された光は、3ビーム生成用の回折格子13を透過し、偏光ビームスプリッタ2で反射され、コリメータレンズ3により略平行光束に変換される。この平行光束は、ミラー4で反射され、偏光選択性回折素子24、波長板5を透過して、対物レンズ6により記録媒体である光ディスク7に集光される。
偏光選択性回折素子24としては、高分子材料や光反応性液晶、ニオブ酸リチウム等の電気光学結晶のフォトリフラクティブ効果を利用するなどの各種方式のものが既に広く一般に提供されている。
ただし、すなわち往路においては、偏光選択性回折素子24の偏光選択性は、光の偏光状態との組み合わせたときに回折作用をしないように設定されている。
記録媒体に向かう光が波長板5を通過し、その後、記録媒体から反射した光が再び波長板5を通過するとき、例えば波長板5が1/4波長板の場合は、往復の作用により復路通過後の光の偏光状態は往路通過前の光のそれと比べて偏光方向が直交する、いわゆる直線偏光へと変換することが可能である。この復路においては、反射光の偏光状態と偏光選択性回折素子24の偏光選択性とは回折作用が生じるよう組み合わされている。
図26に示す領域25に入射する光は図25に示す回折光26となり、光検出器15の受光部へ入射しない位置へと回折される。このときの回折方向は任意である。図25に示したような紙面の上下方向でもよいし、紙面に垂直な方向でも構わない。偏光選択性回折素子24の領域25以外の領域には回折格子が設けられない、もしくは回折作用が弱い格子状態に設定されており、通過した光の多くは検出光9として光検出器15へと入射する。それらは、フォーカスエラー信号やトラッキングエラー信号、RF信号の生成に利用される。
偏光選択性回折素子24を通過する際のメインビームの断面16の直径φsに対し、復路回折作用領域25の直径をφmとする。すると、実施形態3同様、コリメータレンズ3と光検出器15との間に遮光部を設ける構成よりも、4種類の隣接迷光が受光部15へ入射することを効果的に防ぐことが可能となる。
また、波長板5および偏光選択性回折素子24が、対物レンズ6と一体的に駆動されるよう構成してもよい。そのためには、たとえば対物レンズ6を駆動するアクチュエータ(図示せず)内に、波長板5と偏光選択性回折素子24とを設置すればよい。これにより、回折領域を設定する光学部材を対物レンズ6と一体で可動させることが可能となる。これにより、トラッキング動作で対物レンズ6が横シフトした場合でも回折領域は常にビーム中心を維持することができる。その結果、トラッキングによる対物レンズシフトが大きい場合、つまり偏芯の大きいディスクへ記録、再生を行う場合にも他層からの迷光除去の効果が損なわれないという優れた利点が得られる。
また、コリメータレンズ3から対物レンズ6の区間はコリメータレンズ3から光検出器15の区間に比べてビーム径が大きい。そのため、ビーム中心に対する回折領域の位置決めも容易になるというメリットも得られる。
そして、実施形態3では光ディスク7へ集光させる往路光に対して偏光状態の異なる領域が存在していたため、光の干渉性低下に起因して集光性能が低下する可能性があった。しかしながら本実施形態では光ディスク7へ集光する光の偏光状態は一様であるため、光ディスク7に対するビームの集光性能低下が生じないというメリットがある。
また、多層対応の光ピックアップ装置と非対応の光ピックアップ装置をそれぞれ製造する際、光学素子の共用化や、基本的な内部構成を共用化できることが好ましい。本実施形態の構成によれば、多層対応の光ピックアップ装置に関しては、コリメータレンズ3から波長板5までの平行光区間に光学素子(偏光選択性回折素子24)を追加すればよく、多層非対応の光ピックアップ装置に関しては、当該平行光区間から光学素子を取り除くだけでよい。光学的には以外の光学部品の配置はそのままで対応できるため、多層対応品と非対応との作り分けが容易である、という優れた利点も得られる。
本例における波長板5と偏光選択性回折素子24とは一体で形成しても構わない。
尚、偏光選択性の回折格子が存在する領域とそれ以外の領域で光学的な位相差が発生することにより波面収差的な問題が生じる場合には、偏光選択性回折素子やそれ以外の光学素子において、偏光選択性回折格子の領域に相当する領域とそれ以外の領域との厚さを変えて光学的位相差を補正すればよい。実施形態3で述べた波長板による方式でも同様に中心部とそれ以外の領域の光学的位相差が問題となる場合は、波長板における遮光領域設定部とそれ以外の部分の厚さを変えて光学的位相差を補正すればよい。あるいは、対物レンズ等の別の光学素子で遮光領域設定部に相当する領域とそれ以外の領域の厚さを変えて補正してもよい。
(実施形態5)
本実施形態においては、実施形態1〜4のいずれかの光ピックアップ装置を実装した光ディスク装置を説明する。
図27は、本実施形態による光ディスク装置500の構成を示す。図27に示す光ディスク装置500は、一例として、実施形態1にかかる光ピックアップ装置100を実装している。
光ディスク装置500は、パーソナルコンピューター(PC)、光ディスクプレーヤー、光ディスクレコーダー等に用いることができる。
光ディスク装置500は、光ピックアップ装置100と、移送モータ502と、スピンドルモータ503と、駆動回路504と、不揮発性メモリ508と、制御部510とを備えている。
上述のように、光ピックアップ装置100は実施形態1に説明した構成を有している。
移送モータ502は、駆動回路504からの指示に基づいて、光ピックアップ装置100を移動させる。
スピンドルモータ503は、駆動回路504からの指示に基づいて、光ディスク7を回転させる。
駆動回路504は、光ピックアップ装置100に設けられた光源の動作を制御する。また駆動回路504は、移送モータ502による光ピックアップ装置100の移動量、スピンドルモータの回転速度等の駆動量を制御部510からの指示に基づいて制御する。
不揮発性メモリ508は、たとえば光ピックアップ装置100の制御に必要な情報を保持する。
制御部510は、光ディスク装置500の動作を制御する。
制御部510は、前処理回路505と、制御回路506と、中央演算処理回路507と、システムコントローラ509とを備えている。
光ディスク7から光学的に読み出されるデータは、光ピックアップ装置100の光検出器15(たとえば図1)で電気信号に変換される。この電気信号は、前処理回路5に入力される。前処理回路505は、光ピックアップ100から得た電気信号に基づいて、フォーカスエラー信号およびトラッキングエラー信号を含むサーボ信号を生成し、ならび再生信号の波形等価、2値化スライス、同期データなどのアナログ信号処理を行う。
前処理回路505で生成されたサーボ信号は、制御回路506に入力される。制御回路506は、駆動回路504を介して、光ピックアップ装置100の光スポットを光ディスク7に追従させる。駆動回路504は、光ピックアップ100、移送モータ502、およびスピンドルモータ503に接続されている。駆動回路504は、対物レンズ6のフォーカス制御およびトラッキング制御、移送制御、スピンドルモータ制御など一連の制御をデジタルサーボで実現する。駆動回路504は、対物レンズ6に対するアクチュエータ(コイルやマグネット等)を駆動し、光ピックアップ装置100を光ディスク7の内周や外周へ移送させる移送モータ502を駆動し、光ディスク7を回転させるスピンドルモータ503を駆動する。
前処理回路505で生成された同期データについては、システムコントローラ509でデジタル信号処理を行い、図示しないインターフェイス回路を介して記録再生データをホストに転送する。前処理回路505、制御回路506、およびシステムコントローラ509は、中央演算処理回路507に接続されており、中央演算処理回路507の指令により動作する。上記制御動作を含む一連の動作を規定するプログラムは、予めファームウェアとして不揮発性メモリ508などの半導体装置に記憶される。ここで制御動作には、光ディスク7を回転させる動作、光ピックアップ100を目標の位置へ移送させる動作、光ディスク7の目標のトラックに光スポットを形成し、追従させる動作、などが含まれる。このようなファームウェアは、中央演算処理回路507により、必要な動作の形態に応じて、不揮発性メモリ508から読み出される。
前処理回路505、制御回路506、中央演算処理回路507、不揮発性メモリ508、及び、システムコントローラ509は、半導体チップ(ICチップ)で実現可能である。また、駆動回路504は、ドライバICで実現可能である。
以上、本発明の実施形態を説明した。本欄冒頭で言及したように、本発明は、上記実施形態に限られず、様々な形態で実現可能である。
上述の実施形態では、トラッキングエラー信号受光部をメインビーム受光部から離れた他層からの迷光が入射しない位置に配置する構成例を示したが、実施形態1や従来例で説明した一般的な3ビーム検出法による受光部配置としてもよい。その場合、トラッキングエラー信号に対する他層からの迷光の影響は排除できないが、トラッキングエラー方式として3ビーム法やDPP(差動プッシュプル)法の選択を優先した場合にも、本例のようにメインビーム受光部に入射する他層からの迷光を除去することで、多層ディスクの記録、再生における装置性能の向上を図ることができる。
また、上述の実施形態では、波長板18の中心部(遮光領域設定部)とその他の領域の相対位相差をλ/4にすることで、遮光領域設定部は略完全遮光できる構成例について説明したが、上述のように集光層からの光の信号品質の観点からは遮光光量は少ない方が好ましい。よって、中心部とその他の領域との相対位相差をλ/4〜0の間の任意の値に設定することで、光検出器に入射する中心部の光量は任意の比率に減光できる。設定する減光領域のサイズと減光率の2つのパラメータで他層からの迷光除去効果と集光層からの光の記録再生品質との最適バランス設計を図ることも可能である。
また、光分離手段として、波長板と偏光ビームスプリッタの組み合わせや偏光選択性回折素子の代わりに、たとえば図24の中心部20にのみ作用する遮光部あるいは減光部を有する光学素子を配置してもよい。これらは反射膜や減光フィルタによって容易に構成できる。
尚、これまでの説明では便宜上3つの記録層を有する多層ディスクで説明を行ってきたが、4層以上の多層ディスクにおいても本発明が同様に適用できることは言うまでもない。
本発明は、光ディスクに情報を記録、又は、光ディスクの情報を再生できる光ピックアップに適用することが可能である。例えば、パーソナルコンピュータ、据え置き型のプレーヤ、ゲーム機など様々な機器に適用可能である。
1 半導体レーザ
2 偏光ビームスプリッタ
3 コリメートレンズ
4 ミラー
5、18 波長板
6 対物レンズ
7 記録媒体
7a L2層
7b L1層
7c L0層
8 回折素子
9、10、10a、10b、10c、10d 検出光
9a メインビーム
9b、9c サブビーム
9d、9e 反射光
11 検出レンズ
12、15 光検出器
13 回折格子
14 遮光部材
16 メインビームの断面
17 遮光部
19 ビーム全体
20 中心部
21 集光層からの光のサイズ
22 L1−L0光が受光部121へ入射する領域
23 L1−L2光が受光部121へ入射する領域
24 偏光選択性回折素子
25 復路回折作用領域
26 回折光
121、102a、102b、102c、102d、151,152、153 受光部
111 集光層からの光
112 L1集光時のL0迷光
113 L2集光時のL1迷光
114 L1集光時のL2迷光
115 L0集光時のL1迷光

Claims (10)

  1. 3層の記録層を有する光ディスクに光を集光して情報の記録または再生を行う光ピックアップ装置であって、
    光を放射する光源と、
    前記光源から放射された前記光を略平行光へ変換するコリメータレンズと、
    前記略平行光に変換された前記光を前記光ディスクに集光する対物レンズと、
    前記光ディスクからの反射光を、前記コリメータレンズを介して受光する光検出器と、
    前記コリメータレンズと前記光検出器との間の光路中に設けられ、前記反射光の一部を遮光し、残りを透過させる遮光部材と
    を備え、
    前記光ディスクは、前記対物レンズに近い側から、前記第1層、前記第2層および第3層を有しており、
    前記光が前記第1層に集光されたとき、前記光検出器から前記遮光部材までの光路長をdとし、前記検出器から、前記第2層からの反射光が前記コリメータレンズと前記光検出器との間で合焦する位置までの距離をd1としたとき、前記遮光部材は、d>d1の条件を満たす位置に配置されて、前記第2層からの反射光の一部を遮光し、
    前記対物レンズによって前記第2層に前記光が集光されたとき、前記検出器から、前記第3層からの反射光が前記コリメータレンズと前記光検出器との間で合焦する位置までの距離をd2としたとき、前記遮光部材は、d≧2×d1×d2/(d1+d2)の条件を満たす位置に配置される、光ピックアップ装置。
  2. 前記遮光部材は、前記反射光の一部を遮光する略円形の遮光部を有しており、
    前記遮光部が、前記第1層に前記光が集光されたときの前記第2層からの反射光、および、前記第2層に前記光が集光されたときの前記第3層からの反射光を完全に遮光するときにおいて、前記遮光部の半径は、前記光が前記第n層(n:1、2、3)に集光されたときの、前記遮光部材に入射する前記第n層からの反射光の半径の30%以下である、請求項1に記載の光ピックアップ装置。
  3. 前記遮光部材は、前記反射光の一部を遮光する略円形の遮光部を有しており、
    前記遮光部は、前記第1層に前記光が集光されたときの前記第2層からの反射光、または、前記第2層に前記光が集光されたときの前記第3層からの反射光のいずれかの50%以下を遮光する、請求項1に記載の光ピックアップ装置。
  4. 前記遮光部材よりも前記光検出器に近い位置に配置され、前記光が前記第n層(n:1、2、3)に集光されたときの、前記第n層からの反射光の一部を回折させる回折素子をさらに備え、
    前記遮光部材は、前記反射光の一部を遮光する略円形の遮光部を有しており、
    前記光検出器は、前記第n層に前記光が集光されたときの前記第n層以外の記録層からの反射光が入射しない位置に、回折された前記第n層からの反射光の少なくとも一部を受光する受光部を有している、請求項1に記載の光ピックアップ装置。
  5. 前記回折素子は、前記第n層からの反射光の一部を回折させ、残りを回折させず、
    前記光検出器は、回折されなかった前記第n層からの反射光を受光する受光部をさらに有しており、
    前記遮光部は、前記第n層に前記光が集光されたときの前記第n層以外の記録層からの反射光のうち、回折されなかった前記第n層からの反射光に重なる反射光を遮光する、請求項に記載の光ピックアップ装置。
  6. 3層の記録層を有する光ディスクに光を集光して情報の記録または再生を行う光ピックアップ装置であって、
    光を放射する光源と、
    前記光源から放射された前記光を略平行光へ変換するコリメータレンズと、
    前記略平行光に変換された前記光の偏光状態を、前記光が入射した位置に応じて変化させる波長板と、
    前記光を前記光ディスクに集光する対物レンズと、
    前記光ディスクからの反射光を、前記波長板および前記コリメータレンズを介して受光する光検出器と
    を備え、
    前記波長板を透過することにより、前記光ディスクからの反射光のうちの、前記光が前記第n層(n:1、2、3)に集光されたときの前記第n層からの反射光は第1偏光状態となる部分を有し、前記第n層以外の記録層からの反射光は、前記第1偏光状態と異なる第2偏光状態となる部分を有し、
    前記光検出器は、前記第1偏光状態の反射光を受光し、前記第2偏光状態の反射光を受光しない、光ピックアップ装置。
  7. 前記波長板と前記光検出器との間に設けられ、前記第1偏光状態の光と前記第2偏光状態の光とを異なる方向に分離する光学素子をさらに備え、
    前記光学素子は、前記第1偏光状態の反射光を前記光検出器に透過させる、請求項6に記載の光ピックアップ装置。
  8. 前記波長板は、入射した光の光軸が透過する中心領域および前記中心領域を囲む周辺領域とを有しており、
    前記中心領域は位相差0もしくはλ/2波長板となるよう形成されており、
    前記周辺領域はλ/4波長板となるよう形成されており、
    前記第n層からの反射光は、前記中心領域および前記周辺領域を透過して、前記第2偏光状態および前記第1偏光状態となる部分をそれぞれ有し、
    前記第n層以外の記録層からの反射光は、前記中心領域を透過して第2偏光状態となり、
    前記光学素子は、前記第n層からの反射光のうち、前記周辺領域を透過して前記第1偏光状態となった反射光を前記光検出器に透過させる、請求項7に記載の光ピックアップ装置。
  9. 3層の記録層を有する光ディスクに光を集光して情報の記録または再生を行う光ピックアップ装置であって、
    光を放射する光源と、
    前記光源から放射された前記光を略平行光へ変換するコリメータレンズと、
    入射した光の光軸が透過する中心領域および前記中心領域を囲む周辺領域を有する回折素子であって、前記中心領域に入射した光が第1偏光状態のときは前記入射した光を回折させず、前記第1偏光状態と異なる第2偏光状態のときは前記入射した光を回折させる回折素子と、
    前記光を前記光ディスクに集光する対物レンズと、
    前記光ディスクからの反射光を、前記波長板および前記コリメータレンズを介して受光する光検出器と
    を備え、
    前記コリメータレンズからの前記略平行光の光は前記第1偏光状態の光であり、
    前記対物レンズによって集光された光が前記第n層(n:1、2、3)に集光されたときの前記第n層以外の記録層からの反射光は、前記第2偏光状態で、かつ、前記中心領域を透過し、
    前記回折素子が前記第n層以外の記録層からの反射光を回折させることにより、前記光検出器は、前記第n層からの反射光を受光し、前記前記第n層以外の反射光を受光しない、光ピックアップ装置。
  10. 請求項1に記載の光ピックアップ装置と、
    前記光ピックアップ装置を移動させる移送モータと、
    前記光ディスクを回転させるスピンドルモータと、
    前記移送モータおよび前記スピンドルモータを駆動する駆動回路と、
    前記駆動回路に、前記移送モータ、および、前記スピンドルモータの駆動量を指示する制御部と
    を備えた光ディスク装置。
JP2011543103A 2009-11-24 2010-11-24 光ピックアップ装置および光ディスク装置 Active JP5373112B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011543103A JP5373112B2 (ja) 2009-11-24 2010-11-24 光ピックアップ装置および光ディスク装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009265962 2009-11-24
JP2009265962 2009-11-24
JP2011543103A JP5373112B2 (ja) 2009-11-24 2010-11-24 光ピックアップ装置および光ディスク装置
PCT/JP2010/006855 WO2011064992A1 (ja) 2009-11-24 2010-11-24 光ピックアップ装置および光ディスク装置

Publications (2)

Publication Number Publication Date
JPWO2011064992A1 JPWO2011064992A1 (ja) 2013-04-11
JP5373112B2 true JP5373112B2 (ja) 2013-12-18

Family

ID=44066100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011543103A Active JP5373112B2 (ja) 2009-11-24 2010-11-24 光ピックアップ装置および光ディスク装置

Country Status (3)

Country Link
US (1) US8462596B2 (ja)
JP (1) JP5373112B2 (ja)
WO (1) WO2011064992A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275322B1 (ko) * 2012-02-01 2013-06-17 도시바삼성스토리지테크놀러지코리아 주식회사 광픽업 및 이를 적용한 광정보저장매체 시스템
KR20140072742A (ko) * 2012-12-05 2014-06-13 삼성전자주식회사 광 픽업장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063595A (ja) * 2003-08-18 2005-03-10 Sony Corp 光ピックアップ及びディスクドライブ装置
JP2008130219A (ja) * 2006-11-27 2008-06-05 Sanyo Electric Co Ltd 光ピックアップ装置
JP2008135151A (ja) * 2006-10-05 2008-06-12 Matsushita Electric Ind Co Ltd 光ヘッド装置及び光情報装置
JP2008198256A (ja) * 2007-02-09 2008-08-28 Hitachi Media Electoronics Co Ltd 光ピックアップ装置およびそれを用いた光ディスク装置
JP2008269756A (ja) * 2007-03-28 2008-11-06 Mitsubishi Electric Corp 光ピックアップ装置および光ディスク装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073115A (ja) 2005-09-06 2007-03-22 Pulstec Industrial Co Ltd 光ピックアップ装置
US20070242575A1 (en) 2006-04-17 2007-10-18 Toshiteru Nakamura Optical Pickup and Optical Disc Apparatus
US7778140B2 (en) 2006-10-05 2010-08-17 Panasonic Corporation Optical head device and optical information device
US7742384B2 (en) 2006-10-25 2010-06-22 Panasonic Corporation Optical head and optical disc device
JP5002465B2 (ja) 2007-01-18 2012-08-15 パナソニック株式会社 光学ヘッド、光ディスク装置、コンピュータ、光ディスクプレーヤおよび光ディスクレコーダ
JP2009070419A (ja) 2007-09-10 2009-04-02 Ricoh Co Ltd 抽出光学系、光ピックアップ装置、光ディスク装置及び情報処理装置
JP2009070437A (ja) 2007-09-11 2009-04-02 Ricoh Co Ltd 抽出光学系、光ピックアップ装置、光ディスク装置及び情報処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063595A (ja) * 2003-08-18 2005-03-10 Sony Corp 光ピックアップ及びディスクドライブ装置
JP2008135151A (ja) * 2006-10-05 2008-06-12 Matsushita Electric Ind Co Ltd 光ヘッド装置及び光情報装置
JP2008130219A (ja) * 2006-11-27 2008-06-05 Sanyo Electric Co Ltd 光ピックアップ装置
JP2008198256A (ja) * 2007-02-09 2008-08-28 Hitachi Media Electoronics Co Ltd 光ピックアップ装置およびそれを用いた光ディスク装置
JP2008269756A (ja) * 2007-03-28 2008-11-06 Mitsubishi Electric Corp 光ピックアップ装置および光ディスク装置

Also Published As

Publication number Publication date
JPWO2011064992A1 (ja) 2013-04-11
US20120287766A1 (en) 2012-11-15
WO2011064992A1 (ja) 2011-06-03
US8462596B2 (en) 2013-06-11

Similar Documents

Publication Publication Date Title
JP2005203090A (ja) 光ピックアップ
JP5347038B2 (ja) 光ヘッド装置、光情報装置及び情報処理装置
JP5069893B2 (ja) 光ピックアップ及び光ディスクドライブ
JP2005209299A (ja) 光ピックアップおよび記録再生装置
JP4726254B2 (ja) 光ピックアップ及び情報機器
JP2005044467A (ja) 光ピックアップ装置
KR101312633B1 (ko) 홀로그램소자, 이를 적용한 호환형 광픽업 및광정보저장매체 시스템
JP5373112B2 (ja) 光ピックアップ装置および光ディスク装置
JP2007305254A (ja) 光ピックアップ及び光ディスク装置。
JP4726253B2 (ja) 光ピックアップ及び情報機器
JP2008021339A (ja) 光ピックアップ及び情報機器
JP4781601B2 (ja) 光ピックアップ装置およびその製造方法
WO2011033786A1 (ja) 光ピックアップ光学系
JP4133139B2 (ja) 光ピックアップ
JPH10222856A (ja) 光学式情報記録再生装置
JP2009048747A (ja) 光ピックアップ及びこれを用いた光ディスク装置
JP2011118997A (ja) ピックアップ装置、光記録再生装置及び記録再生方法
JP4726255B2 (ja) 光ピックアップ及び情報機器
JP3883889B2 (ja) 光ディスク装置およびサブビームの照射位置決定方法
JP4508180B2 (ja) 光ディスク装置
JP4726256B2 (ja) 光ピックアップ及び情報機器
JP2007200476A (ja) 光ヘッド
JP2009123339A (ja) 光ピックアップ装置およびその製造方法
JP2008047177A (ja) 光ピックアップ装置
JP2011502325A (ja) 光ピックアップ及びこれを採用した光情報記録媒体システム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5373112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150