JP5369584B2 - Thick steel material with excellent fatigue crack resistance and its manufacturing method - Google Patents

Thick steel material with excellent fatigue crack resistance and its manufacturing method Download PDF

Info

Publication number
JP5369584B2
JP5369584B2 JP2008254092A JP2008254092A JP5369584B2 JP 5369584 B2 JP5369584 B2 JP 5369584B2 JP 2008254092 A JP2008254092 A JP 2008254092A JP 2008254092 A JP2008254092 A JP 2008254092A JP 5369584 B2 JP5369584 B2 JP 5369584B2
Authority
JP
Japan
Prior art keywords
less
steel material
thick steel
temperature
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008254092A
Other languages
Japanese (ja)
Other versions
JP2010084187A (en
Inventor
照輝 貞末
聡 伊木
高宏 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008254092A priority Critical patent/JP5369584B2/en
Publication of JP2010084187A publication Critical patent/JP2010084187A/en
Application granted granted Critical
Publication of JP5369584B2 publication Critical patent/JP5369584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thick steel material superior in fatigue-crack generation resistance. <P>SOLUTION: A base steel material has a composition containing, by mass%, 0.02-0.5% C, 0.01-0.55% Si, 0.1-3.0% Mn, 0.2% or less P, 0.05% or less S, 0.1% or less Al and 0.005% or less N. The manufacturing method includes sequentially: a solution treatment step of solution-treating the base steel material so that a solution treatment temperature T(K) and a solution treatment time t(s) satisfy the relation (2): t&ge;X<SP>2</SP>/exp(-24438/T), wherein X represents ((thickness (m) of base steel material)/2); a hot rolling step of reheating the steel material to a temperature of (A<SB>c3</SB>transformation point +100&deg;C) or higher, hot-rolling the steel material with a cumulative rolling reduction of 50% or more in a temperature range of higher than the A<SB>c3</SB>transformation point, and subsequently air-cooling the hot-rolled steel material to a temperature of the M<SB>s</SB>point or lower; and a reheating step of reheating the steel material to a temperature range of the A<SB>c3</SB>transformation point to the A<SB>c1</SB>transformation point, and then cooling the steel material to the M<SB>s</SB>point or lower at a cooling rate of 10&deg;C/s or more. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、構造安全性が強く求められる、橋梁、船舶、建築物、海洋構造物、タンク、パイプなどの溶接構造物や、建設、輸送、採掘、掘削などに使用する機械、機器等に用いて好適な、厚鋼材およびその製造方法に係り、とくに、耐疲労き裂発生特性の改善に関する。なお、ここでいう「厚鋼材」は、肉厚:6mm以上の厚鋼板、形鋼等を含むものとする。   The present invention is used for welding structures such as bridges, ships, buildings, marine structures, tanks, pipes, machines and equipment used for construction, transportation, mining, excavation, etc., where structural safety is strongly required. In particular, the present invention relates to a thick steel material and a method for manufacturing the same, and particularly to improvement of fatigue crack initiation characteristics. Note that the “thick steel material” here includes thick steel plates, section steels and the like having a thickness of 6 mm or more.

橋梁、船舶、建築物、海洋構造物、タンク、パイプなどの溶接構造物や、建設、輸送、採掘、掘削などに使用する機械、機器に使用される鋼材は、強度、靭性などの機械的性質や溶接性に優れていることはもちろんであるが、稼動時における定常の繰返し荷重や、風、地震等の震動に起因する非定常の繰返し荷重に対しても、構造物の構造安全性を確保できる特性を有することが要求される。   Welded structures such as bridges, ships, buildings, offshore structures, tanks, pipes, etc., machines used for construction, transportation, mining, excavation, etc., steel materials used in equipment, mechanical properties such as strength and toughness In addition to being excellent in weldability, the structural safety of the structure is ensured even against steady cyclic loads during operation and unsteady cyclic loads caused by vibrations such as wind and earthquake. It is required to have characteristics that can be achieved.

繰返し荷重に対しては、耐疲労特性に優れていることが要求される。一般的に、溶接構造物においては、定常あるいは非定常の繰返し荷重により、溶接止端部やスカラップなどの局所的な応力集中部から、多数の微小疲労き裂(数μm〜数100μm)が発生し、それらが連結して大きな疲労き裂となり、鋼材全体へと進展して、部材の終局的な破断に至ることが知られている。   For repeated loads, excellent fatigue resistance is required. Generally, in welded structures, many micro fatigue cracks (several μm to several 100 μm) are generated from local stress concentration parts such as weld toes and scallops due to steady or unsteady repeated loads. However, it is known that when they are connected, a large fatigue crack is formed, which progresses to the entire steel material, leading to a final fracture of the member.

疲労き裂の発生の抑制には、応力集中の低減が重要であり、そのような手法としてはTIG溶接等によるドレッシングや、ピーニング処理などが効果的であることが広く知られている。しかし、溶接構造物には、規模に応じて、数百あるいは数千もの応力集中個所が存在するため、このような処理を工業的な規模で実施することは、施工時間や施工コストの観点からも、非現実的であると言える。   In order to suppress the occurrence of fatigue cracks, it is important to reduce stress concentration. As such a technique, it is widely known that dressing such as TIG welding or peening is effective. However, depending on the scale, there are hundreds or thousands of stress concentration points in the welded structure, so performing such treatment on an industrial scale is from the viewpoint of construction time and construction cost. Is unrealistic.

新設された溶接構造物では、定期的に検査が行われるため、現状では、目視で識別できる大きさの疲労き裂(数mm〜数10mm)が検出された際には、補修を繰返して、構造物の安全性を保持していくことが行われている。しかし、このような検査や補修は、莫大な費用と手間を必要とする。このため、微小疲労き裂が発生したとしても、それが大きな疲労き裂に成長しないように、鋼材に疲労き裂発生抑制効果を持たせることが重要となる。   New welded structures are regularly inspected, so at present, when a fatigue crack (several mm to several tens of mm) of a size that can be visually identified is detected, repairs are repeated, The safety of the structure is being maintained. However, such inspection and repair require enormous costs and labor. For this reason, even if a micro fatigue crack occurs, it is important to give the steel material an effect of suppressing the occurrence of fatigue cracks so that it does not grow into a large fatigue crack.

例えば、特許文献1には、疲労き裂が進展しにくい性質を有する鋼板が記載されている。特許文献1に記載された鋼板は、硬質部の素地とこの素地に分散した軟質部とからなる組織を有し、これら硬質部と軟質部の硬度差がビッカース硬さで150HV以上である鋼板である。この鋼板は、中程度のΔK領域において疲労き裂進展抑制特性に優れており、例えば溶接部から発生した疲労き裂の進展抑制効果を有し、この鋼板を使用した溶接構造物では、疲労寿命の延長が期待できるとしている。なお、特許文献1に記載された鋼板は、鋼材組成と圧延後の熱処理条件を適正に組合せる方法で製造できるとしている。   For example, Patent Document 1 describes a steel sheet having a property that fatigue cracks are difficult to propagate. The steel sheet described in Patent Document 1 is a steel sheet having a structure composed of a base of a hard part and a soft part dispersed in the base, and the hardness difference between the hard part and the soft part is 150 HV or more in Vickers hardness. is there. This steel sheet is excellent in fatigue crack growth suppression characteristics in a moderate ΔK region, and has, for example, an effect of suppressing the growth of fatigue cracks generated from a welded portion. In a welded structure using this steel sheet, the fatigue life is reduced. Is expected to be extended. In addition, it is supposed that the steel plate described in patent document 1 can be manufactured with the method of combining a steel material composition and the heat processing conditions after rolling appropriately.

また、特許文献2には、耐疲労き裂伝播特性に優れた厚鋼材が記載されている。特許文献2に記載された厚鋼材は、軟質相と該軟質相を網目状に囲む硬質第二相からなる二相組織を有し、軟質相が、フェライト、焼戻しベイナイト、焼戻しマルテンサイトの1種または2種以上から構成されかつ平均ビッカース硬さが150HV以下、かつ硬質第二相がベイナイト、マルテンサイト、焼戻しベイナイト、焼戻しマルテンサイトの1種または2種以上から構成され、かつ平均ビッカース硬さが250HV以上、かつ硬質第二相の粒界占有率(硬質第二相が占めている粒界長さの総和/総粒界長さ)が0.5以上を満足する厚鋼材であり、母材の疲労き裂進展速度を、いずれのき裂進展方向においても顕著に抑制できるとしている。なお、特許文献2に記載された厚鋼材は、予め鋼片に1200〜1350℃で2〜100hの拡散熱処理を施したのち、AC3変態点〜1250℃に加熱し、圧延後にAr3変態点以上から400℃以下まで加速冷却する熱間圧延を施し、さらに二相域に加熱した後400℃以下まで加速冷却する処理を施すか、鋼片を熱間圧延したのち、1150〜1250℃で2〜100hの拡散熱処理を施し、さらに二相域に加熱した後400℃以下まで加速冷却する処理を施すことにより、製造できるとしている。 Patent Document 2 describes a thick steel material having excellent fatigue crack propagation characteristics. The thick steel material described in Patent Document 2 has a two-phase structure composed of a soft phase and a hard second phase surrounding the soft phase in a network, and the soft phase is one of ferrite, tempered bainite, and tempered martensite. Or it is composed of two or more types, the average Vickers hardness is 150HV or less, and the hard second phase is composed of one or more of bainite, martensite, tempered bainite, tempered martensite, and the average Vickers hardness is It is a thick steel material with a grain boundary occupancy (total grain boundary length occupied by the hard second phase / total grain boundary length) of 0.5 HV or more and a hard second phase fatigue rate of 250 HV or higher and fatigue of the base metal. The crack growth rate can be remarkably suppressed in any crack propagation direction. The thickness steel described in Patent Document 2, after subjected to diffusion heat treatment 2~100h advance in billet at 1200 to 1350 ° C., heated to A C3 transformation point to 1250 ° C., A r3 transformation point after rolling From the above, hot rolling to accelerate cooling to 400 ° C or lower is applied, and after further heating to a two-phase region, accelerated cooling to 400 ° C or lower or hot rolling of the steel slab, 1250 to 1250 ° C at 2 It is said that it can be produced by subjecting it to a diffusion heat treatment of ˜100 h, further heating it to a two-phase region, and then subjecting it to accelerated cooling to 400 ° C. or lower.

また、特許文献3には、「疲労強度に優れた厚鋼板」が記載されている。特許文献3に記載された厚鋼板は、フェライトと硬質第二相とを含む組織を有し、かつ、表面に平行な断面組織において、硬質第二相が、分率:20〜80%、平均ビッカース硬さ:250〜800HV、硬質第二相の平均円相当径:10〜200μm、硬質第二相間の最大間隔:500μm以下を満足し、硬質第二相の組織がベイナイト、マルテンサイトのいずれか又は両者の混合である鋼板であり、疲労き裂の進展抑制効果を有するとしている。なお、特許文献3に記載された厚鋼板は、1150〜1300℃で1〜100h保持する拡散熱処理を施したのち、AC3変態点〜1250℃に加熱し、圧下比が2以上の熱間圧延を行い、熱間圧延後、0.1〜2℃/sの冷却速度でフェライト分率が10%以上となる温度まで冷却し、さらに500℃以下まで5〜100℃/sで急冷する方法で製造できるとしている。 Patent Document 3 describes “a thick steel plate excellent in fatigue strength”. The thick steel plate described in Patent Document 3 has a structure containing ferrite and a hard second phase, and in the cross-sectional structure parallel to the surface, the hard second phase has a fraction: 20 to 80%, average Vickers hardness: 250 to 800 HV, average equivalent circle diameter of hard second phase: 10 to 200 μm, maximum distance between hard second phases: 500 μm or less, hard second phase structure is either bainite or martensite Or it is the steel plate which is a mixture of both, and is supposed to have the effect of suppressing the growth of fatigue cracks. The thickness steel sheet described in Patent Document 3, after having been subjected to diffusion heat treatment to 1~100h maintained at 1150 to 1300 ° C., heated to A C3 transformation point to 1250 ° C., the reduction ratio of 2 or more hot rolling And after hot rolling, it is cooled to a temperature at which the ferrite fraction becomes 10% or more at a cooling rate of 0.1 to 2 ° C./s, and further quenched to 5 ° C./s to 500 ° C. or less. It is said.

また、疲労き裂伝播挙動に及ぼす微視組織の影響については、例えば非特許文献1に報告がある。非特許文献1に記載された報告では、低炭素鋼を用いて、特殊な熱処理を繰り返して特殊な微視組織を得て、疲労き裂伝播特性を調査している。使用した組織は、ビッカース硬さが148HVの軟質相(フェライト相)中に、平均サイズ:149μmで、ビッカース硬さ565HVの硬質相(マルテンサイト相)を分率:36.4%で均一分散させた組織(鋼A)と、ビッカース硬さが546HVの硬質相(マルテンサイト相:分率:39.2%)が、ビッカース硬さが149HVの軟質相(フェライト相)を網目状に取り囲んだ組織(鋼B)と、の2種の鋼材について疲労き裂伝播特性を調査している。その結果、鋼Aより、鋼Bのほうが、疲労き裂伝播速度が低減するとしている。   Further, for example, Non-Patent Document 1 reports on the influence of the microstructure on the fatigue crack propagation behavior. In a report described in Non-Patent Document 1, a special microstructure is obtained by repeating special heat treatment using low carbon steel, and fatigue crack propagation characteristics are investigated. The structure used is a structure in which a hard phase (martensite phase) with an average size of 149μm and a Vickers hardness of 565HV is uniformly dispersed at a fraction of 36.4% in a soft phase (ferrite phase) with a Vickers hardness of 148HV. (Steel A) and a structure in which a hard phase (martensite phase: fraction: 39.2%) with a Vickers hardness of 546HV surrounds a soft phase (ferrite phase) with a Vickers hardness of 149HV (steel B) The fatigue crack propagation characteristics of two types of steel materials are investigated. As a result, the steel B has a lower fatigue crack propagation rate than the steel A.

また、特許文献4には、C:0.01〜0.10%、Si:0.04〜0.6%、Mn:0.50〜2.0%、Al:0.003〜0.06%、さらにTi:0.001〜0.10%を含み、炭素当量Ceq値が0.28〜0.65%で、鋼板表面から板厚方向に2mmの深さまでの領域の清浄度が0.005〜0.1%であることを特徴とする継手疲労強度に優れた溶接用耐疲労亀裂鋼板が記載されている。特許文献4に記載された技術は、実施例に記載されているように、表層の介在物と疲労特性とが相関があることを見出したことに基づいており、連続鋳造鋳型内の溶鋼流動を適正な状態に維持するか、適正な組成のモールドフラックスを用いることにより達成できるとしている。
特許2962134号 特許3785392号 特許3860763号 特開2007−182611号公報 H.SUZUKI and A.J.McEVILY:Metallurgical Transactions, Vol.10A(1979), p475〜481.
Patent Document 4 includes C: 0.01 to 0.10%, Si: 0.04 to 0.6%, Mn: 0.50 to 2.0%, Al: 0.003 to 0.06%, and Ti: 0.001 to 0.10%, and a carbon equivalent Ceq value. Is a fatigue-resistant cracked steel sheet for welding with excellent joint fatigue strength, characterized in that the cleanliness in the region from the steel sheet surface to the depth of 2 mm in the thickness direction is 0.005 to 0.1%. ing. The technique described in Patent Document 4 is based on the finding that there is a correlation between the inclusions on the surface layer and the fatigue characteristics as described in the Examples, and the flow of molten steel in the continuous casting mold is controlled. It can be achieved by maintaining an appropriate state or using a mold flux having an appropriate composition.
Patent No. 2962134 Japanese Patent No. 3785392 Patent 3860763 JP 2007-182611 A H.SUZUKI and AJMcEVILY : Metallurgical Transactions, Vol.10A (1979), p475 ~ 481.

しかしながら、特許文献1に記載された技術では、上記した組織の鋼板を製造するために、圧延後、組成に応じて、直接焼入れ、再加熱焼入れ処理、あるいは二相域加熱焼入れ、さらには焼戻し等の特別な熱処理を必要とし、製造工程が複雑となり、工業的な製造においては問題を残していた。
また、特許文献2に記載された技術では、長時間の拡散熱処理、二相温度域での加熱、冷却処理等、製造工程が複雑となり、能率面など工業的製造においては問題を残していた。
However, in the technique described in Patent Document 1, in order to produce a steel sheet having the above structure, depending on the composition after rolling, direct quenching, reheating quenching treatment, or two-phase region heating quenching, and further tempering, etc. Special heat treatment is required, and the manufacturing process becomes complicated, leaving problems in industrial manufacturing.
Further, the technique described in Patent Document 2 has complicated manufacturing processes such as long-time diffusion heat treatment, heating in a two-phase temperature range, and cooling treatment, and has left problems in industrial production such as efficiency.

また、特許文献3に記載された技術では、特許文献3の実施例に記載されているように、鋼材の板厚方向への疲労き裂の進展は抑制する場合があると考えられるが、鋼材の長手方向や幅方向での耐疲労き裂伝播特性の劣化が懸念される。また、特許文献3に示された組織分率や硬さの組み合わせでは、疲労き裂進展抑制効果が全くみられない場合があることも本発明者らは確認している。   Moreover, in the technique described in Patent Document 3, as described in the example of Patent Document 3, it is considered that the progress of fatigue cracks in the thickness direction of the steel material may be suppressed. There is concern about deterioration of fatigue crack propagation characteristics in the longitudinal direction and the width direction. In addition, the present inventors have confirmed that the combination of the structure fraction and the hardness shown in Patent Document 3 may not show a fatigue crack growth suppressing effect at all.

また、非特許文献1に記載された技術では、所望の組織を得るために、5段階にわたる特殊な熱処理を必要とし、工業的規模での生産に適した技術とは言えない。また、特許文献4に記載された技術は、実施例に記載されているように、同じ条件で処理しても、表層の介在物分布を適正な範囲内に調整できない場合が生じ、安定性に欠けるという問題がある。   Further, the technique described in Non-Patent Document 1 requires special heat treatment in five stages to obtain a desired structure, and cannot be said to be a technique suitable for production on an industrial scale. In addition, as described in the Examples, the technique described in Patent Document 4 may not be able to adjust the distribution of inclusions in the surface layer within an appropriate range even when processed under the same conditions. There is a problem of lacking.

本発明は、かかる従来技術の問題に鑑み、大きな疲労き裂ではなく、微小な疲労き裂(数μm〜数100μm)の発生を抑制できる、耐疲労き裂発生特性に優れた厚鋼材およびその製造方法を提供することを目的とする。なお、ここでいう「微小な疲労き裂」とは、非特許文献2(田中ら:材料、第31巻、第343号、p.376〜382(1982))に示されているような、結晶粒界と相互作用をもたらすような微小な疲労き裂(表面長さで数μm〜数100μm)をいうものとする。   In view of the problems of the prior art, the present invention provides a thick steel material excellent in fatigue crack resistance and capable of suppressing generation of a minute fatigue crack (several μm to several 100 μm) instead of a large fatigue crack and its An object is to provide a manufacturing method. As used herein, “small fatigue crack” refers to non-patent document 2 (Tanaka et al .: Materials, Vol. 31, No. 343, p. 376-382 (1982)), A minute fatigue crack (several μm to several hundred μm in surface length) that brings about an interaction with a grain boundary.

また、ここでいう「耐疲労き裂発生特性に優れた」とは、応力比が0を超え0.50以下の高サイクル疲労試験における、繰返し回数が200万回で破断しなかった最大の応力振幅での最大応力σWmaxが、静的引張試験の0.2%耐力σ0.2の0.8倍以上である場合をいうものとする。
なお、本発明が目的とする厚鋼材は、耐疲労き裂発生特性に優れるとともに、構造物用鋼材として、引張強さTS:490MPa以上の強度と、シャルピー衝撃試験(JIS Z 2242の規定に準拠)の破面遷移温度vTrsが0℃以下の高靭性を有するものとする。
In addition, “excellent in fatigue crack resistance” is the maximum stress amplitude that did not break at a cycle number of 2 million in a high cycle fatigue test with a stress ratio exceeding 0 and not exceeding 0.50. The maximum stress σ Wmax is 0.8 times the 0.2% yield strength σ 0.2 of the static tensile test.
In addition, the thick steel material targeted by the present invention is excellent in fatigue crack resistance, and as a structural steel material, it has a tensile strength of TS: 490 MPa or more and a Charpy impact test (conforms to the provisions of JIS Z 2242. ) Fracture surface transition temperature vTrs of 0 ° C. or less.

本発明者らは、上記した目的を達成するために、微小な疲労き裂の発生に及ぼす微視組織の影響について鋭意研究を行った。その結果、平均的な組織を呈する板厚の1/4位置において、金属組織を、硬質相からなる基地(マトリックス)中に軟質相を分散させた組織とし、かつ硬質相と軟質相とのビッカース硬さの差ΔHV(=(硬質相のビッカース硬さHV)−(軟質相のビッカース硬さHV))と軟質相の平均粒径d(μm)とが特定の関係を満足する組織とすることにより、厚鋼材の耐疲労き裂発生特性が顕著に向上することを新規に見出した。 In order to achieve the above-mentioned object, the present inventors have intensively studied the influence of the microscopic structure on the generation of a minute fatigue crack. As a result, the metal structure is a structure in which the soft phase is dispersed in the matrix (matrix) made of the hard phase at the 1/4 position of the plate thickness exhibiting an average structure, and the Vickers between the hard phase and the soft phase. Hardness difference ΔHV (= (Vickers hardness HV h of hard phase) − (Vickers hardness HV s of soft phase)) and soft phase average particle diameter d (μm) satisfy a specific relationship As a result, it was newly found that the fatigue crack initiation characteristics of the thick steel material are remarkably improved.

そして、本発明者らの更なる検討により、上記した微細組織を有する厚鋼材は、圧延後の冷却、さらには再加熱処理を適正に施すことにより、工業的規模で製造が可能であるという知見を得た。
まず、本発明者らが行った、本発明の基礎となった実験結果について説明する。
種々の組成および製造方法で作成した種々の鋼材について、JIS Z 2273の規定に準拠して、大気中、応力比:0.1で、周波数:10Hzとするsine波形の応力を負荷する高サイクル疲労試験を実施した。そして、疲労試験における、繰返し回数が200万回で破断しなかった最大の応力振幅での最大応力σWmaxを疲労強度(200万回疲労強度)として求め、得られた疲労強度σWmaxと、静的引張試験時の0.2%耐力σ0.2との比、σWmax/σ0.2を算出した。また、使用した鋼材について、組織を観察して、軟質相の平均粒径d(μm)を測定するとともに、硬質相および軟質相のビッカース硬さをそれぞれ測定し、硬質相と軟質相との硬さ差ΔHVを算出した。
As a result of further studies by the present inventors, it has been found that a thick steel material having the above-described microstructure can be manufactured on an industrial scale by appropriately performing cooling after rolling and further reheating treatment. Got.
First, a description will be given of experimental results performed by the present inventors and serving as the basis of the present invention.
For various steel materials created with various compositions and manufacturing methods, in accordance with the provisions of JIS Z 2273, a high-cycle fatigue test is performed in which a stress of sine waveform with a stress ratio of 0.1 and a frequency of 10 Hz is applied in the atmosphere. Carried out. Then, in the fatigue test, the maximum stress σ Wmax at the maximum stress amplitude at which the number of repetitions was 2 million times and did not break was obtained as fatigue strength (2 million times fatigue strength), and the obtained fatigue strength σ Wmax and static A ratio with 0.2% proof stress σ 0.2 in a mechanical tensile test, σ Wmax / σ 0.2 was calculated. In addition, for the steel materials used, the microstructure is observed, the average particle diameter d (μm) of the soft phase is measured, the Vickers hardness of the hard phase and the soft phase are measured, and the hardness of the hard phase and the soft phase is measured. A difference ΔHV was calculated.

得られた結果を、σWmax/σ0.2と(ΔHV)/dとの関係で、図1に示す。
図1から、(ΔHV)/dが400以上となる場合に、σWmax/σ0.2が0.8以上となり、耐疲労き裂発生特性が向上することがわかる。
このような組織は、圧延後の冷却条件までを考慮した適正な熱間圧延と、二相温度域への再加熱処理とを組み合わせることにより、確保できることを新規に見出した。
The obtained result is shown in FIG. 1 in relation to σ Wmax / σ 0.2 and (ΔHV) 2 / d.
As can be seen from FIG. 1, when (ΔHV) 2 / d is 400 or more, σ Wmax / σ 0.2 is 0.8 or more, and the fatigue crack resistance is improved.
It was newly found that such a structure can be secured by combining proper hot rolling in consideration of cooling conditions after rolling and reheating treatment to a two-phase temperature range.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。
すなわち、本発明の要旨は次の通りである。
(1)質量%で、C:0.02〜0.5%、Si:0.01〜0.55%、Mn:0.1〜3.0%、P:0.2%以下、S:0.05%以下、Sol.Al:0.1%以下、T.N:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成を有し、板厚の1/4位置の組織が、JIS G 0551(2005)の規定に準拠した線分法を用いて測定した軟質相と硬質相の境界数Bshと全境界数Btとの比、Bsh/Btの最大値が0.75以上である硬質相からなる基地中に軟質相が分散した組織で、かつ該軟質相の平均粒径d(μm)と前記硬質相のビッカース硬さと前記軟質相のビッカース硬さとの差ΔHVとが次(1)式
(ΔHV)/d ≧ 400 ‥‥‥(1)
(ここで、ΔHV:硬質相のビッカース硬さと軟質相のビッカース硬さとの差、d:軟質相の平均粒径d(μm))
を満足する組織であることを特徴とする耐疲労き裂発生特性に優れた厚鋼材。
(2)(1)において、前記組成に加えてさらに、質量%で、Cu:0.01〜2.0%、Cr:0.01〜3.0%、Mo:0.01〜2.0%、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする厚鋼材。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ni:0.01〜10.0%を含有する組成とすることを特徴とする厚鋼材。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.01%以下、REM:0.1%以下のうちから選ばれた1種または2種を含有することを特徴とする厚鋼材。
(5)質量%で、C:0.02〜0.5%、Si:0.01〜0.55%、Mn:0.1〜3.0%、P:0.2%以下、S:0.05%以下、Sol.Al:0.1%以下、T.N:0.005%以下を含み、残部Feおよび不可避的不純物からなる組成の鋼素材に、溶体化処理工程、熱間圧延工程、再加熱処理工程を順次施して、厚鋼材とする厚鋼材の製造方法であって、前記溶体化処理工程を、溶体化温度T(K)と溶体化処理時間t(s)とが次(2)式
t ≧ X/exp(−24438/T)‥‥‥(2)
(ここで、t:溶体化処理時間(s)、X:(鋼素材の肉厚(m))/2、T:溶体化処理温度(K))
を満足する溶体化処理を施す工程とし、前記熱間圧延工程が、前記鋼素材に(Ac3変態点+100℃)以上の温度に再加熱し、Ac3変態点を超える温度域における累積圧下率が50%以上となる熱間圧延を施し、厚鋼材とした後、Ms点以下の温度まで空冷する工程であり、
前記再加熱処理工程が、前記熱間圧延工程を経た厚鋼材に、Ac1変態点以上Ac3変態点未満の温度域の温度まで再加熱し、ついで、10℃/s以上の冷却速度でM点以下の温度まで冷却する再加熱冷却処理を施す工程であることを特徴とする耐疲労き裂発生特性に優れた厚鋼材の製造方法。
(6)(5)において、前記再加熱処理工程を経た前記厚鋼材に、さらにAc1変態点未満の温度で焼戻する焼戻工程を施すことを特徴とする厚鋼材の製造方法。
(7)(5)または(6)において、前記組成に加えてさらに、質量%で、Cu:0.01〜2.0%、Cr:0.01〜3.0%、Mo:0.01〜2.0%、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする厚鋼材の製造方法。
(8)(5)ないし(7)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ni:0.01〜10.0%を含有する組成とすることを特徴とする厚鋼材の製造方法。
(9)(5)ないし(8)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.01%以下、REM:0.1%以下のうちから選ばれた1種または2種を含有することを特徴とする厚鋼材の製造方法。
The present invention has been completed based on such findings and further studies.
That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.02 to 0.5%, Si: 0.01 to 0.55%, Mn: 0.1 to 3.0%, P: 0.2% or less, S: 0.05% or less, Sol. Al: 0.1% or less, T. N: Contains 0.005% or less, has a composition consisting of the remainder Fe and inevitable impurities, and the structure at 1/4 position of the plate thickness is measured using the line segment method in accordance with the provisions of JIS G 0551 (2005) The ratio of the boundary number Bsh and the total boundary number Bt between the soft phase and the hard phase, the structure in which the soft phase is dispersed in the base composed of the hard phase having a maximum Bsh / Bt of 0.75 or more , and the soft phase The average particle diameter d (μm) and the difference ΔHV between the Vickers hardness of the hard phase and the Vickers hardness of the soft phase is expressed by the following formula (1) (ΔHV) 2 / d ≧ 400 (1)
(Here, ΔHV: difference between Vickers hardness of the hard phase and Vickers hardness of the soft phase, d: average particle diameter d (μm) of the soft phase)
A thick steel material with excellent fatigue crack initiation characteristics characterized by satisfying
(2) In (1), in addition to the above composition, Cu: 0.01 to 2.0%, Cr: 0.01 to 3.0%, Mo: 0.01 to 2.0%, Nb: 0.1% or less, V: 0.1% Hereinafter, a thick steel material having a composition containing one or more selected from Ti: 0.1% or less and B: 0.01% or less.
(3) In (1) or (2), in addition to the said composition, it is set as the composition containing Ni: 0.01-10.0% by the mass% further, The thick steel material characterized by the above-mentioned.
(4) In any one of (1) to (3), in addition to the above composition, the composition further contains one or two kinds selected from Ca: 0.01% or less and REM: 0.1% or less by mass%. A thick steel material characterized by
(5) By mass%, C: 0.02 to 0.5%, Si: 0.01 to 0.55%, Mn: 0.1 to 3.0%, P: 0.2% or less, S: 0.05% or less, Sol. Al: 0.1% or less, T. N: A method for producing a thick steel material comprising a steel material containing 0.005% or less, the balance being Fe and inevitable impurities, sequentially subjected to a solution treatment process, a hot rolling process, and a reheating process. In the solution treatment step, the solution treatment temperature T (K) and the solution treatment time t (s) are expressed by the following formula (2):
t ≧ X 2 / exp (−24438 / T) (2)
(Where t: solution treatment time (s), X: (thickness of steel material (m)) / 2, T: solution treatment temperature (K))
And the hot rolling process reheats the steel material to a temperature of (A c3 transformation point + 100 ° C.) or higher, and the cumulative rolling reduction in the temperature range exceeding the A c3 transformation point. Is a process of performing air rolling to 50% or more to make a thick steel material, and then air-cooling to a temperature below the Ms point,
In the reheating treatment step, the thick steel material that has undergone the hot rolling step is reheated to a temperature in the temperature range from the A c1 transformation point to less than the A c3 transformation point, and then at a cooling rate of 10 ° C./s or more. A method for producing a thick steel material excellent in fatigue crack resistance, which is a step of performing a reheating and cooling process for cooling to a temperature below the s point.
(6) The method for producing a thick steel material according to (5), further comprising a tempering step of tempering the thick steel material that has undergone the reheating treatment step at a temperature lower than the Ac1 transformation point.
(7) In (5) or (6), in addition to the above composition, Cu: 0.01 to 2.0%, Cr: 0.01 to 3.0%, Mo: 0.01 to 2.0%, Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less, B: A method of producing a thick steel material comprising one or more selected from 0.01% or less.
(8) A method for producing a thick steel material according to any one of (5) to (7), further comprising a composition containing Ni: 0.01 to 10.0% by mass% in addition to the above composition.
(9) In any one of (5) to (8), in addition to the above composition, the composition further comprises one or two selected from Ca: 0.01% or less and REM: 0.1% or less by mass%. A method for producing a thick steel material.

本発明によれば、微小な疲労き裂(数μm〜数100μm)の発生を抑制できる、耐疲労き裂発生特性に優れた厚鋼板を、現状の製造条件の最適化を行うことで、容易にしかも安定して製造でき、産業上格段の効果を奏する。また、本発明によれば、仮に応力集中部に微小疲労き裂が発生しても、それが大きな疲労き裂(数mm〜数十mm)となることを抑制でき、鋼構造物や機械・機器等の寿命延長や補修工程の省力化に繋がるという効果もある。   According to the present invention, a steel plate excellent in fatigue crack resistance and capable of suppressing the generation of minute fatigue cracks (several μm to several 100 μm) can be easily obtained by optimizing the current production conditions. In addition, it can be manufactured stably and has a remarkable industrial effect. In addition, according to the present invention, even if a micro fatigue crack occurs in the stress concentration part, it can be prevented from becoming a large fatigue crack (several mm to several tens of mm). There is also an effect that it leads to the extension of the life of equipment and labor saving of the repair process.

本発明の厚鋼材の製造方法では、鋼素材に、溶体化処理工程、熱間圧延工程と、再加熱処理工程、あるいはさらに焼戻工程とを順次施す。
本発明で使用する鋼素材の製造方法は、とくに限定する必要はないが、溶鋼を、転炉等の常用の溶製法で溶製し、所定の組成に調整したのち、さらに連続鋳造法等の常用の鋳造方法でスラブ等の鋼素材とすることが好ましい。
In the method for producing a thick steel material of the present invention, a solution treatment process, a hot rolling process, a reheating process process, or a tempering process is sequentially performed on the steel material.
Although the manufacturing method of the steel material used in the present invention is not particularly limited, the molten steel is melted by a conventional melting method such as a converter, adjusted to a predetermined composition, and further, such as a continuous casting method. It is preferable to use a steel material such as a slab by a conventional casting method.

まず、本発明で使用する鋼素材の組成限定理由について説明する。なお、以下、とくに断わらない限り質量%は、単に%で記す。
C:0.02〜0.5%
Cは、鋼の強度を増加させる作用を有する元素であり、本発明ではとくに硬質相の強度増加に寄与し、疲労強度を顕著に増加させる作用を有する。このような効果を得るためには、0.02%以上の含有を必要とする。一方、0.5%を超えて含有すると、延性や曲げ加工性を低下させるとともに、溶接性が低下する。このため、Cは0.02〜0.5%の範囲に限定した。
First, the reasons for limiting the composition of the steel material used in the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.02-0.5%
C is an element having an effect of increasing the strength of steel. In the present invention, C particularly contributes to an increase in the strength of the hard phase and has an effect of remarkably increasing the fatigue strength. In order to obtain such an effect, a content of 0.02% or more is required. On the other hand, if the content exceeds 0.5%, ductility and bending workability are lowered, and weldability is lowered. For this reason, C was limited to the range of 0.02 to 0.5%.

Si:0.01〜0.55%
Siは、脱酸剤として作用するとともに、固溶して鋼の強度を増加させる作用を有する元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.55%を超える含有は、靭性を低下させるとともに、溶接性を低下させる。このため、Siは0.01〜0.55%の範囲に限定した。なお、好ましくは0.05〜0.45%である。
Si: 0.01-0.55%
Si is an element that acts as a deoxidizer and has the effect of increasing the strength of steel by solid solution. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, the content exceeding 0.55% reduces toughness and weldability. For this reason, Si was limited to the range of 0.01 to 0.55%. In addition, Preferably it is 0.05 to 0.45%.

Mn:0.1〜3.0%
Mnは、焼入れ性の向上を介し、鋼の強度を増加させるとともに、靭性を向上させる作用を有する。このような効果を得るためには、0.1%以上の含有を必要とする。一方、3.0%を超える含有は、溶接性を低下させる。このため、Mnは0.1〜3.0%の範囲に限定した。なお、好ましくは0.5%以上である。
Mn: 0.1-3.0%
Mn has the effect of increasing the strength of steel and improving toughness through the improvement of hardenability. In order to obtain such an effect, the content of 0.1% or more is required. On the other hand, the content exceeding 3.0% lowers the weldability. For this reason, Mn was limited to the range of 0.1 to 3.0%. In addition, Preferably it is 0.5% or more.

P:0.2%以下
Pは、耐候性を向上させる元素であるが、Pの多量含有は、靭性の劣化に繋がるため、できるだけ低減することが望ましいが、0.2%までは許容できる。このため、Pは、0.2%以下に限定した。なお、好ましくは0.1%以下である。
S:0.05%以下
Sは、鋼中では、介在物として存在し延性、靭性等を劣化させるため、できるだけ低減することが望ましいが、0.05%までは許容できる。このようなことから、Sは0.05%を上限とした。なお、好ましくは0.03%以下である。
P: 0.2% or less P is an element that improves the weather resistance. However, since a large amount of P leads to deterioration of toughness, it is desirable to reduce it as much as possible, but it is acceptable up to 0.2%. For this reason, P was limited to 0.2% or less. In addition, Preferably it is 0.1% or less.
S: 0.05% or less S is present as an inclusion in steel and deteriorates ductility, toughness, etc., so it is desirable to reduce it as much as possible, but 0.05% is acceptable. Therefore, the upper limit of S is 0.05%. In addition, Preferably it is 0.03% or less.

Sol.Al:0.1%以下
Alは、脱酸剤として作用するとともに、結晶粒の微細化にも寄与する元素であるが、0.1%を超える過剰の含有は、靭性の低下に繋がる。このため、Alは0.1%以下に限定した。なお、好ましくは0.05%以下である。
T.N:0.005%以下
T.N(全N量)は、Cと同様に、固溶強化により鋼の強度を増加させる元素であるが、過剰な含有は靭性の低下を招くため、本発明ではT.Nは0.005%以下に限定した。
Sol.Al: 0.1% or less
Al is an element that acts as a deoxidizing agent and contributes to refinement of crystal grains, but excessive content exceeding 0.1% leads to a decrease in toughness. For this reason, Al was limited to 0.1% or less. In addition, Preferably it is 0.05% or less.
T.N: 0.005% or less
T.N (total N amount) is an element that increases the strength of the steel by solid solution strengthening, as in C. However, excessive content causes a decrease in toughness, so in the present invention T.N is 0.005%. Limited to:

上記した成分が基本の成分であるが、本発明では上記した基本の組成に加えてさらに、必要に応じて、Cu:0.01〜2.0%、Cr:0.01〜3.0%、Mo:0.01〜2.0%、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上、および/または、Ni:0.01〜10.0%、および/または、Ca:0.01%以下、REM:0.1%以下のうちから選ばれた1種または2種を含有してもよい。   Although the above-mentioned components are basic components, in the present invention, in addition to the basic composition described above, if necessary, Cu: 0.01 to 2.0%, Cr: 0.01 to 3.0%, Mo: 0.01 to 2.0%, Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less, B: one or more selected from 0.01% or less, and / or Ni: 0.01 to 10.0%, and / or , Ca: 0.01% or less, REM: One or two selected from 0.1% or less may be contained.

Cu:0.01〜2.0%、Cr:0.01〜3.0%、Mo:0.01〜2.0%、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上
Cu、Cr、Mo、Nb、V、Ti、Bはいずれも、強度を増加させる作用を有する元素であり、必要に応じて、選択して含有できる。
Cuは、固溶強化を介して鋼の強度を増加させる作用を有する元素である。このような効果を確保するためには、0.01%以上の含有を必要とする。一方、2.0%を超える含有は、溶接性が低下するとともに、鋼材製造時に疵が生じやすくなる。このため、含有する場合には、Cuは0.01〜2.0%の範囲に限定することが好ましい。なお、より好ましくは、0.01〜1.0%である。
Cu: 0.01 to 2.0%, Cr: 0.01 to 3.0%, Mo: 0.01 to 2.0%, Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less, B: 0.01% or less 1 type or 2 types or more
Cu, Cr, Mo, Nb, V, Ti, and B are all elements that have the effect of increasing the strength, and can be selected and contained as necessary.
Cu is an element having an action of increasing the strength of steel through solid solution strengthening. In order to ensure such an effect, the content of 0.01% or more is required. On the other hand, if the content exceeds 2.0%, weldability is lowered and flaws are likely to occur during the production of the steel material. For this reason, when it contains, it is preferable to limit Cu to 0.01 to 2.0% of range. In addition, More preferably, it is 0.01 to 1.0%.

Crは、焼入れ性の向上や焼戻軟化抵抗の増加を介して鋼の強度を増加させる作用を有する元素である。このような効果は、0.01%以上の含有で認められる。一方、3.0%を超える含有は、溶接性と靭性を低下させる。このため、含有する場合には、Crは0.01〜3.0%に限定することが好ましい。なお、より好ましくは、0.01〜2.5%である。
Moは、焼入れ性の向上や焼戻軟化抵抗の増加を介して鋼の強度を増加させる作用を有する元素である。このような効果は、0.01%以上の含有で認められる。一方、2.0%を超える含有は、溶接性と靭性を低下させる。このため、含有する場合には、Moは0.01〜2.0%に限定することが好ましい。なお、より好ましくは、0.01〜1.0%である。
Cr is an element that has the effect of increasing the strength of steel through improving hardenability and increasing temper softening resistance. Such an effect is recognized when the content is 0.01% or more. On the other hand, the content exceeding 3.0% decreases weldability and toughness. For this reason, when contained, Cr is preferably limited to 0.01 to 3.0%. In addition, More preferably, it is 0.01 to 2.5%.
Mo is an element that has the effect of increasing the strength of steel through improving hardenability and increasing temper softening resistance. Such an effect is recognized when the content is 0.01% or more. On the other hand, the content exceeding 2.0% decreases weldability and toughness. For this reason, when it contains, it is preferable to limit Mo to 0.01 to 2.0%. In addition, More preferably, it is 0.01 to 1.0%.

Nbは、焼戻時に炭化物として析出し、析出強化を介して鋼の強度を増加させる元素である。また、Nbは圧延・焼入れ時のオーステナイト粒を細粒化する作用も有するが、0.1%を超える含有は、靭性を低下させる。このため、含有する場合には、Nbは0.1%以下に限定することが好ましい。なおより好ましくは0.05%以下である。
Vは、焼戻時に炭化物として析出し、析出強化を介して鋼の強度を増加させる元素である。また、Vは、圧延・焼入れ時のオーステナイト粒を細粒化する作用も有するが、0.1%を超える含有は、靭性を低下させる。このため、含有する場合には、Vは0.1%以下に限定することが好ましい。なお、より好ましくは0.05%以下である。
Nb is an element that precipitates as carbide during tempering and increases the strength of the steel through precipitation strengthening. Nb also has the effect of refining austenite grains during rolling / quenching, but inclusion exceeding 0.1% reduces toughness. For this reason, when it contains, it is preferable to limit Nb to 0.1% or less. More preferably, it is 0.05% or less.
V is an element that precipitates as carbides during tempering and increases the strength of the steel through precipitation strengthening. V also has the effect of refining austenite grains during rolling / quenching, but the content exceeding 0.1% lowers toughness. For this reason, when it contains, it is preferable to limit V to 0.1% or less. In addition, More preferably, it is 0.05% or less.

Tiは、焼戻時に炭化物として析出し、析出強化を介し、鋼の強度を増加させるとともに、TiNが溶接熱影響部においては、オーステナイト粒を微細化し靭性を向上させる。しかし、0.1%を超える含有は、靭性を低下させるとともに、鋼材コストの高騰を招く。このため、Tiは0.1%以下に限定することが好ましい。なお、より好ましくは0.05%以下である。   Ti precipitates as carbides during tempering and increases the strength of the steel through precipitation strengthening, and TiN refines austenite grains and improves toughness in the weld heat affected zone. However, if the content exceeds 0.1%, the toughness is lowered and the steel material cost is increased. For this reason, Ti is preferably limited to 0.1% or less. In addition, More preferably, it is 0.05% or less.

Bは、少量の含有で焼入れ性を向上させ、焼入れ性の向上を介して鋼の強度を増加させる作用を有する元素であるが、0.01%を超える含有は、溶接性を低下させる。このため、含有する場合には、Bは0.01%以下に限定することが好ましい。なお、より好ましくは0.005%以下である。
Ni:0.01〜10.0%
Niは、低温靭性を向上させる作用を有するとともに、Cu含有時にCuによる熱間脆性の発生を防止する作用を有する元素であり、必要に応じて含有できる。このような効果は0.01%以上の含有で認められるが、10.0%を超える含有は、鋼材コストの高騰を招くとともに、溶接性が低下する。このため、Niは含有する場合には0.01〜10.0%に限定することが好ましい。
B is an element having the effect of improving the hardenability when contained in a small amount and increasing the strength of the steel through the improvement of hardenability, but containing over 0.01% lowers the weldability. For this reason, when it contains, it is preferable to limit B to 0.01% or less. More preferably, it is 0.005% or less.
Ni: 0.01-10.0%
Ni is an element having an effect of improving low temperature toughness and an effect of preventing the occurrence of hot brittleness due to Cu when Cu is contained, and can be contained as necessary. Such an effect is recognized with a content of 0.01% or more. However, a content exceeding 10.0% causes a rise in the cost of steel materials and lowers weldability. For this reason, when it contains Ni, it is preferable to limit to 0.01 to 10.0%.

Ca:0.01%以下、REM:0.1%以下のうちから選ばれた1種または2種
Ca、REMはいずれも、溶接熱影響部靭性を向上させる元素であり、必要に応じて選択して1種または2種を含有できる。
Caは、溶接熱影響部靭性を向上させる元素であるが、0.01%を超える含有は、CaS介在物が増加し靭性を低下させる悪影響を及ぼす。このため、含有する場合は0.01%以下に限定することが好ましい。
One or two selected from Ca: 0.01% or less, REM: 0.1% or less
Both Ca and REM are elements that improve the weld heat-affected zone toughness, and can be selected as necessary to contain one or two kinds.
Ca is an element that improves the toughness of the heat affected zone of the weld. However, if its content exceeds 0.01%, CaS inclusions increase and the toughness is adversely affected. For this reason, when it contains, it is preferable to limit to 0.01% or less.

REMは、溶接熱影響部靭性を向上させる元素であるが、0.1%を超えて含有すると靭性が低下する。このため、含有する場合はREMは0.1%以下に限定することが好ましい。なお、ここでいうREMは、希土類元素であるY、Ce等の総称で、ここでいう含有量はこれら元素の総量を意味する。
上記した成分以外の残部は、Feおよび不可避的不純物である。
REM is an element that improves the weld heat-affected zone toughness, but if it exceeds 0.1%, the toughness decreases. For this reason, when it contains, it is preferable to limit REM to 0.1% or less. Here, REM is a generic name for rare earth elements such as Y and Ce, and the content here means the total amount of these elements.
The balance other than the above components is Fe and inevitable impurities.

本発明では、上記した組成の鋼素材に、溶体化処理工程、熱間圧延工程、再加熱処理工程、あるいはさらに焼戻工程とを順次施し所定寸法形状の厚鋼材とする。
疲労き裂の発生箇所は予測できないため、とくに厚鋼材の組織の異方性がないことが望ましい。そのため、本発明では、まず鋼素材に溶体化処理工程を施す。
溶体化処理工程は、鋼素材(スラブ)の成分偏析を少なくするために行うもので、本発明では、成分元素の拡散現象が生じる1173K(900℃)以上の溶体化処理温度で行うものとする。そして、さらに、本発明の溶体化処理工程では、溶体化処理温度T(K)と溶体化処理時間t(s)とが次(2)式
t ≧ X/exp(−24438/T)‥‥‥(2)
(ここで、t:溶体化処理時間(s)、X:(鋼素材の肉厚(m))/2、T:溶体化処理温度(K))
を満足する処理とする。これにより、組織の異方性がなくなり、ほぼ等方的な組織を有する厚鋼材(製品)を得ることができる。溶体化処理温度T(K)と溶体化処理時間t(s)とが(2)式を満足しない場合には、十分な溶体化処理とはならず、最終的に得られる厚鋼板の組織の異方性をなくすことができない。成分元素の拡散距離は、処理温度と処理時間とによって変化するが、溶体化処理する鋼素材厚2X(m)と溶体化処理温度T(K)が決まれば、必要な溶体化処理時間は(2)式から導き出すことができる。なお、溶体化処理の加熱方法、冷却方法は、加熱途中、冷却途中での割れ等の発生がなければよく、とくに限定されない。なお、溶体化処理温度からの冷却は、炉冷、空冷等が例示される。
In the present invention, the steel material having the above composition is sequentially subjected to a solution treatment process, a hot rolling process, a reheating process, or a tempering process to obtain a thick steel material having a predetermined size and shape.
Since the occurrence of fatigue cracks cannot be predicted, it is particularly desirable that there is no anisotropy in the structure of the thick steel material. Therefore, in the present invention, first, a solution treatment process is performed on the steel material.
The solution treatment process is performed in order to reduce the segregation of components of the steel material (slab), and in the present invention, the solution treatment process is performed at a solution treatment temperature of 1173 K (900 ° C.) or higher at which the diffusion phenomenon of the component elements occurs. . Further, in the solution treatment step of the present invention, the solution treatment temperature T (K) and the solution treatment time t (s) are expressed by the following equation (2).
t ≧ X 2 / exp (−24438 / T) (2)
(Where t: solution treatment time (s), X: (thickness of steel material (m)) / 2, T: solution treatment temperature (K))
Is satisfied. Thereby, the anisotropy of the structure is eliminated, and a thick steel material (product) having a substantially isotropic structure can be obtained. When the solution treatment temperature T (K) and the solution treatment time t (s) do not satisfy the formula (2), the solution treatment is not sufficient, and the structure of the steel plate finally obtained is not obtained. Anisotropy cannot be lost. The diffusion distance of the component elements varies depending on the treatment temperature and the treatment time. If the steel material thickness 2X (m) and the solution treatment temperature T (K) to be solution-treated are determined, the necessary solution treatment time is ( 2) It can be derived from the equation. In addition, the heating method and the cooling method of the solution treatment are not particularly limited as long as cracking or the like does not occur during heating or cooling. The cooling from the solution treatment temperature is exemplified by furnace cooling, air cooling, and the like.

溶体化処理を施された鋼素材は、ついで熱間圧延工程を施されて所定寸法形状の厚鋼材とされる。
熱間圧延工程では、鋼素材を(Ac3変態点+100℃)以上の温度に再加熱し、Ac3変態点を超える温度域における累積圧下率が50%以上となる熱間圧延を施して厚鋼材とした後、Ms点以下の温度まで空冷する。熱間圧延のための再加熱温度が、(Ac3変態点+100℃)未満では、鋼素材に、所望の累積圧下率を付与する熱間圧延を施すことができなくなる。また、Ac3変態点を超える温度域における累積圧下率が50%未満では、所望の強度、靭性を確保できなくなる。このため、鋼素材に施す熱間圧延は、(Ac3変態点+100℃)以上の温度に再加熱し、Ac3変態点を超える温度域における累積圧下率が50%以上となる熱間圧延とすることが好ましい。
The steel material that has undergone solution treatment is then subjected to a hot rolling process to form a thick steel material having a predetermined size and shape.
In the hot rolling process, the steel material is reheated to a temperature of (A c3 transformation point + 100 ° C) or higher, and hot rolled so that the cumulative rolling reduction in the temperature range exceeding the A c3 transformation point is 50% or more. After making the steel, it is air-cooled to a temperature below the Ms point. If the reheating temperature for hot rolling is less than ( Ac3 transformation point + 100 ° C.), hot rolling that imparts a desired cumulative rolling reduction to the steel material cannot be performed. On the other hand, when the cumulative rolling reduction in the temperature range exceeding the A c3 transformation point is less than 50%, desired strength and toughness cannot be ensured. For this reason, the hot rolling applied to the steel material is re-heating to a temperature of (A c3 transformation point + 100 ° C) or higher, and the cumulative rolling reduction in the temperature range exceeding the A c3 transformation point is 50% or more. It is preferable to do.

なお、Ac3変態点は、各成分の含有量に基づいて、次式で算出できる。
c3変態点(℃)=854−180C+44Si−14Mn−17.8Ni−1.7Cr、
ここで、C、Si、Mn、Ni、Crは各元素の含有量(質量%)である。
熱間圧延工程では、上記した熱間圧延後、Ms点以下の温度まで空冷する。これにより、フェライトに代表される軟質相中にパーライトに代表される硬質相が分散した組織を有する厚鋼材となる。
The Ac3 transformation point can be calculated by the following equation based on the content of each component.
A c3 transformation point (℃) = 854-180C + 44Si- 14Mn-17.8Ni-1.7Cr,
Here, C, Si, Mn, Ni, and Cr are the contents (mass%) of each element.
In the hot rolling process, after the hot rolling described above, air cooling is performed to a temperature below the Ms point. As a result, a thick steel material having a structure in which a hard phase represented by pearlite is dispersed in a soft phase represented by ferrite.

熱間圧延工程を経た厚鋼材は、ついで再加熱処理工程を施される。
再加熱処理工程では、熱間圧延工程を経た厚鋼材に、Ac3変態点未満Ac1変態点以上の温度域(二相温度域)の温度まで再加熱し、ついで、10℃/s以上の冷却速度でM点以下の温度まで冷却する再加熱冷却処理を施す。
軟質相中に硬質相が分散した組織を有する厚鋼材を、二相温度域の温度に加熱することにより、硬質相部分や、軟質相界面が順次オーステナイトに変態する。なお、二相温度域への加熱速度は、オーステナイトに変態しない硬質相の過度の軟化防止の観点から、0.01℃/s以上とすることが好ましい。
The thick steel material that has undergone the hot rolling process is then subjected to a reheating process.
In the reheating treatment process, the thick steel material that has undergone the hot rolling process is reheated to a temperature in the temperature range (two-phase temperature range) that is less than the A c3 transformation point and higher than the A c1 transformation point, and then 10 ° C./s or more. A reheating and cooling process is performed in which the cooling rate is reduced to a temperature equal to or lower than the M s point.
By heating a thick steel material having a structure in which a hard phase is dispersed in a soft phase to a temperature in a two-phase temperature range, the hard phase portion and the soft phase interface are sequentially transformed into austenite. In addition, it is preferable that the heating rate to a two-phase temperature range shall be 0.01 degrees C / s or more from a viewpoint of the excessive softening prevention of the hard phase which does not transform to austenite.

二相温度域の所定の温度に加熱され、必要に応じて所定の時間保持された厚鋼材は、ついで、10℃/s以上の冷却速度でM点以下の温度(冷却停止温度)まで冷却される。これにより、オーステナイトに変態した部分がマルテンサイト、ベイナイトなどのより硬い硬質相に変態し、硬質相中に軟質相が分散した組織となり、かつ軟質相と硬質相との硬さ差ΔHVを大きくでき、耐疲労き裂発生特性が向上する。なお、冷却停止温度がM点を超える場合や、冷却速度が10℃/s未満の場合には、硬さが低い硬質相が生成し、ΔHVが小さくなる。 The thick steel material heated to a predetermined temperature in the two-phase temperature range and maintained for a predetermined time as required is then cooled to a temperature below the M s point (cooling stop temperature) at a cooling rate of 10 ° C./s or higher. Is done. As a result, the part transformed into austenite is transformed into a harder hard phase such as martensite and bainite, and the soft phase is dispersed in the hard phase, and the hardness difference ΔHV between the soft phase and the hard phase can be increased. In addition, fatigue crack resistance is improved. When the cooling stop temperature exceeds the M s point or when the cooling rate is less than 10 ° C./s, a hard phase with low hardness is generated and ΔHV becomes small.

なお、Ac1変態点、M点は、各成分の含有量に基づいて、次各式で算出できる。
c1変態点(℃)=723−14Mn+22Si−14.4Ni+23.3Cr、
点(℃)=517−300C−33Mn−22Cr−17Ni−11Mo−11Si
(ここで、C、Si、Mn、Ni、Cr、Moは各元素の含有量(質量%))
なお、本発明では、上記した再加熱処理工程後にさらに焼戻工程を行ってもよい。
The A c1 transformation point and M s point can be calculated by the following equations based on the content of each component.
A c1 transformation point (° C.) = 723−14Mn + 22Si−14.4Ni + 23.3Cr
M s point (℃) = 517−300C−33Mn−22Cr−17Ni−11Mo−11Si
(Here, C, Si, Mn, Ni, Cr, Mo are the contents of each element (mass%))
In the present invention, a tempering step may be further performed after the above-described reheating treatment step.

焼戻工程では、Ac1変態点未満の温度で焼戻する焼戻処理を施す。焼戻処理を施すことにより、延性、靭性が向上し、所望の強度および靭性に調整することができる。なお、焼戻温度がAc1変態点以上では、島状マルテンサイトが生成し靭性が低下する。
上記した本発明の製造方法で得られた厚鋼材は、上記した組成を有し、さらに板厚の1/4位置の組織が、硬質相からなる基地中に軟質相が分散した組織を有する。ここでいう「硬質相」とは、ベイナイト、焼戻ベイナイト、焼戻マルテンサイト、マルテンサイトのうちの1種または2種以上をいうものとする。また、軟質相は、フェライト、ベイナイト、焼戻ベイナイトのうちの1種または2種以上をいうものとする。
In the tempering step, a tempering process is performed in which tempering is performed at a temperature lower than the A c1 transformation point. By performing the tempering treatment, the ductility and toughness are improved and the desired strength and toughness can be adjusted. Note that when the tempering temperature is equal to or higher than the A c1 transformation point, island martensite is generated and toughness is lowered.
The thick steel material obtained by the manufacturing method of the present invention described above has the above-described composition, and the structure at the 1/4 position of the plate thickness has a structure in which the soft phase is dispersed in the base made of the hard phase. Here, the “hard phase” means one or more of bainite, tempered bainite, tempered martensite, and martensite. Further, the soft phase refers to one or more of ferrite, bainite, and tempered bainite.

そして、上記した硬質相からなる基地中に軟質相が分散した組織は、軟質相の平均粒径d(μm)と硬質相と軟質相の硬さの差ΔHV(=(硬質相のビッカース硬さHV)−(軟質相のビッカース硬さHV))とが下記(1)式
(ΔHV)/d ≧ 400 ‥‥‥(1)
(ここで、ΔHV:硬質相のビッカース硬さと前記軟質相のビッカース硬さとの差、d:軟質相の平均粒径d(μm))
を満足する組織である。
The structure in which the soft phase is dispersed in the matrix composed of the hard phase described above has an average particle diameter d (μm) of the soft phase and a difference ΔHV (= (Vickers hardness of the hard phase) of the hard phase and the soft phase. HV h ) − (Vickers hardness HV s of soft phase)) is the following formula (1) (ΔHV) 2 / d ≧ 400 (1)
(Here, ΔHV: difference between the Vickers hardness of the hard phase and the Vickers hardness of the soft phase, d: average particle diameter d (μm) of the soft phase)
It is an organization that satisfies

平均的な組織を呈する板厚の1/4位置において、金属組織を、硬質相中に軟質相が分散し、かつdとΔHVとが、(1)式を満足する組織とすることにより、σwmax/σ0.2が0.8以上となる、所望の耐疲労き裂発生特性を確保することができる。これは、軟質相に発生するき裂の長さが軟質相の微細化にともない小さくなること、および、軟質相と硬質相の硬さ差ΔHVが大きくなるとともに、軟質相に発生したき裂が硬質相に進展しにくくなることによるためと考えられる。dとΔHVとが、(1)式を満足しない場合には、所望の耐疲労き裂発生特性を確保することができなくなる。 By making the metal structure into a structure in which the soft phase is dispersed in the hard phase and d and ΔHV satisfy the expression (1) at the 1/4 position of the plate thickness exhibiting an average structure, σ Desired fatigue crack initiation characteristics with wmax / σ 0.2 of 0.8 or more can be secured. This is because the crack length generated in the soft phase decreases as the soft phase becomes finer, and the hardness difference ΔHV between the soft phase and the hard phase increases, and the crack generated in the soft phase increases. This is thought to be due to the difficulty of progressing to the hard phase. If d and ΔHV do not satisfy the formula (1), the desired fatigue crack resistance cannot be ensured.

なお、軟質相の硬さ、硬質相の硬さは、ビッカース硬さ試験に際し使用する荷重により変化するため、図2に示すように、軟質相内または硬質相内で、圧痕が、K>Hとなるように、荷重を選択して測定するものとする。
また、本発明では、上記した板厚の1/4位置以外の組織は、とくに限定されないが、溶体化処理を施すことにより、板厚方向でほぼ均質な組織となっている。
Since the hardness of the soft phase and the hardness of the hard phase change depending on the load used in the Vickers hardness test, as shown in FIG. 2, the indentation is K> H in the soft phase or the hard phase. The load shall be selected and measured so that
In the present invention, the structure other than the above-described ¼ position of the plate thickness is not particularly limited. However, by performing the solution treatment, the structure is almost homogeneous in the plate thickness direction.

以下、実施例に基づいてさらに本発明を詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

表1に示す組成の鋼素材に、表2に示す条件で溶体化処理工程、熱間圧延工程、再加熱処理工程、あるいはさらに焼戻工程を施し、板厚12〜100mmの厚鋼板(厚鋼材)とした。これら厚鋼板について、組織観察、硬さ試験、引張試験、靭性試験、疲労試験を実施した。試験方法はつぎのとおりとした。
(1)組織観察
得られた厚鋼板から、少なくとも板厚の1/4位置を含むように組織観察用試験片を採取した。そして、組織観察用試験片の、圧延方向に平行な断面を観察面として鏡面研磨し、3%ナイタール腐食液によりエッチングし、板厚の1/4位置について金属組織を観察し、組織の同定を行った。なお、金属組織の観察は、光学顕微鏡(倍率:50〜400倍)を用いて、ランダムに視野数:20視野で行った。そして、各視野で、JIS G 0551(2005)の規定に準拠した線分法(切断法)を用いて、軟質相の粒径dを圧延方向と板厚方向についてそれぞれ測定し、それらの平均値を該厚鋼板の各視野における粒径とし、これら各視野における値の算術平均をその厚鋼板の軟質相の平均粒径dとした。
A steel material having the composition shown in Table 1 is subjected to a solution treatment process, a hot rolling process, a reheating process, or a tempering process under the conditions shown in Table 2 to obtain a thick steel plate having a thickness of 12 to 100 mm (thick steel material). ). These thick steel plates were subjected to structure observation, hardness test, tensile test, toughness test, and fatigue test. The test method was as follows.
(1) Structure observation A specimen for structure observation was collected from the obtained thick steel plate so as to include at least a quarter position of the plate thickness. Then, the cross section parallel to the rolling direction of the specimen for structure observation is mirror-polished with an observation surface, etched with a 3% nital etchant, the metal structure is observed at 1/4 position of the plate thickness, and the structure is identified. went. In addition, observation of the metal structure was performed randomly using 20 optical fields using an optical microscope (magnification: 50 to 400 times). In each field of view, the particle size d of the soft phase was measured in the rolling direction and the plate thickness direction using the line segment method (cutting method) in accordance with the provisions of JIS G 0551 (2005). Is the grain size in each field of view of the thick steel plate, and the arithmetic average of the values in each field of view is the average grain size d of the soft phase of the thick steel plate.

また、上記した組織観察の各視野で、JIS G 0551(2005)の規定に準拠した線分法を用いて、軟質相と硬質相の境界数Bshと全境界数Btとを測定し、BshとBtとの比、Bsh/Bt、を算出した。そして、Bsh/Btが0.70以上である視野が1つ以上存在する場合を硬質相中に軟質相が分散した組織を含む組織であるとした。なお、表中には得られたBsh/Btの最大値を示した。Bsh/Btが0.70未満では、総境界数中に占める軟質相/軟質相の境界数が多くなり、軟質相が分散しているのではなく、基地として存在していると判定した。   In addition, in each of the above-mentioned visual fields for observing the structure, the boundary number Bsh and the total boundary number Bt between the soft phase and the hard phase are measured using a line segment method compliant with JIS G 0551 (2005). The ratio with Bt, Bsh / Bt, was calculated. A case where one or more visual fields having Bsh / Bt of 0.70 or more exist is a structure including a structure in which a soft phase is dispersed in a hard phase. In the table, the maximum value of Bsh / Bt obtained is shown. When Bsh / Bt was less than 0.70, the number of soft phase / soft phase boundaries in the total number of boundaries increased, and it was determined that the soft phases were not dispersed but existed as a base.

(2)硬さ試験
得られた厚鋼板から、板厚の1/4位置を含むように硬さ測定用試験片を採取した。硬さ測定用試験片の、圧延方向に平行な断面を測定面として鏡面研磨し、ビッカース硬さ計を用いて、板厚の1/4位置における硬質相と軟質相の硬さをそれぞれ測定した。なお、軟質相と硬質相の硬さ測定に当たっては、図2に示すように、K>Hとなるように、各試験片ごとに、荷重を選択して測定した。硬さ測定は、硬質相と軟質相について各10ヶ所行い、それらの値の算術平均を、各厚鋼材の軟質相の硬さ(HVs)および硬質相の硬さ(HVh)とした。そして、各厚鋼材における、硬質相と軟質相の硬さの差ΔHV(=HVh−HVs)を算出した。
(2) Hardness test A test piece for hardness measurement was collected from the obtained thick steel plate so as to include a quarter position of the plate thickness. The cross section parallel to the rolling direction of the test piece for hardness measurement was mirror-polished as a measurement surface, and the hardness of the hard phase and the soft phase at the 1/4 position of the plate thickness was measured using a Vickers hardness meter. . In the measurement of the hardness of the soft phase and the hard phase, as shown in FIG. 2, the load was selected and measured for each test piece so that K> H. The hardness was measured at 10 points for each of the hard phase and the soft phase, and the arithmetic average of these values was defined as the soft phase hardness (HVs) and the hard phase hardness (HVh) of each thick steel material. And the difference (DELTA) HV (= HVh-HVs) of the hardness of a hard phase and a soft phase in each thick steel material was computed.

(3)引張試験
得られた厚鋼板から、JIS Z 2201(1998)の規定に準拠して、引張方向が鋼板の圧延方向と直角方向となるように、全厚のJIS 5号引張試験片を採取した。引張試験は、JIS Z 2241(1998)に準拠して行い、0.2%耐力σ0.2、引張強さσTSを求め、静的引張時の引張特性を評価した。
(3) Tensile test In accordance with the provisions of JIS Z 2201 (1998), a full-thickness JIS No. 5 tensile test piece is used so that the tensile direction is perpendicular to the rolling direction of the steel plate. Collected. The tensile test was performed in accordance with JIS Z 2241 (1998), and 0.2% proof stress σ 0.2 and tensile strength σ TS were obtained, and the tensile properties during static tension were evaluated.

(4)靭性試験
得られた厚鋼板から、JIS Z 2242(2005)の規定に準拠して、長手方向が圧延方向に平行方向となるように、Vノッチ試験片を採取し、破面遷移温度vTrsを求め、靭性を評価した。なお、試験片は、板厚Tが20mm以上の場合は、T/4位置、板厚Tが20mm未満の場合はT/2位置から採取した。
(4) Toughness test V-notch specimens were taken from the obtained thick steel plate in accordance with the provisions of JIS Z 2242 (2005) so that the longitudinal direction was parallel to the rolling direction, and the fracture surface transition temperature was obtained. vTrs was determined and toughness was evaluated. The test piece was collected from the T / 4 position when the plate thickness T was 20 mm or more, and from the T / 2 position when the plate thickness T was less than 20 mm.

(5)疲労試験
得られた厚鋼板から、長手方向が圧延方向に直角方向となるように、JIS Z 2201(1998)の規定に準拠して全厚のJIS 5号引張試験片を採取した。これら試験片を用いて、JIS Z 2273(1978)の規定に準拠して疲労試験を実施し、疲労強度を求めた。疲労試験は、大気中にて応力比:0.1で、周波数10Hzのsine波形の応力を負荷して行い、繰返し数が200万回で破断しなかった最大の応力振幅での最大応力σwmaxを求め、疲労強度とした。図3に負荷した応力の波形を模式的に示す。
(5) Fatigue test From the obtained thick steel plate, a full-thickness JIS No. 5 tensile test piece was sampled in accordance with the provisions of JIS Z 2201 (1998) so that the longitudinal direction was perpendicular to the rolling direction. Using these test pieces, a fatigue test was carried out in accordance with the provisions of JIS Z 2273 (1978) to determine the fatigue strength. The fatigue test is performed in the atmosphere with a stress ratio of 0.1 and a stress of sine waveform with a frequency of 10 Hz, and the maximum stress σ wmax at the maximum stress amplitude that did not break after 2 million cycles was obtained. The fatigue strength was determined. FIG. 3 schematically shows the waveform of stress applied.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0005369584
Figure 0005369584

Figure 0005369584
Figure 0005369584

Figure 0005369584
Figure 0005369584

本発明例はいずれも、板厚の1/4位置において所望の組織が確保され、(1)式を満足し、σWmax/σ0.2が0.8以上で、耐疲労き裂発生特性に優れ、しかも、引張強さTS:490MPa以上の強度と、シャルピー衝撃試験の破面遷移温度vTrsが0℃以下の高靭性を有する厚鋼板となっている。
一方、本発明の範囲を外れる比較例は、σWmax/σ0.2が0.8未満で耐疲労き裂発生特性が低下、あるいは強度が不足、あるいは靭性が低下している厚鋼板となっている。
In all of the examples of the present invention, a desired structure is ensured at a 1/4 position of the plate thickness, the expression (1) is satisfied, σ Wmax / σ 0.2 is 0.8 or more, and fatigue crack resistance is excellent. The steel sheet has a tensile strength TS: 490 MPa or more and a high toughness having a fracture surface transition temperature vTrs of 0 ° C. or less in the Charpy impact test.
On the other hand, a comparative example out of the scope of the present invention is a thick steel plate in which σ Wmax / σ 0.2 is less than 0.8 and fatigue crack initiation characteristics are reduced, strength is insufficient, or toughness is reduced.

C含有量が本発明範囲を低く外れる厚鋼板No.11は、強度が不足し、さらに(1)式が満足されず、σWmax/σ0.2が0.8未満と、耐疲労き裂発生特性が低下している。また、C、P、S含有量が本発明範囲を高く外れる厚鋼板No.12は、靭性が低下している。
また、溶体化処理工程における溶体化処理時間が(2)式を満足しない厚鋼板No.13は、成分偏析が残存し、Bsh/Btが0.70未満と所望の、硬質相中に軟質相が分散した組織が形成されず、σWmax/σ0.2が0.8未満と、耐疲労き裂発生特性が低下している。
Thick steel plate No. 11 whose C content deviates from the scope of the present invention is insufficient in strength, and further, the formula (1) is not satisfied, and σ Wmax / σ 0.2 is less than 0.8. doing. Further, the thick steel plate No. 12 whose C, P, and S contents deviate from the scope of the present invention has a high toughness.
In the thick steel plate No. 13 where the solution treatment time in the solution treatment step does not satisfy the formula (2), component segregation remains and Bsh / Bt is less than 0.70 and the desired soft phase is dispersed in the hard phase. As a result, the fatigue crack resistance is reduced when σ Wmax / σ 0.2 is less than 0.8.

また、熱間圧延工程における、再加熱温度、圧下率が本発明範囲を低く外れる厚鋼板No.14は、靭性が低下し、さらに(1)式が満足されず、σWmax/σ0.2が0.8未満と、耐疲労き裂発生特性が低下している。
また、再加熱処理工程における再加熱温度が本発明の範囲を高く外れる厚鋼板No.15は、軟質相が形成されず、所望の組織となっていないため、耐疲労き裂発生特性が低下している。また、再加熱処理工程における再加熱温度が本発明の範囲を低く外れる厚鋼板No.16は、強度が不足し、さらにBsh/Btが0.70未満と所望の、硬質相中に軟質相が分散した組織が形成されず、また(1)式も満足されず、耐疲労き裂発生特性が低下している。
Further, the thick steel plate No. 14 in which the reheating temperature and the reduction ratio are outside the range of the present invention in the hot rolling process has decreased toughness, and further, the formula (1) is not satisfied, and σ Wmax / σ 0.2 is 0.8. If it is less than this value, the fatigue crack resistance is reduced.
In addition, the thick steel plate No. 15 in which the reheating temperature in the reheating treatment step is greatly out of the range of the present invention does not form a soft phase and does not have a desired structure. ing. Further, the thick steel plate No. 16, whose reheating temperature in the reheating treatment step falls outside the range of the present invention, has insufficient strength, and further, the soft phase is dispersed in the hard phase with Bsh / Bt being less than 0.70. The structure is not formed, the formula (1) is not satisfied, and the fatigue crack generation characteristics are deteriorated.

また、再加熱処理工程における再加熱後の冷却速度が、本発明の範囲を低く外れる厚鋼板No.17は、強度が不足し、さらに(1)式を満足せず、耐疲労き裂発生特性が低下している。また、再加熱処理工程における加熱後の冷却停止温度が、本発明の範囲を高く外れる厚鋼板No.18は、強度が不足し、さらに(1)式を満足せず、耐疲労き裂発生特性が低下している。   In addition, the thick steel plate No. 17 whose cooling rate after reheating in the reheating treatment step falls outside the range of the present invention is insufficient in strength, and further does not satisfy the formula (1), and fatigue crack resistance characteristics. Has fallen. In addition, the thick steel plate No. 18 whose cooling stop temperature after heating in the reheating treatment step is outside the range of the present invention is insufficient in strength, and further does not satisfy the formula (1), and fatigue crack resistance characteristics Has fallen.

また、焼戻温度が本発明の好適範囲を高く外れる厚鋼板No.19は、靭性が低下している。   Further, the thick steel plate No. 19 whose tempering temperature deviates from the preferred range of the present invention is high in toughness.

200万回疲労強度σWmaxと静的引張時の0.2%耐力σ0.2との比と、(ΔHV)/dとの関係を示すグラフである。It is a graph which shows the relationship between (ΔHV) 2 / d and the ratio between the 2 million fatigue strength σ Wmax and the 0.2% yield strength σ 0.2 during static tension. 軟質相または硬質相の硬さ測定方法を模式的に示す説明図である。It is explanatory drawing which shows typically the hardness measuring method of a soft phase or a hard phase. 実施例で使用した疲労試験時の負荷応力の波形を模式的に示す説明図である。It is explanatory drawing which shows typically the waveform of the load stress at the time of the fatigue test used in the Example.

Claims (9)

質量%で、
C:0.02〜0.5%、 Si:0.01〜0.55%、
Mn:0.1〜3.0%、 P:0.2%以下、
S:0.05%以下 Sol.Al:0.1%以下、
T.N:0.005%以下
を含み、残部Feおよび不可避的不純物からなる組成を有し、板厚の1/4位置の組織が、JIS G 0551(2005)の規定に準拠した線分法を用いて測定した軟質相と硬質相の境界数Bshと全境界数Btとの比、Bsh/Btの最大値が0.75以上である硬質相からなる基地中に軟質相が分散した組織で、かつ該軟質相の平均粒径d(μm)と前記硬質相のビッカース硬さと前記軟質相のビッカース硬さとの差ΔHVとが下記(1)式を満足する組織であることを特徴とする耐疲労き裂発生特性に優れた厚鋼材。

(ΔHV)/d ≧ 400 ‥‥‥(1)
ここで、ΔHV:硬質相のビッカース硬さと軟質相のビッカース硬さとの差
d:軟質相の平均粒径d(μm)
% By mass
C: 0.02 to 0.5%, Si: 0.01 to 0.55%,
Mn: 0.1 to 3.0%, P: 0.2% or less,
S: 0.05% or less Sol.Al: 0.1% or less,
T.N: Contains 0.005% or less, has a composition consisting of the balance Fe and inevitable impurities, and uses a line segment method that conforms to the provisions of JIS G 0551 (2005) for the structure at 1/4 position of the plate thickness. The ratio of the boundary number Bsh and the total boundary number Bt between the soft phase and the hard phase measured as described above , and the structure in which the soft phase is dispersed in the base composed of the hard phase whose maximum value of Bsh / Bt is 0.75 or more , and Fatigue crack resistance, characterized in that the average particle diameter d (μm) of the soft phase and the difference ΔHV between the Vickers hardness of the hard phase and the Vickers hardness of the soft phase satisfy the following formula (1) Thick steel with excellent generation characteristics.
(ΔHV) 2 / d ≧ 400 (1)
Where ΔHV: difference between Vickers hardness of hard phase and Vickers hardness of soft phase
d: Average particle diameter d (μm) of the soft phase
前記組成に加えてさらに、質量%で、Cu:0.01〜2.0%、Cr:0.01〜3.0%、Mo:0.01〜2.0%、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載の厚鋼材。   In addition to the above composition, Cu: 0.01 to 2.0%, Cr: 0.01 to 3.0%, Mo: 0.01 to 2.0%, Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less, B: Thick steel material according to claim 1, characterized in that the composition contains one or more selected from 0.01% or less. 前記組成に加えてさらに、質量%で、Ni:0.01〜10.0%を含有する組成とすることを特徴とする請求項1または2に記載の厚鋼材。   The thick steel material according to claim 1 or 2, further comprising Ni: 0.01 to 10.0% by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Ca:0.01%以下、REM:0.1%以下のうちから選ばれた1種または2種を含有することを特徴とする請求項1ないし3のいずれかに記載の厚鋼材。   4. In addition to the above composition, the composition further contains one or two selected from Ca: 0.01% or less and REM: 0.1% or less by mass%. Thick steel material described. 質量%で、
C:0.02〜0.5%、 Si:0.01〜0.55%、
Mn:0.1〜3.0%、 P:0.2%以下、
S:0.05%以下 Sol.Al:0.1%以下、
T.N:0.005%以下
を含み、残部Feおよび不可避的不純物からなる組成の鋼素材に、溶体化処理工程、熱間圧延工程、再加熱処理工程を順次施して、厚鋼材とする厚鋼材の製造方法であって、
前記溶体化処理工程を、溶体化処理温度T(K)と溶体化処理時間t(s)とが下記(2)式を満足する溶体化処理を施す工程とし、
前記熱間圧延工程が、前記鋼素材に(Ac3変態点+100℃)以上の温度に再加熱し、Ac3変態点を超える温度域における累積圧下率が50%以上となる熱間圧延を施し、厚鋼材とした後、Ms点以下の温度まで空冷する工程であり、
前記再加熱処理工程が、前記熱間圧延工程を経た厚鋼材に、Ac1変態点以上Ac3変態点未満の温度域の温度まで再加熱し、ついで、10℃/s以上の冷却速度でM点以下の温度まで冷却する再加熱冷却処理を施す工程である、
ことを特徴とする耐疲労き裂発生特性に優れた厚鋼材の製造方法。

t ≧ X/exp(−24438/T)‥‥‥(2)
ここで、t:溶体化処理時間(s)、
X:(鋼素材の肉厚(m))/2、
T:溶体化処理温度(K)
% By mass
C: 0.02 to 0.5%, Si: 0.01 to 0.55%,
Mn: 0.1 to 3.0%, P: 0.2% or less,
S: 0.05% or less Sol.Al: 0.1% or less,
T.N: A steel material containing 0.005% or less and comprising a balance Fe and unavoidable impurities, a solution treatment process, a hot rolling process, and a reheating process process are sequentially performed to obtain a thick steel material. A manufacturing method comprising:
The solution treatment step is a step of performing a solution treatment in which a solution treatment temperature T (K) and a solution treatment time t (s) satisfy the following formula (2):
In the hot rolling process, the steel material is reheated to a temperature of (A c3 transformation point + 100 ° C.) or higher, and hot rolling is performed so that the cumulative rolling reduction in the temperature range exceeding the A c3 transformation point is 50% or more. After the thick steel material is air-cooled to a temperature below the Ms point,
In the reheating treatment step, the thick steel material that has undergone the hot rolling step is reheated to a temperature in the temperature range from the A c1 transformation point to less than the A c3 transformation point, and then at a cooling rate of 10 ° C./s or more. It is a step of performing a reheating cooling process for cooling to a temperature below the s point,
A method for producing a thick steel material having excellent fatigue crack resistance.
Record
t ≧ X 2 / exp (−24438 / T) (2)
Where t: solution treatment time (s),
X: (thickness of steel material (m)) / 2,
T: Solution treatment temperature (K)
前記再加熱処理工程を経た前記厚鋼材に、さらにAc1変態点未満の温度で焼戻する焼戻工程を施すことを特徴とする請求項5に記載の厚鋼材の製造方法。 The method for producing a thick steel material according to claim 5, further comprising a tempering step of tempering the thick steel material that has undergone the reheating treatment step at a temperature lower than the Ac1 transformation point. 前記組成に加えてさらに、質量%で、Cu:0.01〜2.0%、Cr:0.01〜3.0%、Mo:0.01〜2.0%、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項5または6に記載の厚鋼材の製造方法。   In addition to the above composition, Cu: 0.01 to 2.0%, Cr: 0.01 to 3.0%, Mo: 0.01 to 2.0%, Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less, B: It is set as the composition containing 1 type, or 2 or more types chosen from 0.01% or less, The manufacturing method of the thick-steel material of Claim 5 or 6 characterized by the above-mentioned. 前記組成に加えてさらに、質量%で、Ni:0.01〜10.0%を含有する組成とすることを特徴とする請求項5ないし7のいずれかに記載の厚鋼材の製造方法。   The method for producing a thick steel material according to any one of claims 5 to 7, further comprising a composition containing Ni: 0.01 to 10.0% by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Ca:0.01%以下、REM:0.1%以下のうちから選ばれた1種または2種を含有することを特徴とする請求項5ないし8のいずれかに記載の厚鋼材の製造方法。   9. The composition according to claim 5, further comprising one or two selected from Ca: 0.01% or less and REM: 0.1% or less by mass% in addition to the composition. The manufacturing method of the thick steel material of description.
JP2008254092A 2008-09-30 2008-09-30 Thick steel material with excellent fatigue crack resistance and its manufacturing method Active JP5369584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254092A JP5369584B2 (en) 2008-09-30 2008-09-30 Thick steel material with excellent fatigue crack resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254092A JP5369584B2 (en) 2008-09-30 2008-09-30 Thick steel material with excellent fatigue crack resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2010084187A JP2010084187A (en) 2010-04-15
JP5369584B2 true JP5369584B2 (en) 2013-12-18

Family

ID=42248435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254092A Active JP5369584B2 (en) 2008-09-30 2008-09-30 Thick steel material with excellent fatigue crack resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5369584B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592463A (en) * 2019-09-20 2019-12-20 舞阳钢铁有限责任公司 Low-alloy carbon die steel plate and production method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359160B2 (en) * 2008-09-30 2013-12-04 Jfeスチール株式会社 Manufacturing method of thick steel material with excellent fatigue crack resistance
JP6825751B1 (en) * 2019-04-23 2021-02-03 Jfeスチール株式会社 Hot-rolled steel strip for cold roll-formed square steel pipe and its manufacturing method, and cold roll-formed square steel pipe manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721956B2 (en) * 2006-06-06 2011-07-13 株式会社神戸製鋼所 Thick steel plate with excellent base metal toughness and fatigue crack growth characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592463A (en) * 2019-09-20 2019-12-20 舞阳钢铁有限责任公司 Low-alloy carbon die steel plate and production method thereof

Also Published As

Publication number Publication date
JP2010084187A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
JP2011195883A (en) HIGH STRENGTH THICK STEEL PLATE HAVING TENSILE STRENGTH OF 590 MPa OR HIGHER AND EXCELLENT DUCTILITY AND TOUGHNESS, AND METHOD OF PRODUCING THE SAME
JP6064896B2 (en) Steel material with excellent fatigue crack propagation characteristics, method for producing the same, and method for determining steel materials with excellent fatigue crack propagation characteristics
AU2017274993B2 (en) Duplex stainless steel and duplex stainless steel manufacturing method
JP6528895B2 (en) High strength flat steel wire with excellent resistance to hydrogen induced cracking
JP2008202119A (en) High-tensile steel having excellent ductile crack initiation resistance
EP3276026A1 (en) Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
JP2014218707A (en) Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same
JP2011001620A (en) High strength thick steel plate combining excellent productivity and weldability and having excellent drop weight characteristic after pwht, and method for producing the same
JP2007177318A (en) High-tension steel sheet and method for producing the same
JP6036616B2 (en) Steel sheet for welded structure excellent in fatigue crack resistance and method for producing the same
JP2007016302A (en) Method for producing high tensile strength steel sheet having excellent ssc resistance
JPWO2015151468A1 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP5369585B2 (en) Thick steel material with excellent fatigue crack resistance and its manufacturing method
JP5407143B2 (en) Fatigue crack propagation retarding steel and its manufacturing method
JP2005314811A (en) Method for producing steel having excellent ductility and fatigue crack propagation resistance
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP2005314812A (en) Method for producing steel having reduced difference in strength in sheet thickness direction and having excellent fatigue crack propagation property
JP5369584B2 (en) Thick steel material with excellent fatigue crack resistance and its manufacturing method
JP4645461B2 (en) High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
JP2008208406A (en) Steel material having small material anisotropy and excellent fatigue crack propagation properties, and producing method therefor
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP5716419B2 (en) Steel plate with excellent fatigue resistance and method for producing the same
JP2005187934A (en) Steel having excellent fatigue characteristics, and its production method
JP2014095145A (en) Steel sheet for welded structure excellent in weldability and fatigue crack propagation resistance and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5369584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250