JP5369408B2 - Glass for optical element coating, glass-coated light-emitting element, and glass-coated light-emitting device - Google Patents

Glass for optical element coating, glass-coated light-emitting element, and glass-coated light-emitting device Download PDF

Info

Publication number
JP5369408B2
JP5369408B2 JP2007224211A JP2007224211A JP5369408B2 JP 5369408 B2 JP5369408 B2 JP 5369408B2 JP 2007224211 A JP2007224211 A JP 2007224211A JP 2007224211 A JP2007224211 A JP 2007224211A JP 5369408 B2 JP5369408 B2 JP 5369408B2
Authority
JP
Japan
Prior art keywords
glass
emitting device
optical element
main surface
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007224211A
Other languages
Japanese (ja)
Other versions
JP2009018981A (en
Inventor
修治 松本
康子 大崎
伸宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007224211A priority Critical patent/JP5369408B2/en
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to PCT/JP2008/059937 priority patent/WO2008146886A1/en
Priority to EP08776999A priority patent/EP2151872A4/en
Priority to CN200880018040A priority patent/CN101681965A/en
Priority to KR1020097017489A priority patent/KR20100014822A/en
Priority to TW097120256A priority patent/TW200916429A/en
Publication of JP2009018981A publication Critical patent/JP2009018981A/en
Priority to US12/621,572 priority patent/US8174045B2/en
Application granted granted Critical
Publication of JP5369408B2 publication Critical patent/JP5369408B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Glass Compositions (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass-covered light-emitting element which has less difference between its thermal expansion coefficient and that of a semiconductor light-emitting element and is covered by glass having low glass transition point, and also to provide a glass-covered light-emitting device. <P>SOLUTION: The glass-covered light-emitting element comprises essentially 27-35% P<SB>2</SB>O<SB>5</SB>, 25-45% ZnO, 25-40% SnO and 0.1-10% at least one of B<SB>2</SB>O<SB>3</SB>and CaO in mol% based on oxides. The difference between its crystallization peak temperature and the transition temperature is &ge;150&deg;C. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明はガラス、特に、半導体発光素子(発光ダイオード)の被覆に用いられるガラス、そのガラスを用いて被覆されたガラス被覆発光素子及びガラス被覆発光装置に関する。   The present invention relates to glass, in particular, glass used for coating a semiconductor light-emitting element (light-emitting diode), a glass-coated light-emitting element coated with the glass, and a glass-coated light-emitting device.

近年、半導体発光素子を被覆する部材として、TeOを主組成物とするTeO系ガラスが提案されている。しかし、被覆部材として用いられるTeO系ガラスは、400nm以下での透過率が悪く、短波長(365〜405nm)用LED(UV−LED)の封止材としては適していなかった。 In recent years, TeO 2 -based glass containing TeO 2 as a main composition has been proposed as a member for covering a semiconductor light emitting device. However, TeO 2 type glass used as the covering member has poor transmittance at 400nm or less, it was not suitable as a sealing material for LED short wavelength (365~405nm) (UV-LED) .

なお、短波長用LEDの封止材として、P−ZnO系のガラスを用いることを記載している文献がある(特許文献1)。 In addition, there is a document describing the use of P 2 O 5 —ZnO-based glass as a sealing material for LEDs for short wavelengths (Patent Document 1).

国際公開番号 WO2004/082036号International Publication Number WO2004 / 082036

しかしながら、特許文献1は、ガラスの組成物の含有量が記載されておらず、実施できるほどの開示はない。また、特許文献1のガラスは、その熱膨張係数が11.4×10−6/℃であり、半導体発光素子(典型的にはGaN)の積層基板として主に用いられるサファイアの熱膨張係数(約80×10−7/℃)との差が大きく、封止材として実用的ではないという問題点がある。さらに、特許文献1のガラスは、組成物としてSnを本質的に含有していない。そのため、特許文献1のガラスのガラス転移点は、高くなるという問題点がある。 However, Patent Document 1 does not describe the content of the glass composition, and there is no disclosure that can be implemented. Further, the glass of Patent Document 1 has a thermal expansion coefficient of 11.4 × 10 −6 / ° C., and the thermal expansion coefficient of sapphire mainly used as a laminated substrate of a semiconductor light emitting device (typically GaN) ( There is a problem that it is not practical as a sealing material because of a large difference from about 80 × 10 −7 / ° C.). Furthermore, the glass of patent document 1 does not contain Sn essentially as a composition. Therefore, there is a problem that the glass transition point of the glass of Patent Document 1 is increased.

また、ガラス転移温度と結晶化ピーク温度との差が少ないと、封止時に結晶化してしまうという問題点がある。   Further, if the difference between the glass transition temperature and the crystallization peak temperature is small, there is a problem that crystallization occurs at the time of sealing.

本発明の一態様の光学素子被覆用ガラスは、酸化物基準のモル%表示で、P 27〜35%、ZnO 25〜45%、SnO 25〜40%、 0.5〜5%、CaO 0〜10%、B及びCaOから選ばれる少なくとも1種0.5〜10%から本質的になり、結晶化ピーク温度とガラス転移温度との差が150℃以上であることを特徴とする。 The glass for covering an optical element of one embodiment of the present invention is expressed in terms of mol% based on oxide, and P 2 O 5 27 to 35%, ZnO 25 to 45%, SnO 25 to 40%, B 2 O 3 0.5. ˜5%, CaO 0-10% , B 2 O 3 and at least one selected from CaO are essentially 0.5-10 %, and the difference between the crystallization peak temperature and the glass transition temperature is 150 ° C. or more. It is characterized by being.

本発明の一態様のガラス被覆発光素子は、主表面を有する半導体発光素子と、半導体発光素子の主表面を被覆し、酸化物基準のモル%表示で、P 27〜35%、ZnO 25〜45%、SnO 25〜40%、 0.1〜5%、CaO 0〜10%、B及びCaOから選ばれる少なくとも1種0.5〜10%から本質的になり、結晶化ピーク温度とガラス転移温度との差が150℃以上であるガラスとを含むことを特徴とする。 A glass-coated light-emitting element of one embodiment of the present invention covers a semiconductor light-emitting element having a main surface, the main surface of the semiconductor light-emitting element, and P 2 O 5 27 to 35% in terms of oxide-based mol%, ZnO 25~45%, SnO 25~40%, B 2 O 3 0.1~5%, CaO 0~10%, B 2 O 3 and essentially of at least one from 0.5 to 10% selected from CaO And a glass having a difference between the crystallization peak temperature and the glass transition temperature of 150 ° C. or more.

また、本発明の一態様のガラス被覆発光装置は、主表面を有する基板と、主表面と主表面と対向する裏表面とを有し裏表面が基板の主表面と対向するように基板の主表面上に設けられる半導体発光素子と、半導体発光素子の主表面を被覆し、酸化物基準のモル%表示で、P 27〜35%、ZnO 25〜45%、SnO 25〜40%、 0.1〜5%、CaO 0〜10%、B及びCaOから選ばれる少なくとも1種0.5〜10%から本質的になり、結晶化ピーク温度とガラス転移温度との差が150℃以上であるガラスとを含むことを特徴とする。 The glass-coated light-emitting device of one embodiment of the present invention includes a substrate having a main surface, a main surface and a back surface opposite to the main surface, and the main surface of the substrate facing the main surface of the substrate. A semiconductor light-emitting device provided on the surface, and a main surface of the semiconductor light-emitting device are covered, and P 2 O 5 27 to 35%, ZnO 25 to 45%, SnO 25 to 40%, B 2 O 3 0.1~5%, CaO 0~10%, essentially made from at least one from 0.5 to 10% selected from B 2 O 3 and CaO, crystallization peak temperature and the glass transition temperature And a glass having a difference of 150 ° C. or higher.

本発明によれば、半導体発光素子との熱膨張率の差が小さく、ガラス転移点が低く、封止時の結晶化が抑えられた光学素子被覆用ガラス及びそのガラスによって被覆されるガラス被覆発光素子及びガラス被覆発光装置を提供することができる。   According to the present invention, the difference between the thermal expansion coefficient and the semiconductor light emitting element is small, the glass transition point is low, and the glass for optical element coating with suppressed crystallization at the time of sealing, and the glass-coated light emission coated with the glass. An element and a glass-coated light-emitting device can be provided.

本発明の実施形態を、添付した図面を参照して以下に詳細に説明する。図では、対応する部分は、対応する参照符号で示している。下記の実施形態は、一例として示されたもので、本発明の精神から逸脱しない範囲で種々の変形をして実施することが可能である。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the figure, corresponding parts are indicated by corresponding reference numerals. The following embodiment is shown as an example, and various modifications can be made without departing from the spirit of the present invention.

初めに、図面を用いて、ガラス被覆発光装置について説明する。
図1は、本発明のガラス被覆発光装置の断面図である。本発明のガラス被覆発光装置は、被接着部材である半導体発光素子(例えば、発光ダイオード)100と、半導体発光素子100を被覆する被覆部材であるガラス110と、半導体発光素子100が搭載される配線130が形成された基板120とを有する。
First, a glass-coated light-emitting device will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of the glass-coated light-emitting device of the present invention. The glass-covered light-emitting device of the present invention includes a semiconductor light-emitting element (for example, a light-emitting diode) 100 that is an adherend member, a glass 110 that is a cover member that covers the semiconductor light-emitting element 100, and a wiring on which the semiconductor light-emitting element 100 is mounted. And a substrate 120 on which 130 is formed.

半導体発光素子100は、基板101と、LED102と、プラス電極103と、マイナス電極104とを有する。LED102は、波長が360〜480nmの紫外光または青色光を放出するLEDであり、GaNにInを添加したInGaNを発光層とする量子井戸構造のLED(InGaN系LED)である。基板101の熱膨張係数(α)は、70×10−7〜90×10−7/℃である。通常、基板101として熱膨張係数(α)が約80×10−7/℃であるサファイア基板が使用される。 The semiconductor light emitting device 100 includes a substrate 101, an LED 102, a plus electrode 103, and a minus electrode 104. The LED 102 is an LED that emits ultraviolet light or blue light having a wavelength of 360 to 480 nm, and is an LED (InGaN-based LED) having a quantum well structure in which InGaN obtained by adding In to GaN is a light emitting layer. The thermal expansion coefficient (α) of the substrate 101 is 70 × 10 −7 to 90 × 10 −7 / ° C. Usually, a sapphire substrate having a thermal expansion coefficient (α) of about 80 × 10 −7 / ° C. is used as the substrate 101.

次に、本発明の光学素子被覆用ガラスについて説明する。
本発明の光学素子被覆用ガラスのガラス転移点(Tg)は、好ましくは290℃以上、より好ましくは300℃以上、特に好ましくは320℃以上である。なお、ガラス転移点(Tg)が290℃未満では、ZnOの含有が少なくなり、および/またはPを多く含有することになり、耐水性が悪くなるおそれがある。好ましくは400℃以下、より好ましくは360℃以下である。Tgが高くなると封止温度も高くなる。
Next, the glass for coating an optical element of the present invention will be described.
The glass transition point (Tg) of the glass for coating an optical element of the present invention is preferably 290 ° C. or higher, more preferably 300 ° C. or higher, and particularly preferably 320 ° C. or higher. If the glass transition point (Tg) is less than 290 ° C., the content of ZnO decreases and / or the content of P 2 O 5 increases, which may deteriorate the water resistance. Preferably it is 400 degrees C or less, More preferably, it is 360 degrees C or less. As Tg increases, the sealing temperature also increases.

本発明の光学素子被覆用ガラスの結晶化ピーク温度(Tc)は、好ましくは480℃以上、より好ましくは500℃以上、特に好ましくは520℃以上である。なお、結晶化ピーク温度(Tc)が480℃未満では、封止時にガラスが結晶化して透明にならないおそれがある。   The crystallization peak temperature (Tc) of the optical element coating glass of the present invention is preferably 480 ° C. or higher, more preferably 500 ° C. or higher, and particularly preferably 520 ° C. or higher. If the crystallization peak temperature (Tc) is less than 480 ° C., the glass may be crystallized and not transparent at the time of sealing.

結晶化ピーク温度とガラス転移温度との差<Tc−Tg>は、好ましくは150℃以上、より好ましくは185℃以上、特に好ましくは200℃以上である。なお、結晶化ピーク温度とガラス転移温度との差が150℃未満であると、封止時に結晶化されてしまうおそれがある。なお、差<Tc−Tg>が∞である、つまりTcのピークが観察されないことは、完全混和液相になるまでに結晶化が起こらないことである。ただし、Tc測定時の昇温速度がピーク強度に影響する。ここで想定しているのはTc測定の昇温速度を1〜10℃/分を想定している。   The difference <Tc−Tg> between the crystallization peak temperature and the glass transition temperature is preferably 150 ° C. or higher, more preferably 185 ° C. or higher, and particularly preferably 200 ° C. or higher. If the difference between the crystallization peak temperature and the glass transition temperature is less than 150 ° C., crystallization may occur during sealing. Note that the difference <Tc−Tg> is ∞, that is, that the peak of Tc is not observed means that crystallization does not occur until the completely mixed liquid phase is obtained. However, the rate of temperature increase during Tc measurement affects the peak intensity. Here, it is assumed that the temperature rising rate of Tc measurement is 1 to 10 ° C./min.

本発明の光学素子被覆用ガラスの熱膨張係数(α)は、105×10−7/℃以下、より好ましくは95×10−7/℃以下、特に好ましくは90×10−7/℃以下である。なお、熱膨張係数(α)は、70×10−7/℃未満では、ガラス転移点を上昇させる。好ましくは、70×10−7/℃以上、より好ましくは75×10−7/℃以上、特に好ましくは80×10−7/℃以上である。また、熱膨張係数(α)は、105×10−7/℃超の場合、ガラスを軟化させて半導体発光素子を封止し、室温まで冷却する過程またはそれ以降に、ガラスの半導体発光素子に接する部分を起点とした割れが発生し、光の取り出し効率を低下させるまたは半導体発光素子が大気の湿分に晒されるおそれがある。 The thermal expansion coefficient (α) of the glass for coating an optical element of the present invention is 105 × 10 −7 / ° C. or less, more preferably 95 × 10 −7 / ° C. or less, and particularly preferably 90 × 10 −7 / ° C. or less. is there. If the thermal expansion coefficient (α) is less than 70 × 10 −7 / ° C., the glass transition point is raised. Preferably, it is 70 × 10 −7 / ° C. or more, more preferably 75 × 10 −7 / ° C. or more, and particularly preferably 80 × 10 −7 / ° C. or more. When the thermal expansion coefficient (α) exceeds 105 × 10 −7 / ° C., the glass is softened to seal the semiconductor light emitting device and cooled to room temperature, or after that, the glass semiconductor light emitting device There is a possibility that cracks starting from the contacted part may occur, reducing the light extraction efficiency or exposing the semiconductor light emitting element to atmospheric moisture.

以下、本発明のガラス被覆発光素子及びガラス被覆発光装置で用いられるガラス組成をモル%を単に%と表記して説明する。   Hereinafter, the glass composition used in the glass-coated light-emitting element and the glass-coated light-emitting device of the present invention will be described with mol% simply expressed as%.

は、ガラスを安定化させる成分であり、必須である。27%未満ではTgが高くなるおそれがある。好ましくは30%以上である。一方、35%超では、装着部の耐水性が低下するおそれがある。好ましくは33%以下、より好ましくは31%以下である。 P 2 O 5 is a component that stabilizes the glass and is essential. If it is less than 27%, Tg tends to be high. Preferably it is 30% or more. On the other hand, if it exceeds 35%, the water resistance of the mounting portion may be lowered. Preferably it is 33% or less, More preferably, it is 31% or less.

ZnOは、耐水性を向上させ、熱膨張係数を低下させる等、ガラスを安定化させる成分であり、必須である。25%未満では熱膨張係数が大きくなりすぎ、ガラス板の熱膨張係数との整合性が得られなくなり、割れやすくなるおそれがある。好ましくは、28%以上、より好ましくは30%以上、特に好ましくは32%以上である。一方、45%超では失透が析出しやすくなり、さらにTgが高くなりすぎる。好ましくは40%以下、より好ましくは38%以下、特に好ましくは36%以下である。   ZnO is a component that stabilizes the glass, such as improving water resistance and reducing the thermal expansion coefficient, and is essential. If it is less than 25%, the thermal expansion coefficient becomes too large, the consistency with the thermal expansion coefficient of the glass plate cannot be obtained, and there is a possibility that the glass sheet tends to break. Preferably, it is 28% or more, more preferably 30% or more, and particularly preferably 32% or more. On the other hand, if it exceeds 45%, devitrification tends to precipitate, and Tg becomes too high. It is preferably 40% or less, more preferably 38% or less, and particularly preferably 36% or less.

SnOは、流動性を増す効果があり、25%未満では軟化点が高くなりすぎ、流動性が悪くなるため、装着部の強度と気密性が低下するおそれがある。好ましくは28%以上、より好ましくは30%以上、特に好ましくは32%以上である。一方、40%超ではガラス化が困難になる。好ましくは38%以下、より好ましくは35%以下である。   SnO has the effect of increasing the fluidity, and if it is less than 25%, the softening point becomes too high and the fluidity deteriorates, so that the strength and airtightness of the mounting portion may be lowered. Preferably it is 28% or more, more preferably 30% or more, and particularly preferably 32% or more. On the other hand, if it exceeds 40%, vitrification becomes difficult. Preferably it is 38% or less, More preferably, it is 35% or less.

は必須である。ガラスを安定化させるために、または差<Tc−Tg>を大きくするために5%まで含有する。5%超ではTgが高くなりすぎる、または屈折率が小さくなる、さらに耐水性等の化学的耐久性が低下するおそれがある。好ましくは4%以下、より好ましくは3%以下、特に好ましくは2%以下である。Bを含有する場合その含有量は、0.1%以上、特に好ましくは0.5%以上である。 B 2 O 3 is essential . In order to stabilize the glass, or containing up to 5% in order to increase the difference <Tc-Tg>. If it exceeds 5%, Tg may be too high, the refractive index may be low, and chemical durability such as water resistance may be deteriorated. It is preferably 4% or less, more preferably 3% or less, and particularly preferably 2% or less. When it contains B 2 O 3 , its content is 0 . 1% or more, particularly preferably 0.5% or more.

CaOは必須ではないが、耐水性を向上させ、熱膨張係数を低下させるために、または差<Tc−Tg>を大きくするために10%まで含有しても良い。10%超ではガラスが不安定になる、またはTgが高くなりすぎる。好ましくは5%以下、より好ましくは3%以下、特に好ましくは2%以下である。CaOを含有する場合その含有量は、好ましくは0.1%以上、特に好ましくは0.5%以上である。   CaO is not essential, but may be contained up to 10% in order to improve water resistance and lower the coefficient of thermal expansion, or to increase the difference <Tc-Tg>. If it exceeds 10%, the glass becomes unstable or the Tg becomes too high. Preferably it is 5% or less, More preferably, it is 3% or less, Most preferably, it is 2% or less. When CaO is contained, its content is preferably at least 0.1%, particularly preferably at least 0.5%.

Alは必須ではないが、耐水性を向上させ、ガラスを安定化させるために、3%まで含有しても良い。3%超ではTgが高くなりすぎる、または溶融ガラスの粘度が高くなり、液相温度が高くなる。つまり、半導体光学素子を封止することが困難となる。好ましくは2%以下、より好ましくは1%以下である。Alを含有する場合その含有量は、好ましくは0.1%以上、特に好ましくは0.5%以上である。 Al 2 O 3 is not essential, but may be incorporated up to 3% in order to improve water resistance and stabilize the glass. If it exceeds 3%, Tg becomes too high, or the viscosity of the molten glass becomes high and the liquidus temperature becomes high. That is, it becomes difficult to seal the semiconductor optical element. Preferably it is 2% or less, More preferably, it is 1% or less. When Al 2 O 3 is contained, its content is preferably at least 0.1%, particularly preferably at least 0.5%.

Inは必須ではないが耐水性を向上させ、ガラスを安定化させるために、3%まで含有しても良い。3%超ではTgが高くなりすぎる、または溶融ガラスの粘度が高くなり、液相温度が高くなる。つまり、半導体光学素子を封止することが困難となる。好ましくは2%以下、より好ましくは1%以下である。Inを含有する場合その含有量は、好ましくは0.1%以上、特に好ましくは0.5%以上である。 In 2 O 3 is not essential, but may be incorporated up to 3% in order to improve water resistance and stabilize the glass. If it exceeds 3%, Tg becomes too high, or the viscosity of the molten glass becomes high and the liquidus temperature becomes high. That is, it becomes difficult to seal the semiconductor optical element. Preferably it is 2% or less, More preferably, it is 1% or less. When In 2 O 3 is contained, its content is preferably at least 0.1%, particularly preferably at least 0.5%.

Laは必須ではないが耐水性を向上させ、ガラスを安定化させるために、3%まで含有しても良い。3%超ではTgが高くなりすぎる、または溶融ガラスの粘度が高くなり、液相温度が高くなる。つまり、半導体光学素子を封止することが困難となる。好ましくは2%以下、より好ましくは1%以下である。Laを含有する場合その含有量は、好ましくは0.1%以上、特に好ましくは0.5%以上である。 La 2 O 3 is not essential, but may be contained up to 3% in order to improve water resistance and stabilize the glass. If it exceeds 3%, Tg becomes too high, or the viscosity of the molten glass becomes high and the liquidus temperature becomes high. That is, it becomes difficult to seal the semiconductor optical element. Preferably it is 2% or less, More preferably, it is 1% or less. When La 2 O 3 is contained, its content is preferably at least 0.1%, particularly preferably at least 0.5%.

及びCaOから選ばれる少なくとも1種は、差<Tc−Tg>を大きくさせる成分であり、必須である。ここで、いずれか1種若しくはいずれか2種以上の組み合わせによる成分は、含量で0.1%以上である。好ましくは0.5%以上、特に好ましくは1%以上である。また、10%超ではTgが高くなりすぎる。好ましくは、5%以下である。 At least one selected from B 2 O 3 and CaO is a component that increases the difference <Tc−Tg> and is essential. Here, the component by any 1 type or the combination of any 2 or more types is 0.1% or more by content. Preferably it is 0.5% or more, Most preferably, it is 1% or more. If it exceeds 10%, the Tg is too high. Preferably, it is 5% or less.

Al、In及びLaから選ばれる少なくとも1種は、必須ではないが、ガラスを安定化させる成分である。ここで、いずれか1種若しくはいずれか2種以上の組み合わせによる成分は、含量で0.1%以上である。特に好ましくは0.5%以上である。また、7%超ではTgが高くなりすぎる。好ましくは、5%以下である。 At least one selected from Al 2 O 3 , In 2 O 3 and La 2 O 3 is not essential, but is a component that stabilizes the glass. Here, the component by any 1 type or the combination of any 2 or more types is 0.1% or more by content. Particularly preferably, it is 0.5% or more. If it exceeds 7%, Tg becomes too high. Preferably, it is 5% or less.

本発明のガラス被覆光学素子及びガラス被覆発光装置で用いられるガラスは本質的に上記成分からなるが、本発明の目的を損なわない範囲でその他の成分、例えば、MgO、SrO、Bi、Y、Gd、Ce、CeO、TiO、TeO、SiO、Ta、WO等を添加しても良い。なお、本発明のガラスは、PbOを実質的に含有しないことが好ましい。 The glass used in the glass-coated optical element and the glass-coated light-emitting device of the present invention consists essentially of the above components, but other components such as MgO, SrO, Bi 2 O 3 , and the like within a range not impairing the object of the present invention. Y 2 O 3 , Gd 2 O 3 , Ce 2 O 3 , CeO 2 , TiO 2 , TeO 2 , SiO 2 , Ta 2 O 5 , WO 3 or the like may be added. In addition, it is preferable that the glass of this invention does not contain PbO substantially.

基板120は、例えば、純度98.0%〜99.5%、厚さ0.5mm〜1.2mmの矩形のアルミナ基板である。純度99.0%〜99.5%、厚さ0.7mm〜1.0mmの正方形のアルミナ基板が好ましい。なお、基板120の表面に形成される配線130は、金ペーストにより製造された金配線である。   The substrate 120 is, for example, a rectangular alumina substrate having a purity of 98.0% to 99.5% and a thickness of 0.5 mm to 1.2 mm. A square alumina substrate having a purity of 99.0% to 99.5% and a thickness of 0.7 mm to 1.0 mm is preferable. The wiring 130 formed on the surface of the substrate 120 is a gold wiring manufactured by a gold paste.

(実施例1)
例1〜例18については、表中のモル%で示される組成となるように、正リン酸水溶液(85% HPO)とZnO及びSnO粉末原料を調合して、脱水後に正リン酸がPになった状態で全成分の合計が100gになる量を用意する。次に、前記の粉末原料と約1gのサッカロースを混合し、テフロン(登録商標)容器で約200mlのイオン交換水と混合し、スラリーを作成する。スラリーをテフロン(登録商標)製スターラーで攪拌しながら、正リン酸水溶液を混入する。その際に反応による発熱があるため、水分の突沸が起きないように、注意深くゆっくりと正リン酸水溶液を注ぐ必要がある。続いて、混合物をテフロン(登録商標)シートを引いたステンレス製バットに流しだした後に、換気しながら200℃で3時間乾燥させ、クッキー状の固形物を得た。
Example 1
For Examples 1 to 18, a normal phosphoric acid aqueous solution (85% H 3 PO 4 ) and ZnO and SnO powder raw materials were prepared so as to have a composition represented by mol% in the table, and after dehydration, normal phosphoric acid There is prepared an amount that the total is 100g of all components in a condition that the P 2 O 5. Next, the powder raw material and about 1 g of saccharose are mixed and mixed with about 200 ml of ion-exchanged water in a Teflon (registered trademark) container to prepare a slurry. While stirring the slurry with a Teflon (registered trademark) stirrer, a normal phosphoric acid aqueous solution is mixed. At that time, there is an exotherm due to the reaction, so it is necessary to carefully and slowly pour the normal phosphoric acid aqueous solution so that no sudden boiling of water occurs. Subsequently, the mixture was poured into a stainless steel vat with a Teflon (registered trademark) sheet, and then dried at 200 ° C. for 3 hours with ventilation to obtain a cookie-like solid.

前記固形物を石英製るつぼに入れ、石英製ふたを置き、1100℃で40分間溶解した。この際、石英棒で数回攪拌して溶融ガラスを均質化した。均質化した溶融ガラスは、カーボン型に流し出して板状に成形した。この板状のガラスは直ちに380℃の別の電気炉に入れその温度に1時間保持後12時間かけて室温まで冷却した。   The solid matter was put in a quartz crucible, a quartz lid was placed, and the solid matter was melted at 1100 ° C. for 40 minutes. At this time, the molten glass was homogenized by stirring several times with a quartz rod. The homogenized molten glass was poured out into a carbon mold and formed into a plate shape. The plate-like glass was immediately put in another electric furnace at 380 ° C., kept at that temperature for 1 hour, and then cooled to room temperature over 12 hours.

なお、原料に正リン酸を用いずに、リン酸スズ、リン酸カルシウム、リン酸アルミニウム等の粉末原料を用いることもできる。この場合は粉末の混合以降の乾燥工程は省略することができる。   In addition, powder raw materials, such as a tin phosphate, a calcium phosphate, an aluminum phosphate, can also be used without using orthophosphoric acid for a raw material. In this case, the drying process after mixing of the powder can be omitted.

ここで、例2、例4〜例12及び例15、例17は実施例であり、例13〜例14は比較例である。また、例1、例3、例16及び例18は参考例である。 Here, Example 2, Example 4 to Example 12 and Example 15 , and Example 17 are examples, and Examples 13 to 14 are comparative examples. Examples 1, 3, 16, and 18 are reference examples.

得られたガラスについて、ガラス転移点Tg(単位:℃)、結晶化ピーク温度Tc(単位:℃)、熱膨張係数α(単位:10−7/℃)、封止温度(単位:℃)、封止時の結晶化、失透を以下の測定法によって、測定した。
Tg:粉末状に加工したサンプル250mgを白金パンに充填し、リガク社製示差熱分析装置Thermo Plus TG8110(商品名)により、10℃/分の昇温速度で測定した。
Tc:上記で示した示差熱分析装置により、Tg測定と同時に測定した。
α:直径5mm、長さ20mmの円柱状に加工したサンプルを、熱膨張計(ブルカーエイエックスエス社製水平示差検出式熱膨張計TD5010)を用いて、10℃/分の昇温速度で測定した。25〜250℃での膨張係数を25℃刻みで求め、その平均値をαとした。
封止温度:流動が始まり、ガラス融液が(半)球形になる温度。Tg+155±10℃。
封止時の結晶化:差<Tc−Tg>が150℃以下を○とした。
失透:ガラスをカーボン方に流しだし、固化するまでの間に、目視でガラス内部に結晶析出が確認できないものを○とした。
About the obtained glass, glass transition point Tg (unit: ° C), crystallization peak temperature Tc (unit: ° C), thermal expansion coefficient α (unit: 10-7 / ° C), sealing temperature (unit: ° C), Crystallization and devitrification at the time of sealing were measured by the following measuring method.
Tg: 250 mg of a sample processed into a powder form was filled in a platinum pan, and measured with a differential thermal analyzer Thermo Plus TG8110 (trade name) manufactured by Rigaku Corporation at a heating rate of 10 ° C./min.
Tc: Measured simultaneously with the Tg measurement by the differential thermal analyzer shown above.
α: A sample processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm was measured at a rate of temperature increase of 10 ° C./min using a thermal dilatometer (Horizontal differential detection type thermal dilatometer TD5010 manufactured by Bruker AXS). did. The expansion coefficient at 25 to 250 ° C. was determined in increments of 25 ° C., and the average value was taken as α.
Sealing temperature: The temperature at which flow begins and the glass melt becomes (semi) spherical. Tg + 155 ± 10 ° C.
Crystallization at the time of sealing: The difference <Tc-Tg> is 150 ° C. or less.
Devitrification: The glass was allowed to flow into the carbon direction, and the crystal precipitation was not confirmed visually inside the glass until solidification was evaluated as ◯.

結果を表1〜表3に示す。   The results are shown in Tables 1 to 3.

Figure 0005369408
Figure 0005369408

Figure 0005369408
Figure 0005369408

Figure 0005369408
Figure 0005369408

例12のガラスを厚みが約1.5mmになるように加工し、その両面を鏡面研磨した。その後、ガラス板を厚みが約1.5mm、大きさが約3mm×約3mmであるガラス板に切断加工した。   The glass of Example 12 was processed to have a thickness of about 1.5 mm, and both surfaces thereof were mirror-polished. Thereafter, the glass plate was cut into a glass plate having a thickness of about 1.5 mm and a size of about 3 mm × about 3 mm.

一方、金の配線パターンを形成したアルミナ基板(厚み:1mm、大きさ:14mm×14mm)と豊田合成社製LED(商品名:E1C60−0B011−03)に接続バンプを形成したものとを用意し、アルミナ基板にこのLEDをフリップチップ実装した。そして、ガラスと基板との界面に発生する気泡を抑制するために、LEDを実装したアルミナ基板を電気炉(IR加熱装置)に入れ、600℃で加熱処理をした。昇温速度は300℃/分、600℃での保持時間は2分、降温速度は300℃/分に設定した。なお、ガラスと基板との界面に発生する気泡は、ガラスを軟化させる場合、ガラスが基板表面に付着している有機汚染物質に反応して発生する。そして、この発生した気泡は、半導体発光素子から発した光を屈折させるので、発光装置の輝度を低下させたり、発光装置の配光分布を変化させるおそれがある。そのため、ガラスでLEDを被覆する前に、LEDを搭載した基板を加熱し、基板表面に付着している有機汚染物質を減少させ、気泡の発生を抑制している。数々の実験によれば、加熱温度は、600℃前後が好ましい。また、加熱時間は、LEDに対する熱の影響を考慮すると、2分間前後が好ましい。   On the other hand, an alumina substrate (thickness: 1 mm, size: 14 mm × 14 mm) on which a gold wiring pattern is formed and a Toyoda Gosei LED (trade name: E1C60-0B011-03) with connection bumps are prepared. The LED was flip-chip mounted on an alumina substrate. And in order to suppress the bubble which generate | occur | produces in the interface of glass and a board | substrate, the alumina substrate which mounted LED was put into the electric furnace (IR heating apparatus), and it heat-processed at 600 degreeC. The temperature rising rate was set to 300 ° C./min, the holding time at 600 ° C. was set to 2 minutes, and the temperature decreasing rate was set to 300 ° C./min. Note that bubbles generated at the interface between the glass and the substrate are generated when the glass is softened in response to organic contaminants attached to the substrate surface. The generated bubbles refract light emitted from the semiconductor light emitting element, which may reduce the luminance of the light emitting device or change the light distribution of the light emitting device. Therefore, before covering the LED with glass, the substrate on which the LED is mounted is heated to reduce organic contaminants adhering to the substrate surface, thereby suppressing the generation of bubbles. According to numerous experiments, the heating temperature is preferably around 600 ° C. The heating time is preferably around 2 minutes considering the influence of heat on the LED.

このフリップチップ実装したLEDの上に蛍光体分散ガラス板を載置したものを電気炉に入れ、毎分100℃の速度で490℃まで昇温しその温度に2分間保持し、ガラス板を軟化流動させてLEDを被覆した。その後、毎分100℃の速度で冷却を行った。   A glass with a phosphor-dispersed glass plate placed on this flip-chip mounted LED is placed in an electric furnace, heated to 490 ° C. at a rate of 100 ° C. per minute and held at that temperature for 2 minutes to soften the glass plate. The LED was coated by flowing. Thereafter, cooling was performed at a rate of 100 ° C. per minute.

LEDを被覆しているガラスを目視観察したところその表面付近には泡は認められなかった。   When the glass covering the LED was visually observed, no bubbles were found near the surface.

このようにして得られたガラス被覆光学素子に直流電圧を印加したところ、青色の発光が確認できた。発光開始電圧は2.2〜2.4Vであり、ベアチップに対するものとほぼ同じであった。また、表4に示すように、封止前後の電流−電圧測定の結果も有意な差は無かった。このことからLED素子発光層に損傷がないことがわかる。   When a DC voltage was applied to the glass-coated optical element thus obtained, blue light emission was confirmed. The emission start voltage was 2.2 to 2.4 V, which was almost the same as that for the bare chip. In addition, as shown in Table 4, there was no significant difference in the results of current-voltage measurement before and after sealing. This shows that the LED element light emitting layer is not damaged.

Figure 0005369408
Figure 0005369408

(実施例2)
例12において、正リン酸水溶液ではなく、リン酸亜鉛の粉末原料を用い、他は実施例1と同様な原料で調合した。また、石英棒で攪拌するのではなく、Nの不活性ガスでバブリングをした。なお、不活性ガスとしてNではなく、Arでも良いことは言うまでもない。
(Example 2)
In Example 12, the powder raw material of zinc phosphate was used instead of the normal phosphoric acid aqueous solution, and the other materials were prepared in the same manner as in Example 1. Further, instead of stirring with a quartz rod, bubbling with an inert gas of N 2 was performed. Needless to say, Ar may be used as the inert gas instead of N 2 .

得られたガラスについて、脱水効果、Sn価数、ガラス転移点Tg(単位:℃)の分析を下記の手法で行った。なお、ガラス転移点Tgについては上述した手法と同様であるため、その手法についての説明は割愛する。   The obtained glass was analyzed for dehydration effect, Sn valence, and glass transition point Tg (unit: ° C) by the following method. Since the glass transition point Tg is the same as that described above, the description of the method is omitted.

Sn価数:Sn−メスバウアー分光の測定方法により、Sn−レドックスの値を測定した。
ここで、Sn−メスバウアー分光の測定方法について説明する。
119mSnから119Snへのエネルギー遷移に伴って発生するγ線(23.8keV)をプローブにして、透過法(ガラス試料を透過したγ線を計測)により、試料中のSnの2価と4価の存在割合(Sn−レドックス)を測定した。具体的には、以下の通りである。
放射線源のγ線出射口、ガラス試料、Pdフィルター、気体増幅比例計数管(LND社製、型番45431)の受光部を300〜800mm長の直線上に配置した。
放射線源は、10mCiの119mSnを用い、光学系の軸方向に対して放射線源を運動させ、ドップラー効果によるγ線のエネルギー変化を起こさせた。放射線源の速度はトランスデューサー(東陽リサーチ社製)を用いて、光学系の軸方向に−10〜+10mm/秒の速度で振動するように調整した。
ガラス試料は、1〜2mmの厚さのガラス平板を用いた。
Pdフィルターは、気体増幅比例計数管によるγ線の計測精度を向上させるためのものであり、γ線がガラス試料に照射された際にガラス試料から発生する特性X線を除去する厚さ50μmのPd箔である。
気体増幅比例計数管は、受光したγ線を検出するものである。気体増幅比例計数管からのγ線量を示す電気信号を増幅装置(関西電子社製)で増幅して受光信号を検出した。マルチチャンネルアナライザー(Wissel社CMCA550)で上記の速度情報と連動させた。
気体増幅比例計数管からの検出信号を縦軸に、運動している放射線源の速度を横軸に表記することで、スペクトルが得られる(メスバウアー分光学の基礎と応用 45〜64頁 佐藤博敏・片田元己共著 学会出版)。評価可能な信号/雑音比が得られるまでに、積算時間は5時間から2日を必要とした。
0mm/秒 付近に出現するピークがSnの4価の存在を示し、2.5mm/秒と4.5mm/秒 付近に出現する2つに***したピークが2価の存在を示す。それぞれのピーク面積に補正係数(Journal of Non−Crystaline Solids 337(2004年) 232−240頁 「The effect of alumina on the Sn2+/Sn4+ redox equilibrium and the incorporation of tin in NaO/Al/SiO melts」 Darija Benner、他共著)(Snの4価:0.22、Snの2価:0.49)を乗じたものの割合を計算し、2価のSn割合をSn−レドックス値とした。
Sn valence: The value of Sn-redox was measured by the measuring method of Sn-Mossbauer spectroscopy.
Here, a measurement method of Sn-Mossbauer spectroscopy will be described.
119m gamma rays generated due to the energy transition from Sn to 119 Sn a (23.8KeV) in the probe, by a transmission method (measuring the gamma-rays transmitted through the glass sample), with a divalent Sn in the sample 4 The abundance ratio (Sn-redox) was measured. Specifically, it is as follows.
The γ-ray exit of the radiation source, a glass sample, a Pd filter, and a light receiving portion of a gas amplification proportional counter (manufactured by LND, model number 45431) were arranged on a straight line having a length of 300 to 800 mm.
As the radiation source, 119m Sn of 10mCi was used, and the radiation source was moved with respect to the axial direction of the optical system to cause the energy change of γ rays due to the Doppler effect. The speed of the radiation source was adjusted by using a transducer (manufactured by Toyo Research Co., Ltd.) so as to vibrate at a speed of −10 to +10 mm / sec in the axial direction of the optical system.
As a glass sample, a glass flat plate having a thickness of 1 to 2 mm was used.
The Pd filter is for improving the measurement accuracy of γ rays by a gas amplification proportional counter, and has a thickness of 50 μm for removing characteristic X-rays generated from the glass sample when the γ ray is irradiated on the glass sample. Pd foil.
The gas amplification proportional counter detects the received γ-rays. An electric signal indicating the γ dose from the gas amplification proportional counter was amplified by an amplifying device (manufactured by Kansai Electronics Co., Ltd.) to detect a light reception signal. The speed information was linked with a multi-channel analyzer (CMSEL 550 by Wissel).
The spectrum is obtained by expressing the detection signal from the gas amplification proportional counter on the vertical axis and the velocity of the moving radiation source on the horizontal axis (Mossbauer spectroscopy basics and applications, pages 45-64, Hirotoshi Sato)・ Motomi Katada co-authored by the Society). The integration time required 5 hours to 2 days before an evaluable signal / noise ratio was obtained.
A peak appearing near 0 mm / sec indicates the presence of tetravalent Sn, and a split peak appearing near 2.5 mm / sec and 4.5 mm / sec indicates the presence of bivalent. To each of the peak area correction coefficient (Journal of Non-Crystaline Solids 337 (2004 years), pp. 232-240 "The effect of alumina on the Sn 2+ / Sn 4+ redox equilibrium and the incorporation of tin in Na 2 O / Al 2 O 3 / SiO 2 melts ”(Darija Benner, et al.) (Sn tetravalent: 0.22, Sn divalent: 0.49), and the ratio of the bivalent Sn is calculated as the Sn-redox value. It was.

分析により得られた評価結果を、表5及び表6に示す。表5はSn原子の全量に対する2価のSnの割合を示す結果を、表6はガラス転移点Tgの測定結果を示す。   The evaluation results obtained by the analysis are shown in Tables 5 and 6. Table 5 shows the results showing the ratio of divalent Sn to the total amount of Sn atoms, and Table 6 shows the measurement results of the glass transition point Tg.

Figure 0005369408
Figure 0005369408

Figure 0005369408
Figure 0005369408

表5からわかるように、実施例1及び実施例2のいずれもSn2+の存在率が90%を超えることがわかった。特に、実施例2の場合は、Sn2+の存在率が99%超となった。つまり、Sn4+はほとんど存在していないことなる。ガラスの中のSn4+は、Sn2+に比べ、ガラスの骨格構造を強く安定化させる効果がある。そのため、Sn4+は、Sn2+に比べ、骨格構造が安定しているので、ガラス転移温度等が高くなる。Sn原子の全量中のSn4+の存在割合が少ないほど、言い換えればSn2+の存在割合が多いほどガラス転移温度は低くなる。そのため、表6に示すように、本件発明は、ガラス転移点Tgが10℃ぐらい低くなるという効果を得た。 As can be seen from Table 5, it was found that the presence rate of Sn 2+ exceeded 90% in both Example 1 and Example 2. In particular, in the case of Example 2, the abundance ratio of Sn 2+ exceeded 99%. That is, Sn 4+ hardly exists. Sn 4+ in the glass has an effect of strongly stabilizing the skeletal structure of the glass as compared with Sn 2+ . Therefore, Sn 4+ has a higher skeletal structure than Sn 2+ and thus has a higher glass transition temperature and the like. The smaller the proportion of Sn 4+ in the total amount of Sn atoms, in other words, the higher the proportion of Sn 2+ , the lower the glass transition temperature. Therefore, as shown in Table 6, this invention acquired the effect that the glass transition point Tg became low about 10 degreeC.

本発明の光学素子被覆用ガラスは、液晶パネル用バックライト光源、一般照明や自動車用ヘッドライドなどに用いられるLED素子の封止に利用できる。   The glass for coating an optical element of the present invention can be used for sealing LED elements used for backlight light sources for liquid crystal panels, general illumination, automobile headlights, and the like.

本発明のガラス被覆発光装置の断面図である。It is sectional drawing of the glass-coated light-emitting device of this invention.

符号の説明Explanation of symbols

100:半導体発光素子
110:ガラス
120:基板
100: Semiconductor light emitting device 110: Glass 120: Substrate

Claims (8)

酸化物基準のモル%表示で、
27〜35%、
ZnO 25〜45%、
SnO 25〜40%、
0.5〜5%、
CaO 0〜10%、
及びCaOから選ばれる少なくとも1種0.5〜10%から本質的になり、結晶化ピーク温度とガラス転移温度との差が150℃以上であることを特徴とする光学素子被覆用ガラス。
In mol% display based on oxide,
P 2 O 5 27~35%,
ZnO 25-45%,
SnO 25-40%,
B 2 O 3 0.5~5%,
CaO 0-10%,
For optical element coating characterized by consisting essentially of 0.5 to 10% of at least one selected from B 2 O 3 and CaO, wherein the difference between the crystallization peak temperature and the glass transition temperature is 150 ° C. or higher. Glass.
Sn原子の全量に対するSn2+の存在率が90%以上であることを特徴とする請求項1に記載の光学素子被覆用ガラス。 The glass for coating an optical element according to claim 1, wherein the abundance ratio of Sn 2+ with respect to the total amount of Sn atoms is 90% or more. 酸化物基準のモル%表示で、
Al 0〜3%、
In 0〜3%、
La 0〜3%、
とを含み、Al、In及びLaから選ばれる少なくとも1種が0.1%〜7%であることを特徴とする請求項1または2に記載の光学素子被覆用ガラス。
In mol% display based on oxide,
Al 2 O 3 0-3%,
In 2 O 3 0-3%,
La 2 O 3 0-3%,
The optical element coating according to claim 1, wherein at least one selected from Al 2 O 3 , In 2 O 3, and La 2 O 3 is 0.1% to 7%. Glass.
膨張係数が70×10−7〜100×10−7/℃であることを特徴とする請求項1〜3のいずれか一つに記載の光学素子被覆用ガラス。 Expansion coefficient of 70 × 10 -7 ~100 × 10 -7 / optics coating glass according to any one of claims 1 to 3, wherein the ℃ is. 前記ガラス転移温度は400℃以下であることを特徴とする請求項1〜4のいずれか一つに記載の光学素子被覆用ガラス。   The glass for optical element coating according to any one of claims 1 to 4, wherein the glass transition temperature is 400 ° C or lower. 前記結晶化ピーク温度と前記ガラス転移温度との差が180℃以上であることを特徴とする請求項1〜5のいずれか一つに記載の光学素子被覆用ガラス。   The optical element coating glass according to claim 1, wherein a difference between the crystallization peak temperature and the glass transition temperature is 180 ° C. or more. 熱膨張係数が70×10 −7 〜90×10 −7 /℃の主表面を有する半導体発光素子と、
前記半導体発光素子の前記主表面を被覆し、酸化物基準のモル%表示で、P 27〜35%、ZnO 25〜45%、SnO 25〜40%、 0.5〜5%、CaO 0〜10%、及びCaOから選ばれる少なくとも1種0.5〜10%から本質的になり、結晶化ピーク温度とガラス転移温度との差が150℃以上であるガラスとを含むことを特徴とするガラス被覆発光素子。
A semiconductor light emitting device having a main surface with a thermal expansion coefficient of 70 × 10 −7 to 90 × 10 −7 / ° C . ;
The main surface of the semiconductor light emitting device is covered, and expressed in mol% based on oxide, P 2 O 5 27 to 35%, ZnO 25 to 45%, SnO 25 to 40%, B 2 O 3 0.5 to 5%, CaO 0 to 10%, at least one selected from B 2 O 3 and CaO is essentially 0.5 to 10%, and the difference between the crystallization peak temperature and the glass transition temperature is 150 ° C. or more. A glass-coated light emitting device comprising glass.
主表面を有する基板と、
熱膨張係数が70×10 −7 〜90×10 −7 /℃の主表面と前記主表面と対向する裏表面とを有し、前記裏表面が前記基板の前記主表面と対向するように前記基板の前記主表面上に設けられる半導体発光素子と、
前記半導体発光素子の前記主表面を被覆し、酸化物基準のモル%表示で、P 27〜35%、ZnO 25〜45%、SnO 25〜40%、 0.5〜5%、CaO 0〜10%、及びCaOから選ばれる少なくとも1種0.5〜10%から本質的になり、結晶化ピーク温度とガラス転移温度との差が150℃以上であるガラスとを含むことを特徴とするガラス被覆発光装置。
A substrate having a main surface;
A main surface having a thermal expansion coefficient of 70 × 10 −7 to 90 × 10 −7 / ° C. and a back surface facing the main surface, and the back surface faces the main surface of the substrate. A semiconductor light emitting device provided on the main surface of the substrate;
The main surface of the semiconductor light emitting device is covered, and expressed in mol% based on oxide, P 2 O 5 27 to 35%, ZnO 25 to 45%, SnO 25 to 40%, B 2 O 3 0.5 to 5%, CaO 0 to 10%, at least one selected from B 2 O 3 and CaO is essentially 0.5 to 10%, and the difference between the crystallization peak temperature and the glass transition temperature is 150 ° C. or more. A glass-coated light emitting device comprising glass.
JP2007224211A 2007-05-30 2007-08-30 Glass for optical element coating, glass-coated light-emitting element, and glass-coated light-emitting device Expired - Fee Related JP5369408B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007224211A JP5369408B2 (en) 2007-06-14 2007-08-30 Glass for optical element coating, glass-coated light-emitting element, and glass-coated light-emitting device
EP08776999A EP2151872A4 (en) 2007-05-30 2008-05-29 Glass for optical device covering, glass-covered light-emitting element, and glass-covered light-emitting device
CN200880018040A CN101681965A (en) 2007-05-30 2008-05-29 Glass for optical device covering, glass-covered light-emitting element, and glass-covered light-emitting device
KR1020097017489A KR20100014822A (en) 2007-05-30 2008-05-29 Glass for optical device covering, glass-covered light-emitting element, and glass-covered light-emitting device
PCT/JP2008/059937 WO2008146886A1 (en) 2007-05-30 2008-05-29 Glass for optical device covering, glass-covered light-emitting element, and glass-covered light-emitting device
TW097120256A TW200916429A (en) 2007-05-30 2008-05-30 Glass for optical device covering, glass-covered light-emitting element, and glass-covered light-emitting device
US12/621,572 US8174045B2 (en) 2007-05-30 2009-11-19 Glass for covering optical element, glass-covered light-emitting element and glass-covered light-emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007157900 2007-06-14
JP2007157900 2007-06-14
JP2007224211A JP5369408B2 (en) 2007-06-14 2007-08-30 Glass for optical element coating, glass-coated light-emitting element, and glass-coated light-emitting device

Publications (2)

Publication Number Publication Date
JP2009018981A JP2009018981A (en) 2009-01-29
JP5369408B2 true JP5369408B2 (en) 2013-12-18

Family

ID=40358952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007224211A Expired - Fee Related JP5369408B2 (en) 2007-05-30 2007-08-30 Glass for optical element coating, glass-coated light-emitting element, and glass-coated light-emitting device

Country Status (1)

Country Link
JP (1) JP5369408B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213569A (en) * 2010-03-15 2011-10-27 Tohoku Univ Light emitting glass, light emitting element coated with glass, and light emitting device
US8433380B1 (en) * 2011-12-28 2013-04-30 Kookmin University Industry Academic Cooperation Foundation Mössbauer spectroscopy system for applying external magnetic field at cryogenic temperature using refrigerator
JP2015227252A (en) * 2012-09-25 2015-12-17 旭硝子株式会社 Glass composition for fluophor dispersion glass sheet and glass sheet using the same
KR102322335B1 (en) * 2015-02-10 2021-11-05 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Wafer Level Chip Scale Package
KR102512806B1 (en) * 2020-09-09 2023-03-23 대주전자재료 주식회사 Light emitting device and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302279A (en) * 2000-04-21 2001-10-31 Asahi Glass Co Ltd Lead-free and low-melting point glass and glass frit
JP4465989B2 (en) * 2003-06-18 2010-05-26 旭硝子株式会社 Light emitting diode element
JP4263051B2 (en) * 2003-07-31 2009-05-13 俊信 横尾 Light emitting diode
JP4480407B2 (en) * 2004-01-29 2010-06-16 京セラ株式会社 Light emitting element storage package and light emitting device
JP2007096257A (en) * 2005-04-15 2007-04-12 Asahi Glass Co Ltd Glass-covered light emitting diode element and light emitting diode covering glass

Also Published As

Publication number Publication date
JP2009018981A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
US8174045B2 (en) Glass for covering optical element, glass-covered light-emitting element and glass-covered light-emitting device
JP5458893B2 (en) Glass, coating material for light emitting device and light emitting device
JP6891807B2 (en) UV transmissive glass
JP5757246B2 (en) Colored glass plate
JP2005011933A (en) Light emitting diode device
JP6907941B2 (en) UV transmissive glass
JP5369408B2 (en) Glass for optical element coating, glass-coated light-emitting element, and glass-coated light-emitting device
JPWO2008096796A1 (en) Glass for optical element coating and light emitting device with glass
JP6879308B2 (en) Glass substrate and laminated substrate
WO2012002174A1 (en) Lead-free glass for sealing semiconductor
JP2010184816A (en) Window glass of solid-state image sensor package
JP2008300536A (en) Glass coated light emitting element, and glass coated light emitting device
JPS6265954A (en) Borosilicate glass for sealing alumina
JP5348598B2 (en) Glass substrate for semiconductor device and chip scale package using the same
JP5585467B2 (en) Glass, glass coating material for light emitting device and light emitting device
JP2007123410A (en) Glass-covered light emitting diode element
US20220388893A1 (en) Ultraviolet transmission glass
JP2007096257A (en) Glass-covered light emitting diode element and light emitting diode covering glass
JP2011213569A (en) Light emitting glass, light emitting element coated with glass, and light emitting device
JP5471095B2 (en) Sealing glass
WO2012060337A1 (en) Semiconductor encapsulating non-lead glass and semiconductor encapsulating coating tube
JP2009224790A (en) Light-emitting diode element
JP2011126725A (en) Lead-free low melting point glass
JP2010265135A (en) Glass, glass coating material for light emitting device and light emitting device
JP5467538B2 (en) Glass substrate for semiconductor device and chip scale package using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R151 Written notification of patent or utility model registration

Ref document number: 5369408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees