JP5364713B2 - 気泡塔型反応器及び気泡塔型反応器の制御方法 - Google Patents

気泡塔型反応器及び気泡塔型反応器の制御方法 Download PDF

Info

Publication number
JP5364713B2
JP5364713B2 JP2010531720A JP2010531720A JP5364713B2 JP 5364713 B2 JP5364713 B2 JP 5364713B2 JP 2010531720 A JP2010531720 A JP 2010531720A JP 2010531720 A JP2010531720 A JP 2010531720A JP 5364713 B2 JP5364713 B2 JP 5364713B2
Authority
JP
Japan
Prior art keywords
gas
reactor
bubble column
slurry
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010531720A
Other languages
English (en)
Other versions
JPWO2010038392A1 (ja
Inventor
康博 大西
讓 加藤
栄一 山田
篤 村田
修 若村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Exploration Co Ltd
Inpex Corp
Japan Oil Gas and Metals National Corp
Nippon Steel Engineering Co Ltd
Eneos Corp
Original Assignee
Cosmo Oil Co Ltd
Japan Petroleum Exploration Co Ltd
Inpex Corp
Japan Oil Gas and Metals National Corp
JXTG Nippon Oil and Energy Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Japan Petroleum Exploration Co Ltd, Inpex Corp, Japan Oil Gas and Metals National Corp, JXTG Nippon Oil and Energy Corp, Nippon Steel Engineering Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2010531720A priority Critical patent/JP5364713B2/ja
Publication of JPWO2010038392A1 publication Critical patent/JPWO2010038392A1/ja
Application granted granted Critical
Publication of JP5364713B2 publication Critical patent/JP5364713B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00203Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/0061Controlling the level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、触媒を用いた化学反応によって炭化水素を合成する気泡塔型反応器及び気泡塔型反応器の制御方法に関する。
本願は、2008年09月30日に日本出願された特願2008−254813および特願2008−254814に基づいて優先権を主張し、これらの内容をここに援用する。
近年、天然ガスから液体燃料を合成するための方法の一つとして、気泡塔型反応器を用いた液体燃料合成システムが開発されている。この液体燃料合成システムでは、天然ガスを改質して水素ガス(H)と一酸化炭素ガス(CO)とを主成分とする合成ガスを生成し、この合成ガスを原料ガスとしてフィッシャー・トロプシュ合成反応(以下、「FT合成反応」という。)により触媒粒子を用いて気泡塔型反応器内で炭化水素を合成し、さらにこの炭化水素を水素化および精製することで、ナフサ(粗ガソリン)、灯油、軽油、ワックス等の液体燃料製品を製造するGTL(Gas To Liquids:液体燃料合成)技術が用いられている。
気泡塔型反応器内では、例えば特許文献1に示すように、合成ガスが触媒を含むスラリーの底部から吹き込まれ、合成ガスは気泡となってスラリー内を上昇する。そして、スラリー内を上昇するうちに合成ガスはスラリー中の液に溶解し触媒粒子と接触することによりFT合成反応を起こし、気体や液体炭化水素等を生成する。
特開2007−197405号公報
ここで、一般的に、気泡塔型反応器内で反応しなかった合成ガスと気体の炭化水素等は気泡塔型反応器の塔頂から流出して分離され、未反応の合成ガス等は再び気泡塔型反応器内に吹き込まれ、気体の炭化水素は下流の工程で冷却により液化されて液体燃料となる。
しかし、スラリーの流動・混合状態を良くするために粒子径の小さな触媒粒子が用いられるので、スラリーの液面から未反応の合成ガスおよび気体の炭化水素等とともに触媒粒子が上方に飛散して気泡塔型反応器の塔頂部を経由してガス排出口から排出され、気体の炭化水素は中に触媒粒子が混入されたまま液化されてしまうため、製品の品質低下、機器・配管内での滞留・閉塞が発生する問題が生じていた。
本発明は、このような問題点に鑑みてなされたものであって、流出する気体の炭化水素に触媒粒子が混入することを抑えた気泡塔型反応器を提供するものである。
本発明の気泡塔型反応器の態様は、液体中に固体の触媒粒子を懸濁させてなるスラリーを収容する反応器本体と、該反応器本体の底部に設けられ、前記スラリー内に一酸化炭素ガス及び水素ガスを主成分とする合成ガスを流入させる流入口と、前記反応器本体の塔頂部に設けられ、前記合成ガスと前記スラリーとの化学反応によって合成される気体である炭化水素、及び未反応の前記合成ガス等を流出させる流出口と、前記反応器本体内の前記スラリーの液面と前記流出口との間に配置され、自身の内部を通過する前記触媒粒子を捕らえるデミスタ部と、前記デミスタ部を加熱する加熱手段と、を備える。
上記態様によれば、反応器本体に設けられた流入口から反応器本体内の触媒を含むスラリーに流入した合成ガスは、スラリー内を気泡となって上昇しながらスラリーに含まれる触媒粒子により化学反応して炭化水素となる。触媒粒子の一部は、合成された気体の炭化水素とスラリー内で未反応の合成ガス等に同伴してスラリーの液面から上方に飛び出し頭頂部に設けられた流出口から流出する可能性があるが、スラリーと流出口との間にデミスタ部が備えられているので、触媒粒子はデミスタ部の内部を通過する時にデミスタ部に捕捉される。従って、流出口から流出する炭化水素に触媒粒子が混入するのを抑えることができる。
また、例えば、デミスタ部に触媒を含むスラリーが付着して冷えて固まった場合であっても、加熱手段により付着したスラリーを加熱して溶かし、反応器本体内に収容された液体のスラリー内に落として戻すことができる。従って、デミスタ部にスラリーが固まることによりデミスタ部が閉塞すること、およびそれに伴って気体の炭化水素が流れなくなることを防止することができる。
また、上記の気泡塔型反応器において、前記加熱手段は、少なくとも一部が前記デミスタ部内に配置された加熱用配管と、該加熱用配管に当該加熱用配管を加熱するための加熱媒体を供給する加熱媒体流通手段とを備えていてもよい。
この場合、加熱用配管はデミスタ部内に配置されているので、加熱用配管内に加熱媒体を流すことによりデミスタ部をより確実に加熱することができる。また、例えば、発熱反応であるFT合成反応で発熱したスラリーとの熱交換を行う工程で生じる水蒸気を加熱用配管内に流通させることで、デミスタ部を効率的に加熱することが可能となる。
また、上記の気泡塔型反応器において、前記反応器本体内へ流入させる前記合成ガスのガス空塔速度が、0.04m/sec以上0.3m/sec以下であってもよい。
この場合、ガス空塔速度を0.3m/sec以下に設定することにより、スラリーの液面から上方に飛び出す炭化水素の速度を抑え流出口から流出する炭化水素に触媒粒子が混入することをより確実に抑えることができる。
また、ガス空塔速度を0.04m/sec以上に設定することで、スラリーの下方に触媒粒子が沈降することによる、前記反応器内部における触媒の滞留および合成ガスとスラリーとの化学反応の効率低下を防止することができる。
また、本発明の気泡塔型反応器の制御方法は、上記のいずれかに記載の気泡塔型反応器の制御方法であって、前記デミスタ部により前記触媒粒子を捕らえる工程と、前記スラリーのうちの凝固分が溶解する一定の温度以上に前記デミスタ部を前記加熱手段により加熱する工程と、を備える。
また、上記の気泡塔型反応器の制御方法において、前記反応器本体内へ流入させる前記合成ガスの流量を、前記反応器本体内のガス空塔速度が0.04m/sec以上0.3m/sec以下になるように制御する工程をさらに備えてもよい。
本発明の気泡塔型反応器及び気泡塔型反応器の制御方法によれば、流出する気体の炭化水素に触媒粒子が混入することを抑えることができる。
また、加熱手段によりデミスタ部を加熱することで、スラリーが固まってデミスタ部が閉塞することおよびデミスタ部に気体の炭化水素が流れなくなることを防止することができる。
図1は、本発明の第一実施形態の気泡塔型反応器が用いられる液体燃料合成システムの全体構成を示す概略図である。 図2は、本発明の第一実施形態の気泡塔型反応器の全体構成を示す一部断面図である。 図3は、本発明の第二実施形態の気泡塔型反応器が用いられる液体燃料合成システムの全体構成を示す概略図である。 図4は、本発明の第二実施形態の気泡塔型反応器の全体構成を示す一部断面図である。 図5は、図4中の切断線A−Aの断面図である。
(第一実施形態)
以下、本発明に係る第一実施形態の気泡塔型反応器、及びこの気泡塔型反応器が用いられる液体燃料合成システムを、図1及び図2を参照しながら説明する。
図1は液体燃料合成システム1の全体構成を示す概略図、図2は気泡塔型反応器30の全体構成を示す一部断面図である。
図1に示すように、液体燃料合成システム1は、天然ガス等の炭化水素原料を液体燃料に転換するGTLプロセスを実行するプラント設備である。この液体燃料合成システム1は、合成ガス生成ユニット3と、FT合成ユニット5と、製品精製ユニット7とから構成される。合成ガス生成ユニット3は、炭化水素原料である天然ガスを改質して一酸化炭素ガス及び水素ガスを主成分とする合成ガスを生成する。FT合成ユニット5は、生成された合成ガスからFT合成反応により炭化水素を生成する。製品精製ユニット7は、FT合成反応により生成された液体炭化水素を水素化・精製して液体燃料製品(ナフサ、灯油、軽油、ワックス等)を製造する。以下、これら各ユニットの構成要素について説明する。
まず、合成ガス生成ユニット3について説明する。合成ガス生成ユニット3は、例えば、脱硫反応器10と、改質器12と、排熱ボイラー14と、気液分離器16及び18と、脱炭酸装置20と、水素分離装置26とを主に備える。
脱硫反応器10は、水添脱硫装置等で構成されて原料である天然ガスから硫黄成分を除去する。改質器12は、脱硫反応器10から供給された天然ガスを改質して、一酸化炭素ガス(CO)と水素ガス(H)とを主成分として含む合成ガスを生成する。排熱ボイラー14は、改質器12にて生成した合成ガスの排熱を回収して高圧スチームを発生する。気液分離器16は、排熱ボイラー14において合成ガスとの熱交換により加熱された水を気体(高圧スチーム)と液体とに分離する。気液分離器18は、排熱ボイラー14にて冷却された合成ガスから凝縮分を除去し気体分を脱炭酸装置20に供給する。脱炭酸装置20は、気液分離器18から供給された合成ガスから吸収液を用いて炭酸ガスを除去する吸収塔22と、当該炭酸ガスを含む吸収液から炭酸ガスを放散させて再生する再生塔24とを有する。水素分離装置26は、脱炭酸装置20により炭酸ガスが分離された合成ガスから、当該合成ガスに含まれる水素ガスの一部を分離する。ただし、上記脱炭酸装置20は場合によっては設けないこともある。
このうち、改質器12は、例えば、下記の化学反応式(1)、(2)で表される水蒸気・炭酸ガス改質法により、二酸化炭素と水蒸気とを用いて天然ガスを改質して、一酸化炭素ガス及び水素ガスを主成分とする高温の合成ガスを生成する。なお、この改質器12における改質法は、上記水蒸気・炭酸ガス改質法の例に限定されず、例えば、水蒸気改質法、酸素を用いた部分酸化改質法(POX)、部分酸化改質法と水蒸気改質法の組合せである自己熱改質法(ATR)、炭酸ガス改質法などを利用することもできる。
CH+HO→CO+3H ・・・(1)
CH+CO→2CO+2H ・・・(2)
また、水素分離装置26は、脱炭酸装置20又は気液分離器18と気泡塔型反応器30とを接続する主配管から分岐した分岐ライン上に設けられる。この水素分離装置26は、例えば、圧力差を利用して水素の吸着と脱着を行う水素PSA(Pressure Swing Adsorption:圧力変動吸着)装置などで構成できる。この水素PSA装置は、並列配置された複数の吸着塔(図示せず。)内に吸着剤(ゼオライト系吸着剤、活性炭、アルミナ、シリカゲル等)を有しており、各吸着塔で水素の加圧、吸着、脱着(減圧)、パージの各工程を順番に繰り返すことで、合成ガスから分離した純度の高い水素ガス(例えば99.999%程度)を、連続して供給することができる。
なお、水素分離装置26における水素ガス分離方法としては、上記水素PSA装置のような圧力変動吸着法の例に限定されず、例えば、水素吸蔵合金吸着法、膜分離法、或いはこれらの組合せなどであってもよい。
水素吸蔵合金法は、例えば、冷却/加熱されることで水素を吸着/放出する性質を有する水素吸蔵合金(TiFe、LaNi、TiFe0.7〜0.9Mn0.3〜0.1、又はTiMn1.5など)を用いて、水素ガスを分離する手法である。水素吸蔵合金が収容された複数の吸着塔を設け、各吸着塔において、水素吸蔵合金の冷却による水素の吸着と、水素吸蔵合金の加熱による水素の放出とを交互に繰り返すことで、合成ガス内の水素ガスを分離・回収することができる。
また、膜分離法は、芳香族ポリイミド等の高分子素材の膜を用いて、混合ガス中から膜透過性に優れた水素ガスを分離する手法である。この膜分離法は、相変化を伴わないため、運転に必要なエネルギーが小さくて済み、ランニングコストが安い。また、膜分離装置の構造が単純でコンパクトなため、設備コストが低く設備の所要面積も小さくて済む。さらに、分離膜には駆動装置がなく、安定運転範囲が広いため、保守管理が容易であるという利点がある。
次に、FT合成ユニット5について説明する。図1及び図2に示すように、FT合成ユニット5は、例えば、流量制御装置33と、気泡塔型反応器30と、気液分離器34と、分離器36と、気液分離器38と、第1精留塔40とを主に備える。流量制御装置33は気泡塔型反応器30に流入する合成ガスGの流量を一定に調節する。気泡塔型反応器30は、上記合成ガス生成ユニット3で生成された合成ガスを、自身の内部に収容するスラリーに含まれる触媒粒子によりFT合成反応させて炭化水素を生成するもので、後述する液面計39が設けられている。気液分離器34は、気泡塔型反応器30内に配設された伝熱管32内を流通して加熱された水を、水蒸気(中圧スチーム)と液体とに分離する。分離器36は、気泡塔型反応器30の中央部に接続され、触媒粒子を含んだスラリーと液体炭化水素生成物とを分離処理する。気液分離器38は、気泡塔型反応器30に接続され、未反応の合成ガス及び気体の炭化水素生成物等を冷却処理し、未反応の合成ガスを気泡塔型反応器30に戻し、気体の炭化水素生成物を冷却して液体にする。第1精留塔40は、気泡塔型反応器30から分離器36、気液分離器38を介して供給された液体炭化水素を蒸留し、沸点に応じて各留分に分離・精製する。
なお、気泡塔型反応器30の外部に、内部にスラリーを一時的に貯留するタンクを有し気泡塔型反応器30に収容されるスラリーの量を調節するバッファー装置を設置してもよい。
このうち、気泡塔型反応器30は、液体中に固体の触媒粒子を懸濁させてなるスラリーと合成ガスとのFT合成反応によって炭化水素を合成するFT合成用反応器として機能する。
図2に示すように、気泡塔型反応器30は、スラリーSを貯留する反応器本体30aと、反応器本体30aの底部に設けられスラリーS内に合成ガスGを流入させる流入口30bと、反応器本体30aの塔頂部に設けられ反応器本体30aからガス状の炭化水素および未反応の合成ガス等を流出させる流出口30cと、を備えている。反応器本体30aは、断面が円形で筒状の胴部30eと、胴部30eの両端部にそれぞれ連接して設けられた略半球状の上蓋部30f及び下蓋部30gと、で形成されている。
このように、反応器本体30aは、流入口30bが下方に配置された下蓋部30gの底部に、流出口30cが上方に配置された上蓋部30fの塔頂部にくるように配置されている。流入口30bには、例えば、炭酸ガスを除去された合成ガスGが脱炭酸装置20から供給され、前述した気液分離器38は流出口30cに接続される。
液面計39は、気泡塔型反応器30に収容されるスラリーSの上部の位置、すなわちスラリーSの液面高さを検出する。
ここで、前述の流量制御装置33がスラリーS内に流入させる合成ガスGを、以下では、ガス空塔速度で評価することにする。本実施形態では胴部30eの断面は円形となる。
なお、スラリーは主に触媒粒子とFT合成反応により生成する液体炭化水素とからなり、液体炭化水素には一定の温度以下になると固体になるWAX留分が含まれる。
この気泡塔型反応器30では、原料ガスである合成ガスGは、気泡塔型反応器30の流入口30bから気泡となって供給されてスラリーS内を通過し、懸濁状態の中で下記化学反応式(3)に示すように水素ガスと一酸化炭素ガスとが合成反応を起こす。
Figure 0005364713
このFT合成反応は発熱反応であるため、気泡塔型反応器30は内部に伝熱管32が配設された熱交換器型になっており、冷媒として例えば水(BFW:Boiler Feed Water)を供給し、上記FT合成反応の反応熱を、スラリーと水との熱交換により、例えば中圧スチームとして回収できるようになっている。
最後に、製品精製ユニット7について説明する。図1に示すように、製品精製ユニット7は、例えば、WAX留分水素化分解反応器50と、灯油・軽油留分水素化精製反応器52と、ナフサ留分水素化精製反応器54と、気液分離器56、58、60と、第2精留塔70と、ナフサ・スタビライザー72とを備える。WAX留分水素化分解反応器50は、第1精留塔40の底部に接続されている。灯油・軽油留分水素化精製反応器52は、第1精留塔40の中央部に接続されている。ナフサ留分水素化精製反応器54は、第1精留塔40の上部に接続されている。気液分離器56、58、60は、これら水素化反応器50、52、54のそれぞれに対応して設けられている。第2精留塔70は、気液分離器56、58から供給された液体炭化水素を沸点に応じて分離・精製する。ナフサ・スタビライザー72は、気液分離器60及び第2精留塔70から供給されたナフサ留分の液体炭化水素を精留して、ブタンおよびブタンより軽質の成分はフレアガスとして排出し、炭素数5以上の成分は製品のナフサとして分離・回収する。
次に、以上のような構成の液体燃料合成システム1により、天然ガスから液体燃料を合成する工程(GTLプロセス)について説明する。
液体燃料合成システム1には、天然ガス田又は天然ガスプラントなどの外部の天然ガス供給源(図示せず。)から、炭化水素原料としての天然ガス(主成分がCH)が供給される。上記合成ガス生成ユニット3は、この天然ガスを改質して合成ガス(一酸化炭素ガスと水素ガスを主成分とする混合ガス)を製造する。
具体的には、まず、上記天然ガスは、水素分離装置26によって分離された水素ガスとともに脱硫反応器10に供給される。脱硫反応器10は、当該水素ガスを用いて天然ガスに含まれる硫黄分を例えばZnO触媒で水添脱硫する。このようにして天然ガスを予め脱硫しておくことにより、改質器12及び気泡塔型反応器30等で用いられる触媒の活性が硫黄により低下することを防止できる。
このようにして脱硫された天然ガス(二酸化炭素を含んでもよい。)は、二酸化炭素供給源(図示せず。)から供給される二酸化炭素(CO)ガスと、排熱ボイラー14で発生した水蒸気とが混合された上で、改質器12に供給される。改質器12は、例えば、上述した水蒸気・炭酸ガス改質法により、二酸化炭素と水蒸気とを用いて天然ガスを改質して、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスを生成する。このとき、改質器12には、例えば、改質器12が備えるバーナー用の燃料ガスと空気とが供給されており、当該バーナーにおける燃料ガスの燃焼熱により、吸熱反応である上記水蒸気・炭酸ガス改質反応に必要な反応熱がまかなわれている。
このようにして改質器12で生成された高温の合成ガス(例えば、900℃、2.0MPaG)は、排熱ボイラー14に供給され、排熱ボイラー14内を流通する水との熱交換により冷却(例えば400℃)されて、排熱回収される。このとき、排熱ボイラー14において合成ガスにより加熱された水は気液分離器16に供給され、この気液分離器16から気体分が高圧スチーム(例えば3.4〜10.0MPaG)として改質器12または他の外部装置に供給され、液体分の水が排熱ボイラー14に戻される。
一方、排熱ボイラー14において冷却された合成ガスは、凝縮液分が気液分離器18において分離・除去された後、脱炭酸装置20の吸収塔22、又は気泡塔型反応器30に供給される。吸収塔22は、貯留している吸収液内に、合成ガスに含まれる炭酸ガスを吸収することで、当該合成ガスから炭酸ガスを除去する。この吸収塔22内の炭酸ガスを含む吸収液は、再生塔24に送出され、当該炭酸ガスを含む吸収液は例えばスチームで加熱されてストリッピング処理され、放散された炭酸ガスは、再生塔24から改質器12に送られて、上記改質反応に再利用される。
このようにして、合成ガス生成ユニット3で生成された合成ガスは、上記FT合成ユニット5の気泡塔型反応器30に供給される。このとき、気泡塔型反応器30に供給される合成ガスの組成比は、FT合成反応に適した組成比(例えば、H:CO=2:1(モル比))に調整されている。なお、気泡塔型反応器30に供給される合成ガスは、脱炭酸装置20と気泡塔型反応器30とを接続する配管に設けられた圧縮機(図示せず。)により、FT合成反応に適切な圧力(例えば3.6MPaG程度)まで昇圧される。
また、上記脱炭酸装置20により炭酸ガスが分離された合成ガスの一部は、水素分離装置26にも供給される。水素分離装置26は、上記のように圧力差を利用した吸着、脱着(水素PSA)により、合成ガスに含まれる水素ガスを分離する。当該分離された水素は、ガスホルダー(図示せず。)等から圧縮機(図示せず。)を介して、液体燃料合成システム1内において水素を利用して所定反応を行う各種の水素利用反応装置(例えば、脱硫反応器10、WAX留分水素化分解反応器50、灯油・軽油留分水素化精製反応器52、ナフサ留分水素化精製反応器54など)に連続して供給する。
次いで、上記FT合成ユニット5は、上記合成ガス生成ユニット3によって生成された合成ガスから、FT合成反応により、液体炭化水素を合成する。
具体的には、上記脱炭酸装置20において炭酸ガスを分離された合成ガスGは、図2に示すように、流量制御装置33を通って気泡塔型反応器30の反応器本体30aの底部に設けられた流入口30bから流入して、反応器本体30a内に貯留された液体のスラリーS内を気泡となって上昇する。この時、流量制御装置33により、合成ガスGのガス空塔速度が、0.04m/sec以上0.3m/sec以下の一定値になるように調整される。なお、ガス空塔速度は、0.1m/sec以上0.2m/sec以下であることがより好ましい。
反応器本体30a内では、上述したFT合成反応により、当該合成ガスGに含まれる一酸化炭素ガスと水素ガスとが反応して、気体や液体炭化水素が生成される。
ここで、液面計39によりスラリーSの液面の位置は常に検出されていて、スラリーSの液面と流出口30cとの鉛直方向Vの距離Lが1.4m以上となり、かつ分離器36に向かう配管の出口36aよりスラリーSの液面が上方にくるように制御されている。すなわち、距離Lが1.4mより小さくなった場合には、分離器36へ流出するスラリーSの流量を一時的に増加させたり、ガス空塔速度を低下させること等により反応器本体30aに収容されるスラリーSの量を減少させても良い。また、反応器本体30aの外部に前述のバッファー装置を設置して一旦スラリーSの一部を供給しても良い。スラリーSの液面が出口36aより下方にきた場合には、分離器36へ流出するスラリーSの流量を一時的に減少させたり、ガス空塔速度を増加させる等によりスラリーSの液面の位置を高くしても良い。また、反応器本体30aの外部に前述のバッファー装置を設置して内部に保管されたスラリーSを反応器本体30aに供給しても良い。
スラリーS内で未反応の合成ガスGと合成された気体の炭化水素等から構成される気泡がはじけて発生する細かな液滴とともに、スラリーSに含まれる触媒粒子がスラリーSの液面から上方に飛び出す。しかし、合成ガスGのガス空塔速度と距離Lが上記のように調整されているので、上方に飛び出す大部分の触媒粒子は自身に作用する重力の影響により、流出口30cに達する前に落ちて反応器本体30aに収容されたスラリーSに戻ることとなる。
さらに、この合成反応時には、気泡塔型反応器30の伝熱管32内に水を流通させることで、FT合成反応の反応熱を除去し、この熱交換により加熱された水が気化して水蒸気となる。この水蒸気は、気液分離器34で液化した水が伝熱管32に戻されて、気体分が中圧スチーム(例えば1.0〜2.5MPaG)として外部装置に供給される。
このようにして、気泡塔型反応器30で合成された液体炭化水素は、気泡塔型反応器30の中央部から取り出されて、分離器36に送出される。分離器36は、触媒粒子を含んだスラリーと液体炭化水素生成物とに分離する。分離されたスラリーは、気泡塔型反応器30に戻され、液体炭化水素生成物は第1精留塔40に供給される。また、気泡塔型反応器30の塔頂に設けられた流出口30cからは、未反応の合成ガスと、合成された炭化水素のガス分等が気液分離器38に導入される。気液分離器38は、これらのガスを冷却して、一部の凝縮分の液体炭化水素を分離して第1精留塔40に導入する。一方、気液分離器38で分離されたガス分については、未反応の合成ガス(COとH)は、気泡塔型反応器30の底部に再投入されてFT合成反応に再利用される。また、製品対象外である炭素数が少ない(C以下)炭化水素ガスを主成分とする排ガス(フレアガス)は、外部の燃焼設備(図示せず。)に導入されて、燃焼された後に大気放出される。
次いで、第1精留塔40は、上記のようにして気泡塔型反応器30から分離器36、気液分離器38を介して供給された液体炭化水素(炭素数は多様)を加熱して、沸点の違いを利用して分留し、ナフサ留分(沸点が約150℃未満)と、灯油・軽油留分(沸点が約150〜350℃)と、WAX留分(沸点が約350℃より大)とに分離・精製する。この第1精留塔40の底部から取り出されるWAX留分の液体炭化水素(主としてC21以上)は、WAX留分水素化分解反応器50に移送され、第1精留塔40の中央部から取り出される灯油・軽油留分の液体炭化水素(主としてC11〜C20)は、灯油・軽油留分水素化精製反応器52に移送され、第1精留塔40の上部から取り出されるナフサ留分の液体炭化水素(主としてC〜C10)は、ナフサ留分水素化精製反応器54に移送される。
WAX留分水素化分解反応器50は、第1精留塔40の底部から供給された炭素数の多いWAX留分の液体炭化水素(概ねC21以上)を、上記水素分離装置26から供給された水素ガスを利用して水素化分解して、炭素数をC20以下に低減する。この水素化分解反応では、触媒と熱を利用して、炭素数の多い炭化水素のC−C結合を切断して、炭素数の少ない低分子量の炭化水素を生成する。このWAX留分水素化分解反応器50により、水素化分解された液体炭化水素を含む生成物は、気液分離器56で気体と液体とに分離され、そのうち液体炭化水素は、第2精留塔70に移送され、気体分(水素ガスを含む。)は、灯油・軽油留分水素化精製反応器52及びナフサ留分水素化精製反応器54に移送される。
灯油・軽油留分水素化精製反応器52は、第1精留塔40の中央部から供給された炭素数が中程度である灯油・軽油留分の液体炭化水素(概ねC11〜C20)を、水素分離装置26からWAX留分水素化分解反応器50を介して供給された水素ガスを用いて、水素化精製する。この水素化精製反応では、主に側鎖状飽和炭化水素を得るために、上記液体炭化水素を異性化し、上記液体炭化水素の不飽和結合に水素を付加して飽和させる。この結果、水素化精製された液体炭化水素を含む生成物は、気液分離器58で気体と液体に分離され、そのうち液体炭化水素は、第2精留塔70に移送され、気体分(水素ガスを含む。)は、上記水素化反応に再利用される。
ナフサ留分水素化精製反応器54は、第1精留塔40の上部から供給された炭素数が少ないナフサ留分の液体炭化水素(概ねC10以下)を、水素分離装置26からWAX留分水素化分解反応器50を介して供給された水素ガスを用いて、水素化精製する。この結果、水素化精製された液体炭化水素を含む生成物は、気液分離器60で気体と液体に分離され、そのうち液体炭化水素は、ナフサ・スタビライザー72に移送され、気体分(水素ガスを含む。)は、上記水素化反応に再利用される。
次いで、第2精留塔70は、上記のようにしてWAX留分水素化分解反応器50及び灯油・軽油留分水素化精製反応器52から供給された液体炭化水素を蒸留して、炭素数がC10以下の炭化水素(沸点が約150℃未満)と、灯油(沸点が約150〜250℃)と、軽油(沸点が約250〜350℃)と、WAX留分水素化分解反応器50からの未分解WAX留分(沸点約350℃より大)とに分離・精製する。第2精留塔70の下部からは軽油が取り出され、中央部からは灯油が取り出される。一方、第2精留塔70の塔頂からは、炭素数がC10以下の炭化水素ガスが取り出されて、ナフサ・スタビライザー72に供給される。
さらに、ナフサ・スタビライザー72では、上記ナフサ留分水素化精製反応器54及び第2精留塔70から供給された炭素数がC10以下の炭化水素を蒸留して、製品としてのナフサ(C〜C10)を分離・精製する。これにより、ナフサ・スタビライザー72の下部からは、高純度のナフサが取り出される。一方、ナフサ・スタビライザー72の塔頂からは、製品対象外である炭素数が所定数以下(C以下)の炭化水素を主成分とする排ガス(フレアガス)が排出される。
こうして、本発明の第一実施形態の気泡塔型反応器30によれば、反応器本体30aの底部に設けられた流入口30bから反応器本体30a内の液体のスラリーSに流入した合成ガスGは、スラリーS内を気泡となって上昇しながらスラリーSに含まれる触媒粒子によりFT合成反応を起こして気体又は液体炭化水素となる。ここで、触媒粒子の一部は、スラリーS内で反応しなかった合成ガスG又は合成された気体の炭化水素等とともにスラリーSの液面から塔頂部に向かって飛び出す可能性があるが、流量制御装置33によりガス空塔速度が0.04m/sec以上0.3m/sec以下の一定値になるように調整され、液面計39によりスラリーSの液面と流出口30cとの鉛直方向の距離Lが1.4m以上10m以下であるように調整されている。
ガス空塔速度を0.3m/sec以下に設定することにより、スラリーSの液面から上方に飛び出す炭化水素の速度を抑え、流出口30cから流出する炭化水素に触媒粒子が混入することをより確実に抑えることができる。さらに、ガス空塔速度を0.04m/sec以上に設定することで、スラリーSの下方に触媒粒子が沈降することによる、反応器本体30a内部における触媒の滞留および合成ガスGとスラリーSとの化学反応の効率低下を防止することができる。
また、スラリーSの液面と流出口30cとの鉛直方向の距離Lが1.4m以上あるので、上方に飛び出す大部分の触媒粒子は自身に作用する重力の影響により、流出口30cに達する前に落ちて反応器本体に収容されたスラリーに戻ることとなる。従って、流出口30cから流出する炭化水素に触媒粒子が混入することを抑えることができる。また、この距離Lを10m以下に設定することで、気泡塔型反応器30が過大となりコスト増となることを抑制することができ、且つ気泡塔型反応器30が液体燃料合成システム1に組込み難くなるのを防止することができる。
なお、この距離Lは、1.4m以上10m以下であることが好ましく、1.8m以上7m以下であることがより好ましい。距離Lを1.8m以上に設定することで、塔頂部に設けられた流出口30cから流出するガスの流れを安定させることが可能となる。そして、距離Lが7m以下となるようにすることで、液体燃料合成システム1の規模によらず、その中に気泡塔型反応器30を組み込むことが可能となる。
上記第一実施形態の液体燃料合成システム1の気泡塔型反応器30を用いて、反応器本体30aの流出口30cから流出する触媒粒子の量を測定した結果について説明する。表1は、反応器本体30aの胴部30eの内径が250mmの場合の試験結果である。
実施例と比較例は、気泡塔型反応器30をそれぞれ一定時間稼働した時の、触媒粒子の流出量を測定した。
Figure 0005364713
実施例に示す、スラリーSの液面と流出口30cとの鉛直方向Vの距離Lが1.4mの場合には1時間当たりの触媒粒子の流出量は0.0037g/hとなることが分かった。これに対し、比較例に示す距離Lが0.7mの場合には流出量は0.0875g/hとなり、実施例の20倍以上に増加する。これらの測定結果と算出結果を第1精留塔40へ供給される液体炭化水素中の触媒濃度に換算すると、実施例では2.1wt.ppm、比較例では50wt.ppmに相当することが分かった。
また、実施例の試験を行った反応器本体30aを分解して目視で観察すると、触媒粒子は胴部30eの内壁面に、スラリーSの液面があった位置から鉛直方向V上方に1.3mまでの範囲に付着していることが分かった。
以上、本発明の第一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更等も含まれる。
例えば、上記第一実施形態では胴部30eの断面を円形としたが、楕円形、4角形又は6角形等他の形状であってもよい。
また、上記第一実施形態では、スラリーSの液面と流出口30cとの鉛直方向Vの距離Lが1.4mより小さくなった場合には反応器本体30aに収容されるスラリーSの量を減少させる。しかし、これに代えて警告音を鳴らしたり、液体燃料合成システム1の運転を停止させたりしてもよい。
また、反応器本体30a内においてスラリーSと流出口30cとの間に、自身の内部を通過する触媒粒子を捕らえるデミスタ部を設けてもよい。デミスタ部は、例えば金属の細い線を編んで細かい連通する隙間を数多く形成したものである。
(第二実施形態)
以下、本発明に係る第二実施形態の気泡塔型反応器、及びこの気泡塔型反応器が用いられる液体燃料合成システムを、図3から図5を参照しながら説明する。
図3は液体燃料合成システム1の全体構成を示す概略図、図4は気泡塔型反応器の全体構成を示す一部断面図である。
図3に示すように、液体燃料合成システム1は、天然ガス等の炭化水素原料を液体燃料に転換するGTLプロセスを実行するプラント設備である。この液体燃料合成システム1は、合成ガス生成ユニット3と、FT合成ユニット5と、製品精製ユニット7とから構成される。合成ガス生成ユニット3は、炭化水素原料である天然ガスを改質して一酸化炭素ガス及び水素ガスを主成分とする合成ガスを生成する。FT合成ユニット5は、生成された合成ガスからFT合成反応により炭化水素を生成する。製品精製ユニット7は、FT合成反応により生成された液体炭化水素を水素化・精製して液体燃料製品(ナフサ、灯油、軽油、ワックス等)を製造する。合成ガス生成ユニット3および製品精製ユニット7の構成要素は、第一実施形態と同様である。以下に、第一実施形態とは異なる構成であるFT合成ユニット5について説明する。
FT合成ユニット5は、例えば、流量制御装置33と、気泡塔型反応器30と、気液分離器34と、分離器36と、気液分離器38と、第1精留塔40とを主に備える。流量制御装置33は気泡塔型反応器30に流入する合成ガスの流量を一定に調節する。気泡塔型反応器30は、上記合成ガス生成ユニット3で生成された合成ガスをFT合成反応させて炭化水素を生成する。気液分離器34は、気泡塔型反応器30内に配設された伝熱管32内を流通して加熱された水を、水蒸気(中圧スチーム)と液体とに分離する。分離器36は、気泡塔型反応器30の中央部に接続され、気泡塔型反応器30から抜き出された触媒粒子と液体炭化水素生成物を分離処理する。気液分離器38は、気泡塔型反応器30の塔頂部に接続され、未反応の合成ガス及び気体の炭化水素生成物を冷却処理し、未反応の合成ガスを気泡塔型反応器30に戻し、気体の炭化水素生成物を冷却して液体にする。第1精留塔40は、気泡塔型反応器30から分離器36、気液分離器38を介して供給された液体炭化水素を蒸留し、沸点に応じて各留分に分離・精製する。
このうち、気泡塔型反応器30は、液体中に固体の触媒粒子を懸濁させてなるスラリーと合成ガスとのFT合成反応によって炭化水素を合成するFT合成用反応器として機能する。
図4に示すように、気泡塔型反応器30は、スラリーSを貯留する反応器本体30aと、反応器本体30aの一方の端に設けられスラリーS内に合成ガスGを流入させる流入口30bと、反応器本体30aの他方の端に設けられ反応器本体30aから炭化水素を流出させる流出口30cと、反応器本体30a内においてスラリーSの液面と流出口30cとの間に配置され、自身の内部を通過する触媒粒子を捕らえるデミスタ部30dと、を備えている。反応器本体30aにおいては、流入口30bが底部に、流出口30cが塔頂部に配置される。そして、流入口30bには、例えば、炭酸ガスを除去された合成ガスGが脱炭酸装置20から供給され、前述した気液分離器38は流出口30cに接続される。
なお、スラリーSは主に触媒粒子とFT合成反応により生成する液体炭化水素とからなり、液体炭化水素には一定の温度以下になると固体になるWAX留分が含まれる。また、デミスタ部30dは、本実施形態では、例えば金属の細い線を編んで細かい連通する隙間を数多く形成したものが用いられている。
また、前述の流量制御装置33がスラリーS内に流入させる合成ガスGを、以下では、ガス空塔速度で評価することにする。
本実施形態では、デミスタ部30dは、図3から図5に示すように、少なくとも一部がデミスタ部30d内に蛇行するように配置された加熱用配管31aと、加熱用配管31a内に加熱用配管31aを加熱する水蒸気(加熱媒体)を供給する気液分離器(加熱媒体流通手段)34と、からなる加熱手段31を備えている。
この気泡塔型反応器30では、原料ガスである合成ガスGは、気泡塔型反応器30の流入口30bから気泡となって供給されてスラリーS内を通過し、懸濁状態の中で上記化学反応式(3)に示すように水素ガスと一酸化炭素ガスとが合成反応を起こす。
このFT合成ユニット5は、合成ガス生成ユニット3によって生成された合成ガスから、FT合成反応により、液体炭化水素を合成する。
具体的には、上記脱炭酸装置20において炭酸ガスを分離された合成ガスGは、図4に示すように、流量制御装置33を通って気泡塔型反応器30の反応器本体30aの底部に設けられた流入口30bから流入して、反応器本体30a内に貯留された液体のスラリーS内を気泡となって上昇する。この際、反応器本体30a内では、上述したFT合成反応により、当該合成ガスGに含まれる一酸化炭素ガスと水素ガスとが反応して、気体や液体炭化水素が生成される。また、流量制御装置33により、合成ガスGのガス空塔速度が、0.04m/sec以上0.3m/sec以下の一定値になるように調整される。なお、ガス空塔速度は、0.1m/sec以上0.2m/sec以下であることがより好ましい。
スラリーS内で未反応の合成ガスGと合成された気体の炭化水素等から構成される気泡がはじけて発生する細かな液滴とともに、スラリーSに含まれる触媒粒子がスラリーSの液面から上方に飛び出し、デミスタ部30d内に形成された細かい隙間を通る。この時に、合成ガスGと気体の炭化水素等の気体は細かい隙間を通過するが、液滴やそれに含まれる固体の触媒粒子はデミスタ部30dに捕捉され、また細かな液滴となったスラリーSはデミスタ部30dに付着して、一部は熱を奪われて凝固する可能性がある。ここで、内部に水蒸気が流れる加熱用配管31aでデミスタ部30dをスラリーSのうちの凝固分が溶解する一定の温度以上に加熱すると、比較的大きな液滴となったスラリーSが反応器本体30a内に貯留された液体のスラリーS内に戻る。
さらに、この合成反応時には、気泡塔型反応器30の伝熱管32内に水(BFW)を流通させることで、FT合成反応の反応熱を除去し、この熱交換により加熱された水が気化して水蒸気となる。この水蒸気は、気液分離器34で液化した水が伝熱管32に戻されて、気体分が中圧スチーム(例えば1.0〜2.5MPaG)として上記の加熱用配管31a等の外部装置に供給されてもよい。
このようにして、気泡塔型反応器30で合成された液体炭化水素は、気泡塔型反応器30の中央部から取り出されて、分離器36に送出される。分離器36は、取り出されたスラリー中の触媒(固形分)と、液体炭化水素生成物を含んだ液体分とに分離する。分離された触媒は、その一部を液体炭化水素と共にスラリーとして気泡塔型反応器30に戻され、液体分は第1精留塔40に供給される。また、気泡塔型反応器30の塔頂に設けられた流出口30cからは、未反応の合成ガスと、合成された炭化水素のガス分等が気液分離器38に導入される。気液分離器38は、これらのガスを冷却して、一部の液体として凝縮した炭化水素を分離して第1精留塔40に導入する。一方、気液分離器38で分離されたガス分については、未反応の合成ガス(COとH)は、気泡塔型反応器30の底部に再投入されてFT合成反応に再利用される。また、製品対象外である炭素数が少ない(C以下)炭化水素ガスを主成分とする排ガス(フレアガス)は、改質器12の燃料ガスに用いたり、外部の燃焼設備(図示せず。)に導入されて燃焼された後に大気放出される。
こうして、本発明の第二実施形態の気泡塔型反応器30によれば、反応器本体30aの底部に設けられた流入口30bから反応器本体30a内の液体のスラリーSに流入した合成ガスGは、スラリーS内を気泡となって上昇しながらスラリーSに含まれる触媒粒子によりFT合成反応を起こして気体及び液体炭化水素となる。ここで、触媒粒子の一部は、スラリーS内で反応しなかった合成ガスG又は合成された気体の炭化水素等とともにスラリーSの液面から塔頂部に向かって飛び出す可能性があるが、スラリーSと流出口30cとの間にデミスタ部30dが備えられていることで、触媒粒子はデミスタ部30dの内部を通過する時にデミスタ部30dに捕捉される。従って、流出口30cから流出する炭化水素に触媒粒子が混入することを抑えることができ、製品である炭化水素の品質・歩留まりを向上させることができる。
また、デミスタ部30dには加熱用配管31aと気液分離器34とからなる加熱手段31が備えられているので、デミスタ部30dにスラリーSの一部が付着して、スラリー中の炭化水素に含まれるWAX留分が冷えて凝固した場合であっても、加熱手段31によりスラリーSの凝固分を加熱して溶かし、反応器本体30a内に収容されたスラリーS内に落として戻すことができる。従って、デミスタ部30dにスラリーSが固まって閉塞すること及び気体の炭化水素が流れなくなることを防止することができる。このことにより、気泡塔型反応器30の稼働率を向上させることが可能となる。
また、加熱用配管31aの一部はデミスタ部30d内に配置されているので、加熱用配管31a内に加熱用の水蒸気を流すことによりデミスタ部30dをより確実に加熱することができる。そして、伝熱管32内で加熱され気液分離器34で分離された水蒸気を加熱用配管31a内に流通させることで、新たに電力等を用いて加熱媒体を製造することなくデミスタ部30dを効率的に加熱することが可能となる。
また、流量制御装置33によりガス空塔速度が0.04m/sec以上0.3m/sec以下の一定値になるように調整されている。ガス空塔速度を0.3m/sec以下に設定することにより、スラリーSの液面から上方に飛び出す炭化水素の速度を抑え、流出口30cから流出する炭化水素に触媒粒子が混入することをより確実に抑えることができる。また、ガス空塔速度を0.04m/sec以上に設定することで、スラリーSの下方に触媒粒子が沈降することによる、反応器本体30a内部における触媒の滞留および合成ガスGとスラリーSとの化学反応の効率低下を防止することができる。
上記実施形態の液体燃料合成システム1の気泡塔型反応器30を用いて、反応器本体30aの流出口30cから流出する触媒粒子の量を測定した結果について説明する。表2は、反応器本体30aの中央部が内径250mmの筒状の場合の試験結果である。
実施例と比較例は、スラリーSの液面と流出口30cとの鉛直方向の距離を0.7mと一定にし、気泡塔型反応器30をそれぞれ一定時間稼働した時の、触媒粒子の流出量を測定したものである。
Figure 0005364713
実施例に示す、スラリーSの液面と流出口30cとの間にデミスタ部30dが設けられた場合には、1時間当たりの触媒粒子の流出量は0.00023g/hとなることが分かった。これに対し、比較例に示すデミスタ部30dが設けられていない場合には触媒粒子の流出量は0.0875g/hとなり、デミスタ部30dが設けられた場合の数百倍に増加する。これらの測定結果と算出結果を、気泡塔型反応器30から第1精留塔40へ供給される液体炭化水素中の触媒濃度に換算すると、デミスタ部30dが設けられた場合は0.03wt.ppm、デミスタ部30dが設けられていない場合は50wt.ppmに相当することが分かった。
以上、本発明の第二実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更等も含まれる。
例えば、上記第二実施形態では、加熱用配管31aには気液分離器34で分離された水蒸気を流したが、別に設けた水蒸気発生手段で得られた水蒸気を流してもよい。
また、上記第二実施形態では、加熱用配管31aと気液分離器34とを備えた加熱手段31を用いたが、加熱手段としてヒータ等を用いてもよい。
また、上記第二実施形態では、デミスタ部30dに加熱手段31は備えられていなくてもよい。付着するスラリーSの量に対してデミスタ部30dが充分大きい場合には、スラリーSを加熱して溶かしデミスタ部30dから落とす必要が無いからである。
また、上記第二実施形態では、デミスタ部30dは金属の細い線を編んだものとした。しかし、デミスタ部30dは、例えば板を組み合わせて気体の炭化水素が通るラビリンス状またはルーバー状の流路を形成し、スラリーSから上方に飛び出す触媒粒子を捕捉するように構成したものでもよい。
本発明の気泡塔型反応器及びその制御方法によれば、気泡塔型反応器から流出する気体の炭化水素に触媒粒子が混入することを抑えることができる。
30 気泡塔型反応器
30a 反応器本体
30b 流入口
30c 流出口
30d デミスタ部
31 加熱手段
31a 加熱用配管
34 気液分離器(加熱媒体流通手段)
39 液面計
G 合成ガス
S スラリー

Claims (5)

  1. 液体中に固体の触媒粒子を懸濁させてなるスラリーを収容する反応器本体と、
    該反応器本体の底部に設けられ、前記スラリー内に一酸化炭素ガス及び水素ガスを主成分とする合成ガスを流入させる流入口と、
    前記反応器本体の塔頂部に設けられ、前記合成ガスと前記スラリーとの化学反応によって合成される気体である炭化水素、及び未反応の前記合成ガス等を流出させる流出口と、
    前記反応器本体内の前記スラリーの液面と前記流出口との間に配置され、自身の内部を通過する前記触媒粒子を捕らえるデミスタ部と、
    前記デミスタ部を加熱する加熱手段と、
    を備える気泡塔型反応器。
  2. 請求項1に記載の気泡塔型反応器であって、
    前記加熱手段は、
    少なくとも一部が前記デミスタ部内に配置された加熱用配管と、
    該加熱用配管に当該加熱用配管を加熱するための加熱媒体を供給する加熱媒体流通手段と、
    を備える気泡塔型反応器。
  3. 請求項1または2に記載の気泡塔型反応器であって、
    前記反応器本体内へ流入させる前記合成ガスのガス空塔速度が、0.04m/sec以上0.3m/sec以下である気泡塔型反応器。
  4. 請求項1から3のいずれか一項に記載の気泡塔型反応器の制御方法であって、
    前記デミスタ部により前記触媒粒子を捕らえる工程と、
    前記スラリーのうちの凝固分が溶解する一定の温度以上に前記デミスタ部を前記加熱手段により加熱する工程と、
    を備える気泡塔型反応器の制御方法。
  5. 請求項4に記載の気泡塔型反応器の制御方法であって、
    前記反応器本体内へ流入させる前記合成ガスの流量を、前記反応器本体内のガス空塔速度が0.04m/sec以上0.3m/sec以下になるように制御する工程をさらに備える気泡塔型反応器の制御方法。
JP2010531720A 2008-09-30 2009-09-25 気泡塔型反応器及び気泡塔型反応器の制御方法 Expired - Fee Related JP5364713B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010531720A JP5364713B2 (ja) 2008-09-30 2009-09-25 気泡塔型反応器及び気泡塔型反応器の制御方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008254814 2008-09-30
JP2008254813 2008-09-30
JP2008254814 2008-09-30
JP2008254813 2008-09-30
PCT/JP2009/004876 WO2010038392A1 (ja) 2008-09-30 2009-09-25 気泡塔型反応器及び気泡塔型反応器の制御方法
JP2010531720A JP5364713B2 (ja) 2008-09-30 2009-09-25 気泡塔型反応器及び気泡塔型反応器の制御方法

Publications (2)

Publication Number Publication Date
JPWO2010038392A1 JPWO2010038392A1 (ja) 2012-03-01
JP5364713B2 true JP5364713B2 (ja) 2013-12-11

Family

ID=42073176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010531720A Expired - Fee Related JP5364713B2 (ja) 2008-09-30 2009-09-25 気泡塔型反応器及び気泡塔型反応器の制御方法

Country Status (11)

Country Link
US (1) US8906314B2 (ja)
EP (1) EP2351814A4 (ja)
JP (1) JP5364713B2 (ja)
CN (1) CN102165040B (ja)
AU (1) AU2009299339B2 (ja)
BR (1) BRPI0919431A2 (ja)
CA (1) CA2739198C (ja)
EA (1) EA021337B1 (ja)
MY (1) MY158453A (ja)
WO (1) WO2010038392A1 (ja)
ZA (1) ZA201102237B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090267349A1 (en) * 2008-04-23 2009-10-29 Spitzauer Michael P Production Processes, Systems, Methods, and Apparatuses
JP5990389B2 (ja) * 2012-03-26 2016-09-14 独立行政法人石油天然ガス・金属鉱物資源機構 炭化水素油の製造方法、気泡塔型スラリー床反応装置及び炭化水素油の製造システム
JP5869397B2 (ja) * 2012-03-28 2016-02-24 独立行政法人石油天然ガス・金属鉱物資源機構 気泡塔型スラリー床反応器のスタートアップ方法
RU204762U1 (ru) * 2019-07-19 2021-06-09 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Устройство для проведения реакций в суспензионном слое наноразмерного катализатора
CN115155467B (zh) * 2022-08-09 2023-10-10 宁夏瑞泰科技股份有限公司 采用液相光气化合成六亚甲基二异氰酸酯的***及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1846248A (en) * 1929-06-25 1932-02-23 Nell May Clarke Mist extractor
DE4201033A1 (de) * 1992-01-17 1993-07-22 Ingenieurbetrieb Anlagenbau Le Vorrichtung und verfahren zur abscheidung von aerosolen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740196B2 (ja) * 1973-11-13 1982-08-25
GB1488834A (en) * 1974-05-08 1977-10-12 Ici Ltd Gas scrubber
CA2105940C (en) * 1992-10-05 2001-12-25 Robert M. Koros Bubble column, tube side slurry process and apparatus
US6322755B1 (en) * 1996-08-08 2001-11-27 Shell Oil Company Reactor for carrying out an exothermic reaction
US5962537A (en) * 1997-05-06 1999-10-05 Exxon Research And Engineering Co Multizone downcomer for slurry hydrocarbon syntheses process
IT1292422B1 (it) * 1997-06-26 1999-02-08 Agip Petroli Reattore a bolle con draft tube e procedimento per la rigenerazione del catalizzatore in esso contenuto
EG22489A (en) * 1999-02-05 2003-02-26 Sasol Technology Process for producing liquid and optionally gaseous products from gaseous reactants
CN1233461C (zh) 2003-09-22 2005-12-28 上海兖矿能源科技研发有限公司 用于浆态床反应器的铁基费托合成催化剂的工业还原方法
JP4874660B2 (ja) 2006-01-30 2012-02-15 新日鉄エンジニアリング株式会社 気泡塔型炭化水素合成反応器
MY149999A (en) * 2006-03-30 2013-11-15 Nippon Steel Eng Co Ltd Starting method of liquid fuel synthesizing system, and liquid fuel synthesizing system
JP2008254813A (ja) 2007-03-12 2008-10-23 Rengo Co Ltd 多角形包装箱
KR100873908B1 (ko) 2007-04-02 2008-12-15 삼성전자주식회사 테이핑 및 밴딩장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1846248A (en) * 1929-06-25 1932-02-23 Nell May Clarke Mist extractor
DE4201033A1 (de) * 1992-01-17 1993-07-22 Ingenieurbetrieb Anlagenbau Le Vorrichtung und verfahren zur abscheidung von aerosolen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013023796; Chemical Engineering Science 56(2), 2001, p.537-545 *
JPN6013023799; Catalysis Today 71(3-4), 2002, p.249-300 *
JPN6013023801; Chemical Engineering Journal 128(2-3), 2007, p.69-84 *

Also Published As

Publication number Publication date
CA2739198C (en) 2014-01-14
WO2010038392A1 (ja) 2010-04-08
ZA201102237B (en) 2012-06-27
US20110245356A1 (en) 2011-10-06
CA2739198A1 (en) 2010-04-08
MY158453A (en) 2016-10-14
EP2351814A1 (en) 2011-08-03
EA021337B1 (ru) 2015-05-29
CN102165040A (zh) 2011-08-24
JPWO2010038392A1 (ja) 2012-03-01
CN102165040B (zh) 2014-03-19
EA201170426A1 (ru) 2011-10-31
AU2009299339B2 (en) 2013-05-09
US8906314B2 (en) 2014-12-09
AU2009299339A1 (en) 2010-04-08
BRPI0919431A2 (pt) 2015-12-15
EP2351814A4 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JPWO2009113613A1 (ja) 炭化水素化合物の合成反応システム、及び粉化粒子の除去方法
JP5107234B2 (ja) 液体燃料合成システム
JP5364713B2 (ja) 気泡塔型反応器及び気泡塔型反応器の制御方法
JP5501366B2 (ja) 炭化水素合成反応装置、及び炭化水素合成反応システム、並びに炭化水素合成反応方法
JP5417446B2 (ja) 炭化水素合成反応装置、及び炭化水素合成反応システム、並びに液体炭化水素の回収方法
JP5138586B2 (ja) 液体燃料合成システム
JP5364716B2 (ja) 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法
JP5364714B2 (ja) 液体燃料合成方法及び液体燃料合成装置
JP5743643B2 (ja) 反応容器の運転停止方法
JP5364786B2 (ja) 触媒分離システム
JP5298133B2 (ja) 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法
JP2013203900A (ja) 炭化水素合成用反応器
JP2010084984A (ja) 液体燃料混合システム及び液体燃料合成システム、並びに液体燃料混合方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees