JP5363981B2 - Film surface treatment method, polarizing plate production method, and surface treatment apparatus - Google Patents

Film surface treatment method, polarizing plate production method, and surface treatment apparatus Download PDF

Info

Publication number
JP5363981B2
JP5363981B2 JP2009522586A JP2009522586A JP5363981B2 JP 5363981 B2 JP5363981 B2 JP 5363981B2 JP 2009522586 A JP2009522586 A JP 2009522586A JP 2009522586 A JP2009522586 A JP 2009522586A JP 5363981 B2 JP5363981 B2 JP 5363981B2
Authority
JP
Japan
Prior art keywords
film
temperature
gas
surface treatment
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009522586A
Other languages
Japanese (ja)
Other versions
JPWO2009008284A1 (en
Inventor
純一 松崎
敏行 堂路
卓也 屋良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2009522586A priority Critical patent/JP5363981B2/en
Publication of JPWO2009008284A1 publication Critical patent/JPWO2009008284A1/en
Application granted granted Critical
Publication of JP5363981B2 publication Critical patent/JP5363981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • H05H1/473Cylindrical electrodes, e.g. rotary drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/482Drying adhesives, e.g. solvent based adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • B29K2029/04PVOH, i.e. polyvinyl alcohol

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Nonlinear Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

The present invention aims to secure adhesion of a triacetate cellulose film to a polyvinyl alcohol film without performing a saponification treatment. Specifically, before bonding a second film (12) mainly containing a triacetate cellulose to a first film (11) composed of a polyvinyl alcohol resin, a reaction gas is changed into a plasma and then brought into contact with the bonding surfaces of the second film (12) and the first film (11). The reaction gas contains an acrylic acid or a methacrylic acid.

Description

本発明は、ポリビニルアルコール(以下、必要に応じて「PVA」と称す)系樹脂からなるPVAフィルム(第1フィルム)に、トリアセテートセルロース(以下、必要に応じて「TAC」と称す)を主成分として含むTACフィルム(第2フィルム)を接着するのに先立ち、接着性を高めるためにTACフィルムに施す表面処理方法、及びPVAフィルムを偏光膜とし、この偏光膜に保護膜としてTACフィルムを積層した偏光板を製造する方法に関する。特に、TACフィルムを、鹸化処理によらずに表面処理しPVAフィルムと接着する方法に関する。   In the present invention, a PVA film (first film) made of a polyvinyl alcohol (hereinafter referred to as “PVA” if necessary) resin is mainly composed of triacetate cellulose (hereinafter referred to as “TAC” if necessary). Prior to adhering the TAC film (second film) included as a surface treatment method applied to the TAC film to enhance adhesion, and the PVA film as a polarizing film, a TAC film was laminated as a protective film on the polarizing film The present invention relates to a method of manufacturing a polarizing plate. In particular, the present invention relates to a method in which a TAC film is surface-treated without using a saponification treatment and bonded to a PVA film.

例えば、液晶表示部には偏光板が組み込まれている。偏光板は、PVA系樹脂からなる偏光膜にTACフィルムからなる保護膜を接着剤で接着したものである。TACフィルムは、接着に先立って、水酸化ナトリウムや水酸化カリウムなどのアルカリ水溶液に漬けられ、鹸化処理される。鹸化処理するのは、TACフィルムの親水性を高め、TACフィルムの偏光膜への接着性を確保するためである。接着剤としては、一般にポリビニルアルコール系やポリエーテル系の接着剤が用いられている。
特許文献1では、TACフィルムを鹸化処理した後、上記TACフィルムにハードコート層を塗布により積層し、その後、一軸延伸されたPVAからなる偏光膜の両面に上記ハードコート層付きTACフィルムをポリビニルアルコール系接着剤を用いて積層している。
特許文献2では、反応ガスを大気圧近傍下でプラズマ化している。反応ガス成分としてアクリル酸、メタクリル酸を用いることで基材フィルムを疎水性化している。
特許文献3では、鹸化処理したTACフィルムの片面を低圧グロー放電等で表面処理し、このTACフィルムの表面処理された面にハードコート層を塗布にて積層している。表面処理によってハードコート層とTACフィルムの接着性を高めている。
特許文献4では、TACフィルム等の基材を大気圧近傍プラズマで表面処理している。表面処理用のガスは、窒素、アルゴン等の放電ガスと、薄膜形成用ガスとの混合ガスを用いている。薄膜形成用ガスとしてアクリル酸、メタクリル酸等を用いることで、基材の親水性を高めている。これにより、基材上にプラズマ処理にて成膜される反射防止膜等の膜と該基材との密着性を向上させている。
特開平08−171016号公報 特開2003−201568号公報(段落0001、0047) 特開2003−227932号公報 特開2006−299000号公報(段落0113〜0119、0130、0143)
For example, a polarizing plate is incorporated in the liquid crystal display unit. The polarizing plate is obtained by bonding a protective film made of a TAC film to a polarizing film made of PVA resin with an adhesive. Prior to bonding, the TAC film is immersed in an aqueous alkali solution such as sodium hydroxide or potassium hydroxide and saponified. The reason for the saponification treatment is to increase the hydrophilicity of the TAC film and ensure the adhesion of the TAC film to the polarizing film. As an adhesive, a polyvinyl alcohol-based or polyether-based adhesive is generally used.
In Patent Document 1, after a TAC film is saponified, a hard coat layer is laminated on the TAC film by coating, and then the TAC film with a hard coat layer is attached to both sides of a uniaxially stretched polarizing film with polyvinyl alcohol. Laminated using a system adhesive.
In Patent Document 2, the reaction gas is converted into plasma under atmospheric pressure. The base film is made hydrophobic by using acrylic acid or methacrylic acid as a reaction gas component.
In Patent Document 3, one surface of a saponified TAC film is surface-treated by low-pressure glow discharge or the like, and a hard coat layer is laminated on the surface-treated surface of the TAC film by coating. The surface treatment improves the adhesion between the hard coat layer and the TAC film.
In Patent Document 4, a substrate such as a TAC film is surface-treated with plasma near atmospheric pressure. As the surface treatment gas, a mixed gas of a discharge gas such as nitrogen or argon and a thin film forming gas is used. By using acrylic acid, methacrylic acid or the like as the gas for forming a thin film, the hydrophilicity of the substrate is enhanced. This improves the adhesion between the base material and a film such as an antireflection film formed by plasma treatment on the base material.
Japanese Patent Laid-Open No. 08-171016 JP 2003-151568 (paragraphs 0001, 0047) JP 2003-227932 A JP 2006-299000 A (paragraphs 0113 to 0119, 0130, 0143)

鹸化処理されたTACフィルムは、耐熱性が低下したり、ロール状態での保存時に部分的にブロッキングが生じたりしやすかった。また、TACフィルムの接着面とは反対側の面にハードコートが施されていると、鹸化処理によってヘイズ値が上がり光学特性が変化するという不具合があった。鹸化処理に用いるアルカリ水溶液の廃液処理の問題もあった。
一方、未鹸化のTACフィルムの場合、ポリビニルアルコール系やポリエーテル系の従来の接着剤では偏光膜に接着することができなかった。ポリオレフィン系ポリオール(特開2003−155379号)などのオレフィン系水性接着剤でも接着不能であった。
The TAC film subjected to saponification treatment was liable to have low heat resistance or partial blocking during storage in a roll state. Further, when a hard coat is applied to the surface opposite to the adhesive surface of the TAC film, there is a problem that the haze value is increased by the saponification treatment and the optical characteristics are changed. There was also a problem of waste liquid treatment of alkaline aqueous solution used for saponification treatment.
On the other hand, in the case of an unsaponified TAC film, conventional polyvinyl alcohol-based or polyether-based adhesives could not be bonded to the polarizing film. Even an olefin-based water-based adhesive such as a polyolefin-based polyol (Japanese Patent Laid-Open No. 2003-155379) could not be bonded.

発明者は、上記問題点を解決するために鋭意研究を行なった。その結果、TACフィルムにある種の有機化合物のモノマーをプラズマ化して照射すると、鹸化処理したのと同様の接着性を得ることができることを見出した。
本発明は、上記の知見に基づいてなされたものであり、ポリビニルアルコール(PVA)系樹脂からなる第1フィルムに、トリアセテートセルロース(TAC)を主成分として含む第2フィルムを接着するのに先立ち、前記第2フィルムに施す表面処理方法であって、反応ガスをプラズマ化(分解、励起、活性化、ラジカル化、イオン化を含む)して前記第2フィルムの前記第1フィルムと接着されるべき面に接触させるものである(特許請求せず)
また、本発明は、PVA系樹脂からなる第1フィルムに、TACを主成分として含む第2フィルムを積層してなり、前記第1フィルムが偏光膜となり、前記第2フィルムが保護膜となる偏光板の製造方法であって、反応ガスをプラズマ化して前記第2フィルムの前記第1フィルムと接着されるべき面に接触させる表面処理工程と、その後、前記第1フィルムと前記第2フィルムを接着剤にて接着する接着工程と、を含むものである(特許請求せず)
前記反応ガスは、反応成分として不飽和結合及び所定の官能基を有するモノマーを含む。前記所定の官能基は、水酸基、カルボキシル基、アセチル基、グリシジル基、エポキシ基、炭素数1〜10のエステル基、スルホン基、アルデヒド基から選択され、特に、カルボキシル基が好ましい。
本発明は、ポリビニルアルコール系樹脂からなる第1フィルムに、トリアセテートセルロースを主成分として含む第2フィルムを接着するのに先立ち、前記第2フィルムに施す表面処理方法であって、
結露を生じ得る処理空間において反応ガスをプラズマ化して前記第2フィルムの前記第1フィルムと接着されるべき面に接触させ、
前記反応ガスが、アクリル酸又はメタクリル酸を含有し、前記反応ガスの前記第2フィルムへの噴出温度(以下「ガス噴出温度」と称す)がアクリル酸又はメタクリル酸の引火点未満であり、前記第2フィルムの前記反応ガスと接触する部分の温度(以下「フィルム温度」と称す)が室温以上かつ前記ガス噴出温度より低く、かつ前記ガス噴出温度と前記フィルム温度との差が5℃〜30℃になるよう、前記フィルム温度及び前記ガス噴出温度を調節することを特許請求する特徴とする。
また、本発明は、ポリビニルアルコール系樹脂からなる第1フィルムに、トリアセテートセルロースを主成分として含む第2フィルムを積層してなり、前記第1フィルムが偏光膜となり、前記第2フィルムが保護膜となる偏光板の製造方法であって、
結露を生じ得る処理空間において反応ガスをプラズマ化して前記第2フィルムの前記第1フィルムと接着されるべき面に接触させる表面処理工程と、
その後、前記第1フィルムと前記第2フィルムを接着剤にて接着する接着工程と、を含み、
前記反応ガスが、アクリル酸又はメタクリル酸を含有し、前記反応ガスの前記第2フィルムへの噴出温度(以下「ガス噴出温度」と称す)がアクリル酸又はメタクリル酸の引火点未満であり、前記第2フィルムの前記反応ガスと接触する部分の温度(以下「フィルム温度」と称す)が室温以上かつ前記ガス噴出温度より低く、かつ前記ガス噴出温度と前記フィルム温度との差が5℃〜30℃になるよう、前記フィルム温度及び前記ガス噴出温度を調節することを特許請求する特徴とする。
前記ガス噴出温度が50℃以下であることが好ましい。
前記ガス噴出温度と前記フィルム温度との差が、20℃以下であることが好ましい。
The inventor has intensively studied to solve the above problems. As a result, it was found that the same adhesiveness as that obtained by saponification treatment can be obtained when a monomer of a certain organic compound is converted into plasma and irradiated on the TAC film.
The present invention has been made based on the above findings, and prior to bonding a second film containing triacetate cellulose (TAC) as a main component to a first film made of polyvinyl alcohol (PVA) resin, A surface treatment method applied to the second film, the surface of the second film to be bonded to the first film after being plasmatized (including decomposition, excitation, activation, radicalization, and ionization) (Not claimed) .
In the present invention, a first film made of PVA resin is laminated with a second film containing TAC as a main component, the first film becomes a polarizing film, and the second film becomes a protective film. A method of manufacturing a plate, comprising: a surface treatment step of converting a reactive gas into plasma to contact a surface of the second film to be bonded to the first film; and thereafter bonding the first film and the second film And a bonding step of bonding with an agent (not claimed) .
The reaction gas contains a monomer having an unsaturated bond and a predetermined functional group as a reaction component. The predetermined functional group is selected from a hydroxyl group, a carboxyl group, an acetyl group, a glycidyl group, an epoxy group, an ester group having 1 to 10 carbon atoms, a sulfone group, and an aldehyde group, and a carboxyl group is particularly preferable.
The present invention is a surface treatment method applied to the second film prior to bonding the second film containing triacetate cellulose as a main component to the first film made of a polyvinyl alcohol-based resin,
Plasmaizing the reactive gas in a processing space where condensation can occur to bring it into contact with the surface of the second film to be bonded to the first film,
The reaction gas contains acrylic acid or methacrylic acid, and the ejection temperature of the reaction gas to the second film (hereinafter referred to as “gas ejection temperature”) is lower than the flash point of acrylic acid or methacrylic acid, The temperature of the portion of the second film that contacts the reaction gas (hereinafter referred to as “film temperature”) is not less than room temperature and lower than the gas ejection temperature, and the difference between the gas ejection temperature and the film temperature is 5 ° C. to 30 ° C. The film temperature and the gas jetting temperature are adjusted so that the temperature becomes 0 ° C.
In the present invention, a first film made of polyvinyl alcohol resin is laminated with a second film containing triacetate cellulose as a main component, the first film becomes a polarizing film, and the second film becomes a protective film. A method of manufacturing a polarizing plate, comprising:
A surface treatment step in which a reaction gas is converted into plasma in a treatment space where condensation can occur and is brought into contact with the surface of the second film to be bonded to the first film;
Then, an adhesion step of adhering the first film and the second film with an adhesive,
The reaction gas contains acrylic acid or methacrylic acid, and the ejection temperature of the reaction gas to the second film (hereinafter referred to as “gas ejection temperature”) is lower than the flash point of acrylic acid or methacrylic acid, The temperature of the portion of the second film that contacts the reaction gas (hereinafter referred to as “film temperature”) is not less than room temperature and lower than the gas ejection temperature, and the difference between the gas ejection temperature and the film temperature is 5 ° C. to 30 ° C. The film temperature and the gas jetting temperature are adjusted so that the temperature becomes 0 ° C.
The gas ejection temperature is preferably 50 ° C. or lower.
The difference between the gas ejection temperature and the film temperature is preferably 20 ° C. or less.

不飽和結合及び水酸基を有するモノマーとしては、メタクリル酸エチレングリコール、アリルアルコール、メタクリル酸ヒドロキシエチル等が挙げられる。
不飽和結合及びカルボキシル基を有するモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、マイレン酸、2−メタクリロイルプロピオン酸等が挙げられる。
不飽和結合及びアセチル基を有するモノマーとしては、酢酸ビニル等が挙げられる。
不飽和結合及びグリシジル基を有するモノマーとしては、メタクリル酸グリシジル等が挙げられる。
不飽和結合及びエステル基を有するモノマーとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸t−ブチル、アクリル酸2−エチルヘキシル、アクリル酸オクチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸t−ブチル、メタクリル酸イソプロピル、メタクリル酸2−エチル等が挙げられる。
不飽和結合及びアルデヒド基を有するモノマーとしては、アクリルアルデヒド、クロトンアルデヒド等が挙げられる。
Examples of the monomer having an unsaturated bond and a hydroxyl group include ethylene glycol methacrylate, allyl alcohol, and hydroxyethyl methacrylate.
Examples of the monomer having an unsaturated bond and a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, 2-methacryloylpropionic acid and the like.
Examples of the monomer having an unsaturated bond and an acetyl group include vinyl acetate.
Examples of the monomer having an unsaturated bond and a glycidyl group include glycidyl methacrylate.
Monomers having an unsaturated bond and an ester group include methyl acrylate, ethyl acrylate, butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, methyl methacrylate, ethyl methacrylate, methacrylic acid. Examples include butyl, t-butyl methacrylate, isopropyl methacrylate, and 2-ethyl methacrylate.
Examples of the monomer having an unsaturated bond and an aldehyde group include acrylic aldehyde and crotonaldehyde.

好ましくは、前記反応ガスは、エチレン性不飽和二重結合及びカルボキシル基を有するモノマーを含む。かかるモノマーとして、アクリル酸(CH=CHCOOH)、メタクリル酸(CH=C(CH)COOH)が挙げられる。Preferably, the reaction gas includes a monomer having an ethylenically unsaturated double bond and a carboxyl group. Examples of such monomers include acrylic acid (CH 2 ═CHCOOH) and methacrylic acid (CH 2 ═C (CH 3 ) COOH).

前記モノマーは、不活性ガスにキャリアされてプラズマ化されるようになっていてもよい。不活性ガスは、窒素、アルゴン、ヘリウム等から選択され、経済性の観点からは窒素を用いるのが好ましい。
アクリル酸やメタクリル酸をはじめとする上記列挙のモノマーの多くは、常温常圧で液相である。そのようなモノマーは、不活性ガス中に気化させて、気化したモノマーと不活性ガスとの混合ガスを得、この混合ガスを前記反応ガスとするのが好ましい。アクリル酸やメタクリル酸等のモノマーは、加熱やバブリングなどで気化させ、上記不活性ガスにキャリアさせるとよい。
加熱して気化させる場合の加熱器の負担を考慮し、モノマーは、沸点が300℃以下のものを選択するのが好ましい。また、モノマーは、加熱により分解(化学変化)しないものを選択するのが好ましい。
The monomer may be converted into plasma by being carriered by an inert gas. The inert gas is selected from nitrogen, argon, helium, etc., and nitrogen is preferably used from the viewpoint of economy.
Many of the above listed monomers including acrylic acid and methacrylic acid are in a liquid phase at normal temperature and pressure. Such a monomer is preferably vaporized in an inert gas to obtain a mixed gas of the vaporized monomer and the inert gas, and this mixed gas is used as the reaction gas. Monomers such as acrylic acid and methacrylic acid are preferably vaporized by heating, bubbling, or the like, and then carriered in the inert gas.
Considering the burden on the heater when heated and vaporized, it is preferable to select a monomer having a boiling point of 300 ° C. or less. Moreover, it is preferable to select a monomer that does not decompose (chemically change) by heating.

前記第2フィルムの前記第1フィルムと接着される面とは反対側の面にハードコート層やAR(Anti−Reflection)層などの機能層が被膜されている場合、前記プラズマ化に用いる一対の電極のうち一方の電極の放電面に前記機能層を向けて、前記放電面を前記第2フィルムで隙間無く覆った状態で、前記反応ガスを前記第2フィルムと他方の電極との間に導入することが好ましい。これによって、プラズマ化された反応ガスを、第2フィルムの偏光膜との接着面に確実に接触させることができるだけでなく、機能層と前記一方の電極との間にプラズマが形成されたり、プラズマ化された反応ガスが入り込んできたりするのを防止でき、機能層がダメージを受けるのを防止することができる。   When a functional layer such as a hard coat layer or an AR (Anti-Reflection) layer is coated on the surface of the second film opposite to the surface to be bonded to the first film, The reactive gas is introduced between the second film and the other electrode with the functional layer facing the discharge surface of one of the electrodes and the discharge surface covered with the second film without a gap. It is preferable to do. As a result, it is possible not only to reliably bring the reactive gas that has been made into plasma into contact with the adhesive surface of the second film with the polarizing film, but also to form plasma between the functional layer and the one electrode, It is possible to prevent the converted reaction gas from entering, and to prevent the functional layer from being damaged.

本発明の表面処理を施した第2フィルムと第1フィルムとを接着する接着剤としては、特に限定はなく、ポリビニルアルコール水溶液、ポリビニルブチラール溶液等を主成分とするポリビニルアルコール系の接着剤液、ブチルアクリレートなどを主成分とするビニル系重合系ラテックス、ポリオレフィン系ポリオール等を主成分とするオレフィン水性接着剤、ポリエーテル系接着剤等が挙げられるが、ポリビニルアルコール水溶液を主成分とするポリビニルアルコール系接着剤を用いるのがより好ましい。   The adhesive that bonds the second film and the first film subjected to the surface treatment of the present invention is not particularly limited, and a polyvinyl alcohol-based adhesive liquid mainly composed of a polyvinyl alcohol aqueous solution, a polyvinyl butyral solution, Examples include vinyl polymerization latexes mainly composed of butyl acrylate, olefin aqueous adhesives based on polyolefin polyols, polyether adhesives, etc., but polyvinyl alcohols based on polyvinyl alcohol aqueous solutions. It is more preferable to use an adhesive.

反応ガスのプラズマ化は、大気圧近傍の圧力下で行なうのが好ましい。ここで、大気圧近傍とは、1.013×10〜50.663×10Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×10〜10.664×10Paが好ましく、9.331×10〜10.397×10Paがより好ましい。The reaction gas is preferably converted to plasma under a pressure close to atmospheric pressure. Here, the vicinity of the atmospheric pressure refers to a range of 1.013 × 10 4 to 50.663 × 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 × 10 4 to 10.664 × 10 4 Pa is preferable, and 9.331 × 10 4 to 10.9797 × 10 4 Pa is more preferable.

前記反応ガスは、アクリル酸又はメタクリル酸を含有することが好ましく、特にアクリル酸を含有することが好ましい。   The reaction gas preferably contains acrylic acid or methacrylic acid, and particularly preferably contains acrylic acid.

前記表面処理方法において、又は前記偏光板製造方法の表面処理工程において、前記第2フィルムの前記反応ガスと接触する部分の温度(以下「フィルム温度」と称す)が、前記反応ガスの前記第2フィルムへの噴出温度(以下「ガス噴出温度」と称す)より低く、かつ前記ガス噴出温度と前記フィルム温度との差が5℃以上であることが好ましく、前記温度差が10℃以上であることが一層好ましい。   In the surface treatment method or the surface treatment step of the polarizing plate production method, the temperature of the portion of the second film that contacts the reaction gas (hereinafter referred to as “film temperature”) is the second of the reaction gas. It is preferable that the temperature is lower than the jetting temperature to the film (hereinafter referred to as “gas jetting temperature”), and the difference between the gas jetting temperature and the film temperature is 5 ° C. or more, and the temperature difference is 10 ° C. or more. Is more preferable.

前記フィルム温度が、室温以上であることが好ましい。ここで、室温とは、一般に20〜25℃であり、より一般的には25℃である。前記反応ガスを、アクリル酸又はメタクリル酸の引火点未満かつ前記第2フィルムより5℃以上高温にすることが好ましい。前記反応ガスをアクリル酸又はメタクリル酸の引火点未満かつ前記第2フィルムより10℃以上高温にすることがより好ましい。アクリル酸の引火点は、54℃である。メタクリル酸の引火点は、77℃である。ちなみに、アクリル酸の発火点は、360℃である。メタクリル酸の発火点は、360℃である。   The film temperature is preferably room temperature or higher. Here, the room temperature is generally 20 to 25 ° C., and more generally 25 ° C. It is preferable that the reaction gas has a temperature lower than the flash point of acrylic acid or methacrylic acid and higher than the second film by 5 ° C. or more. More preferably, the reaction gas is lower than the flash point of acrylic acid or methacrylic acid and higher than the second film by 10 ° C. or higher. The flash point of acrylic acid is 54 ° C. The flash point of methacrylic acid is 77 ° C. Incidentally, the ignition point of acrylic acid is 360 ° C. The ignition point of methacrylic acid is 360 ° C.

前記反応ガスの酸素含有量が、0〜3000ppmであることが好ましく、2000ppm以下であることがより好ましい。   The oxygen content of the reaction gas is preferably 0 to 3000 ppm, and more preferably 2000 ppm or less.

本発明に係る表面処理装置は、前記表面処理方法に用いられる、又は前記偏光板製造方法の表面処理工程に用いられるものであって、
前記第2フィルムが配置される処理空間を有し、前記処理空間内又はその近傍で前記プラズマ化を行なうプラズマ処理部と、
前記処理空間に反応ガスを供給する反応ガス供給系と、
前記第2フィルムの前記反応ガスと接触する部分の温度(以下「フィルム温度」と称す)を調節するフィルム温度調節手段と、
前記反応ガスの前記第2フィルムへの噴出温度(以下「ガス噴出温度」と称す)を調節するガス温度調節手段と、
を備えている(特許請求せず)。好ましくは、前記フィルム温度調節手段と前記ガス温度調節手段とによって、前記フィルム温度が前記ガス噴出温度より低くなるよう調節する。より好ましくは、前記フィルム温度調節手段と前記ガス温度調節手段とによって、前記ガス噴出温度と前記フィルム温度との差が5℃以上、一層好ましくは10℃以上になるよう調節する。
本発明に係る表面処理装置は、前記表面処理方法に用いられる、又は前記偏光板製造方法の表面処理工程に用いられるものであって、
前記第2フィルムが配置され、結露を生じ得る処理空間を有し、前記処理空間内又はその近傍で前記プラズマ化を行なうプラズマ処理部と、
前記処理空間に反応ガスを供給する反応ガス供給系と、
前記第2フィルムの前記反応ガスと接触する部分の温度(以下「フィルム温度」と称す)を調節するフィルム温度調節手段と、
前記反応ガスの前記第2フィルムへの噴出温度(以下「ガス噴出温度」と称す)を調節するガス温度調節手段と、
を備え、前記フィルム温度調節手段と前記ガス温度調節手段とによって、前記フィルム温度が室温以上かつ前記ガス噴出温度より低く、かつ前記ガス噴出温度がアクリル酸又はメタクリル酸の引火点未満であり、かつ前記ガス噴出温度と前記フィルム温度との差が5℃〜30℃になるよう調節することを特許請求する特徴とする。
The surface treatment apparatus according to the present invention is used in the surface treatment method or used in the surface treatment step of the polarizing plate production method,
A plasma processing unit having a processing space in which the second film is disposed, and performing the plasma in or near the processing space;
A reaction gas supply system for supplying a reaction gas to the processing space;
Film temperature adjusting means for adjusting the temperature of the portion of the second film that contacts the reactive gas (hereinafter referred to as “film temperature”);
A gas temperature adjusting means for adjusting an ejection temperature of the reaction gas to the second film (hereinafter referred to as “gas ejection temperature”);
(Not claimed) . Preferably, the film temperature adjusting means and the gas temperature adjusting means adjust the film temperature to be lower than the gas ejection temperature. More preferably, the difference between the gas ejection temperature and the film temperature is adjusted to 5 ° C. or more, more preferably 10 ° C. or more by the film temperature adjusting means and the gas temperature adjusting means.
The surface treatment apparatus according to the present invention is used in the surface treatment method or used in the surface treatment step of the polarizing plate production method,
A plasma processing section in which the second film is disposed and has a processing space in which condensation can occur, and the plasma processing is performed in or near the processing space;
A reaction gas supply system for supplying a reaction gas to the processing space;
Film temperature adjusting means for adjusting the temperature of the portion of the second film that contacts the reactive gas (hereinafter referred to as “film temperature”);
A gas temperature adjusting means for adjusting an ejection temperature of the reaction gas to the second film (hereinafter referred to as “gas ejection temperature”);
The film temperature adjusting means and the gas temperature adjusting means, the film temperature is not less than room temperature and lower than the gas ejection temperature, and the gas ejection temperature is lower than the flash point of acrylic acid or methacrylic acid, and It is claimed that the difference between the gas ejection temperature and the film temperature is adjusted to be 5 ° C to 30 ° C.

本発明によれば、TACフィルムのPVAフィルムへの接着性を、鹸化処理によらずに確保できる。   According to the present invention, the adhesiveness of the TAC film to the PVA film can be ensured regardless of the saponification treatment.

(a)は、偏光板の断面図を示し、(b)は、ハードコード層付きの偏光板の断面図を示す。(A) shows sectional drawing of a polarizing plate, (b) shows sectional drawing of a polarizing plate with a hard cord layer. TACフィルムの表面処理に用いる大気圧プラズマ処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the atmospheric pressure plasma processing apparatus used for the surface treatment of a TAC film. 窒素キャリアに含有可能なアクリル酸の限界濃度と温度との関係(理論値)を示すグラフである。It is a graph which shows the relationship (theoretical value) with the limit concentration of acrylic acid which can be contained in a nitrogen carrier, and temperature. 本発明の第2実施形態を示し、大気圧プラズマ処理装置の変形例を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of this invention and shows the modification of an atmospheric pressure plasma processing apparatus. 本発明の第3実施形態に係る大気圧プラズマ処理装置の概略構成図である。It is a schematic block diagram of the atmospheric pressure plasma processing apparatus which concerns on 3rd Embodiment of this invention. 実施例4における接触角(親水性)の測定結果を示すグラフである。It is a graph which shows the measurement result of the contact angle (hydrophilicity) in Example 4. 実施例5に用いた大気圧プラズマ処理装置の概略構成図である。It is a schematic block diagram of the atmospheric pressure plasma processing apparatus used for Example 5. 実施例5において、ガス噴出温度とフィルム温度の差がΔT=+17℃のときの接着性を示すグラフである。In Example 5, it is a graph which shows adhesiveness when the difference of gas ejection temperature and film temperature is (DELTA) T = + 17 degreeC. 実施例5において、ガス噴出温度とフィルム温度の差がΔT=+12℃のときの接着性を示すグラフである。In Example 5, it is a graph which shows adhesiveness when the difference of gas ejection temperature and film temperature is (DELTA) T = + 12 degreeC. 実施例5において、ガス噴出温度とフィルム温度の差がΔT=+10℃のときの接着性を示すグラフである。In Example 5, it is a graph which shows adhesiveness when the difference of gas ejection temperature and film temperature is (DELTA) T = + 10 degreeC. 実施例5において、ガス噴出温度とフィルム温度の差がΔT=+7℃のときの接着性を示すグラフである。In Example 5, it is a graph which shows adhesiveness when the difference of gas ejection temperature and film temperature is (DELTA) T = + 7 degreeC. 実施例5において、ガス噴出温度とフィルム温度の差がΔT=+7℃のときの接着性を示すグラフである。In Example 5, it is a graph which shows adhesiveness when the difference of gas ejection temperature and film temperature is (DELTA) T = + 7 degreeC. 実施例5において、ガス噴出温度とフィルム温度の差がΔT=+5℃のときの接着性を示すグラフである。In Example 5, it is a graph which shows adhesiveness when the difference of gas ejection temperature and film temperature is (DELTA) T = + 5 degreeC. 実施例5において、ガス噴出温度とフィルム温度の差がΔT=+2℃のときの接着性を示すグラフである。In Example 5, it is a graph which shows adhesiveness when the difference of gas ejection temperature and film temperature is (DELTA) T = + 2 degreeC. 実施例5において、ガス噴出温度とフィルム温度の差がΔT=+2℃のときの接着性を示すグラフである。In Example 5, it is a graph which shows adhesiveness when the difference of gas ejection temperature and film temperature is (DELTA) T = + 2 degreeC. 実施例5において、ガス噴出温度とフィルム温度の差がΔT=+2℃のときの接着性を示すグラフである。In Example 5, it is a graph which shows adhesiveness when the difference of gas ejection temperature and film temperature is (DELTA) T = + 2 degreeC. 実施例5において、ガス噴出温度とフィルム温度の差がΔT=−3℃のときの接着性を示すグラフである。In Example 5, it is a graph which shows adhesiveness when the difference of gas ejection temperature and film temperature is (DELTA) T = -3 degreeC. 実施例5において、ガス噴出温度とフィルム温度の差がΔT=−3℃のときの接着性を示すグラフである。In Example 5, it is a graph which shows adhesiveness when the difference of gas ejection temperature and film temperature is (DELTA) T = -3 degreeC. 実施例5において、ガス噴出温度とフィルム温度の差がΔT=−8℃のときの接着性を示すグラフである。In Example 5, it is a graph which shows adhesiveness when the difference of gas ejection temperature and film temperature is (DELTA) T = -8 degreeC. 実施例6に用いた大気圧プラズマ処理装置の概略構成図である。It is a schematic block diagram of the atmospheric pressure plasma processing apparatus used for Example 6. 実施例7に用いた大気圧プラズマ処理装置の概略構成図である。It is a schematic block diagram of the atmospheric pressure plasma processing apparatus used for Example 7.

符号の説明Explanation of symbols

1 表面処理装置
2 プラズマ処理部
3 反応ガス供給系
10 偏光板
11 偏光膜(PVAフィルム、第1フィルム)
12 保護膜(TACフィルム、第2フィルム)
13 接着剤
14 ハードコート層
21,21R 電源側電極
22,22R 接地側電極
23 電源
27 フィルム温度調節手段
29 処理空間
30 反応成分供給源(容器)
33 加熱器(気化手段)
34 キャリア供給源
36 断熱材
39 ガス温度調節手段
Ac アクリル酸(反応ガス成分)
p 大気圧プラズマ空間
DESCRIPTION OF SYMBOLS 1 Surface treatment apparatus 2 Plasma processing part 3 Reactive gas supply system 10 Polarizing plate 11 Polarizing film (PVA film, 1st film)
12 Protective film (TAC film, second film)
DESCRIPTION OF SYMBOLS 13 Adhesive 14 Hard-coat layer 21,21R Power supply side electrode 22,22R Ground side electrode 23 Power supply 27 Film temperature control means 29 Processing space 30 Reaction component supply source (container)
33 Heater (vaporization means)
34 Carrier supply source 36 Heat insulating material 39 Gas temperature adjusting means Ac Acrylic acid (reactive gas component)
p Atmospheric pressure plasma space

以下、本発明の実施形態を、図面を参照して説明する。
図1(a)は、液晶ディスプレイ用の偏光板10を示したものである。偏光板10は、偏光膜11と、この偏光膜11の両面に積層された一対の保護膜12とを有している。偏光膜11は、ポリビニルアルコール(PVA)系樹脂にて構成されている。以下、偏光膜11を、必要に応じてPVAフィルム11又は第1フィルム11とも称す。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1A shows a polarizing plate 10 for a liquid crystal display. The polarizing plate 10 includes a polarizing film 11 and a pair of protective films 12 stacked on both surfaces of the polarizing film 11. The polarizing film 11 is made of a polyvinyl alcohol (PVA) resin. Hereinafter, the polarizing film 11 is also referred to as a PVA film 11 or a first film 11 as necessary.

保護膜12は、トリアセテートセルロース(TAC)を主成分として含む。以下、保護膜12を、必要に応じてTACフィルム12又は第2フィルム12とも称す。TACフィルム12は、トリアセテートセルロースを90%以上含む。TACフィルム12は、トリアセテートセルロースの他、リン酸エステルなどの可塑剤を3〜10重量%程度含有していてもよく、紫外線吸収剤が含有されていてもよい。TACフィルムの厚さには、特に限定がなく、例えば数μm〜数百μmである。TACフィルム12は、鹸化処理されていない未鹸化のものを用いる。TACフィルム12の製造方法は特に限定がなく、例えばキャスト法で製造される。   The protective film 12 contains triacetate cellulose (TAC) as a main component. Hereinafter, the protective film 12 is also referred to as a TAC film 12 or a second film 12 as necessary. The TAC film 12 contains 90% or more of triacetate cellulose. The TAC film 12 may contain about 3 to 10% by weight of a plasticizer such as a phosphate ester in addition to triacetate cellulose, and may contain an ultraviolet absorber. The thickness of the TAC film is not particularly limited and is, for example, several μm to several hundred μm. As the TAC film 12, an unsaponified film that has not been saponified is used. The manufacturing method of the TAC film 12 is not particularly limited, and for example, it is manufactured by a casting method.

PVAフィルム11とTACフィルム12は、接着剤13で接着されている。接着剤13は、ポリビニルアルコール水溶液を主成分とするポリビニルアルコール系接着剤が用いられているが、これに限定されるものではなく、ポリビニルブチラール水溶液等を主成分とするポリビニルアルコール系接着剤を用いてもよく、ブチルアクリレートなどを主成分とするビニル系重合系ラテックスを用いてもよく、ポリエーテル系接着剤を用いてもよく、ポリオレフィン系ポリオール等を主成分とするオレフィン水性接着剤を用いてもよい。   The PVA film 11 and the TAC film 12 are bonded with an adhesive 13. As the adhesive 13, a polyvinyl alcohol-based adhesive whose main component is an aqueous polyvinyl alcohol solution is used, but the present invention is not limited to this, and a polyvinyl alcohol-based adhesive whose main component is an aqueous polyvinyl butyral solution or the like is used. It is also possible to use a vinyl polymer latex based on butyl acrylate or the like, a polyether adhesive, or an aqueous olefin adhesive based on a polyolefin polyol or the like. Also good.

図1(b)に示すように、一方のTACフィルム12の表側面(PVAフィルム11との接着面とは反対側の面)に、機能層としてハードコート層14が積層される場合もある。ハードコート層14に代えて、AR層、その他の機能層が積層されていてもよい。   As shown in FIG.1 (b), the hard-coat layer 14 may be laminated | stacked as a functional layer on the front side surface (surface on the opposite side to the adhesive surface with the PVA film 11) of one TAC film 12. FIG. Instead of the hard coat layer 14, an AR layer and other functional layers may be laminated.

TACフィルム12は、PVAフィルム11との接着に先立ち、接着性確保のための表面処理工程に付される。
図2に示すように、表面処理工程には、表面処理装置1が用いられる。表面処理装置1は、大気圧プラズマ処理装置で構成されている。装置1は、プラズマ処理部2と、反応ガス供給系3とを備えている。プラズマ処理部2は、平板状の電極21とロール状の電極22Rを備えている。これら電極21,22Rどうしの間に処理空間29が形成されている。
Prior to adhesion with the PVA film 11, the TAC film 12 is subjected to a surface treatment process for ensuring adhesion.
As shown in FIG. 2, the surface treatment apparatus 1 is used for the surface treatment process. The surface treatment apparatus 1 is composed of an atmospheric pressure plasma treatment apparatus. The apparatus 1 includes a plasma processing unit 2 and a reactive gas supply system 3. The plasma processing unit 2 includes a flat electrode 21 and a roll electrode 22R. A processing space 29 is formed between the electrodes 21 and 22R.

平板電極21に電源23が接続され、ロール電極22Rが電気的に接地されている。電源23は、例えばパルス状の電圧を平板電極21に印加する。これにより、平板電極21とロール電極22Rの間にパルス状の電界が形成され、処理空間29内に大気圧プラズマpが生成されるようになっている。パルスの立ち上がり及び/又は立ち下がり時間は、10μs以下であるのが好ましく、電界強度は、10〜1000kV/cmであるのが好ましく、周波数は、0.5〜100kHzであるのが好ましい。供給電圧は、パルス状に限られず、正弦波等の連続波状であってもよい。   A power source 23 is connected to the plate electrode 21, and the roll electrode 22R is electrically grounded. The power source 23 applies, for example, a pulsed voltage to the plate electrode 21. As a result, a pulsed electric field is formed between the plate electrode 21 and the roll electrode 22 </ b> R, and atmospheric pressure plasma p is generated in the processing space 29. The pulse rise and / or fall time is preferably 10 μs or less, the electric field strength is preferably 10 to 1000 kV / cm, and the frequency is preferably 0.5 to 100 kHz. The supply voltage is not limited to a pulse shape, and may be a continuous wave shape such as a sine wave.

TACフィルム12が、ロール電極22Rの上側の周面(一方の電極の放電面)に部分的に巻き付けられ、ロール電極22Rの上側の周面を覆っている。TACフィルム12の電極22Rに被さる部分が、処理空間29内に配置されている。TACフィルム12の片面(PVAフィルム11と接着されるべき接着面)は、上側の平板電極21を向き、その反対側の面は、ロール電極22Rの上側周面に隙間無く接している。図1(b)に示すハードコート層14付きのTACフィルム12の場合、ハードコート層14がロール電極22Rの上側周面に隙間無く接することになる。
TACフィルム12は、ロール電極22R及び搬送ロール24の回転により一方向に搬送されるようになっている。
The TAC film 12 is partially wound around the upper peripheral surface of the roll electrode 22R (the discharge surface of one electrode) and covers the upper peripheral surface of the roll electrode 22R. A portion of the TAC film 12 that covers the electrode 22 </ b> R is disposed in the processing space 29. One side of the TAC film 12 (adhesive surface to be bonded to the PVA film 11) faces the upper flat plate electrode 21, and the opposite surface is in contact with the upper peripheral surface of the roll electrode 22R without a gap. In the case of the TAC film 12 with the hard coat layer 14 shown in FIG. 1B, the hard coat layer 14 comes into contact with the upper peripheral surface of the roll electrode 22R without any gap.
The TAC film 12 is transported in one direction by the rotation of the roll electrode 22R and the transport roll 24.

反応ガス供給系3は、反応成分供給源30と、キャリア供給源34を有している。反応成分供給源30は、反応成分を蓄えた容器で構成されている。反応成分は、不飽和結合及び所定の官能基を有するモノマーであり、ここでは、反応成分として、アクリル酸(CH=CHCOOH)が用いられている。アクリル酸は、エチレン性不飽和二重結合及びカルボキシル基を有するモノマーである。アクリル酸が液相で容器30内に蓄えられている。図において、液体アクリル酸を符号「Ac」で示す。容器30には気化手段として加熱器33が組み込まれている。容器30は恒温槽を構成している。液体アクリル酸Acが加熱器33によって加熱されて気化される。アクリル酸Acの加熱温度は、室温(25℃)〜80℃が好ましく、安全性の観点からは引火点が54℃であることを考慮して50℃以下にするのが好ましい。図3に示すように、液体アクリル酸Acの加熱温度によってアクリル酸の気化量を調節できる。
室温近傍でもアクリル酸の気化量が必要量を満たす場合、加熱器33を省略してもよい。
The reaction gas supply system 3 includes a reaction component supply source 30 and a carrier supply source 34. The reaction component supply source 30 is composed of a container that stores reaction components. The reaction component is a monomer having an unsaturated bond and a predetermined functional group. Here, acrylic acid (CH 2 ═CHCOOH) is used as the reaction component. Acrylic acid is a monomer having an ethylenically unsaturated double bond and a carboxyl group. Acrylic acid is stored in the container 30 in a liquid phase. In the figure, liquid acrylic acid is indicated by “Ac”. A heater 33 is incorporated in the container 30 as a vaporizing means. The container 30 constitutes a thermostatic bath. The liquid acrylic acid Ac is heated by the heater 33 and vaporized. The heating temperature of acrylic acid Ac is preferably from room temperature (25 ° C.) to 80 ° C., and from the viewpoint of safety, it is preferable to set it to 50 ° C. or less in view of the flash point being 54 ° C. As shown in FIG. 3, the vaporization amount of acrylic acid can be adjusted by the heating temperature of the liquid acrylic acid Ac.
If the vaporization amount of acrylic acid satisfies the required amount even near the room temperature, the heater 33 may be omitted.

キャリア供給源34には、キャリアガスとして窒素が蓄えられている。キャリアガスとして窒素に代えて、アルゴン、ヘリウム等の他の不活性ガスを用いてもよい。キャリア供給源34からキャリア路35が延びている。キャリア路35が、反応成分容器30に接続している。   The carrier supply source 34 stores nitrogen as a carrier gas. Instead of nitrogen as a carrier gas, other inert gases such as argon and helium may be used. A carrier path 35 extends from the carrier supply source 34. A carrier path 35 is connected to the reaction component container 30.

キャリア供給源34からの窒素がキャリア路35から反応成分容器30に導入される。この反応成分容器30の内部で、窒素ガスと、気化したアクリル酸ガス(反応成分)とが混合される。これにより、アクリル酸と窒素の混合ガスからなる反応ガスが生成される。上述したように、反応ガス(アクリル酸+窒素)中のアクリル酸の濃度は、加熱器33による液体アクリル酸Acの加熱温度によって調節できる。
キャリア路35の終端は、アクリル酸Acの液面より上に位置しているが、アクリル酸Acの液の内部まで延ばし、バブリングさせてもよい。
Nitrogen from the carrier supply source 34 is introduced into the reaction component container 30 from the carrier path 35. Inside the reaction component container 30, nitrogen gas and vaporized acrylic acid gas (reaction component) are mixed. Thereby, the reaction gas which consists of a mixed gas of acrylic acid and nitrogen is produced | generated. As described above, the concentration of acrylic acid in the reaction gas (acrylic acid + nitrogen) can be adjusted by the heating temperature of the liquid acrylic acid Ac by the heater 33.
The end of the carrier path 35 is located above the liquid surface of the acrylic acid Ac, but it may be extended to the inside of the liquid of the acrylic acid Ac and bubbled.

反応成分容器30から供給路31がプラズマ処理部2へ延びている。供給路31の先端部に噴出ノズル32が設けられている。噴出ノズル32は、平板電極21の一側部に設けられている。   A supply path 31 extends from the reaction component container 30 to the plasma processing unit 2. A jet nozzle 32 is provided at the tip of the supply path 31. The ejection nozzle 32 is provided on one side of the plate electrode 21.

反応成分容器30で生成された反応ガス(アクリル酸+窒素)は、供給路31を経て、噴出ノズル32から処理空間29に吹き出される。この処理空間29内にプラズマpが生成され、反応ガスがプラズマ化(分解、励起、活性化、イオン化を含む)される。このプラズマ化されたガスが、TACフィルム12の片面(PVAフィルム11との接着面)に接触し、プラズマ表面処理がなされる。   The reaction gas (acrylic acid + nitrogen) generated in the reaction component container 30 is blown out from the discharge nozzle 32 to the processing space 29 via the supply path 31. Plasma p is generated in the processing space 29, and the reaction gas is turned into plasma (including decomposition, excitation, activation, and ionization). This plasma-ized gas comes into contact with one side of the TAC film 12 (adhesive surface with the PVA film 11), and plasma surface treatment is performed.

TACフィルム12は、ロール電極22Rの上側周面に隙間無く被さっている。したがって、ロール電極22RとTACフィルム12の間にプラズマが形成されるのを防止できる。また、TACフィルム12と平板電極21との間でプラズマ化された反応ガスが、ロール電極22RとTACフィルム12の間に入り込むのを防止することができる。したがって、図1(b)に示すハードコート層14付きのTACフィルム12の場合、ハードコート層14がプラズマに曝されて変質するのを回避でき、ヘイズ値等の光学特性が悪化するのを防止することができる。   The TAC film 12 covers the upper peripheral surface of the roll electrode 22R without a gap. Therefore, plasma can be prevented from being formed between the roll electrode 22R and the TAC film 12. Further, it is possible to prevent the reaction gas that has been converted into plasma between the TAC film 12 and the flat plate electrode 21 from entering between the roll electrode 22 </ b> R and the TAC film 12. Therefore, in the case of the TAC film 12 with the hard coat layer 14 shown in FIG. 1B, the hard coat layer 14 can be prevented from being deteriorated by being exposed to plasma, and optical characteristics such as haze value can be prevented from deteriorating. can do.

電極21の噴出ノズル32側とは反対側に吸引ノズル42が設けられている。吸引ノズル42は、吸引路41を介して排気手段40に連なっている。
処理空間29で処理済みになったガスは、吸引ノズル42から吸込まれ、吸引路41を経て、排気手段40にて排気処理される。
A suction nozzle 42 is provided on the opposite side of the electrode 21 from the ejection nozzle 32 side. The suction nozzle 42 is connected to the exhaust means 40 via the suction path 41.
The gas that has been processed in the processing space 29 is sucked from the suction nozzle 42 and is exhausted by the exhaust means 40 through the suction path 41.

[接着工程]
上記表面処理工程の後、TACフィルム12の接着面とPVAフィルム11とを接着剤13で接着する。TACフィルム12の接着面は、上記のプラズマ表面処理を施されているため、良好な接着性を得ることができ、PVAフィルム11と強固に接着させることができる。
[Adhesion process]
After the surface treatment step, the adhesive surface of the TAC film 12 and the PVA film 11 are adhered with an adhesive 13. Since the adhesive surface of the TAC film 12 is subjected to the above-described plasma surface treatment, good adhesiveness can be obtained, and the TAC film 12 can be firmly bonded to the PVA film 11.

次に、本発明の他の実施形態を説明する。以下の実施形態において既述の形態と重複する構成に関しては図面に同一符号を付して説明を省略する(後記実施例も同様)。
図4は第2実施形態を示したものである。第2実施形態では、大気圧プラズマ処理装置1の電極構造が、一対のロール電極21R,22Rで構成されている。一対のロール電極21R,22Rは、上下に対向している。上側のロール電極21Rに電源23が接続されている。下側のロール電極22Rが電気的に接地されている。このような電極構造により、これらロール電極21R,22R間に大気圧プラズマ放電pが生成する。
TACフィルム12は、真っ直ぐ張られた状態でこれらロール電極21R,22R間に通されているが、図2の形態と同様に、一方のロール電極22Rに巻きつけることにしてもよい。
Next, another embodiment of the present invention will be described. In the following embodiments, the same components as those described above are denoted by the same reference numerals and description thereof will be omitted (the same applies to the examples described later).
FIG. 4 shows a second embodiment. In the second embodiment, the electrode structure of the atmospheric pressure plasma processing apparatus 1 is composed of a pair of roll electrodes 21R and 22R. The pair of roll electrodes 21R and 22R face each other in the vertical direction. A power source 23 is connected to the upper roll electrode 21R. The lower roll electrode 22R is electrically grounded. With such an electrode structure, an atmospheric pressure plasma discharge p is generated between the roll electrodes 21R and 22R.
The TAC film 12 is passed between these roll electrodes 21R and 22R in a state of being stretched straight, but may be wound around one roll electrode 22R as in the embodiment of FIG.

図5は第3実施形態を示したものである。第3実施形態では、一対のロール電極21R,22Rが左右に対向して配置されている。これらロール電極21R,22Rの間に形成された処理空間29内に大気圧プラズマpが生成される。処理空間29の上方に、噴出ノズル32が設けられている。ロール電極21R,22Rの下側には、左右一対の折り返しローラ25,26が設けられている。   FIG. 5 shows a third embodiment. In the third embodiment, a pair of roll electrodes 21R and 22R are arranged to face the left and right. An atmospheric pressure plasma p is generated in a processing space 29 formed between the roll electrodes 21R and 22R. An ejection nozzle 32 is provided above the processing space 29. A pair of left and right folding rollers 25 and 26 are provided below the roll electrodes 21R and 22R.

TACフィルム12は、ロール電極21R、折り返しローラ25、折り返しローラ26、ロール電極22Rの順に巻き付けられている。TACフィルム12は、ロール電極21Rに巻かれた状態で処理空間29を通過しつつ表面処理される。その後、TACフィルム12は、ロール電極21Rから繰り出され、折り返しローラ25,26で折り返され、接地側のロール電極22Rに巻き付けられる。このとき、TACフィルム12は、再び処理空間29を通過し、表面処理される。したがって、1つの処理空間29でTACフィルム12が2回処理される。   The TAC film 12 is wound in the order of the roll electrode 21R, the folding roller 25, the folding roller 26, and the roll electrode 22R. The TAC film 12 is surface-treated while passing through the treatment space 29 while being wound around the roll electrode 21R. Thereafter, the TAC film 12 is unwound from the roll electrode 21R, folded back by the folding rollers 25 and 26, and wound around the ground-side roll electrode 22R. At this time, the TAC film 12 passes through the treatment space 29 again and is surface-treated. Therefore, the TAC film 12 is processed twice in one processing space 29.

電源側ロール電極21Rには、フィルム温度調節手段27が組み込まれている。フィルム温度調節手段27は、所定温度の温調媒体をロール電極21Rの内部に流通させる温調路で構成されている。温調媒体として例えば水が用いられる。これによって、ロール電極21Rの温度を調節できる。従って、TACフィルム12がロール電極21Rと接している部分ひいては反応ガスが吹き付けられる部分のフィルム12の温度(以下「フィルム温度Tb」と称す)を調節できる。フィルム温度Tbは、露点〜80℃程度が好ましい。フィルム温度Tbを露点以上にすることで、TACフィルム12に結露が出来るのを防止できる。フィルム温度Tbを80℃以下にすることで、TACフィルム12が熱変形を来たすのを防止できる。   A film temperature adjusting means 27 is incorporated in the power supply side roll electrode 21R. The film temperature adjusting means 27 is configured by a temperature adjustment path for circulating a temperature adjustment medium having a predetermined temperature inside the roll electrode 21R. For example, water is used as the temperature control medium. Thereby, the temperature of the roll electrode 21R can be adjusted. Therefore, the temperature of the film 12 where the TAC film 12 is in contact with the roll electrode 21R, and the part where the reactive gas is sprayed (hereinafter referred to as “film temperature Tb”) can be adjusted. The film temperature Tb is preferably about dew point to about 80 ° C. By setting the film temperature Tb to the dew point or higher, it is possible to prevent the TAC film 12 from being condensed. By setting the film temperature Tb to 80 ° C. or less, it is possible to prevent the TAC film 12 from undergoing thermal deformation.

同様に、接地側ロール電極22Rにも温度調節手段27が組み込まれている。これによって、ロール電極22Rの温度を調節できる。ひいては、TACフィルム12の反応ガスと接触する部分の温度Tbを調節できる。   Similarly, the temperature adjusting means 27 is also incorporated in the ground side roll electrode 22R. Thereby, the temperature of the roll electrode 22R can be adjusted. As a result, the temperature Tb of the part which contacts the reactive gas of the TAC film 12 can be adjusted.

さらに、反応ガス供給路31を構成する管の外周には断熱材36が設けられている。反応ガス(アクリル酸+窒素)は、供給路31を通過するとき、断熱材36によって保温され、反応成分容器30内での温度をほぼ維持した状態で噴出ノズル32から噴出される。加熱器33を含む反応成分容器(恒温槽)30及び断熱材36は、ガス温度調節手段39を構成している。ガス温度調節手段39によって、反応ガスの温度、特に噴出ノズル32から噴出される時の温度(以下「ガス噴出温度Ta」と称す)が調節される。ガス噴出温度Taは、35℃〜80℃程度であることが好ましい。ガス噴出温度Taは、より好ましくは40℃〜50℃である。   Further, a heat insulating material 36 is provided on the outer periphery of the pipe constituting the reaction gas supply path 31. When the reaction gas (acrylic acid + nitrogen) passes through the supply path 31, it is kept warm by the heat insulating material 36 and is ejected from the ejection nozzle 32 in a state where the temperature in the reaction component container 30 is substantially maintained. The reaction component container (constant temperature bath) 30 including the heater 33 and the heat insulating material 36 constitute a gas temperature adjusting means 39. The gas temperature adjusting means 39 adjusts the temperature of the reaction gas, particularly the temperature at which the reactant gas is ejected from the ejection nozzle 32 (hereinafter referred to as “gas ejection temperature Ta”). The gas ejection temperature Ta is preferably about 35 ° C to 80 ° C. The gas ejection temperature Ta is more preferably 40 ° C to 50 ° C.

更に、2つの温度調節手段27,39によって、フィルム温度Tb(≧室温)がガス噴出温度Taより低くなるよう調節される。好ましくは、温度差ΔT=Ta−Tbが、ΔT≧+5℃になるよう調節される。より好ましくは、ΔT≧+10℃になるよう調節される。   Further, the film temperature Tb (≧ room temperature) is adjusted to be lower than the gas ejection temperature Ta by the two temperature adjusting means 27 and 39. Preferably, the temperature difference ΔT = Ta−Tb is adjusted so that ΔT ≧ + 5 ° C. More preferably, it is adjusted so that ΔT ≧ + 10 ° C.

ΔTの上限は、TACフィルム12が膨潤等の熱変形を来たさない範囲で設定するのが好ましい。TACフィルム12が膨潤等の熱変形を来たさない限界温度は、処理条件等にも依るが、例えば80℃前後である。湿度を低く保つようコントロールした場合、結露が生じない温度で、かつ現実的な下限室温は、例えば10℃前後である。したがって、TACフィルム12の熱変形を防止し、かつ結露を防止する観点からは、ΔT≦+70℃程度が好ましい。また、アクリル酸の引火点(54℃)を考慮した安全性の観点、及び結露をより確実に防止する観点からは、ΔT≦+30℃程度が好ましい。より一層好ましくは、ΔT≦+20℃である。   The upper limit of ΔT is preferably set in a range where the TAC film 12 does not undergo thermal deformation such as swelling. The limit temperature at which the TAC film 12 does not undergo thermal deformation such as swelling is, for example, about 80 ° C., although it depends on the processing conditions. When the humidity is controlled to be kept low, a practical lower limit room temperature is, for example, about 10 ° C. at a temperature at which no condensation occurs. Therefore, from the viewpoint of preventing thermal deformation of the TAC film 12 and preventing condensation, about ΔT ≦ + 70 ° C. is preferable. Further, from the viewpoint of safety considering the flash point (54 ° C.) of acrylic acid and from the viewpoint of more reliably preventing condensation, ΔT ≦ + 30 ° C. is preferable. Even more preferably, ΔT ≦ + 20 ° C.

上記の温度差ΔTの条件下でTACフィルム12の表面処理を行なうことにより、TACフィルム12とPVAフィルム11との接着性を十分に高めることができる。   By performing the surface treatment of the TAC film 12 under the condition of the temperature difference ΔT, the adhesiveness between the TAC film 12 and the PVA film 11 can be sufficiently enhanced.

本発明は、上記実施形態に限定されるものではなく、種々の改変をなすことができる。
例えば、反応ガス中の反応成分として、アクリル酸に代えて、メタクリル酸を用いてもよい。
TACフィルム12の上記表面処理方法は、偏光板の製造以外の用途に適用してもよい。
キャリア路35の終端は、アクリル酸Acの液面より上に位置しているが、アクリル酸Acの液の内部まで延ばし、バブリングさせることにしてもよい。
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, methacrylic acid may be used as a reaction component in the reaction gas instead of acrylic acid.
You may apply the said surface treatment method of the TAC film 12 for uses other than manufacture of a polarizing plate.
The end of the carrier path 35 is located above the liquid surface of the acrylic acid Ac, but it may be extended to the inside of the liquid of the acrylic acid Ac and bubbled.

プラズマ処理装置1の電極構造は、実施形態に示したものに限られず、平行平板電極であってもよい。平板電極21の代わりに、放電面がロール電極22Rの曲面に沿う凹面である電極を用いてもよいし、ロール電極22Rより直径の小さいロール電極又は棒状電極を用いても良い。   The electrode structure of the plasma processing apparatus 1 is not limited to that shown in the embodiment, and may be a parallel plate electrode. Instead of the plate electrode 21, an electrode whose discharge surface is a concave surface along the curved surface of the roll electrode 22R may be used, or a roll electrode or a rod-like electrode having a smaller diameter than the roll electrode 22R may be used.

上記実施形態では、プラズマ処理部2の電極間の空間(ギャップ)内にTACフィルム12が通され、電極間空間が、TACフィルム12が表面処理される処理空間29となっていたが、処理空間が電極間空間とは別でもよく、例えば反応ガスが電極間空間でプラズマ化された後、処理空間内のTACフィルムへ向けて吹き出されるようになっていてもよい。この場合、プラズマ化後、電極間空間から処理空間に噴出される時点の反応ガスの温度が、フィルム温度Tbより5℃以上高温であることが好ましく、10℃以上高温であることがより好ましい。   In the above embodiment, the TAC film 12 is passed through the space (gap) between the electrodes of the plasma processing unit 2, and the interelectrode space is the processing space 29 in which the TAC film 12 is surface-treated. However, the reaction gas may be blown out toward the TAC film in the processing space after being converted into plasma in the interelectrode space. In this case, the temperature of the reaction gas at the time of being ejected from the inter-electrode space into the processing space after the plasma is preferably 5 ° C. or higher, more preferably 10 ° C. or higher than the film temperature Tb.

プラズマの生成は、大気圧近傍に限られず、真空下で行なってもよい。   Plasma generation is not limited to the vicinity of atmospheric pressure, and may be performed under vacuum.

第1〜第3実施形態を互いに組み合わせてもよい。例えば、第1、第2実施形態(図2、図4)においても、第3実施形態と同様に、フィルム温度調節手段27とガス温度調節手段39を組み込み、ガス噴出温度Taがフィルム温度Tbより高温になるよう調節してもよく、好ましくは温度差ΔT=Ta−Tbが、ΔT≧+5℃、より好ましくはΔT≧+10℃になるよう調節してもよい。ΔTの上限は、TACフィルム12が膨潤等の熱変形を来たさない範囲で設定するとよい。   The first to third embodiments may be combined with each other. For example, in the first and second embodiments (FIGS. 2 and 4), as in the third embodiment, the film temperature adjusting means 27 and the gas temperature adjusting means 39 are incorporated so that the gas ejection temperature Ta is higher than the film temperature Tb. The temperature difference may be adjusted to be high, and preferably the temperature difference ΔT = Ta−Tb may be adjusted to satisfy ΔT ≧ + 5 ° C., more preferably ΔT ≧ + 10 ° C. The upper limit of ΔT may be set within a range in which the TAC film 12 does not undergo thermal deformation such as swelling.

フィルム温度調節手段27は、電熱ヒータや熱線ヒータや温風ヒータでもよい。ヒータは、電極に内蔵されていてもよく、電極の外部に配置されていてもよい。   The film temperature adjusting means 27 may be an electric heater, a hot wire heater, or a warm air heater. The heater may be built in the electrode or may be disposed outside the electrode.

ガス温度調節手段39として、反応ガス供給路31を構成する管の外周にリボンヒータ等の電熱ヒータや、熱線ヒータを設けてもよい。ガス温度調節手段39は、熱交換器でもよい。例えばガス温度調節手段39として、水等の温調媒体を流通させる熱交換パイプを、反応ガス供給路31を構成する管と熱交換可能に設けてもよい。ガス温度調節手段39は、温風ヒータでもよい。   As the gas temperature adjusting means 39, an electric heater such as a ribbon heater or a hot wire heater may be provided on the outer periphery of the pipe constituting the reaction gas supply path 31. The gas temperature adjusting means 39 may be a heat exchanger. For example, as the gas temperature adjusting means 39, a heat exchange pipe for circulating a temperature control medium such as water may be provided so as to be able to exchange heat with a pipe constituting the reaction gas supply path 31. The gas temperature adjusting means 39 may be a hot air heater.

実施例を説明するが、本発明がこの実施形態に限定されるものではない。
図2に示す大気圧プラズマ処理装置1を用いて、TACフィルムのプラズマ表面処理を行なった。TACフィルムは、株式会社フジ写真フィルム製のフジタック(登録商標)を用いた。その厚さは30μmであった。
処理条件は以下の通り。
電源23からの出力パルスの周波数: 5〜30kHz
電極21,23間のパルス電圧: Vpp=13〜18kV
反応ガス(アクリル酸+窒素)の流量: 10L/min
反応ガス中のアクリル酸濃度: 0.1〜10vol%
TACフィルムの搬送速度: 2m/min
Examples will be described, but the present invention is not limited to this embodiment.
Plasma surface treatment of the TAC film was performed using the atmospheric pressure plasma treatment apparatus 1 shown in FIG. As the TAC film, Fujitac (registered trademark) manufactured by Fuji Photo Film Co., Ltd. was used. Its thickness was 30 μm.
The processing conditions are as follows.
Output pulse frequency from power supply 23: 5 to 30 kHz
Pulse voltage between electrodes 21 and 23: Vpp = 13 to 18 kV
Flow rate of reaction gas (acrylic acid + nitrogen): 10 L / min
Acrylic acid concentration in reaction gas: 0.1-10 vol%
TAC film transport speed: 2 m / min

プラズマ表面処理後のTACフィルムの片面に接着剤を塗布した。接着剤として、以下の成分を混合した水性接着剤を用いた。以下の成分を混合して100%としている。
株式会社クラレ製クラレポバールPVA217を水に溶解した20%水溶液: 95.0wt%以上
メタノール: 5.0wt%未満
酢酸メチル: 1.0wt%未満
接着剤を塗布したTACフィルムを偏光膜の両面にそれぞれ重ね、ニップロールを用い、加圧しながら張り合わせた。温度は常温から80℃、圧力は1〜10kg/cmとした。偏光膜は、PVA樹脂からなり、その厚さは、12μmであった。得られた偏光板を80℃の反応成分容器で5分間加熱乾燥した後、室温で12時間、静置した。
An adhesive was applied to one side of the TAC film after the plasma surface treatment. As the adhesive, an aqueous adhesive in which the following components were mixed was used. The following components are mixed to make 100%.
20% aqueous solution of Kuraray Co., Ltd. Kuraray Poval PVA217 dissolved in water: 95.0 wt% or more Methanol: less than 5.0 wt% Methyl acetate: less than 1.0 wt% TAC films coated with adhesive on both sides of the polarizing film, respectively Lamination was performed using a nip roll while applying pressure. The temperature was from room temperature to 80 ° C., and the pressure was 1 to 10 kg / cm 2 . The polarizing film was made of PVA resin and had a thickness of 12 μm. The obtained polarizing plate was heat-dried in a reaction component container at 80 ° C. for 5 minutes and then allowed to stand at room temperature for 12 hours.

この偏光板について下記の評価を行なった。
接着力評価
JIS K6854に準拠し、偏光板を幅25mmに切断して帯状にし、常温(23℃)、引っ張り強度100mm/minの条件でT型剥離試験を行なった。
その結果、偏光板が材破し、十分に大きな接着力を有していたことが確認された。
耐湿熱性評価
偏光板を50mm×50mmの大きさに切断し、70℃の温水に浸漬した。
この浸漬状態で120分経過しても、TACフィルムが偏光膜から剥がれることはなく、偏光膜が変色することはなかった。これにより、耐湿熱性も良好であることが確認された。
The following evaluation was performed about this polarizing plate.
Adhesive strength evaluation In accordance with JIS K6854, the polarizing plate was cut to a width of 25 mm to form a strip, and a T-type peel test was performed under conditions of room temperature (23 ° C.) and tensile strength of 100 mm / min.
As a result, it was confirmed that the polarizing plate broke and had a sufficiently large adhesive force.
Moisture and heat resistance evaluation The polarizing plate was cut into a size of 50 mm x 50 mm and immersed in warm water at 70 ° C.
Even if 120 minutes passed in this immersion state, the TAC film was not peeled off from the polarizing film, and the polarizing film was not discolored. Thereby, it was confirmed that heat-and-moisture resistance is also favorable.

〔比較例1〕
比較例として、鹸化処理した従来のTACフィルムで偏光板を作成した。鹸化用のアルカリ液として、40〜60℃に加熱した2Nの水酸化ナトリウム水溶液を用い、これにTACフィルムを30〜150秒浸漬した。その後、常温水で洗浄し、1〜5wt%HClで中和した。さらに、水洗後、約80℃で乾燥させた。こうして得られた鹸化TACフィルムとPVA偏光膜とを、実施例1と同様の条件で貼り合わせ、偏光板を得た。この偏光板を70℃の温水に浸漬した。そして、120分経過後の状態を観察したところ、偏光膜が変色していた。
これにより、本発明の処理による偏光板は、鹸化処理した従来の偏光板より防湿性が高いことが確認された。
[Comparative Example 1]
As a comparative example, a polarizing plate was prepared using a conventional TAC film that had been saponified. As an alkaline solution for saponification, a 2N sodium hydroxide aqueous solution heated to 40 to 60 ° C. was used, and a TAC film was immersed in the solution for 30 to 150 seconds. Then, it wash | cleaned with normal temperature water and neutralized with 1-5 wt% HCl. Furthermore, it was made to dry at about 80 degreeC after water washing. The saponified TAC film and PVA polarizing film thus obtained were bonded under the same conditions as in Example 1 to obtain a polarizing plate. This polarizing plate was immersed in warm water at 70 ° C. And when the state after 120 minutes passed was observed, the polarizing film was discolored.
Thereby, it was confirmed that the polarizing plate by the process of this invention has higher moisture resistance than the conventional polarizing plate which saponified.

反応ガス成分として、アクリル酸に代えて、同じカルボキシル基であるメタクリル酸を用いた。それ以外の処理条件及び接着条件は実施例1と同様にして偏光板を作製し、実施例1と同様の接着力評価を行なった。その結果、偏光板が材破した。(実施例1と比較すると材破の程度は低かった。)これにより、メタクリル酸でも十分な接着力を得られることが確認された。   As a reaction gas component, methacrylic acid which is the same carboxyl group was used instead of acrylic acid. The other processing conditions and adhesion conditions were the same as in Example 1 to produce a polarizing plate, and the same adhesive strength evaluation as in Example 1 was performed. As a result, the polarizing plate broke. (The degree of material breakage was low as compared with Example 1.) Thus, it was confirmed that sufficient adhesive strength could be obtained even with methacrylic acid.

〔参考例1〕
参考例として、窒素のみ(反応成分無し)でプラズマ表面処理し、それ以外の処理条件及び接着条件は実施例1と同様にして偏光板の作製を試みた。しかし、TACフィルムと偏光膜とはほとんど接着されなかった。
[Reference Example 1]
As a reference example, a plasma surface treatment was performed using only nitrogen (no reaction component), and other processing conditions and adhesion conditions were the same as in Example 1, and an attempt was made to produce a polarizing plate. However, the TAC film and the polarizing film were hardly adhered.

〔参考例2〕
不活性ガスのアルゴンのみ(反応ガス成分無し)でプラズマ表面処理し、それ以外の処理条件及び接着条件は実施例1と同様にして偏光板の作製を試みた。しかし、TACフィルムと偏光膜とはほとんど接着されなかった。
[Reference Example 2]
Plasma surface treatment was performed using only the inert gas argon (no reaction gas component), and the other treatment conditions and adhesion conditions were the same as in Example 1, and an attempt was made to produce a polarizing plate. However, the TAC film and the polarizing film were hardly adhered.

〔参考例3〕
窒素 80vol%、酸素 20vol%の混合ガスでプラズマ表面処理し、それ以外の処理条件及び接着条件は実施例1と同様にして偏光板の作製を試みた。しかし、TACフィルムと偏光膜とはほとんど接着されなかった。
[Reference Example 3]
Plasma surface treatment was performed with a mixed gas of nitrogen 80 vol% and oxygen 20 vol%, and the other treatment conditions and adhesion conditions were the same as in Example 1, and an attempt was made to produce a polarizing plate. However, the TAC film and the polarizing film were hardly adhered.

〔参考例4〕
窒素 99vol%、アンモニア 1vol%の混合ガスでプラズマ表面処理し、それ以外の処理条件及び接着条件は実施例1と同様にして偏光板の作製を試みた。しかし、TACフィルムと偏光膜とはほとんど接着されなかった。
[Reference Example 4]
Plasma surface treatment was performed with a mixed gas of 99 vol% nitrogen and 1 vol% ammonia, and the production of a polarizing plate was attempted in the same manner as in Example 1 except for the other treatment conditions and adhesion conditions. However, the TAC film and the polarizing film were hardly adhered.

〔参考例5〕
窒素 99vol%、アセチレン 1vol%の混合ガスでプラズマ表面処理し、それ以外の処理条件及び接着条件は実施例1と同様にして偏光板の作製を試みた。しかし、TACフィルムと偏光膜とはほとんど接着されなかった。
[Reference Example 5]
Plasma surface treatment was performed with a mixed gas of 99 vol% nitrogen and 1 vol% acetylene, and other treatment conditions and adhesion conditions were the same as in Example 1, and an attempt was made to produce a polarizing plate. However, the TAC film and the polarizing film were hardly adhered.

〔参考例6〕
窒素に70RH%のHOを添加した湿りガスでプラズマ表面処理し、それ以外の処理条件及び接着条件は実施例1と同様にして偏光板の作製を試みた。しかし、TACフィルムと偏光膜とはほとんど接着されなかった。
[Reference Example 6]
Plasma surface treatment was performed with a wet gas in which 70 RH% H 2 O was added to nitrogen, and the production of the polarizing plate was attempted in the same manner as in Example 1 except for the other treatment conditions and adhesion conditions. However, the TAC film and the polarizing film were hardly adhered.

実施例1、2及び参考例1〜6の結果をまとめると、下記の表1の通りになる。接着性の欄の「◎」は、接着性が極めて良好であることを示す。「○」は、接着性が良好であることを示す。「△」は、接着性がやや良であることを示す。「×」は、接着性が悪いことを示す。

Figure 0005363981
The results of Examples 1 and 2 and Reference Examples 1 to 6 are summarized as shown in Table 1 below. “◎” in the column of adhesiveness indicates that the adhesiveness is very good. “◯” indicates that the adhesiveness is good. “Δ” indicates that the adhesiveness is slightly good. “X” indicates that the adhesiveness is poor.
Figure 0005363981

TACフィルムとして、表側面にハードコート層が積層されたものを用い、その裏側面を実施例1と同様の処理条件でプラズマ表面処理した。
表面処理前のTACフィルムの全光線透過率は、92.9%であり、ヘイズは、0.3%であった。
表面処理後のTACフィルムの全光線透過率を測定したところ、92.6〜92.7%であった。また、ヘイズを測定したところ、0.2〜0.3%であり、ハードコート層がダメージを受けることがなく、良好な光学特性を維持できることが確認された。
A TAC film having a hard coat layer laminated on the front side surface was used, and the back side surface was subjected to plasma surface treatment under the same processing conditions as in Example 1.
The total light transmittance of the TAC film before the surface treatment was 92.9%, and the haze was 0.3%.
When the total light transmittance of the TAC film after the surface treatment was measured, it was 92.6 to 92.7%. Moreover, when the haze was measured, it was 0.2 to 0.3%, and it was confirmed that the hard coat layer was not damaged and good optical characteristics could be maintained.

反応ガス中の反応成分の種類による親水性と接着性の相関関係を調べた。反応成分は、アクリル酸、メタクリル酸の他、参考例として、酢酸、蟻酸、酢酸ビニル、アクリル酸ブチル等を用いた。各反応成分を窒素(N)で希釈して反応ガスを得た。この反応ガスを大気圧プラズマ空間に導入してプラズマ化し、TACフィルムに接触させた。TACフィルムのプラズマ表面処理前の対水接触角は、60°であった。表面処理後のTACフィルムの対水接触角を測定した。The correlation between hydrophilicity and adhesiveness according to the types of reaction components in the reaction gas was investigated. As a reaction component, acetic acid, formic acid, vinyl acetate, butyl acrylate and the like were used as reference examples in addition to acrylic acid and methacrylic acid. Each reaction component was diluted with nitrogen (N 2 ) to obtain a reaction gas. This reaction gas was introduced into the atmospheric pressure plasma space to be converted into plasma and brought into contact with the TAC film. The water contact angle before plasma surface treatment of the TAC film was 60 °. The contact angle with water of the TAC film after the surface treatment was measured.

図6は、表面処理後の接触角の測定結果を示したものである。同図の横軸は、処理度Qを示す。この処理度Qは、下式1で定義し、規格化してある。
Q=(1/v)×n×P …(式1)
ここで、vは、プラズマ処理装置のプラズマ放電部に対するTACフィルムの相対移動速度であり、nは、スキャン回数(TACフィルムをプラズマ放電部に通した回数)であり、Pは、プラズマ処理装置の電極への投入電力である。
FIG. 6 shows the measurement results of the contact angle after the surface treatment. The horizontal axis of FIG. This degree of processing Q is defined by the following formula 1 and standardized.
Q = (1 / v) × n × P (Formula 1)
Here, v is the relative movement speed of the TAC film with respect to the plasma discharge part of the plasma processing apparatus, n is the number of scans (number of times the TAC film is passed through the plasma discharge part), and P is the number of times of the plasma processing apparatus. This is the input power to the electrode.

接触角が最も小さくなったのは酢酸であり、次に蟻酸であり、次にアクリル酸であった。接触角が小さくなるほど、親水性が高まったことを意味している。   The smallest contact angle was acetic acid, followed by formic acid, followed by acrylic acid. The smaller the contact angle, the higher the hydrophilicity.

更に、上記の各反応ガスでプラズマ処理した後のTACフィルムとPVAフィルムとを接着した。接着剤は、(A)ポリビニルアルコール5wt%の水溶液と、(B)カルボキシメチルセルロースナトリウム2wt%の水溶液とを、(A):(B)=20:1の体積比で混合した液を用いた。(A)のポリビニルアルコールの平均重合度は500であった。   Further, the TAC film and the PVA film after the plasma treatment with each of the above reaction gases were adhered. As the adhesive, a liquid in which (A) an aqueous solution of 5% by weight of polyvinyl alcohol and (B) an aqueous solution of 2% by weight of sodium carboxymethylcellulose were mixed at a volume ratio of (A) :( B) = 20: 1 was used. The average degree of polymerization of the polyvinyl alcohol (A) was 500.

そして、接着性を調べた。接着性評価は、試験者が手でTACフィルムとPVAフィルムを剥がす手評価とした。接着性が最も良好であったのは、上記表面処理の反応成分としてアクリル酸を用いた場合であり、接着後のTACフィルムとPVAフィルムをまったく分離できず、両フィルムがくっついたまま材破した。TACフィルムとPVAフィルムを最も容易に剥がすことができたのは、上記表面処理を酢酸で行なった場合と蟻酸で行なった場合であり、ポストイット(登録商標)程度の接着力しか感じなかった。   And adhesiveness was investigated. The adhesive evaluation was a hand evaluation in which the tester peeled off the TAC film and the PVA film by hand. The adhesiveness was the best when acrylic acid was used as the reaction component of the surface treatment, and the TAC film and the PVA film after adhesion could not be separated at all, and the materials were broken while both films were adhered. . The TAC film and the PVA film were most easily peeled off when the surface treatment was carried out with acetic acid and when it was carried out with formic acid, and only the adhesive strength of Post-It (registered trademark) was felt.

以上の結果より、親水性が高くなっても必ずしも接着性が良くなるわけではないことが判明した。良好な接着性を得るとの観点からは、目下のところアクリル酸が最も好ましい反応成分であるといえる。   From the above results, it has been found that even if the hydrophilicity is increased, the adhesiveness is not necessarily improved. From the standpoint of obtaining good adhesion, acrylic acid is currently the most preferred reaction component.

実施例5では反応ガスの噴出温度TaとTACフィルムの温度Tbとの差ΔTと、接着性との関係を調べた。用いた表面処理装置の概略構成を図7に示す。   In Example 5, the relationship between the difference ΔT between the ejection temperature Ta of the reactive gas and the temperature Tb of the TAC film and the adhesiveness was examined. A schematic configuration of the surface treatment apparatus used is shown in FIG.

反応成分としてアクリル酸を用いた。液体アクリル酸を反応成分容器30に蓄え、反応成分容器30を40〜50℃に調節した。窒素(N)100%のキャリアガスを流量10L/minで反応成分容器30に供給し、アクリル酸と窒素からなる反応ガスを生成した。この反応ガスを、反応ガス供給路31に通し噴出ノズル32から処理空間29に噴出した。ガス温度調節手段39にて、ガス噴出温度Taを調節した。Acrylic acid was used as a reaction component. Liquid acrylic acid was stored in the reaction component container 30 and the reaction component container 30 was adjusted to 40 to 50 ° C. A carrier gas of 100% nitrogen (N 2 ) was supplied to the reaction component container 30 at a flow rate of 10 L / min to generate a reaction gas composed of acrylic acid and nitrogen. The reaction gas was jetted into the treatment space 29 from the jet nozzle 32 through the reaction gas supply path 31. The gas ejection temperature Ta was adjusted by the gas temperature adjusting means 39.

プラズマ生成部2の電極構造は、平行平板電極21,22とした。下側の接地電極22は、ステージを兼ねる。この電極22すなわちステージ22上にサンプルのTACフィルム12を置いた。温水パイプからなるフィルム温度調節手段27によって、ステージ22の温度を調節し、ひいてはフィルム温度Tbを調節した。電極21,22の一方を他方に対し相対的に往復移動(スキャン)させながら、電極21への電力供給によって処理空間29内に大気圧プラズマpを生成した。これにより、ノズル32からの反応ガスをプラズマ化してTACフィルム12に接触させた。ガス噴出温度Taとフィルム温度Tbとの組み合わせは、後掲の表2の通りである。   The electrode structure of the plasma generation unit 2 is parallel plate electrodes 21 and 22. The lower ground electrode 22 also serves as a stage. A sample TAC film 12 was placed on the electrode 22, that is, the stage 22. The temperature of the stage 22 was adjusted by the film temperature adjusting means 27 comprising a hot water pipe, and consequently the film temperature Tb was adjusted. An atmospheric pressure plasma p was generated in the processing space 29 by supplying power to the electrode 21 while reciprocating (scanning) one of the electrodes 21 and 22 relative to the other. As a result, the reaction gas from the nozzle 32 was turned into plasma and brought into contact with the TAC film 12. The combinations of the gas ejection temperature Ta and the film temperature Tb are as shown in Table 2 below.

上記プラズマ表面処理後のTACフィルムをPVAフィルムと接着した。接着剤は、実施例4と同じものを用いた。   The TAC film after the plasma surface treatment was adhered to the PVA film. The same adhesive as in Example 4 was used.

そして、接着性を調べた。接着性評価は、試験者が手でTACフィルムとPVAフィルムを剥がす手評価とし、5段階で評価した。
評価「1」は、接着面の全体がきれいに、かつ簡単に剥がれるレベルであり、180°ピール試験に換算すると、0.4N/inch以下である。
評価「2」は、接着面の全体ではないが大部分が剥がれるレベルであり、180°ピール試験に換算すると、1.0N/inch以下である。
評価「3」は、接着面が部分的に剥がれるレベルであり、180°ピール試験に換算すると、3N/inch以下であり、ピール試験中に材破する可能性が高い。
評価「4」は、接着面が一部剥がれるが剥がれない部分のほうが大きいレベルであり、180°ピール試験に換算すると、5N/inch以下であり、ピール試験中にほぼ材破する。
評価「5」は、ほとんど剥がれないレベルであり、ピール試験で測定不能である。
And adhesiveness was investigated. Adhesion evaluation was evaluated by five steps, which was a hand evaluation in which the tester peeled off the TAC film and the PVA film by hand.
The evaluation “1” is a level at which the entire adhesive surface peels cleanly and easily, and is 0.4 N / inch or less when converted to a 180 ° peel test.
The evaluation “2” is a level at which most of the bonded surface is peeled off, but is 1.0 N / inch or less when converted to a 180 ° peel test.
The evaluation “3” is a level at which the adhesive surface is partially peeled off. When converted to a 180 ° peel test, it is 3 N / inch or less, and there is a high possibility of material breakage during the peel test.
Evaluation "4" is a level where the part where the adhesive surface is peeled off but not peeled is 5 N / inch or less when converted into a 180 ° peel test, and the material is almost broken during the peel test.
Evaluation "5" is a level which hardly peels off and cannot be measured by a peel test.

結果を、表2及び図8に示す。表2の(a)〜(l)の各欄が図8(a)〜(l)にそれぞれ対応する。

Figure 0005363981
The results are shown in Table 2 and FIG. The columns (a) to (l) in Table 2 correspond to FIGS. 8 (a) to (l), respectively.
Figure 0005363981

図8(a)〜(l)の各グラフの横軸は、下式2で定義した処理度Qである(実施例4とは定義が異なる)。
Q=(P/S)×t …(式2)
ここで、Pは、電源23から電極21への投入電力[W]であり、Sは、電極21の放電面(図7において下面)の面積[cm]である。したがって、(P/S)は、単位放電面積あたりの投入電力[W/cm]である。tは、TACフィルムへのプラズマ照射時間[sec]である。プラズマ照射時間tは、下式で定義される。
t=n×L/v …(式3)
ここで、nはスキャン回数であり、Lは、電極21のスキャン方向(図7において左右方向)の長さ[cm]であり、vは、スキャン速度[cm/sec]である。
The horizontal axis of each graph of FIGS. 8A to 8L is the processing degree Q defined by the following expression 2 (definition is different from that of the fourth embodiment).
Q = (P / S) × t (Formula 2)
Here, P is the input power [W] from the power source 23 to the electrode 21, and S is the area [cm 2 ] of the discharge surface (lower surface in FIG. 7) of the electrode 21. Therefore, (P / S) is input power [W / cm 2 ] per unit discharge area. t is the plasma irradiation time [sec] to the TAC film. The plasma irradiation time t is defined by the following equation.
t = n × L / v (Formula 3)
Here, n is the number of scans, L is the length [cm] of the electrode 21 in the scan direction (left-right direction in FIG. 7), and v is the scan speed [cm / sec].

図8(a)及び表2(a)欄に示すように、ガス噴出温度Taとフィルム温度Tbとの差(ΔT=Ta−Tb)がΔT=+17℃の場合、接着力は処理度Qに依らず評価「5」であった。   As shown in FIG. 8 (a) and Table 2 (a) column, when the difference between the gas ejection temperature Ta and the film temperature Tb (ΔT = Ta−Tb) is ΔT = + 17 ° C., the adhesive strength becomes the treatment degree Q. Regardless, the evaluation was “5”.

図8(b)及び表2(b)欄に示すように、温度差がΔT=+12℃の場合も、接着力は処理度Qに依らず評価「5」であった。   As shown in FIG. 8B and Table 2B, even when the temperature difference was ΔT = + 12 ° C., the adhesive strength was evaluated as “5” regardless of the treatment degree Q.

図8(c)及び表2(c)欄に示すように、温度差がΔT=+10℃の場合も、接着力は処理度Qに依らず評価「5」であった。   As shown in FIG. 8 (c) and Table 2 (c), even when the temperature difference was ΔT = + 10 ° C., the adhesive strength was evaluated as “5” regardless of the treatment degree Q.

図8(d),(e)並びに表2(d),(e)欄に示すように、温度差がΔT=+7℃の場合、接着力は評価「4」〜「5」であった。   As shown in FIGS. 8D and 8E and Tables 2D and E, when the temperature difference was ΔT = + 7 ° C., the adhesive strength was evaluated as “4” to “5”.

図8(f)及び表2(f)欄に示すように、温度差がΔT=+5℃の場合、接着力は評価「4」〜「5」であった。   As shown in FIG. 8 (f) and Table 2 (f) column, when the temperature difference is ΔT = + 5 ° C., the adhesive strength was evaluated from “4” to “5”.

図8(g)〜(i)並びに表2(g)〜(i)欄に示すように、温度差がΔT=+2℃の場合、接着力がばらつき、評価「4」〜「5」になることもあったが、評価「1」〜「3」になることもあった。   As shown in FIGS. 8 (g) to (i) and Table 2 (g) to (i), when the temperature difference is ΔT = + 2 ° C., the adhesive force varies, and the evaluation is “4” to “5”. In some cases, the evaluation was “1” to “3”.

図8(j)〜(l)及び表2(j)〜(l)欄に示すように、温度差ΔTがマイナスの場合、接着力の評価値は「1」〜「3」であった。   As shown in FIGS. 8 (j) to (l) and Tables 2 (j) to (l), when the temperature difference ΔT is negative, the evaluation values of the adhesive strength were “1” to “3”.

以上の結果より、TACフィルムとPVAフィルムとの接着性を十分に確保するためには、ガス噴出温度Taよりフィルム温度Tbを低温にすることが必要であることが判明した。しかも、温度差ΔT=Ta−Tbを、ΔT=+5℃以上とすることで良好な接着性を得ることができることが確認された。更に、ΔT=+10℃以上にすることで、より良好な接着性を得ることができることが確認された。温度差ΔTが大きいほど、接着性をより一層良好にできることが判明した。   From the above results, it was found that the film temperature Tb needs to be lower than the gas ejection temperature Ta in order to sufficiently secure the adhesion between the TAC film and the PVA film. Moreover, it was confirmed that good adhesiveness can be obtained by setting the temperature difference ΔT = Ta−Tb to ΔT = + 5 ° C. or more. Furthermore, it was confirmed that better adhesiveness can be obtained by setting ΔT = + 10 ° C. or higher. It was found that the greater the temperature difference ΔT, the better the adhesion.

この結果は、基板温度を高くする一般的なCVD(Chemical Vapor Deposition)とは大きく異なる。本表面処理では、反応ガスのプラズマ化で生じた接着性向上基をTACフィルムの表面上で冷却ないしは凝縮させることが、接着性向上基(adhesion enhancing group)のTACフィルムへの結合ないしは付着を促すのに効果的であると推察される。   This result is significantly different from general CVD (Chemical Vapor Deposition) which raises the substrate temperature. In this surface treatment, it is possible to cool or condense the adhesion improving group generated by the plasma conversion of the reaction gas on the surface of the TAC film to promote the bonding or adhesion of the adhesion enhancing group to the TAC film. It is presumed that this is effective.

実施例6では反応ガス中のアクリル酸濃度と接着性との関係を調べた。用いた表面処理装置の概略構成を図9に示す。   In Example 6, the relationship between the acrylic acid concentration in the reaction gas and the adhesiveness was examined. FIG. 9 shows a schematic configuration of the used surface treatment apparatus.

窒素100%のキャリアをキャリアガス源34から10L/minで送出した。この窒素ガスの一部を、キャリア導入路35aに通して反応成分容器30に導入し、残部をバイパス路35bに通して反応成分容器30を迂回させた。窒素ガスの導入路35aへの分流量とバイパス路35bへの分流量の比を調節することで、アクリル酸の希釈率を調節した。反応成分容器30内の液体アクリル酸Acの温度は40℃に調節した。   A carrier of 100% nitrogen was sent from the carrier gas source 34 at 10 L / min. A part of this nitrogen gas was introduced into the reaction component container 30 through the carrier introduction path 35a, and the remainder was passed through the bypass path 35b to bypass the reaction component container 30. The dilution ratio of acrylic acid was adjusted by adjusting the ratio of the partial flow rate to the nitrogen gas introduction path 35a and the partial flow rate to the bypass path 35b. The temperature of the liquid acrylic acid Ac in the reaction component container 30 was adjusted to 40 ° C.

反応成分容器30からの反応ガス供給路31にバイパス路35bを合流させた。合流後のガスを噴出ノズル32から処理空間29へ導入し、プラズマ化した。表3に示すように、ガス噴出温度Taは、上記分流比に応じてTa=32.8〜33.8℃の範囲で調節した。   The bypass path 35 b was joined to the reaction gas supply path 31 from the reaction component container 30. The gas after the merging was introduced into the treatment space 29 from the ejection nozzle 32 and turned into plasma. As shown in Table 3, the gas ejection temperature Ta was adjusted in the range of Ta = 32.8 to 33.8 ° C. according to the diversion ratio.

電極構造は、平行平板電極21,22とした。ステージを兼ねる下側電極22上にTACフィルム12を置いた。ステージ22の温度ひいてはフィルム温度Tbは、Tb=25℃に調節した。電極21への投入電力は110Vとした。電極21,22の一方を他方に対し相対的に往復移動(スキャン)させた。移動速度は、10m/minとし、往復回数は、1回(2スキャン)とした。   The electrode structure was parallel plate electrodes 21 and 22. The TAC film 12 was placed on the lower electrode 22 that also serves as a stage. The temperature of the stage 22 and thus the film temperature Tb was adjusted to Tb = 25 ° C. The input power to the electrode 21 was 110V. One of the electrodes 21 and 22 was reciprocated (scanned) relative to the other. The moving speed was 10 m / min, and the number of reciprocations was 1 (2 scans).

表面処理後のTACフィルム12の表面上の2つのポイントで対水接触角を測定し、その平均をとった。
その後、TACフィルム12とPVAフィルムを接着した。接着剤は、実施例4と同じものを用いた。そして、接着性の評価を行なった。評価方法は、実施例4と同様の手評価とした。
以上の操作を3回繰り返し、同一条件の測定データを3つずつ取得した。
The contact angle with water was measured at two points on the surface of the TAC film 12 after the surface treatment, and the average was taken.
Thereafter, the TAC film 12 and the PVA film were bonded. The same adhesive as in Example 4 was used. Then, the adhesiveness was evaluated. The evaluation method was the same manual evaluation as in Example 4.
The above operation was repeated three times, and three pieces of measurement data under the same conditions were acquired.

結果を表3に示す。

Figure 0005363981
The results are shown in Table 3.
Figure 0005363981

表3の「分流比」は、窒素ガス全体(10L/min)に対する導入路35aへの分流量である。「分流比」が大きいほど、合流後の反応ガス中のアクリル酸の濃度が高い。
表3の対水接触角は、3つの測定データを平均したものである。
接着性評価の「○」は、接着後のTACフィルムとPVAフィルムをまったく分離できず、接着性が良好であることを示す。「△」は、両フィルムを部分的に剥がすことができ、接着性が不十分であることを示す。「×」は、両フィルムの全体を剥がすことができ、接着性が不良であることを示す。
“Diversion ratio” in Table 3 is a flow rate to the introduction path 35a with respect to the entire nitrogen gas (10 L / min). The greater the “diversion ratio”, the higher the concentration of acrylic acid in the reaction gas after merging.
The water contact angle in Table 3 is an average of three measurement data.
“◯” in the adhesion evaluation indicates that the TAC film and the PVA film after adhesion cannot be separated at all, and the adhesion is good. “Δ” indicates that both films can be partially peeled and the adhesiveness is insufficient. “X” indicates that both the films can be peeled off and the adhesiveness is poor.

分流比が小さくても0%でない限り、対水接触角を十分に小さくできた。これにより、反応ガスにアクリル酸が少量でも含有されていれば、親水性が高まることが確認された。   As long as the diversion ratio was small, the contact angle with water was sufficiently small as long as it was not 0%. Thereby, it was confirmed that if the reaction gas contains a small amount of acrylic acid, the hydrophilicity increases.

接着性に関しては、分流比50%以下では接着不十分ないしは接着不良になった。分流比が80%以上であると十分な接着力を得られた。したがって、アクリル酸の濃度が高いほど、接着性がより良好になることが確認された。   Regarding the adhesiveness, adhesion was insufficient or poor when the flow split ratio was 50% or less. Adequate adhesive strength was obtained when the diversion ratio was 80% or more. Therefore, it was confirmed that the higher the concentration of acrylic acid, the better the adhesiveness.

なお、アクリル酸の濃度が高すぎると、TACフィルムが曇り、偏光板等の光学フィルムには適用しにくくなる。また、爆発限界に達するおそれもある。したがって、アクリル酸濃度の上限は、TACフィルムが曇ることなく、勿論、爆発限界に達しない範囲内で設定することが好ましい。   In addition, when the density | concentration of acrylic acid is too high, a TAC film will become cloudy and it will become difficult to apply to optical films, such as a polarizing plate. There is also a risk of reaching the explosion limit. Therefore, the upper limit of the acrylic acid concentration is preferably set within a range where the TAC film does not become cloudy and, of course, does not reach the explosion limit.

実施例7では反応ガス中の酸素濃度と接着性との関係を調べた。用いた表面処理装置の概略構成を図10に示す。   In Example 7, the relationship between the oxygen concentration in the reaction gas and the adhesiveness was examined. FIG. 10 shows a schematic configuration of the used surface treatment apparatus.

キャリアガス源34から窒素の純ガスを反応成分容器30に導入し、窒素とアクリル酸の混合ガスからなる反応ガスを得た。窒素の流量ひいては反応ガスの流量は、10L/minとした。反応成分容器30内の液体アクリル酸Acの温度は40℃とした。   A pure nitrogen gas was introduced into the reaction component container 30 from the carrier gas source 34 to obtain a reaction gas composed of a mixed gas of nitrogen and acrylic acid. The flow rate of nitrogen and thus the flow rate of the reaction gas was set to 10 L / min. The temperature of the liquid acrylic acid Ac in the reaction component container 30 was 40 ° C.

反応ガス(アクリル酸+窒素)を反応成分容器30から反応ガス供給路31に送出した。反応ガス供給路31に酸素混入路37を合流させ、混入路37からの酸素を供給路31の反応ガスに混入した。酸素の混入量は0〜2体積%の範囲で調節した。この反応ガスを噴出ノズル32から処理空間29へ導入し、プラズマ化した。ガス噴出温度Taは、Ta=32℃であった。電極21への投入電力は110Vとした。   The reaction gas (acrylic acid + nitrogen) was sent from the reaction component container 30 to the reaction gas supply path 31. The oxygen mixing path 37 was joined to the reaction gas supply path 31, and oxygen from the mixing path 37 was mixed into the reaction gas in the supply path 31. The mixing amount of oxygen was adjusted in the range of 0 to 2% by volume. This reaction gas was introduced into the treatment space 29 from the ejection nozzle 32 and turned into plasma. The gas ejection temperature Ta was Ta = 32 ° C. The input power to the electrode 21 was 110V.

ステージ22上にTACフィルム12を置いた。ステージ22の温度ひいてはフィルム温度Tbは、Tb=25℃に設定した。したがって、反応ガスとTACフィルムの温度差ΔTは、ΔT=+7℃であった。   The TAC film 12 was placed on the stage 22. The temperature of the stage 22 and thus the film temperature Tb was set to Tb = 25 ° C. Therefore, the temperature difference ΔT between the reaction gas and the TAC film was ΔT = + 7 ° C.

電極21,22Rの一方を他方に対し相対的に往復移動(スキャン)させた。移動速度は、10m/minとし、往復回数は、1回(2スキャン)とした。   One of the electrodes 21 and 22R was reciprocated (scanned) relative to the other. The moving speed was 10 m / min, and the number of reciprocations was 1 (2 scans).

表面処理後のTACフィルム12をPVAフィルムと接着した。接着剤は、実施例4と同じものを用いた。そして、接着性の評価を行なった。評価方法は、実施例4と同様の手評価とした。
以上の操作を3回繰り返し、同一条件(酸素混入量)の試行データを3つずつ取得した。
The TAC film 12 after the surface treatment was adhered to the PVA film. The same adhesive as in Example 4 was used. Then, the adhesiveness was evaluated. The evaluation method was the same manual evaluation as in Example 4.
The above operation was repeated three times, and trial data of the same condition (oxygen mixing amount) was obtained three by three.

結果を表4に示す。同表4の「○」「△」「×」は、接着性の評価度を示し、その意味するところは表3と同じである。

Figure 0005363981
The results are shown in Table 4. “◯”, “Δ”, and “×” in Table 4 indicate the degree of evaluation of adhesiveness, and the meaning thereof is the same as in Table 3.
Figure 0005363981

酸素混入量が0.5%以上のときはすべて接着不良になった。酸素混入量が0.3%のときは、過半数が接着良好になった。酸素混入量が0.2%以下のときはすべて接着良好になった。これにより、良好な接着性を得るための、反応ガス中の酸素濃度は、好ましくは3000ppm以下であり、より好ましくは2000ppm以下であることが確認された。   When the oxygen mixing amount was 0.5% or more, all had poor adhesion. When the oxygen mixing amount was 0.3%, the majority of the adhesion was good. When the oxygen mixing amount was 0.2% or less, the adhesion was all good. Thereby, it was confirmed that the oxygen concentration in the reaction gas for obtaining good adhesion is preferably 3000 ppm or less, and more preferably 2000 ppm or less.

本発明は、液晶ディスプレイの偏光板の製造に適用可能である。   The present invention is applicable to the manufacture of polarizing plates for liquid crystal displays.

Claims (16)

ポリビニルアルコール系樹脂からなる第1フィルムに、トリアセテートセルロースを主成分として含む第2フィルムを接着するのに先立ち、前記第2フィルムに施す表面処理方法であって、
結露を生じ得る処理空間において反応ガスをプラズマ化して前記第2フィルムの前記第1フィルムと接着されるべき面に接触させ、
前記反応ガスが、アクリル酸又はメタクリル酸を含有し、前記反応ガスの前記第2フィルムへの噴出温度(以下「ガス噴出温度」と称す)がアクリル酸又はメタクリル酸の引火点未満であり、前記第2フィルムの前記反応ガスと接触する部分の温度(以下「フィルム温度」と称す)が室温以上かつ前記ガス噴出温度より低く、かつ前記ガス噴出温度と前記フィルム温度との差が5℃〜30℃になるよう、前記フィルム温度及び前記ガス噴出温度を調節することを特徴とするフィルム表面処理方法。
Prior to adhering the second film containing triacetate cellulose as a main component to the first film made of polyvinyl alcohol-based resin, a surface treatment method applied to the second film,
Plasmaizing the reactive gas in a processing space where condensation can occur to bring it into contact with the surface of the second film to be bonded to the first film,
The reaction gas contains acrylic acid or methacrylic acid, and the ejection temperature of the reaction gas to the second film (hereinafter referred to as “gas ejection temperature”) is lower than the flash point of acrylic acid or methacrylic acid, The temperature of the portion of the second film that contacts the reaction gas (hereinafter referred to as “film temperature”) is not less than room temperature and lower than the gas ejection temperature, and the difference between the gas ejection temperature and the film temperature is 5 ° C. to 30 ° C. The film surface treatment method , wherein the film temperature and the gas ejection temperature are adjusted so as to be at ° C.
前記ガス噴出温度が50℃以下であることを特徴とする請求項1に記載の表面処理方法。 The surface treatment method according to claim 1, wherein the gas ejection temperature is 50 ° C. or less . 前記ガス噴出温度と前記フィルム温度との差が、20℃以下であることを特徴とする請求項1又は2に記載の表面処理方法。 The difference between the gas jetting temperature and the film temperature, surface treatment method according to claim 1 or 2, characterized in der Rukoto 20 ° C. or less. 前記ガス噴出温度と前記フィルム温度との差が、10℃以上であることを特徴とする請求項1〜の何れか1項に記載の表面処理方法。 The difference between the gas jetting temperature and the film temperature, surface treatment method according to any one of claim 1 to 3, characterized in that at 10 ° C. or higher. 前記反応ガスの酸素含有量が、0〜3000ppmであることを特徴とする請求項1〜4の何れかに記載の表面処理方法。   The surface treatment method according to claim 1, wherein an oxygen content of the reaction gas is 0 to 3000 ppm. アクリル酸またはメタクリル酸を不活性ガス中に気化させて前記反応ガスを得ることを特徴とする請求項1〜5の何れかに記載の表面処理方法。   The surface treatment method according to claim 1, wherein the reaction gas is obtained by vaporizing acrylic acid or methacrylic acid in an inert gas. 前記反応ガスが、アクリル酸を含有することを特徴とする請求項1〜6の何れかに記載の表面処理方法。   The surface treatment method according to claim 1, wherein the reaction gas contains acrylic acid. ポリビニルアルコール系樹脂からなる第1フィルムに、トリアセテートセルロースを主成分として含む第2フィルムを積層してなり、前記第1フィルムが偏光膜となり、前記第2フィルムが保護膜となる偏光板の製造方法であって、
結露を生じ得る処理空間において反応ガスをプラズマ化して前記第2フィルムの前記第1フィルムと接着されるべき面に接触させる表面処理工程と、
その後、前記第1フィルムと前記第2フィルムを接着剤にて接着する接着工程と、を含み、
前記反応ガスが、アクリル酸又はメタクリル酸を含有し、前記反応ガスの前記第2フィルムへの噴出温度(以下「ガス噴出温度」と称す)がアクリル酸又はメタクリル酸の引火点未満であり、前記第2フィルムの前記反応ガスと接触する部分の温度(以下「フィルム温度」と称す)が室温以上かつ前記ガス噴出温度より低く、かつ前記ガス噴出温度と前記フィルム温度との差が5℃〜30℃になるよう、前記フィルム温度及び前記ガス噴出温度を調節することを特徴とする偏光板の製造方法。
A method for producing a polarizing plate comprising a first film made of a polyvinyl alcohol resin and a second film containing triacetate cellulose as a main component, the first film serving as a polarizing film, and the second film serving as a protective film. Because
A surface treatment step in which a reaction gas is converted into plasma in a treatment space where condensation can occur and is brought into contact with the surface of the second film to be bonded to the first film;
Then, an adhesion step of adhering the first film and the second film with an adhesive,
The reaction gas contains acrylic acid or methacrylic acid, and the ejection temperature of the reaction gas to the second film (hereinafter referred to as “gas ejection temperature”) is lower than the flash point of acrylic acid or methacrylic acid, The temperature of the portion of the second film that contacts the reaction gas (hereinafter referred to as “film temperature”) is not less than room temperature and lower than the gas ejection temperature, and the difference between the gas ejection temperature and the film temperature is 5 ° C. to 30 ° C. The method for producing a polarizing plate , wherein the film temperature and the gas jetting temperature are adjusted so as to be at ° C.
前記ガス噴出温度が50℃以下であることを特徴とする請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein the gas ejection temperature is 50 ° C. or lower . 前記ガス噴出温度と前記フィルム温度との差が、20℃以下であることを特徴とする請求項8又は9に記載の製造方法。 The difference between the gas jetting temperature and the film temperature, a manufacturing method according to claim 8 or 9, characterized in der Rukoto 20 ° C. or less. 前記ガス噴出温度と前記フィルム温度との差が、10℃以上であることを特徴とする請求項8〜10の何れか1項に記載の製造方法。 The manufacturing method according to any one of claims 8 to 10 , wherein a difference between the gas ejection temperature and the film temperature is 10 ° C or more. 前記反応ガスの酸素含有量が、0〜3000ppmであることを特徴とする請求項8〜11の何れかに記載の製造方法。   The production method according to any one of claims 8 to 11, wherein an oxygen content of the reaction gas is 0 to 3000 ppm. 前記表面処理工程において、アクリル酸またはメタクリル酸を不活性ガス中に気化させて前記反応ガスを得ることを特徴とする請求項8〜12の何れかに記載の製造方法。   The method according to claim 8, wherein in the surface treatment step, acrylic acid or methacrylic acid is vaporized in an inert gas to obtain the reaction gas. 前記反応ガスが、アクリル酸を含有することを特徴とする請求項8〜13の何れかに記載の製造方法。 The manufacturing method according to claim 8, wherein the reaction gas contains acrylic acid. 前記第2フィルムの前記第1フィルムと接着される面とは反対側の面に機能層が被膜されており、前記プラズマ化に用いる一対の電極のうち一方の電極の放電面に前記機能層を向けて、前記放電面を前記第2フィルムで隙間無く覆った状態で、前記反応ガスを前記第2フィルムと他方の電極との間に導入することを特徴とする請求項8〜14の何れかに記載の製造方法。   The functional layer is coated on the surface of the second film opposite to the surface to be bonded to the first film, and the functional layer is disposed on the discharge surface of one of the pair of electrodes used for the plasmatization. The reactive gas is introduced between the second film and the other electrode in a state where the discharge surface is covered with the second film without a gap. The manufacturing method as described in. 請求項1〜7の何れか1項に記載の表面処理方法に用いられる、又は請求項8〜15の何れか1項に記載の製造方法における表面処理工程に用いられる表面処理装置であって、
前記第2フィルムが配置され、結露を生じ得る処理空間を有し、前記処理空間内又はその近傍で前記プラズマ化を行なうプラズマ処理部と、
前記処理空間に反応ガスを供給する反応ガス供給系と、
前記第2フィルムの前記反応ガスと接触する部分の温度(以下「フィルム温度」と称す)を調節するフィルム温度調節手段と、
前記反応ガスの前記第2フィルムへの噴出温度(以下「ガス噴出温度」と称す)を調節するガス温度調節手段と、
を備え、前記フィルム温度調節手段と前記ガス温度調節手段とによって、前記フィルム温度が室温以上かつ前記ガス噴出温度より低く、かつ前記ガス噴出温度がアクリル酸又はメタクリル酸の引火点未満であり、かつ前記ガス噴出温度と前記フィルム温度との差が5℃〜30℃になるよう調節することを特徴とする表面処理装置。
Used in the surface treatment method according to any one of claims 1 to 7, or a surface treatment apparatus used in the surface treatment step in the production method according to any one of claims 8 to 15,
A plasma processing section in which the second film is disposed and has a processing space in which condensation can occur , and the plasma processing is performed in or near the processing space;
A reaction gas supply system for supplying a reaction gas to the processing space;
Film temperature adjusting means for adjusting the temperature of the portion of the second film that contacts the reactive gas (hereinafter referred to as “film temperature”);
A gas temperature adjusting means for adjusting an ejection temperature of the reaction gas to the second film (hereinafter referred to as “gas ejection temperature”);
The film temperature adjusting means and the gas temperature adjusting means, the film temperature is not less than room temperature and lower than the gas ejection temperature, and the gas ejection temperature is lower than the flash point of acrylic acid or methacrylic acid, and The surface treatment apparatus is characterized in that the difference between the gas ejection temperature and the film temperature is adjusted to 5 ° C to 30 ° C.
JP2009522586A 2007-07-09 2008-07-01 Film surface treatment method, polarizing plate production method, and surface treatment apparatus Active JP5363981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009522586A JP5363981B2 (en) 2007-07-09 2008-07-01 Film surface treatment method, polarizing plate production method, and surface treatment apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007179762 2007-07-09
JP2007179762 2007-07-09
JP2009522586A JP5363981B2 (en) 2007-07-09 2008-07-01 Film surface treatment method, polarizing plate production method, and surface treatment apparatus
PCT/JP2008/061883 WO2009008284A1 (en) 2007-07-09 2008-07-01 Method for treating film surface, method for producing polarizing plate, and surface treatment apparatus

Publications (2)

Publication Number Publication Date
JPWO2009008284A1 JPWO2009008284A1 (en) 2010-09-09
JP5363981B2 true JP5363981B2 (en) 2013-12-11

Family

ID=40228462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009522586A Active JP5363981B2 (en) 2007-07-09 2008-07-01 Film surface treatment method, polarizing plate production method, and surface treatment apparatus

Country Status (5)

Country Link
JP (1) JP5363981B2 (en)
KR (2) KR101345889B1 (en)
CN (1) CN101688006B (en)
TW (1) TW200916514A (en)
WO (1) WO2009008284A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102459353A (en) * 2009-06-26 2012-05-16 积水化学工业株式会社 Method and device for treating film surface and method for production of polarising plate
JP5167431B2 (en) * 2010-03-09 2013-03-21 積水化学工業株式会社 Film surface treatment equipment
KR101473547B1 (en) * 2010-03-24 2014-12-16 세키스이가가쿠 고교가부시키가이샤 Plasma treatment device
JP5006951B2 (en) * 2010-03-24 2012-08-22 積水化学工業株式会社 Film surface treatment equipment
JP5828538B2 (en) * 2010-05-18 2015-12-09 日東電工株式会社 Polarizing plate, manufacturing method thereof, optical film, and image display device
JP5548520B2 (en) * 2010-05-27 2014-07-16 三井化学株式会社 Manufacturing method of laminate
JP5647495B2 (en) * 2010-11-19 2014-12-24 大倉工業株式会社 Sheet-fed film processing equipment
JP5039220B1 (en) * 2011-03-30 2012-10-03 積水化学工業株式会社 Film surface treatment method and apparatus
JP6089512B2 (en) * 2012-09-07 2017-03-08 住友化学株式会社 Laminate and optical film
KR101498947B1 (en) * 2012-11-05 2015-03-05 한국표준과학연구원 Perspective vacuum heating device
JP6052052B2 (en) * 2013-05-17 2016-12-27 コニカミノルタ株式会社 Antifogging cellulose ester film, antifogging glass using the antifogging cellulose ester film, and method for producing the antifogging cellulose ester film
JP6403227B2 (en) * 2016-11-18 2018-10-10 日東電工株式会社 Optical film activation treatment method and manufacturing method, optical film and image display device
JP6421962B1 (en) * 2017-08-09 2018-11-14 春日電機株式会社 Surface reformer
JP6581269B2 (en) * 2018-09-25 2019-09-25 日東電工株式会社 Optical film activation treatment method and manufacturing method, optical film and image display device
JP2019215574A (en) * 2019-08-29 2019-12-19 日東電工株式会社 Method of performing activation treatment on and manufacturing method for optical film, optical film, and image display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082223A (en) * 2000-09-08 2002-03-22 Konica Corp Protective film or polarizing plate, optical film and picture display material
JP2003255131A (en) * 2002-03-05 2003-09-10 Konica Corp Optical film, protective film for polarizing plate, polarizing plate, and method for treating surface of base material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082223A (en) * 2000-09-08 2002-03-22 Konica Corp Protective film or polarizing plate, optical film and picture display material
JP2003255131A (en) * 2002-03-05 2003-09-10 Konica Corp Optical film, protective film for polarizing plate, polarizing plate, and method for treating surface of base material

Also Published As

Publication number Publication date
TW200916514A (en) 2009-04-16
KR101153585B1 (en) 2012-06-12
KR101345889B1 (en) 2013-12-30
JPWO2009008284A1 (en) 2010-09-09
TWI370828B (en) 2012-08-21
CN101688006B (en) 2012-05-30
KR20120059629A (en) 2012-06-08
WO2009008284A1 (en) 2009-01-15
CN101688006A (en) 2010-03-31
KR20100017672A (en) 2010-02-16

Similar Documents

Publication Publication Date Title
JP5363981B2 (en) Film surface treatment method, polarizing plate production method, and surface treatment apparatus
WO2010150551A1 (en) Method and device for treating film surface and method for production of polarising plate
TWI343583B (en) Flexible electrically conductive film
JP5602529B2 (en) Manufacturing method of laminate, manufacturing method of polarizing plate with glass substrate, and polarizing plate with glass substrate obtained thereby
JP2010150373A (en) Surface treating method and adhesion method of film, and method of manufacturing polarizing plate
JP5006951B2 (en) Film surface treatment equipment
JPWO2006057177A1 (en) Laminated film for moisture-proof film and method for producing the same
JP2017177343A (en) Laminate film and method for manufacturing the same
KR101328352B1 (en) Method and device for treating film surface and process for producing polarizer
JP6953170B2 (en) Conductive film and touch panel
JP2002082223A (en) Protective film or polarizing plate, optical film and picture display material
TWI417326B (en) Film surface treatment device
JP2009073911A (en) Manufacturing method for polarizing plate and surface treatment method
JP2008114444A (en) Forming method of transparent multi-layer film, transparent multi-layer film having gas barrier property and sealing film formed thereby
JP5039220B1 (en) Film surface treatment method and apparatus
TW202028150A (en) Anti-reflection glass
WO2005108055A1 (en) Film for display board and method for manufacturing organic el element and aluminum oxide thin film
JP4265142B2 (en) Antireflection film, low refractive index region production method, polarizing plate
JP5030572B2 (en) Triacetyl cellulose film surface treatment method and polarizing plate
JP2004155930A (en) Transparent film, transparent conductive film, and liquid display, organic el display and touch panel using the transparent conductive film as substrate, and manufacturing method of the transparent film
JP5260578B2 (en) Application method of laminated film
JP2003329805A (en) Antireflection film and method for manufacturing antireflection film
JP2013067015A (en) Gas barrier film and method for producing the same
JP2008023898A (en) Deposition film
JPWO2005061757A1 (en) Magnesium fluoride thin film manufacturing method, magnesium fluoride thin film, laminated film, transparent plastic film, and organic EL device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130906

R151 Written notification of patent or utility model registration

Ref document number: 5363981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151