JP5362632B2 - Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell - Google Patents

Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5362632B2
JP5362632B2 JP2010070654A JP2010070654A JP5362632B2 JP 5362632 B2 JP5362632 B2 JP 5362632B2 JP 2010070654 A JP2010070654 A JP 2010070654A JP 2010070654 A JP2010070654 A JP 2010070654A JP 5362632 B2 JP5362632 B2 JP 5362632B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
membrane
electrode assembly
electrode
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010070654A
Other languages
Japanese (ja)
Other versions
JP2011204467A (en
Inventor
和哉 清水
友裕 小野
武史 仲野
竹友 山下
千恵 鈴木
望 須郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2010070654A priority Critical patent/JP5362632B2/en
Publication of JP2011204467A publication Critical patent/JP2011204467A/en
Application granted granted Critical
Publication of JP5362632B2 publication Critical patent/JP5362632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、膜−電極接合体及びその製造方法、ならびに該膜−電極接合体を備える固体高分子型燃料電池に関する。   The present invention relates to a membrane-electrode assembly, a method for producing the same, and a polymer electrolyte fuel cell including the membrane-electrode assembly.

近年、燃料電池技術は新エネルギー技術の柱の1つとして注目されている。特に固体高分子型燃料電池(PEFC;Polymer Electrolyte Fuel Cell)は、小型軽量化も期待できることから、電気自動車用の駆動電源や携帯機器用の電源、さらに家庭用コージェネレーションシステムなど幅広い用途への適用が検討されている。   In recent years, fuel cell technology has attracted attention as one of the pillars of new energy technology. In particular, polymer electrolyte fuel cells (PEFCs) can be expected to be compact and lightweight, so they can be used in a wide range of applications such as drive power sources for electric vehicles, power sources for portable devices, and household cogeneration systems. Is being considered.

固体高分子型燃料電池は、一般に次のように構成される。まず、プロトン伝導性を有する高分子電解質膜の両側に、白金属の金属触媒を担持したカーボン粉末と高分子電解質からなるイオン伝導性バインダーとを含む触媒層がそれぞれ形成される。各触媒層の外側には、燃料ガス及び酸化剤ガスをそれぞれ通気する多孔性材料であるガス拡散層がそれぞれ形成される。ガス拡散層としてはカーボンペーパー、カーボンクロスなどが用いられる。触媒層とガス拡散層を一体化したものはガス拡散電極と呼ばれ、また一対のガス拡散電極をそれぞれ触媒層が高分子電解質膜と向かい合うように高分子電解質膜に接合した構造体は膜−電極接合体(MEA;Membrane Electrode Assembly)と呼ばれている。この膜−電極接合体の両側には、導電性と気密性を備えたセパレータが配置される。膜−電極接合体とセパレータの接触部分又はセパレータ内には、各ガス拡散電極にガスを供給するためのガス流路が形成されており、一方のガス拡散電極(燃料極)に燃料ガスを供給し、他方のガス拡散電極(酸素極)に空気などの酸素を含有する酸化剤ガスを供給して発電する。すなわち、燃料極では燃料がイオン化されてプロトンと電子が生じ、プロトンは高分子電解質膜を通り、電子は両極をつなぐことによって形成される外部電気回路を移動して酸素極へ送られ、酸化剤と反応することで水が生成する。このようにして、燃料の化学エネルギーを電気エネルギーに直接変換して取り出すことができる。   A polymer electrolyte fuel cell is generally configured as follows. First, a catalyst layer containing carbon powder carrying a white metal catalyst and an ion conductive binder made of a polymer electrolyte is formed on both sides of a polymer electrolyte membrane having proton conductivity. A gas diffusion layer, which is a porous material through which fuel gas and oxidant gas are passed, is formed outside each catalyst layer. Carbon paper, carbon cloth, or the like is used as the gas diffusion layer. A structure in which a catalyst layer and a gas diffusion layer are integrated is called a gas diffusion electrode, and a structure in which a pair of gas diffusion electrodes is joined to a polymer electrolyte membrane so that the catalyst layer faces the polymer electrolyte membrane is a membrane- It is called an electrode assembly (MEA; Membrane Electrode Assembly). On both sides of this membrane-electrode assembly, separators having electrical conductivity and airtightness are disposed. A gas flow passage for supplying gas to each gas diffusion electrode is formed in the contact portion of the membrane-electrode assembly and the separator or in the separator, and fuel gas is supplied to one gas diffusion electrode (fuel electrode). Then, the other gas diffusion electrode (oxygen electrode) is supplied with an oxidant gas containing oxygen such as air to generate electric power. That is, at the fuel electrode, the fuel is ionized to generate protons and electrons, the protons pass through the polymer electrolyte membrane, and the electrons move through an external electric circuit formed by connecting the two electrodes, and are sent to the oxygen electrode. Reacts with water to produce water. In this way, the chemical energy of the fuel can be directly converted into electric energy and taken out.

膜−電極接合体の作製方法としては例えば、白金属の金属触媒を担持したカーボン粉末と、イオン伝導性バインダーとしての高分子電解質および水またはアルコールなどの溶媒を混合して触媒インクを調製し、この触媒インクをスプレー塗工法、スクリーン印刷法、ドクターブレード法などを用いてガス拡散層に塗布して触媒層を形成した後、更に高分子電解質膜を積層して加熱プレスにより熱圧着する方法が挙げられる。同様に触媒インクを高分子電解質膜上に塗布して触媒層を形成した後、更にガス拡散層を積層する方法も知られている。   As a method for producing a membrane-electrode assembly, for example, a carbon ink carrying a metal catalyst of a white metal, a polymer electrolyte as an ion conductive binder and a solvent such as water or alcohol are mixed to prepare a catalyst ink, The catalyst ink is applied to the gas diffusion layer by using a spray coating method, a screen printing method, a doctor blade method or the like, and then a catalyst layer is formed. Can be mentioned. Similarly, a method is also known in which a catalyst ink is applied on a polymer electrolyte membrane to form a catalyst layer, and then a gas diffusion layer is further laminated.

膜−電極接合体を作製する場合、ガス拡散電極と高分子電解質膜とを、比較的高温高圧(例えば120〜130℃、6MPa)で素早く(例えば60秒間)熱処理する(例えば特許文献1参照)。これによってガス拡散電極中の高分子電解質が速やかに結晶化し、使用時の溶出などを抑制できる。   When producing a membrane-electrode assembly, the gas diffusion electrode and the polymer electrolyte membrane are heat-treated quickly (for example, for 60 seconds) at a relatively high temperature and high pressure (for example, 120 to 130 ° C., 6 MPa) (for example, see Patent Document 1). . As a result, the polymer electrolyte in the gas diffusion electrode is rapidly crystallized, and elution during use can be suppressed.

特開平3-208260号公報JP-A-3-208260 WO2006/70929号公報WO 2006/70929 WO2007/86309号公報WO2007 / 86309 WO2007/94185号公報WO2007 / 94185 Publication

しかしながら、従来の膜−電極接合体は、電流密度と電圧の関係で評価される発電特性が十分とは言えなかった。特に近年要求が高まっている高電流密度域でのセル電圧が低いため最大出力密度が低く、燃料電池の性能としては不十分であった。   However, it cannot be said that the conventional membrane-electrode assembly has sufficient power generation characteristics evaluated by the relationship between current density and voltage. In particular, since the cell voltage in the high current density region, which has been increasing in demand in recent years, is low, the maximum output density is low, and the performance of the fuel cell is insufficient.

そこで本発明は、上記課題を解決し、高い発電特性を安定的に発現することのできる膜−電極接合体を提供することを目的とする。また、該膜−電極接合体を備える固体高分子型燃料電池を提供することを別の目的とする。   Then, this invention solves the said subject and aims at providing the membrane-electrode assembly which can express high electric power generation characteristics stably. Another object is to provide a polymer electrolyte fuel cell comprising the membrane-electrode assembly.

本発明者らは、上記課題を解決すべく鋭意研究を重ね、2つのガス拡散電極と、この間に配置される高分子電解質膜とを備える膜−電極接合体であって、該高分子電解質の広角X線回折によって測定される結晶ピークの非晶ピークに対する強度比が1.09〜1.19の範囲であることを特徴とする固体高分子型燃料電池用膜−電極接合体、及び該膜−電極接合体を備える固体高分子型燃料電池を提供することで、上記課題を解決できることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies to solve the above problems, and are membrane-electrode assemblies including two gas diffusion electrodes and a polymer electrolyte membrane disposed therebetween, Membrane-electrode assembly for a polymer electrolyte fuel cell, wherein the intensity ratio of the crystal peak to the amorphous peak measured by wide-angle X-ray diffraction is in the range of 1.09 to 1.19, and the membrane -It has been found that the above problems can be solved by providing a polymer electrolyte fuel cell including an electrode assembly, and the present invention has been completed.

すなわち、本発明は、
[1] 2つのガス拡散電極と、この間に配置される高分子電解質膜とを備える膜−電極接合体であって、前記ガス拡散電極は、触媒と高分子電解質とを含む触媒層を少なくとも有しており、該高分子電解質の広角X線回折によって測定される結晶ピークの非晶ピークに対する強度比が1.09〜1.19の範囲であることを特徴とする膜−電極接合体及び
[2] 前記[1]に記載の膜−電極接合体を備えることを特徴とする固体高分子型燃料電池を提供する。
That is, the present invention
[1] A membrane-electrode assembly including two gas diffusion electrodes and a polymer electrolyte membrane disposed therebetween, wherein the gas diffusion electrode has at least a catalyst layer including a catalyst and a polymer electrolyte. And a membrane-electrode assembly wherein the ratio of the intensity of the crystal peak to the amorphous peak measured by wide-angle X-ray diffraction of the polymer electrolyte is in the range of 1.09 to 1.19, and [ 2] A polymer electrolyte fuel cell comprising the membrane-electrode assembly according to [1] is provided.

本発明では、膜−電極接合体作製時に用いられる高分子電解質(バインダー)の結晶化状態に着目し、熱処理条件の調整により、該高分子電解質の結晶ピークと非晶ピークの比をある範囲内に調整することにより、高い発電特性を発揮することが可能であることを見出した。特に高電流密度域でのセル電圧が高いため最大出力密度が高く、高い発電特性を安定的に発現することが可能である。   In the present invention, paying attention to the crystallization state of the polymer electrolyte (binder) used in the preparation of the membrane-electrode assembly, the ratio of the crystal peak to the amorphous peak of the polymer electrolyte is within a certain range by adjusting the heat treatment conditions. It has been found that it is possible to exert high power generation characteristics by adjusting to. In particular, since the cell voltage in a high current density region is high, the maximum output density is high, and high power generation characteristics can be stably exhibited.

以下、本発明について詳細に説明する。
本発明の膜−電極接合体を構成するガス拡散電極は、触媒層とガス拡散層とからなり、触媒層は導電性触媒担体としての炭素材料と、電極反応を促進する触媒金属、及びイオン伝導体としての高分子電解質とからなる。
Hereinafter, the present invention will be described in detail.
The gas diffusion electrode constituting the membrane-electrode assembly of the present invention comprises a catalyst layer and a gas diffusion layer. The catalyst layer comprises a carbon material as a conductive catalyst carrier, a catalyst metal that promotes an electrode reaction, and ion conduction. It consists of a polymer electrolyte as a body.

上記触媒層中に用いられる炭素材料としては特に制限はなく、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック等のカーボンブラック、活性炭、黒鉛が挙げられ、これら単独であるいは2種以上混合して使用される。   The carbon material used in the catalyst layer is not particularly limited, and examples thereof include carbon black such as furnace black, channel black, and acetylene black, activated carbon, and graphite. These may be used alone or in combination of two or more. The

触媒金属としては、水素やメタノールなどの燃料の酸化反応及び酸素の還元反応を促進する金属であればいずれのものでもよく、例えば、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、パラジウム等、あるいはそれらの合金、例えば白金−ルテニウム合金が挙げられる。中でも白金や白金合金が多くの場合用いられる。触媒となる金属の粒径は、通常は、10〜300オングストロームである。これら触媒はカーボン等の導電性触媒担体に担持させた方が触媒使用量は少なくコスト的に有利である。また、触媒層には、必要に応じて撥水剤が含まれていてもよい。撥水剤としては例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレンブタジエン共重合体、ポリエーテルエーテルケトン等の各種熱可塑性樹脂が挙げられる。   The catalyst metal may be any metal that promotes the oxidation reaction of fuel such as hydrogen and methanol and the reduction reaction of oxygen, such as platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron, Cobalt, nickel, chromium, tungsten, manganese, palladium, etc., or alloys thereof, for example, platinum-ruthenium alloys are mentioned. Of these, platinum and platinum alloys are often used. The particle size of the metal serving as a catalyst is usually 10 to 300 angstroms. When these catalysts are supported on a conductive catalyst carrier such as carbon, the amount of catalyst used is small and advantageous in terms of cost. The catalyst layer may contain a water repellent as necessary. Examples of the water repellent include various thermoplastic resins such as polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene copolymer, and polyether ether ketone.

上記触媒層中に用いられる高分子電解質としては、例えば、「ナフィオン」(登録商標、デュポン社製)や「Gore−select」(登録商標、ゴア社製)などの既存のパーフルオロスルホン酸系ポリマーからなる高分子電解質、スルホン化ポリエーテルスルホンやスルホン化ポリエーテルケトンからなる高分子電解質、リン酸や硫酸を含浸したポリベンズイミダゾール、イオン伝導性基を有する重合体ブロック及びイオン伝導性基を有しない重合体ブロックを構成成分とするブロック共重合体からなる高分子電解質を用いることができる。これらは、本発明中の高分子電解質膜の材料と同じ、あるいは類似の高分子電解質であってもよく、その場合、高分子電解質膜と触媒層との接合性を高めることができる。   Examples of the polymer electrolyte used in the catalyst layer include existing perfluorosulfonic acid polymers such as “Nafion” (registered trademark, manufactured by DuPont) and “Gore-select” (registered trademark, manufactured by Gore). A polyelectrolyte composed of sulfonated polyethersulfone or sulfonated polyetherketone, polybenzimidazole impregnated with phosphoric acid or sulfuric acid, a polymer block having an ion conductive group and an ion conductive group It is possible to use a polymer electrolyte made of a block copolymer having a polymer block that is not used as a constituent component. These may be polymer electrolytes that are the same as or similar to the material of the polymer electrolyte membrane in the present invention. In this case, the bondability between the polymer electrolyte membrane and the catalyst layer can be improved.

上記触媒層中に用いられる高分子電解質の炭素材料に対する重量比率は、触媒層中の反応場での水素イオン伝導性とガス拡散性、水排出性と触媒層の安定性の観点から、0.3〜3.0の範囲が好ましく、0.5〜2.0の範囲がより好ましい。   The weight ratio of the polymer electrolyte used in the catalyst layer to the carbon material is from the viewpoint of hydrogen ion conductivity and gas diffusibility in the reaction field in the catalyst layer, water discharge property, and catalyst layer stability. The range of 3-3.0 is preferable, and the range of 0.5-2.0 is more preferable.

上記ガス拡散電極中のガス拡散層は、導電性及びガス透過性を備えた材料から構成され、かかる材料として例えばカーボンペーパーやカーボンクロス等の炭素繊維よりなる多孔性材料が挙げられる。また、かかる材料には、撥水性を向上させるために、撥水化処理を施してもよい。   The gas diffusion layer in the gas diffusion electrode is made of a material having conductivity and gas permeability, and examples of the material include a porous material made of carbon fibers such as carbon paper and carbon cloth. Moreover, in order to improve water repellency, this material may be subjected to water repellency treatment.

膜−電極接合体の作製方法としては例えば、上記金属触媒を担持した炭素材料と、上記高分子電解質および水またはアルコールなどの溶媒を混合して触媒インクを調製し、この触媒インクをスプレー塗工法、スクリーン印刷法、ドクターブレード法などを用いてガス拡散層に塗布して触媒層を形成した後、更に高分子電解質膜を積層する方法が挙げられる。同様に触媒インクを高分子電解質膜上に塗布して触媒層を形成した後、更にガス拡散層を積層する方法を用いることもできる。さらに他の製造法として、まず、上記触媒インクをポリテトラフルオロエチレン(PTFE)製などの基材フィルムに塗布し、乾燥して触媒層を形成させ、ついで、1対のこの基材フィルム上の触媒層を高分子電解質膜の両側に転写し、基材フィルムを剥離することで高分子電解質膜と触媒層との接合体を得、さらにガス拡散層を積層する方法がある。   As a method for producing a membrane-electrode assembly, for example, a carbon material carrying the metal catalyst, a polymer electrolyte and a solvent such as water or alcohol are mixed to prepare a catalyst ink, and this catalyst ink is spray-coated. And a method of laminating a polymer electrolyte membrane after forming a catalyst layer by applying to a gas diffusion layer using a screen printing method, a doctor blade method or the like. Similarly, a method in which a gas diffusion layer is further laminated after forming a catalyst layer by applying a catalyst ink on a polymer electrolyte membrane can also be used. As yet another manufacturing method, first, the catalyst ink is applied to a base film made of polytetrafluoroethylene (PTFE) and dried to form a catalyst layer, and then a pair of base films on the base film is formed. There is a method in which a catalyst layer is transferred to both sides of a polymer electrolyte membrane, a base film is peeled off to obtain a joined body of the polymer electrolyte membrane and the catalyst layer, and a gas diffusion layer is further laminated.

上記塗布法により形成された触媒層中の、単位面積当たりの触媒金属量は、触媒層中の反応場での反応効率ひいては発電特性の観点から、0.01〜10mg/cmの範囲が好ましく、0.1〜5.0mg/cmの範囲がより好ましい。 The amount of the catalyst metal per unit area in the catalyst layer formed by the coating method is preferably in the range of 0.01 to 10 mg / cm 2 from the viewpoint of reaction efficiency in the reaction field in the catalyst layer and power generation characteristics. The range of 0.1 to 5.0 mg / cm 2 is more preferable.

本発明では、上記触媒層中の、高分子電解質の広角X線回折によって測定される結晶ピークの非晶ピークに対する強度比が1.09〜1.19の範囲である点に特徴を有する。高分子電解質の結晶状態を前記に規定される範囲内とすることで、ガス拡散電極への燃料ガス及び酸化剤ガスの導入が容易になる上、触媒層中にて触媒金属・ガス・高分子電解質が互いに接触する領域(いわゆる「三相界面」)が効率的に形成され、燃料極及び酸素極での反応が促進されるため、発電中のセル電圧を高く保つことができる。更に、酸素極で生成する水の排出が有効になされるため、酸素極中での水分過多に伴うガス拡散の低下を防ぎ、酸素極での反応阻害(特に高電流密度域での性能低下)を抑制する。また、本結晶状態の高分子電解質は経時的な安定性に優れるため、長時間高性能を維持する固体高分子型燃料電池を実現することができる。   The present invention is characterized in that the intensity ratio of the crystal peak to the amorphous peak measured by wide-angle X-ray diffraction of the polymer electrolyte in the catalyst layer is in the range of 1.09 to 1.19. By making the crystalline state of the polymer electrolyte within the range specified above, the introduction of the fuel gas and the oxidant gas to the gas diffusion electrode is facilitated, and the catalyst metal / gas / polymer in the catalyst layer. A region where the electrolytes are in contact with each other (a so-called “three-phase interface”) is efficiently formed and the reaction at the fuel electrode and the oxygen electrode is promoted, so that the cell voltage during power generation can be kept high. In addition, since the water generated at the oxygen electrode is effectively discharged, the gas diffusion caused by excessive moisture in the oxygen electrode is prevented and the reaction at the oxygen electrode is inhibited (especially in the high current density region). Suppress. In addition, since the polymer electrolyte in the crystalline state is excellent in stability over time, it is possible to realize a polymer electrolyte fuel cell that maintains high performance for a long time.

触媒層中の高分子電解質を上述のような結晶状態で得る方法としては、触媒層への加熱処理による方法が挙げられる。加熱処理は加圧しながら行っても良い。このとき好ましい圧力は2.0MPa以下であり、より好ましくは1.5MPa以下であり、更に好ましくは1.0MPa以下である。また加熱温度は好ましくは100〜120℃であって、さらに好ましくは105〜115℃である。加熱時間は好ましくは5〜120分であって、より好ましくは10〜60分であって、さらに好ましくは15〜30分である。該加熱処理は触媒層をガス拡散層、高分子電解質膜、または転写用基材フィルムいずれかに塗布した後に行うのが好ましい。   Examples of the method for obtaining the polymer electrolyte in the catalyst layer in the crystalline state as described above include a method by heat treatment on the catalyst layer. The heat treatment may be performed while applying pressure. At this time, a preferable pressure is 2.0 MPa or less, more preferably 1.5 MPa or less, and still more preferably 1.0 MPa or less. The heating temperature is preferably 100 to 120 ° C, more preferably 105 to 115 ° C. The heating time is preferably 5 to 120 minutes, more preferably 10 to 60 minutes, and further preferably 15 to 30 minutes. The heat treatment is preferably performed after the catalyst layer is applied to any of the gas diffusion layer, the polymer electrolyte membrane, and the transfer substrate film.

該加熱処理は、複数回に分けて実施しても良い。この場合、加熱処理時間は、各加熱処理工程を合わせたものである。加熱処理を2回に分けて行う場合、まず加圧せずに120℃以下、100分以内で第一の加熱処理を行い、次に2.0MPa以下で加圧して120℃以下、20分以内で第二の加熱処理を行うことで、不必要な結晶化を促進することなく、膜−電極接合体の接合が可能となる。このような方法を取る場合、第二の加熱処理時の結晶化の進行は無視出来るので、第一の加熱処理後の高分子電解質における広角X線回折によって測定される結晶ピークの非晶ピークに対する強度比が本発明の範囲(1.09〜1.19)となり、本発明の膜−電極接合体を得ることができる。この場合、触媒層の第一の加熱処理は、加圧せず、適切な結晶化度を調節する。好ましい加熱温度は100〜120℃であって、さらに好ましくは105〜115℃である。好ましい加熱時間は3〜100分であって、より好ましくは6〜45分であって、さらに好ましくは10〜30分である。また、第二の加熱処理は、膜−電極接合体を構成する、触媒層、ガス拡散層、高分子電解質膜を積層し加圧しながら行うことで各層の接合を促す。このとき好ましい圧力は0.1〜2.0MPaであり、より好ましくは0.3〜1.5MPaであり、更に好ましくは0.5〜1.2MPaである。加圧せず、適切な結晶化度を調節する。加熱温度は好ましくは100〜120℃であって、さらに好ましくは105〜115℃である。加熱時間は好ましくは2〜20分であって、より好ましくは4〜15分であって、さらに好ましくは5〜10分である。   The heat treatment may be performed in a plurality of times. In this case, the heat treatment time is the sum of the heat treatment steps. When performing the heat treatment in two steps, first, the first heat treatment is performed within 120 minutes at 120 ° C. or less without pressurization, and then the pressure is applied at 2.0 MPa or less at 120 ° C. or less and within 20 minutes. By performing the second heat treatment, the membrane-electrode assembly can be joined without promoting unnecessary crystallization. In such a method, since the progress of crystallization during the second heat treatment can be ignored, the crystal peak measured by wide-angle X-ray diffraction in the polymer electrolyte after the first heat treatment is compared with the amorphous peak. The strength ratio falls within the range of the present invention (1.09 to 1.19), and the membrane-electrode assembly of the present invention can be obtained. In this case, the first heat treatment of the catalyst layer is not pressurized and adjusts the appropriate crystallinity. A preferable heating temperature is 100 to 120 ° C, and more preferably 105 to 115 ° C. A preferable heating time is 3 to 100 minutes, more preferably 6 to 45 minutes, and further preferably 10 to 30 minutes. The second heat treatment promotes the bonding of the respective layers by laminating and pressurizing the catalyst layer, the gas diffusion layer, and the polymer electrolyte membrane constituting the membrane-electrode assembly. At this time, a preferable pressure is 0.1 to 2.0 MPa, more preferably 0.3 to 1.5 MPa, and still more preferably 0.5 to 1.2 MPa. Adjust the appropriate crystallinity without applying pressure. The heating temperature is preferably 100 to 120 ° C, more preferably 105 to 115 ° C. The heating time is preferably 2 to 20 minutes, more preferably 4 to 15 minutes, and further preferably 5 to 10 minutes.

本発明では、膜−電極接合体を構成する高分子電解質膜には特に制限はない。例えば、「ナフィオン」(登録商標、デュポン社製)や「Gore−select」(登録商標、ゴア社製)などの既存のパーフルオロスルホン酸系ポリマーからなる高分子電解質膜、スルホン化ポリエーテルスルホンやスルホン化ポリエーテルケトンからなる高分子電解質膜、リン酸や硫酸を含浸したポリベンズイミダゾールからなる高分子電解質膜等が挙げられる。ガス拡散電極との接合性から、高分子電解質膜は軟化温度またはガラス転移温度(Tg)が20℃以下であることが好ましい。一方、膜の強度を高める上では軟化温度またはガラス転移温度(Tg)が80℃以上であることが好ましい。膜の強度とガス拡散電極との接合性を両立するために、Tgが20℃以下である重合体ブロック(ゴム状重合体ブロック)とTgが80℃以上である重合体ブロック(非ゴム状重合体ブロック)からなるブロック共重合体を用いても良い。例えばイオン伝導性基を有する重合体ブロック(A)及びイオン伝導性基を有しないゴム状重合体ブロック(B)を構成成分とするブロック共重合体(I)からなる公知のブロック共重合体を用いることができる(特許文献2〜4参照)。また、上記高分子電解質膜の上に、更に高分子電解質膜を積層させて、複層の高分子電解質膜としてもよい。   In the present invention, the polymer electrolyte membrane constituting the membrane-electrode assembly is not particularly limited. For example, polymer electrolyte membranes made of existing perfluorosulfonic acid polymers such as “Nafion” (registered trademark, manufactured by DuPont) and “Gore-select” (registered trademark, manufactured by Gore), sulfonated polyethersulfone, Examples thereof include a polymer electrolyte membrane made of sulfonated polyether ketone and a polymer electrolyte membrane made of polybenzimidazole impregnated with phosphoric acid or sulfuric acid. The polymer electrolyte membrane preferably has a softening temperature or glass transition temperature (Tg) of 20 ° C. or lower because of its bonding property with the gas diffusion electrode. On the other hand, in order to increase the strength of the film, the softening temperature or glass transition temperature (Tg) is preferably 80 ° C. or higher. In order to achieve both the strength of the membrane and the bondability with the gas diffusion electrode, a polymer block (rubber-like polymer block) having a Tg of 20 ° C. or less and a polymer block (non-rubber-like heavy) having a Tg of 80 ° C. or more. A block copolymer composed of a combined block) may be used. For example, a known block copolymer comprising a block copolymer (I) having a polymer block (A) having an ion conductive group and a rubbery polymer block (B) having no ion conductive group as constituent components It can be used (see Patent Documents 2 to 4). Further, a polymer electrolyte membrane may be further laminated on the polymer electrolyte membrane to form a multilayer polymer electrolyte membrane.

本発明の膜−電極接合体を、集電極及び極室分離と電極へのガス供給流路の役割を兼ねた導電性のセパレータ材の間に挿入することにより、固体高分子型燃料電池が得られる。本発明の膜−電極接合体は、燃料ガスとして水素を使用した純水素型、メタノールを改質して得られる水素を使用したメタノール改質型、天然ガスを改質して得られる水素を使用した天然ガス改質型、ガソリンを改質して得られる水素を使用したガソリン改質型、メタノールを直接使用する直接メタノール型等の固体高分子型燃料電池用膜−電極接合体として使用可能である。   By inserting the membrane-electrode assembly of the present invention between the collector electrode, the electrode chamber separation, and the conductive separator material that also serves as the gas supply channel to the electrode, a solid polymer fuel cell is obtained. It is done. The membrane-electrode assembly of the present invention uses a pure hydrogen type using hydrogen as a fuel gas, a methanol reforming type using hydrogen obtained by reforming methanol, and hydrogen obtained by reforming natural gas. Natural gas reforming type, gasoline reforming type using hydrogen obtained by reforming gasoline, direct methanol type using methanol directly, etc. can be used as a membrane-electrode assembly for polymer electrolyte fuel cells. is there.

本発明の膜−電極接合体は、膜−電極接合体作製時に用いられる高分子電解質(バインダー)の熱処理条件を特定の範囲にすることで、該高分子電解質の結晶ピークと非晶ピークの比を一定の範囲内に制御でき、高い発電特性を発揮することが可能である。特に高電流密度域でのセル電圧が高いため最大出力密度が高く、高い発電特性を発現することが可能である。また、膜−電極接合体は、経時的な安定性に優れるため、長時間高性能を維持する固体高分子型燃料電池を実現することができる。   In the membrane-electrode assembly of the present invention, the heat treatment conditions of the polymer electrolyte (binder) used in the preparation of the membrane-electrode assembly are within a specific range, whereby the ratio of the crystal peak of the polymer electrolyte to the amorphous peak Can be controlled within a certain range, and high power generation characteristics can be exhibited. In particular, since the cell voltage in a high current density region is high, the maximum output density is high and high power generation characteristics can be exhibited. In addition, since the membrane-electrode assembly is excellent in stability over time, it is possible to realize a polymer electrolyte fuel cell that maintains high performance for a long time.

以下、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited by these Examples.

<参考例1>
(ポリスチレン(重合体ブロック(A))、水添ポリイソプレン(重合体ブロック(B))及びポリ(4−tert−ブチルスチレン)(重合体ブロック(C))からなるブロック共重合体の製造)
1400mLオートクレーブに、脱水シクロヘキサン865ml及びsec−ブチルリチウム(1.25M−シクロヘキサン溶液)3.27mlを仕込んだ後、4−tert−ブチルスチレン36.1ml、スチレン51.0mlを逐次添加し、50℃で逐次重合させ、次いでイソプレン149ml、スチレン49.4ml、及び4−tert−ブチルスチレン33.7mlを逐次添加し、60℃で逐次重合させることにより、ポリ(4−tert−ブチルスチレン)−b−ポリスチレン−b−ポリイソプレン−b−ポリスチレン−b−ポリ(4−tert−ブチルスチレン)(以下、tBSSIStBSと略記する)を合成した。得られたtBSSIStBSの数平均分子量(GPC測定(装置:TOSOH製 HLC-8220GPC、溶離液:THF、カラム:TOSOH製TSK-GEL、送液量:0.35ml/分、ポリスチレン換算))は99010であり、H−NMR測定から求めた1,4−結合量は94.0%、スチレン単位の含有量は34.8質量%、4−tert−ブチルスチレン単位の含有量は24.8質量%であった。
<Reference Example 1>
(Production of block copolymer comprising polystyrene (polymer block (A)), hydrogenated polyisoprene (polymer block (B)) and poly (4-tert-butylstyrene) (polymer block (C))
Into a 1400 mL autoclave was charged 865 ml of dehydrated cyclohexane and 3.27 ml of sec-butyllithium (1.25 M-cyclohexane solution), and then 36.1 ml of 4-tert-butylstyrene and 51.0 ml of styrene were successively added at 50 ° C. Poly (4-tert-butylstyrene) -b-polystyrene by sequential polymerization, followed by sequential addition of 149 ml of isoprene, 49.4 ml of styrene and 33.7 ml of 4-tert-butylstyrene and successive polymerization at 60 ° C. -B-polyisoprene-b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as tBSSIStBS) was synthesized. The number average molecular weight of the obtained tBSSIStBS (GPC measurement (apparatus: HLC-8220GPC manufactured by TOSOH, eluent: THF, column: TSK-GEL manufactured by TOSOH, liquid supply amount: 0.35 ml / min, converted to polystyrene)) is 90010. Yes, the 1,4-bond content determined from 1 H-NMR measurement was 94.0%, the styrene unit content was 34.8% by mass, and the 4-tert-butylstyrene unit content was 24.8% by mass. Met.

合成したtBSSIStBSのシクロヘキサン溶液を調製し、十分に窒素置換を行った耐圧容器に仕込んだ後、Ni/Al系のチーグラー系水素添加触媒を用いて、0.5〜1.0MPaの水素圧下において70℃で8時間水素添加反応を行い、ポリ(4−tert−ブチルスチレン)−b−ポリスチレン−b−水添ポリイソプレン−b−ポリスチレン−b−ポリ(4−tert−ブチルスチレン)(以下、tBSSEPStBSと略記する)を得た。得られたtBSSEPStBSの水素添加率をH−NMRスペクトル測定により算出したところ、ポリイソプレンの二重結合に由来するピークは検出されなかった。 A cyclohexane solution of synthesized tBSSIStBS was prepared and charged into a pressure-resistant vessel that had been sufficiently purged with nitrogen, and then a Ni / Al Ziegler-type hydrogenation catalyst was used under a hydrogen pressure of 0.5 to 1.0 MPa. A hydrogenation reaction was carried out at 8 ° C. for 8 hours, and poly (4-tert-butylstyrene) -b-polystyrene-b-hydrogenated polyisoprene-b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter, tBSSEPStBS Abbreviated). When the hydrogenation rate of the obtained tBSSEPStBS was calculated by 1 H-NMR spectrum measurement, no peak derived from the polyisoprene double bond was detected.

<参考例2>
(ポリスチレン(重合体ブロック(A))、水添ポリイソプレン(重合体ブロック(B))及びポリ(4−tert−ブチルスチレン)(重合体ブロック(C))からなるブロック共重合体の製造)
1000mLオートクレーブに、脱水シクロヘキサン578ml及びsec−ブチルリチウム(1.15M−シクロヘキサン溶液)1.78mlを仕込んだ後、4−tert−ブチルスチレン32.2ml、スチレン13.5mlを逐次添加し、50℃で逐次重合させ、次いでイソプレン81.6ml、スチレン13.5ml、及び4−tert−ブチルスチレン32.2mlを逐次添加し、50℃で逐次重合させることにより、ポリ(4−tert−ブチルスチレン)−b−ポリスチレン−b−ポリイソプレン−b−ポリスチレン−b−ポリ(4−tert−ブチルスチレン)(以下、tBSSIStBSと略記する)を合成した。得られたtBSSIStBSの数平均分子量(GPC測定(装置:TOSOH製 HLC-8220GPC、溶離液:THF、カラム:TOSOH製TSK-GEL、送液量:0.35ml/分、ポリスチレン換算))は103600であり、H−NMR測定から求めた1,4−結合量は94.0%、スチレン単位の含有量は17.0質量%、4−tert−ブチルスチレン単位の含有量は41.0質量%であった。
<Reference Example 2>
(Production of block copolymer comprising polystyrene (polymer block (A)), hydrogenated polyisoprene (polymer block (B)) and poly (4-tert-butylstyrene) (polymer block (C))
Into a 1000 mL autoclave was charged 578 ml of dehydrated cyclohexane and 1.78 ml of sec-butyllithium (1.15 M-cyclohexane solution), and then 32.2 ml of 4-tert-butylstyrene and 13.5 ml of styrene were successively added at 50 ° C. Poly (4-tert-butylstyrene) -b by sequential polymerization followed by sequential addition of 81.6 ml of isoprene, 13.5 ml of styrene, and 32.2 ml of 4-tert-butylstyrene and sequential polymerization at 50 ° C. -Polystyrene-b-polyisoprene-b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as tBSSIStBS) was synthesized. The number average molecular weight of the obtained tBSSIStBS (GPC measurement (apparatus: HLC-8220GPC manufactured by TOSOH, eluent: THF, column: TSK-GEL manufactured by TOSOH, liquid supply amount: 0.35 ml / min, converted to polystyrene)) is 103600. Yes, the amount of 1,4-bond determined from 1 H-NMR measurement was 94.0%, the content of styrene units was 17.0% by mass, and the content of 4-tert-butylstyrene units was 41.0% by mass. Met.

合成したtBSSIStBSのシクロヘキサン溶液を調製し、十分に窒素置換を行った耐圧容器に仕込んだ後、Ni/Al系のチーグラー系水素添加触媒を用いて、0.5〜1.0MPaの水素圧下において50℃で8時間水素添加反応を行い、ポリ(4−tert−ブチルスチレン)−b−ポリスチレン−b−水添ポリイソプレン−b−ポリスチレン−b−ポリ(4−tert−ブチルスチレン)(以下、tBSSEPStBSと略記する)を得た。得られたtBSSEPStBSの水素添加率をH−NMRスペクトル測定により算出したところ、ポリイソプレンの二重結合に由来するピークは検出されなかった。 A cyclohexane solution of the synthesized tBSSIStBS was prepared and charged into a pressure-resistant vessel that had been sufficiently purged with nitrogen. Then, the Ni / Al Ziegler-type hydrogenation catalyst was used, and a hydrogen pressure of 0.5 to 1.0 MPa was used. A hydrogenation reaction was carried out at 8 ° C. for 8 hours, and poly (4-tert-butylstyrene) -b-polystyrene-b-hydrogenated polyisoprene-b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter, tBSSEPStBS Abbreviated). When the hydrogenation rate of the obtained tBSSEPStBS was calculated by 1 H-NMR spectrum measurement, no peak derived from the polyisoprene double bond was detected.

<製造例1>
(スルホン化tBSSEPStBS(1)の合成)
参考例1で得られたブロック共重合体(tBSSEPStBS)40gを、攪拌機付きのガラス製反応容器中にて1時間真空乾燥し、ついで窒素置換した後、塩化メチレン500mlを加え、室温にて攪拌して溶解させた。溶解後、塩化メチレン147.5ml中、0℃にて無水酢酸73.7mlと硫酸33.0mlとを反応させて得られたスルホン化試薬を、5分かけて徐々に滴下した。室温にて72時間攪拌後、停止剤の蒸留水を20ml添加した。その後、0.7Lの蒸留水を重合体溶液にゆっくり注ぎ、重合体を凝固析出させた。塩化メチレンを常圧留去にて除去した後、ろ過した。ろ過により得られた固形分をビーカーに移し、蒸留水を1.3L添加して、攪拌下で洗浄を行った後、ろ過により固形分を回収した。この洗浄及びろ過の操作を洗浄水のpHに変化がなくなるまで繰り返し、最後に回収した重合体を真空乾燥してスルホン化tBSSEPStBS(1)を得た。得られたスルホン化tBSSEPStBS(1)のスチレン単位のベンゼン環のスルホン化率はH−NMR分析から100mol%、滴定の結果、イオン交換容量は2.64meq/gであった。
<Production Example 1>
(Synthesis of sulfonated tBSSEPStBS (1))
40 g of the block copolymer (tBSSEPStBS) obtained in Reference Example 1 was vacuum-dried for 1 hour in a glass reaction vessel equipped with a stirrer, and then purged with nitrogen. Then, 500 ml of methylene chloride was added, and the mixture was stirred at room temperature. And dissolved. After dissolution, a sulfonation reagent obtained by reacting 73.7 ml of acetic anhydride and 33.0 ml of sulfuric acid at 0 ° C. in 147.5 ml of methylene chloride was gradually added dropwise over 5 minutes. After stirring at room temperature for 72 hours, 20 ml of distilled water as a stopper was added. Thereafter, 0.7 L of distilled water was slowly poured into the polymer solution to coagulate and precipitate the polymer. The methylene chloride was removed by distillation at atmospheric pressure, followed by filtration. The solid content obtained by filtration was transferred to a beaker, 1.3 L of distilled water was added, and after washing with stirring, the solid content was collected by filtration. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the finally recovered polymer was vacuum-dried to obtain sulfonated tBSSEPStBS (1). The sulfonation rate of the benzene ring of the styrene unit of the obtained sulfonated tBSSEPStBS (1) was 100 mol% from 1 H-NMR analysis, and as a result of titration, the ion exchange capacity was 2.64 meq / g.

(スルホン化tBSSEPStBS(2)の合成)
参考例2で得られたブロック共重合体(tBSSEPStBS)50gを、攪拌機付きのガラス製反応容器中にて1時間真空乾燥し、ついで窒素置換した後、塩化メチレン500mlを加え、室温25℃にて2時間攪拌して溶解させた。溶解後、塩化メチレン63.7ml中、0℃にて無水酢酸31.9mlと硫酸14.2mlとを反応させて得られたスルホン化試薬を5分かけて徐々に滴下した。室温にて72時間攪拌後、停止剤の蒸留水を10ml添加した。その後、1.0Lの蒸留水を重合体溶液にゆっくり注ぎ、重合体を凝固析出させた。塩化メチレンを常圧留去にて除去した後、ろ過した。ろ過により得られた固形分をビーカーに移し、蒸留水を1.0L添加して、攪拌下で洗浄を行った後、ろ過回収を行った。この洗浄及びろ過の操作を洗浄水のpHに変化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホン化tBSSEPStBS(2)を得た。得られたスルホン化tBSSEPStBS(2)のスチレン単位のベンゼン環のスルホン化率はH−NMR分析から99mol%、滴定の結果、イオン交換容量は1.47meq/gであった。
(Synthesis of sulfonated tBSSEPStBS (2))
50 g of the block copolymer (tBSSEPStBS) obtained in Reference Example 2 was vacuum-dried in a glass reaction vessel equipped with a stirrer for 1 hour and then purged with nitrogen. Then, 500 ml of methylene chloride was added, and the room temperature was 25 ° C. Stir for 2 hours to dissolve. After dissolution, a sulfonating reagent obtained by reacting 31.9 ml of acetic anhydride and 14.2 ml of sulfuric acid at 0 ° C. in 63.7 ml of methylene chloride was gradually added dropwise over 5 minutes. After stirring at room temperature for 72 hours, 10 ml of distilled water as a stopper was added. Thereafter, 1.0 L of distilled water was slowly poured into the polymer solution to solidify and precipitate the polymer. The methylene chloride was removed by distillation at atmospheric pressure, followed by filtration. The solid content obtained by filtration was transferred to a beaker, 1.0 L of distilled water was added, and washing was performed with stirring, followed by filtration and recovery. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected at the end was vacuum-dried to obtain sulfonated tBSSEPStBS (2). The sulfonation rate of the benzene ring of the styrene unit of the obtained sulfonated tBSSEPStBS (2) was 99 mol% from 1 H-NMR analysis, and as a result of titration, the ion exchange capacity was 1.47 meq / g.

(高分子電解質膜(3層複層タイプ)の作製)
スルホン化tBSSEPStBS(1)(イオン交換容量2.64meq/g)の16質量%のトルエン/イソプロピルアルコール(質量比5/5)溶液を調製し、離形処理済みPETフィルム[(株)東洋紡製「東洋紡エステルフィルムK1504」]上に約150μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させることで、厚さ13μmの高分子電解質膜を得た。ついで、スルホン化tBSSEPStBS(2)(イオン交換容量1.47meq/g)の14質量%のトルエン/イソブチルアルコール(質量比75/25)溶液を調製し、前記膜の上に約200μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させることで、2層からなる厚さ27μmの高分子電解質膜を得た。ついで、スルホン化tBSSEPStBS(1)(イオン交換容量2.64meq/g)の16質量%のトルエン/イソプロピルアルコール(質量比5/5)溶液を調製し、前記膜の上に約150μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させることで、3層からなる厚さ44μmの高分子電解質膜を得た。
(Production of polymer electrolyte membrane (3-layer type))
A 16% by mass toluene / isopropyl alcohol (mass ratio 5/5) solution of sulfonated tBSSEPStBS (1) (ion exchange capacity 2.64 meq / g) was prepared, and a release-treated PET film [manufactured by Toyobo Co., Ltd. Toyobo Ester Film K1504 ”] was coated at a thickness of about 150 μm, and dried with a hot air dryer at 100 ° C. for 4 minutes to obtain a polymer electrolyte membrane with a thickness of 13 μm. Next, a 14% by mass toluene / isobutyl alcohol (mass ratio 75/25) solution of sulfonated tBSSEPStBS (2) (ion exchange capacity 1.47 meq / g) was prepared and coated on the membrane with a thickness of about 200 μm. Then, it was dried at 100 ° C. for 4 minutes with a hot air dryer to obtain a polymer electrolyte membrane having a thickness of 27 μm consisting of two layers. Next, a 16% by mass toluene / isopropyl alcohol (mass ratio 5/5) solution of sulfonated tBSSEPStBS (1) (ion exchange capacity 2.64 meq / g) was prepared and coated on the membrane with a thickness of about 150 μm. Then, it was dried at 100 ° C. for 4 minutes with a hot air dryer to obtain a polymer electrolyte membrane having a thickness of 44 μm consisting of three layers.

<実施例1>
(膜−電極接合体、及び固体高分子型燃料電池単セルの作製)
Pt−Ru合金触媒担持カーボンに、ナフィオン(10質量%)分散溶液D1021(デュポン社製(商品名))を、カーボンとナフィオンとの質量比が1:1になるように添加混合し、ついでn−プロピルアルコールを、水/n−プロピルアルコールの質量比が1/1になるまで添加混合し、均一に分散されたペーストを調製した。このペーストをスプレー法にて、カーボンペーパーの片面に、Pt重量が5.0mg/cmとなるように均一に塗布して触媒層を形成した後、115℃で30分間、第一の加熱処理を施し、アノード用のガス拡散電極を作製した。また、Pt触媒担持カーボンに、ナフィオンの10質量%溶液を、カーボンとナフィオンとの質量比が1:0.75になるように添加混合し、ついでn−プロピルアルコールを、水/n−プロピルアルコールの質量比が1/1になるまで添加混合し、均一に分散されたペーストを調製した。このペーストをスプレー法にて、カーボンペーパーの片面に、Pt重量が3.0mg/cmとなるように均一に塗布して触媒層を形成した後、115℃で30分間、第一の加熱処理を施し、カソード用のガス拡散電極を作製した。製造例1で作製した高分子電解質膜を、上記2種類のガス拡散電極でそれぞれ高分子電解質膜と触媒層とが向かい合うように挟み、その外側を2枚の耐熱性フィルム及び2枚のステンレス板で順に挟み、ホットプレスにより第二の加熱処理(115℃、1.0MPa、8分)を施すことで膜−電極接合体を作製した
ついで作製した膜−電極接合体を、2枚の集電板で挟み筐体に組み込んで固体高分子型燃料電池単セルを作製した。
<Example 1>
(Production of membrane-electrode assembly and solid polymer fuel cell single cell)
Nafion (10% by mass) dispersion solution D1021 (manufactured by DuPont (trade name)) is added to and mixed with the Pt—Ru alloy catalyst-supporting carbon so that the mass ratio of carbon to Nafion is 1: 1. -Propyl alcohol was added and mixed until the mass ratio of water / n-propyl alcohol was 1/1 to prepare a uniformly dispersed paste. The paste is uniformly applied to one side of the carbon paper by spraying so that the Pt weight is 5.0 mg / cm 2 to form a catalyst layer, and then the first heat treatment is performed at 115 ° C. for 30 minutes. The gas diffusion electrode for anode was produced. Further, a 10% by mass solution of Nafion was added to and mixed with Pt catalyst-supporting carbon so that the mass ratio of carbon to Nafion was 1: 0.75, and then n-propyl alcohol was added to water / n-propyl alcohol. Was added and mixed until the mass ratio became 1/1 to prepare a uniformly dispersed paste. After applying this paste to one side of the carbon paper by spraying so that the Pt weight is 3.0 mg / cm 2 to form a catalyst layer, the first heat treatment is performed at 115 ° C. for 30 minutes. To produce a cathode gas diffusion electrode. The polymer electrolyte membrane produced in Production Example 1 is sandwiched between the two types of gas diffusion electrodes so that the polymer electrolyte membrane and the catalyst layer face each other, and the outside is covered with two heat resistant films and two stainless steel plates And a second heat treatment (115 ° C., 1.0 MPa, 8 minutes) by hot pressing to produce a membrane-electrode assembly.
Subsequently, the produced membrane-electrode assembly was sandwiched between two current collector plates and incorporated into a housing to produce a single polymer electrolyte fuel cell unit cell.

<実施例2>
実施例1のアノード用触媒層及びカソード用触媒層の第一の加熱処理条件を、いずれも115℃、15分とする以外は、実施例1と同様にして膜−電極接合体、及び固体高分子型燃料電池単セルを作製した。
<Example 2>
The membrane-electrode assembly, and the solid height were the same as in Example 1 except that the first heat treatment conditions for the anode catalyst layer and cathode catalyst layer in Example 1 were both 115 ° C. and 15 minutes. A molecular fuel cell single cell was produced.

<比較例1>
実施例1のアノード用触媒層及びカソード用触媒層の第一の加熱処理を行わない以外は、実施例1と同様にして膜−電極接合体、及び固体高分子型燃料電池単セルを作製した。
<Comparative Example 1>
A membrane-electrode assembly and a polymer electrolyte fuel cell single cell were produced in the same manner as in Example 1 except that the first heat treatment of the anode catalyst layer and the cathode catalyst layer in Example 1 was not performed. .

<比較例2>
実施例1のアノード用触媒層及びカソード用触媒層の第一の加熱処理を、いずれも130℃で30分としたのち115℃まで降温してさらに30分加熱した以外は、実施例1と同様にして膜−電極接合体、及び固体高分子型燃料電池単セルを作製した。

(膜−電極接合体の性能試験及びその結果)
以下の1)〜2)の試験によって各実施例、比較例で得られた膜−電極接合体に用いられる高分子電解質、及び固体高分子型燃料電池用単セルを評価した。
<Comparative example 2>
The first heat treatment of the anode catalyst layer and the cathode catalyst layer in Example 1 was both performed at 130 ° C. for 30 minutes, then cooled down to 115 ° C. and heated for another 30 minutes, as in Example 1. Thus, a membrane-electrode assembly and a polymer electrolyte fuel cell single cell were produced.

(Performance test and results of membrane-electrode assembly)
By the following tests 1) to 2), the polymer electrolytes used in the membrane-electrode assemblies obtained in the respective Examples and Comparative Examples and single cells for polymer electrolyte fuel cells were evaluated.

1)広角X線回折測定
ガス拡散電極に用いられる高分子電解質材料に対して、膜−電極接合体を製造する際の第一の加熱処理と同じ加熱温度、加熱時間で熱処理を行い、広角X線回折測定(X線回折装置:ブルカーD8 Discover with GADDS、X線:Cu−Kα、X線出力:45kV−110mA、光学系:平行ビーム(コリメータ径=0.5mm)、スキャン方法:透過式・2θ/θ、スキャン範囲:2θ=5〜70°)を行い結晶ピークの非晶ピークに対する強度比を算出した。
1) Wide-angle X-ray diffraction measurement The polymer electrolyte material used for the gas diffusion electrode is subjected to a heat treatment at the same heating temperature and heating time as the first heat treatment for producing the membrane-electrode assembly. X-ray diffraction measurement (X-ray diffractometer: Bruker D8 Discover with GADDS, X-ray: Cu-Kα, X-ray output: 45 kV-110 mA, optical system: parallel beam (collimator diameter = 0.5 mm), scanning method: transmission type 2θ / θ, scan range: 2θ = 5 to 70 °), and the intensity ratio of the crystal peak to the amorphous peak was calculated.

2)燃料電池用単セルの発電特性
得られた固体高分子型燃料電池用単セルについて、出力性能を評価した。燃料として5M−メタノールを用い、酸化剤として空気(湿度50%)を用いた。メタノール、空気いずれも自然吸気での供給条件とした。セル温度を40℃に設定して、実施例、比較例で作成した評価セルをセットした後、発電試験を実施し、最大出力密度、及び電流密度0.3A/cm時のセル電圧を評価した。
2) Power generation characteristics of single cell for fuel cell The output performance of the obtained single cell for polymer electrolyte fuel cell was evaluated. 5M-methanol was used as the fuel, and air (humidity 50%) was used as the oxidant. Both methanol and air were supplied with natural aspiration. After setting the cell temperature to 40 ° C. and setting the evaluation cells created in the examples and comparative examples, the power generation test was performed to evaluate the maximum output density and the cell voltage at a current density of 0.3 A / cm 2. did.

Figure 0005362632
Figure 0005362632

実施例1及び2と、比較例1との比較からわかるように、比較例1においては、最大出力密度が低い上、高電流密度域までの発電を行うことが困難であり、発電特性は非常に低いものであった。また、実施例1及び2と、比較例2との比較からわかるように、比較例2においても、最高出力密度及び高電流密度域でのセル電圧が低く、発電特性としては不十分であった。これに対して、実施例1及び2の膜−電極接合体は、最大出力密度・高電流密度域セル電圧ともに高く、更にこのような発電特性を安定的に発現することが確認された。   As can be seen from the comparison between Examples 1 and 2 and Comparative Example 1, in Comparative Example 1, it is difficult to perform power generation up to a high current density region because the maximum output density is low, and the power generation characteristics are extremely high. It was very low. Further, as can be seen from the comparison between Examples 1 and 2 and Comparative Example 2, also in Comparative Example 2, the cell voltage in the maximum output density and high current density regions was low, and the power generation characteristics were insufficient. . On the other hand, it was confirmed that the membrane-electrode assemblies of Examples 1 and 2 were high in both the maximum output density and the high current density region cell voltage, and stably exhibited such power generation characteristics.

上記各種性能試験の結果から、本発明の膜−電極接合体は、ガス拡散電極中の高分子電解質の結晶状態を請求項に規定される範囲内とすることで、ガス拡散電極への燃料ガス及び酸化剤ガスの導入が容易になり、触媒層中での燃料極及び酸素極での反応が促進されるため、発電中のセル電圧を高く保つことができる。更に、酸素極で生成する水の排出が有効になされるため、酸素極での反応阻害(特に高電流密度域での性能低下)を抑制する。また、本結晶状態の高分子電解質は経時的な安定性に優れるため、長時間高性能を維持する固体高分子型燃料電池を実現することができる。   From the results of the above various performance tests, the membrane-electrode assembly of the present invention has a fuel gas to the gas diffusion electrode by setting the crystal state of the polymer electrolyte in the gas diffusion electrode within the range specified in the claims. In addition, since the introduction of the oxidant gas is facilitated and the reaction at the fuel electrode and the oxygen electrode in the catalyst layer is promoted, the cell voltage during power generation can be kept high. Furthermore, since the water generated at the oxygen electrode is effectively discharged, reaction inhibition at the oxygen electrode (particularly performance degradation in a high current density region) is suppressed. In addition, since the polymer electrolyte in the crystalline state is excellent in stability over time, it is possible to realize a polymer electrolyte fuel cell that maintains high performance for a long time.

Claims (2)

2つのガス拡散電極と、この間に配置される高分子電解質膜とを備える膜−電極接合体であって、前記ガス拡散電極は、触媒と高分子電解質とを含む触媒層を少なくとも有しており、該高分子電解質の広角X線回折によって測定される結晶ピークの非晶ピークに対する強度比が1.09〜1.19の範囲であることを特徴とする膜−電極接合体。   A membrane-electrode assembly comprising two gas diffusion electrodes and a polymer electrolyte membrane disposed therebetween, wherein the gas diffusion electrode has at least a catalyst layer containing a catalyst and a polymer electrolyte. A membrane-electrode assembly having an intensity ratio of crystal peak to amorphous peak measured by wide-angle X-ray diffraction of the polymer electrolyte in the range of 1.09 to 1.19. 請求項1に記載の膜−電極接合体を備えることを特徴とする固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the membrane-electrode assembly according to claim 1.
JP2010070654A 2010-03-25 2010-03-25 Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell Expired - Fee Related JP5362632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070654A JP5362632B2 (en) 2010-03-25 2010-03-25 Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070654A JP5362632B2 (en) 2010-03-25 2010-03-25 Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2011204467A JP2011204467A (en) 2011-10-13
JP5362632B2 true JP5362632B2 (en) 2013-12-11

Family

ID=44880922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070654A Expired - Fee Related JP5362632B2 (en) 2010-03-25 2010-03-25 Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5362632B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204119A (en) * 1997-12-26 1999-07-30 E I Du Pont De Nemours & Co Solid polyelectrolyte fuel cell and manufacture thereof
BR9816109A (en) * 1998-12-22 2001-11-06 David Systems Technology S L C Membrane-electrode assembly and production process
JP2004273248A (en) * 2003-03-07 2004-09-30 Matsushita Electric Ind Co Ltd Polyelectrolyte fuel cell
JP5141040B2 (en) * 2006-08-11 2013-02-13 東レ株式会社 POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE MOLDED BODY, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPLEX AND SOLID POLYMER TYPE FUEL CELL

Also Published As

Publication number Publication date
JP2011204467A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP3607862B2 (en) Fuel cell
JP4565644B2 (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, fuel cell system, and method for manufacturing membrane-electrode assembly
JP6077774B2 (en) Ion conductivity imparting agent, cathode catalyst layer, membrane-electrode assembly formed using the catalyst layer, anion exchange membrane fuel cell, and method of operating the same
JP2006019271A (en) Binder composition for fuel cell, film-electrode assembly, and manufacturing method of the film-electrode assembly
JP6895517B2 (en) A method for manufacturing an electrode, an electrode manufactured by the electrode, a membrane-electrode assembly including the electrode, and a fuel cell including the membrane-electrode assembly.
JP4686383B2 (en) Membrane-electrode assembly, manufacturing method thereof, and fuel cell system
CN1741309A (en) Electrode for fuel cell and fuel cell comprising same
KR102119393B1 (en) Electrode for fuel cell, method for manufacturing of the same, and fuel cell comprising the same
JP2009187848A (en) Fuel cell
KR20170079591A (en) Composition for electrode, and electrode for fuel cell, and membrane-electrode assembly, method for manufacturing of the same, and fuel cell comprising the same
KR20120001266A (en) Membrane-electrode assembly for fuel cell, fuel cell and manufacturing method thereof
TW200919813A (en) Membrane-electrode assembly, method for producing the same and solid polymer fuel cell
JP5362632B2 (en) Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5129778B2 (en) Solid polymer electrolyte, membrane thereof, membrane / electrode assembly using the same, and fuel cell
JP7420629B2 (en) Polyelectrolyte
JP2011204468A (en) Membrane-electrode assembly and solid polymer fuel cell
JP5309822B2 (en) Aromatic sulfonic acid derivative, sulfonated polymer, polymer electrolyte material and polymer electrolyte fuel cell using the same
EP3610530B1 (en) Membrane electrode assembly with improved cohesion
JP2011255336A (en) Method for manufacturing catalyst support carrier, and method for manufacturing electrode catalyst
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP2002105129A (en) Solid polymer electrolyte, solid polymer electrolytic membrane using the same, solution for coating electrode catalyst, membrane/electrode joined product and fuel battery
JP2014044940A (en) Ion conductivity-imparting agent, anode catalyst layer, membrane-electrode assembly formed using the catalyst layer, anion exchange membrane fuel cell, and method of operating the same
JP3911120B2 (en) Solid polymer electrolyte, membrane thereof, electrode catalyst coating solution, membrane / electrode assembly using the same, and fuel cell
JP2008153175A (en) Manufacturing method of membrane-electrode assembly for polymer electrolyte fuel cell
KR101343077B1 (en) Electrode for fuel cell, method of fabricating the same, and membrane-electrode assembly for fuel cell and fuel cell system including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees