JP5353237B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5353237B2
JP5353237B2 JP2008509652A JP2008509652A JP5353237B2 JP 5353237 B2 JP5353237 B2 JP 5353237B2 JP 2008509652 A JP2008509652 A JP 2008509652A JP 2008509652 A JP2008509652 A JP 2008509652A JP 5353237 B2 JP5353237 B2 JP 5353237B2
Authority
JP
Japan
Prior art keywords
film
conductive pad
insulating film
protective insulating
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008509652A
Other languages
Japanese (ja)
Other versions
JPWO2007116501A1 (en
Inventor
昭幸 ▲高▼橋
孝一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Publication of JPWO2007116501A1 publication Critical patent/JPWO2007116501A1/en
Application granted granted Critical
Publication of JP5353237B2 publication Critical patent/JP5353237B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/57Capacitors with a dielectric comprising a perovskite structure material comprising a barrier layer to prevent diffusion of hydrogen or oxygen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/40Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the peripheral circuit region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05085Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
    • H01L2224/05089Disposition of the additional element
    • H01L2224/05093Disposition of the additional element of a plurality of vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05085Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
    • H01L2224/05089Disposition of the additional element
    • H01L2224/05093Disposition of the additional element of a plurality of vias
    • H01L2224/05096Uniform arrangement, i.e. array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05567Disposition the external layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • H01L2224/05572Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050414th Group
    • H01L2924/05042Si3N4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Abstract

A first conductive pad (60) is subjected to various tests before forming a second conductive pad (70) for an external connection with a size slightly smaller than that of the first conductive pad (60) in a plan view so as to be connected to a first conductive pad (60). The second conductive pad (70) is so formed as to be included in the area in which the first conductive pad (60) is formed in the plan view while covering the inner wall bottom surface, the inner wall side surface of an opening (66a) of a passivation film (66), and the passivation film (66). This realizes a highly reliable FeRAM for surely preventing intrusion of water/hydrogen with a relatively simple construction and maintaining high performance of a ferroelectric capacitor structure (30) having a ferroelectric film (25).

Description

本発明は、下部電極と上部電極との間に強誘電体からなるキャパシタ膜が挟持されてなる強誘電体キャパシタ構造を有する半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device having a ferroelectric capacitor structure in which a capacitor film made of a ferroelectric material is sandwiched between a lower electrode and an upper electrode, and a method for manufacturing the same.

近年、強誘電体の分極反転を利用して情報を強誘電体キャパシタ構造に保持する強誘電体メモリ(FeRAM)の開発が進められている。強誘電体メモリは、電源を断っても保持された情報が消失しない不揮発メモリであり、高集積度、高速駆動、高耐久性、及び低消費電力の実現が期待できることから特に注目されている。   In recent years, development of a ferroelectric memory (FeRAM) that holds information in a ferroelectric capacitor structure using polarization inversion of the ferroelectric has been advanced. A ferroelectric memory is a non-volatile memory in which retained information is not lost even when the power is turned off, and is attracting particular attention because it can be expected to realize high integration, high speed driving, high durability, and low power consumption.

強誘電体キャパシタ構造を構成する強誘電体膜の材料としては、残留分極量が大きな、例えば10(μC/cm)〜30(μC/cm)程度のPZT(Pb(Zr,Ti)O)膜、SBT(SrBiTa)膜などのペロブスカイト結晶構造を有する強誘電体酸化物が主として用いられている。As a material of the ferroelectric film constituting the ferroelectric capacitor structure, PZT (Pb (Zr, Ti) O having a large remanent polarization, for example, about 10 (μC / cm 2 ) to 30 (μC / cm 2 ). 3 ) Ferroelectric oxides having a perovskite crystal structure such as a film and an SBT (SrBi 2 Ta 2 O 9 ) film are mainly used.

特開2004−296775号公報JP 2004-296775 A 特開2003−92353号公報JP 2003-92353 A 特許第2917362号公報Japanese Patent No. 2917362

強誘電体キャパシタ構造では、シリコン酸化膜などの水との親和性の高い層間絶縁膜を介して外部から侵入した水分により、キャパシタ膜の強誘電特性が劣化することが知られている。即ち、先ず、外部から侵入した水分が層間絶縁膜やメタル配線成膜時の高温プロセス中で水素と酸素とに分解する。この水素が強誘電体膜中に侵入すると、強誘電体膜の酸素と反応して強誘電体膜に酸素欠陥が形成され結晶性が低下する。また、強誘電体メモリの長期間の使用によっても同様の現象が発生する。その結果、強誘電体膜の残留分極量や誘電率が低下するなどの強誘電体キャパシタ構造の性能劣化が発生する。また、このような水素の浸入により、強誘電体キャパシタ構造に限らず、トランジスタ構造等の性能が劣化することがある。   In the ferroelectric capacitor structure, it is known that the ferroelectric characteristics of the capacitor film deteriorate due to moisture entering from the outside through an interlayer insulating film having a high affinity with water such as a silicon oxide film. That is, first, moisture that has entered from the outside is decomposed into hydrogen and oxygen in a high-temperature process when forming an interlayer insulating film or metal wiring. When this hydrogen penetrates into the ferroelectric film, it reacts with oxygen in the ferroelectric film to form oxygen defects in the ferroelectric film and lower the crystallinity. The same phenomenon occurs even when the ferroelectric memory is used for a long time. As a result, the performance degradation of the ferroelectric capacitor structure occurs, such as the residual polarization amount and the dielectric constant of the ferroelectric film decreasing. In addition, such hydrogen intrusion may degrade the performance of not only the ferroelectric capacitor structure but also the transistor structure.

この点、強誘電体キャパシタ構造の上層にアルミナ等の水素拡散防止膜を形成することにより、水素の浸入を防止する試みがある。この水素拡散防止膜により、ある程度の水素遮断機能は期待できるのであるが、強誘電体キャパシタ構造の高性能を保持するに十分であるとは言えない。   In this regard, there is an attempt to prevent hydrogen from entering by forming a hydrogen diffusion prevention film such as alumina on the upper layer of the ferroelectric capacitor structure. Although this hydrogen diffusion preventing film can be expected to have a certain level of hydrogen blocking function, it cannot be said to be sufficient to maintain the high performance of the ferroelectric capacitor structure.

本発明は、上記の課題に鑑みてなされたものであり、比較的簡易な構成で十分な水・水素の内部侵入を確実に防止し、強誘電体からなるキャパシタ膜を有するキャパシタ構造の高性能を保持する信頼性の高い半導体装置及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and it is possible to reliably prevent sufficient internal penetration of water and hydrogen with a relatively simple configuration, and to achieve high performance of a capacitor structure having a capacitor film made of a ferroelectric substance. An object of the present invention is to provide a highly reliable semiconductor device and a method for manufacturing the same.

本発明の半導体装置は、半導体基板の上方に形成されており、下部電極と上部電極とにより強誘電体からなるキャパシタ膜を挟持してなるキャパシタ構造と、前記キャパシタ構造の上方に形成されており、前記キャパシタ構造と電気的に接続されてなる配線構造と、下方に前記キャパシタ構造の存しない局所的な形成領域で前記配線構造と電気的に接続されており、検査機器のプローブが直接的に当接することで各種の試験が施された第1の導電パッドと、前記第1の導電パッド及び前記配線構造を覆い、前記第1の導電パッドの表面における前記検査の部位のみを露出させる開口を有する第1の保護絶縁膜と、前記第1の保護絶縁膜上から前記開口の内壁面にかけて覆って前記第1の導電パッドと電気的に接続され、前記第1の導電パッドの前記形成領域に整合する位置に形成されており、外部との電気的接続を図る第2の導電パッドと、前記第2の導電パッド及び前記第1の保護絶縁膜を覆い、前記第2の導電パッドの表面における前記外部との電気的接続の部位のみを露出させる開口を有する第2の保護絶縁膜と、前記第2の保護絶縁膜を覆い、前記第2の導電パッドの表面における前記外部との電気的接続の部位を露出させる開口を有する絶縁膜とを含み、前記第1の保護絶縁膜は、第1酸化膜と、前記第1酸化膜上に形成された第1窒化膜とを含み、前記第2の保護絶縁膜は、第2酸化膜と、前記第2酸化膜上に形成された第2窒化膜とを含み、前記第1酸化膜と前記第1窒化膜との間、及び前記第2酸化膜と前記第2窒化膜との間の少なくとも一方にアルミナ膜が形成されているA semiconductor device of the present invention is formed above a semiconductor substrate, and is formed above a capacitor structure in which a capacitor film made of a ferroelectric material is sandwiched between a lower electrode and an upper electrode. A wiring structure that is electrically connected to the capacitor structure, and a wiring structure that is electrically connected to the wiring structure in a local formation region where the capacitor structure does not exist below. A first conductive pad that has been subjected to various tests by contact, and an opening that covers the first conductive pad and the wiring structure and exposes only the inspection portion on the surface of the first conductive pad. A first protective insulating film, and covering the first protective insulating film from an inner wall surface of the opening to be electrically connected to the first conductive pad, and the first conductive pad A second conductive pad that is formed at a position that matches the formation region and that is to be electrically connected to the outside, covers the second conductive pad and the first protective insulating film, and includes the second conductive pad. A second protective insulating film having an opening exposing only a portion of electrical connection with the outside on the surface of the pad; and covering the second protective insulating film, and the outside on the surface of the second conductive pad. look including an insulating film having an opening exposing a portion of the electrical connection, the first protective insulating film, a first oxide film, and a first nitride film formed on the first oxide film The second protective insulating film includes a second oxide film and a second nitride film formed on the second oxide film, and the second protective insulating film is between the first oxide film and the first nitride film, And an alumina film is formed on at least one of the second oxide film and the second nitride film. It has been.

本発明の半導体装置の製造方法は、半導体基板の上方に、下部電極と上部電極とにより強誘電体からなるキャパシタ膜を挟持してなるキャパシタ構造を形成する工程と、前記キャパシタ構造の上方に、前記キャパシタ構造と電気的に接続されるように配線構造を形成する工程と、下方に前記キャパシタ構造の存しない局所的な形成領域において、前記配線構造と電気的に接続されるように第1の導電パッドを形成する工程と、前記第1の導電パッド及び前記配線構造を覆うように第1の保護絶縁膜を形成した後、前記第1の保護絶縁膜に、前記第1の導電パッドの表面における検査の部位のみを露出させる開口を形成する工程と、前記開口から、検査機器のプローブを前記第1の導電パッドの表面に直接的に当接することにより、各種の試験を行う工程と、前記第1の保護絶縁膜上から前記開口の内壁面にかけて覆って前記第1の導電パッドと電気的に接続され、前記第1の導電パッドの前記形成領域に整合する位置に、外部との電気的接続を図る第2の導電パッドを形成する工程と、前記第2の導電パッド及び前記第1の保護絶縁膜を覆うように第2の保護絶縁膜を形成した後、前記第2の保護絶縁膜に、前記第2の導電パッドの表面における前記外部との電気的接続の部位のみを露出させる開口を形成する工程と、前記第2の保護絶縁膜を覆うように絶縁膜を形成した後、前記絶縁膜に、前記第2の導電パッドの表面における前記外部との電気的接続の部位を露出させる開口を形成する工程とを含み、前記第1の保護絶縁膜は、第1酸化膜と、前記第1酸化膜上に形成された第1窒化膜とを含み、前記第2の保護絶縁膜は、第2酸化膜と、前記第2酸化膜上に形成された第2窒化膜とを含み、前記第1酸化膜と前記第1窒化膜との間、及び前記第2酸化膜と前記第2窒化膜との間の少なくとも一方にアルミナ膜が形成されるThe method of manufacturing a semiconductor device of the present invention includes a step of forming a capacitor structure formed by sandwiching a capacitor film made of a ferroelectric material between a lower electrode and an upper electrode above a semiconductor substrate, and above the capacitor structure, Forming a wiring structure so as to be electrically connected to the capacitor structure, and a first formation so as to be electrically connected to the wiring structure in a local formation region below the capacitor structure; Forming a conductive pad; and forming a first protective insulating film so as to cover the first conductive pad and the wiring structure, and then forming a surface of the first conductive pad on the first protective insulating film. Forming an opening that exposes only the part to be inspected, and various tests by directly contacting the probe of the inspection device to the surface of the first conductive pad from the opening. And a step of covering from the first protective insulating film to the inner wall surface of the opening to be electrically connected to the first conductive pad and to be aligned with the formation region of the first conductive pad, Forming a second conductive pad for electrical connection to the outside; forming a second protective insulating film so as to cover the second conductive pad and the first protective insulating film; Forming an opening in the surface of the second conductive pad to expose only the portion of the electrical connection with the outside, and an insulating film to cover the second protective insulating film after forming, the insulating film, the second viewing including the step of forming an opening to expose a portion of the electrical connection between the outer the surface of the conductive pad, wherein the first protective insulating film, the A first oxide film and a first oxide film formed on the first oxide film; The second protective insulating film includes a second oxide film and a second nitride film formed on the second oxide film, and includes the first oxide film and the first nitride film. And an alumina film is formed on at least one of the second oxide film and the second nitride film .

本発明によれば、比較的簡易な構成で十分な水・水素の内部侵入を確実に防止し、強誘電体からなるキャパシタ膜を有するキャパシタ構造の高性能を保持する信頼性の高い半導体装置を実現することができる。   According to the present invention, there is provided a highly reliable semiconductor device that reliably prevents internal penetration of sufficient water and hydrogen with a relatively simple configuration and maintains high performance of a capacitor structure having a capacitor film made of a ferroelectric substance. Can be realized.

図1Aは、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 1A is a schematic cross-sectional view showing a method of manufacturing a planar type FeRAM according to the first embodiment. 図1Bは、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 1B is a schematic cross-sectional view illustrating the method for manufacturing the planar FeRAM according to the first embodiment. 図1Cは、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 1C is a schematic cross-sectional view illustrating the method for manufacturing the planar FeRAM according to the first embodiment. 図1Dは、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 1D is a schematic cross-sectional view illustrating the method for manufacturing the planar FeRAM according to the first embodiment. 図2Aは、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 2A is a schematic cross-sectional view illustrating the method for manufacturing the planar FeRAM according to the first embodiment. 図2Bは、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 2B is a schematic cross-sectional view illustrating the method for manufacturing the planar FeRAM according to the first embodiment. 図2Cは、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 2C is a schematic cross-sectional view illustrating the method for manufacturing the planar FeRAM according to the first embodiment. 図2Dは、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 2D is a schematic cross-sectional view showing the method of manufacturing the planar type FeRAM according to the first embodiment. 図3Aは、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 3A is a schematic cross-sectional view showing the method for manufacturing the planar type FeRAM according to the first embodiment. 図3Bは、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 3B is a schematic cross-sectional view illustrating the method for manufacturing the planar FeRAM according to the first embodiment. 図4は、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 4 is a schematic cross-sectional view illustrating the method for manufacturing the planar type FeRAM according to the first embodiment. 図5は、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing the method for manufacturing the planar type FeRAM according to the first embodiment. 図6は、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing the method for manufacturing the planar type FeRAM according to the first embodiment. 図7は、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing the method for manufacturing the planar type FeRAM according to the first embodiment. 図8は、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 8 is a schematic cross-sectional view illustrating the method for manufacturing the planar type FeRAM according to the first embodiment. 図9は、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 9 is a schematic cross-sectional view illustrating the method for manufacturing the planar type FeRAM according to the first embodiment. 図10は、第1の実施形態によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 10 is a schematic cross-sectional view illustrating the method for manufacturing the planar type FeRAM according to the first embodiment. 図11Aは、第1の実施形態の変形例1によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 11A is a schematic cross-sectional view showing a method for manufacturing the planar FeRAM according to the first modification of the first embodiment. 図11Bは、第1の実施形態の変形例1によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 11B is a schematic cross-sectional view showing the method for manufacturing the planar FeRAM according to the first modification of the first embodiment. 図11Cは、第1の実施形態の変形例1によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 11C is a schematic cross-sectional view showing the method of manufacturing the planar type FeRAM according to the first modification of the first embodiment. 図11Dは、第1の実施形態の変形例1によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 11D is a schematic cross-sectional view illustrating the method for manufacturing the planar FeRAM according to the first modification of the first embodiment. 図12Aは、第1の実施形態の変形例2によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 12A is a schematic cross-sectional view showing a method for manufacturing the planar FeRAM according to the second modification of the first embodiment. 図12Bは、第1の実施形態の変形例2によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 12B is a schematic cross-sectional view showing the method for manufacturing the planar FeRAM according to the second modification of the first embodiment. 図12Cは、第1の実施形態の変形例2によるプレーナ型のFeRAMの製造方法を示す概略断面図である。FIG. 12C is a schematic cross-sectional view illustrating the method for manufacturing the planar FeRAM according to the second modification of the first embodiment. 図13Aは、第1の実施形態の変形例3によるプレーナ型のFeRAMを示す概略断面図である。FIG. 13A is a schematic cross-sectional view showing a planar type FeRAM according to Modification 3 of the first embodiment. 図13Bは、第1の実施形態の変形例3によるプレーナ型のFeRAMを示す概略断面図である。FIG. 13B is a schematic cross-sectional view showing a planar-type FeRAM according to Modification 3 of the first embodiment. 図14Aは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 14A is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図14Bは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 14B is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図14Cは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 14C is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図14Dは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 14D is a schematic cross-sectional view illustrating the method for manufacturing the stacked FeRAM according to the second embodiment. 図15Aは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 15A is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図15Bは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 15B is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図15Cは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 15C is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図15Dは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 15D is a schematic cross-sectional view illustrating the method for manufacturing the stacked FeRAM according to the second embodiment. 図16Aは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 16A is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図16Bは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 16B is a schematic cross-sectional view illustrating the method for manufacturing the stacked FeRAM according to the second embodiment. 図16Cは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 16C is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図17Aは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 17A is a schematic cross-sectional view illustrating the method for manufacturing the stacked FeRAM according to the second embodiment. 図17Bは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 17B is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図17Cは、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 17C is a schematic sectional view showing the method for manufacturing the stack type FeRAM according to the second embodiment. 図18は、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 18 is a schematic cross-sectional view showing the method for manufacturing the stack type FeRAM according to the second embodiment. 図19は、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 19 is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図20は、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 20 is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図21は、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 21 is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図22は、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 22 is a schematic cross-sectional view showing the method for manufacturing the stacked FeRAM according to the second embodiment. 図23は、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 23 is a schematic cross-sectional view showing the method for manufacturing the stack type FeRAM according to the second embodiment. 図24は、第2の実施形態によるスタック型のFeRAMの製造方法を示す概略断面図である。FIG. 24 is a schematic cross-sectional view showing the method for manufacturing the stack type FeRAM according to the second embodiment.

−本発明の基本骨子−
FeRAMにおいて、キャパシタ膜の特性劣化は、外部から浸入する水分・水素の影響が大きい。これら水分・水素の浸入経路を調査したところ、導電パッドに生じた亀裂から装置内部に多量に染み込んでいることが判ってきた。この導電パッドの亀裂は、検査機器の探針(プローブ)を用いたFeRAMの各種検査に起因して発生する。即ち、当該検査は、装置最上層の緩衝防止膜(ポリイミドやノボラック樹脂等)に形成された開口から露出する導電パッドの表面にプローブを直接的に当接させて行われる。当該検査としては、FeRAM等の半導体メモリに固有の試験を要する。詳細には、装置の動作が正常に行われるか否かを調べる試験に加え、データの書き込み及び読み出しの良否を判定するためのリテンション試験及び最終的な確認試験を行う。そのため、各試験時におけるプローブによる導電パッドへの複数回の当接により、導電パッドに亀裂等が発生することが多い。
-Basic outline of the present invention-
In FeRAM, deterioration of capacitor film characteristics is greatly affected by moisture and hydrogen entering from the outside. As a result of investigating the water and hydrogen infiltration paths, it has been found that a large amount of water penetrates into the inside of the device due to cracks generated in the conductive pads. This crack of the conductive pad occurs due to various inspections of the FeRAM using the probe of the inspection device. That is, the inspection is performed by bringing the probe directly into contact with the surface of the conductive pad exposed from the opening formed in the buffering prevention film (such as polyimide or novolac resin) at the uppermost layer of the apparatus. This inspection requires a test specific to a semiconductor memory such as FeRAM. Specifically, in addition to a test for checking whether or not the operation of the apparatus is normally performed, a retention test and a final confirmation test for determining whether data writing and reading are good or bad are performed. For this reason, a crack or the like often occurs in the conductive pad due to the contact of the probe with the conductive pad multiple times during each test.

このように導電パッドに亀裂が生じた状態で後工程へ進むと、例えば、基板のダイシング時における水分の影響により、導電パッドの亀裂から水分・水素が浸入する。また、パッケージ樹脂を形成する際におけるモールドキュア時に、導電パッドの亀裂から水分・水素が浸入する。これらの水分・水素の浸入により、キャパシタ膜の強誘電特性の著しい劣化を惹起するという深刻な問題がある。 When the process proceeds to a subsequent process in a state where a crack is generated in the conductive pad in this way, for example, moisture and hydrogen enter from the crack of the conductive pad due to the influence of moisture during dicing of the substrate. Further, moisture and hydrogen permeate from the cracks of the conductive pad during mold curing when forming the package resin. There is a serious problem that the penetration of moisture and hydrogen causes remarkable deterioration of the ferroelectric characteristics of the capacitor film.

この亀裂を修復すべく、上記の検査を終了した後に亀裂が生じた導電パッドの表面を導電材料で覆う対処法が考えられる。
この点、特許文献1,2には、検査機器のプローブを用いた検査後に、導電パッドを覆いその上層で延在する再配線を形成し、導電パッドの上方から離間した箇所に、外部接続用の電極を設ける構成が開示されている。しかしながらこの場合、以下に説明するような問題が新たに発生する。
In order to repair this crack, a method of covering the surface of the conductive pad where the crack has occurred after the above-described inspection is covered with a conductive material can be considered.
In this regard, in Patent Documents 1 and 2, after the inspection using the probe of the inspection device, a rewiring that covers the conductive pad and extends in the upper layer is formed, and the external connection is provided at a position away from the upper side of the conductive pad. The structure which provides the electrode of this is disclosed. However, in this case, a problem as described below newly occurs.

特許文献1,2では、共に、プローブを用いた針当てが行われる導電パッドと、外部接続用の電極とが離間した構成を採る。従って当然に半導体チップの面積が増加してしまい、近時における微細化の要請に反する結果となる。   Patent Documents 1 and 2 both adopt a configuration in which a conductive pad that is subjected to needle contact using a probe and an electrode for external connection are separated from each other. Therefore, naturally, the area of the semiconductor chip increases, which is contrary to the recent demand for miniaturization.

更にこの場合、FeRAMに固有の問題がある。FeRAMの強誘電体キャパシタ構造は言わば圧電素子であり、強誘電体キャパシタ構造の近傍において圧力印加がなされることにより、強誘電特性の著しい劣化を招く。従ってFeRAMの製造時には、強誘電体キャパシタ構造への圧力印加を可及的に抑えることを要する。そのため、強誘電体キャパシタ構造の近傍、即ち強誘電体キャパシタ構造の上方箇所では圧力印加がなされないような工夫が必要となる。この圧力印加の主な態様は、上述の導電パッドへの針当てを行う各種の試験、及び外部接続時の端子の圧着等である。従って、特許文献1,2のように、プローブを用いた針当てが行われる導電パッドと外部接続用の電極とが離間した構成を採れば、配置の関係上、強誘電体キャパシタ構造の上方箇所或いはこれに近い箇所に導電パッド或いは外部接続用の電極を配置せざるを得ない場合があり、強誘電特性の著しい劣化を招くことになる。   Further, in this case, there is a problem inherent to FeRAM. The ferroelectric capacitor structure of FeRAM is a so-called piezoelectric element, and the application of pressure in the vicinity of the ferroelectric capacitor structure causes a significant deterioration of the ferroelectric characteristics. Therefore, when manufacturing the FeRAM, it is necessary to suppress the pressure application to the ferroelectric capacitor structure as much as possible. For this reason, it is necessary to devise such that no pressure is applied in the vicinity of the ferroelectric capacitor structure, that is, in the upper portion of the ferroelectric capacitor structure. The main aspects of this pressure application are various tests for applying the needle to the conductive pad described above, and crimping of terminals at the time of external connection. Therefore, as in Patent Documents 1 and 2, if a configuration is adopted in which the conductive pad on which the probe is applied and the electrode for external connection are separated from each other, the location above the ferroelectric capacitor structure in terms of arrangement Alternatively, there may be a case where a conductive pad or an electrode for external connection must be arranged at a location close to this, which causes a significant deterioration of the ferroelectric characteristics.

この点、特許文献3には、その第2図及び説明箇所に示すように、プローブを用いた針当てが行われて表面に荒れが生じた場合、当該表面に導電材料を堆積する構成が開示されている。しかしながら、そもそも特許文献3では、導電パッドを兼ねる配線層が直下の不純物領域と接続されてなるのみの極めて単純な構成を採る。従って、FeRAMのような優れたメモリである反面、新たな課題を抱えた複雑な素子構成には適用できない。本発明者の鋭意検討により、この技術をFeRAMに適用させて亀裂の生じた導電パッド上に導電材料を堆積させても、キャパシタ膜における強誘電特性の劣化を十分に抑えることはできないことが判明した。   In this regard, Patent Document 3 discloses a configuration in which a conductive material is deposited on a surface when the surface of the surface becomes rough as a result of needle contact using a probe, as shown in FIG. Has been. However, in the first place, Patent Document 3 adopts an extremely simple configuration in which a wiring layer also serving as a conductive pad is connected to an impurity region immediately below. Therefore, although it is an excellent memory such as FeRAM, it cannot be applied to a complicated element configuration having a new problem. As a result of intensive studies by the present inventor, it has been found that even if a conductive material is deposited on a cracked conductive pad by applying this technique to FeRAM, the deterioration of the ferroelectric characteristics in the capacitor film cannot be sufficiently suppressed. did.

FeRAMにおいては、上記のような導電パッドの亀裂部位のみならず、当該導電パッドの周辺も水分含有量の最も多い部位の一つである。即ち導電パッドは、外部との電気的接続を図るために表面の一部がパシベーション膜に形成された開口から露出するように形成されており、この開口における絶縁部材から水分・水素が容易に内部へ浸入し、強誘電体膜の劣化を惹起する。 In FeRAM, not only the cracked portion of the conductive pad as described above but also the periphery of the conductive pad is one of the portions with the highest moisture content. That is, the conductive pad is formed so that a part of the surface is exposed from the opening formed in the passivation film in order to make electrical connection with the outside, and moisture and hydrogen can be easily contained from the insulating member in this opening. Invade the ferroelectric film and cause deterioration of the ferroelectric film.

本発明者は、水分・水素の内部侵入を可及的に抑止すべく、導電パッドの亀裂の問題に加えて、導電パッドの周辺に存する絶縁部材の問題にも着目し、以下で説明する本発明の基本構成に想到した。   In order to suppress moisture and hydrogen from entering inside as much as possible, the inventor pays attention not only to the problem of cracking of the conductive pad but also to the problem of the insulating member existing around the conductive pad. The basic configuration of the invention has been conceived.

本発明では、検査機器のプローブが直接的に当接することで各種の試験が施される導電パッド(第1の導電パッド)を形成し、第1の導電パッド及び配線構造を覆うようにパッシベーション膜を形成した後、パッシベーション膜に、第1の導電パッドの表面における検査の部位のみを露出させる開口を形成する。その後、この開口から第1の導電パッドの表面に各種試験を施す。そして、各種試験を施した後、亀裂等の生じた第1の導電パッドに生じた亀裂等を保護すべく、第1の導電パッドの表面を覆うように、第2の導電パッドを形成する。   In the present invention, a conductive pad (first conductive pad) to be subjected to various tests is formed by directly contacting a probe of an inspection device, and a passivation film is formed so as to cover the first conductive pad and the wiring structure. Then, an opening is formed in the passivation film to expose only the inspection site on the surface of the first conductive pad. Thereafter, various tests are performed on the surface of the first conductive pad from this opening. Then, after performing various tests, a second conductive pad is formed so as to cover the surface of the first conductive pad in order to protect the crack or the like generated in the first conductive pad in which a crack or the like has occurred.

ここで、上記の考察から、半導体メモリの微細化の要請と、圧電素子である強誘電体キャパシタ構造を擁するFeRAMに固有の要請とを共に満たすには、先ず、第1の導電パッドを強誘電体キャパシタ構造の上方箇所から離間させた局所的な領域に形成することが必須である。そして、第2の導電パッドが例えば様々なレイアウト上の制約を受けても強誘電体キャパシタ構造の上方箇所に位置しないようにするには、第2の導電パッドを平面視で第1の導電パッドと整合する位置に形成することが最も確実な手法である。この場合、更に確実を期すために、平面視で第1の導電パッドの形成領域に包含される形状となるように第2の導電パッドを形成すれば良い。   Here, from the above consideration, in order to satisfy both the demand for miniaturization of the semiconductor memory and the demand specific to the FeRAM having the ferroelectric capacitor structure which is a piezoelectric element, first, the first conductive pad is made ferroelectric. It is essential to form it in a local region separated from the upper part of the body capacitor structure. In order to prevent the second conductive pad from being positioned at an upper portion of the ferroelectric capacitor structure even if, for example, various layout restrictions are imposed, the second conductive pad is viewed in a plan view. It is the most reliable method to form it at a position that matches. In this case, in order to further ensure, the second conductive pad may be formed so as to have a shape included in the first conductive pad formation region in plan view.

更に、第1の導電パッドの周辺に存する絶縁部材からの水分・水素の浸入も防止すべく、パシベーション膜の開口に整合した位置で、パシベーション膜上から開口の内壁面にかけて覆い、第1の導電パッドと電気的に接続されるように第2の導電パッドをパターン形成する。パシベーション膜の開口の内壁側面が最も顕著な水分・水素の浸入経路となることから、この内壁底面(即ち第1の導電パッドの表面)及び内壁側面からパシベーション膜上にかけて覆うように第2の導電パッドを形成することにより、当該浸入経路が閉ざされてキャパシタ膜の強誘電特性を十分に保持することができる。   Furthermore, in order to prevent moisture and hydrogen from entering the insulating member around the first conductive pad, the first conductive pad is covered from the passivation film to the inner wall surface of the opening at a position aligned with the opening of the passivation film. A second conductive pad is patterned so as to be electrically connected to the pad. Since the inner wall side surface of the opening of the passivation film is the most prominent moisture / hydrogen infiltration path, the second conductive layer is covered from the inner wall bottom surface (that is, the surface of the first conductive pad) and the inner wall side surface to the passivation film. By forming the pad, the penetration path is closed and the ferroelectric characteristics of the capacitor film can be sufficiently retained.

−本発明を適用した具体的な諸実施形態−
以下、本発明を適用した具体的な諸実施形態について、図面を参照しながら詳細に説明する。以下の諸実施形態では、本発明をFeRAMに適用した場合について例示するが、キャパシタ構造に通常の誘電体膜を用いた半導体メモリにも適用可能である。
-Specific embodiments to which the present invention is applied-
Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In the following embodiments, the case where the present invention is applied to FeRAM will be exemplified, but the present invention can also be applied to a semiconductor memory using a normal dielectric film as a capacitor structure.

(第1の実施形態)
本実施形態では、強誘電体キャパシタ構造の下部電極上及び上部電極上にそれぞれ導電プラグが形成されて導通がとられる構成の、いわゆるプレーナ型のFeRAMを例示する。
図1A〜図10は、第1の実施形態によるプレーナ型のFeRAMの構成をその製造方法と共に工程順に示す概略断面図である。
(First embodiment)
In the present embodiment, a so-called planar type FeRAM having a configuration in which conductive plugs are respectively formed on the lower electrode and the upper electrode of the ferroelectric capacitor structure to establish conduction is illustrated.
FIG. 1A to FIG. 10 are schematic cross-sectional views showing the structure of the planar type FeRAM according to the first embodiment along with its manufacturing method in the order of steps.

先ず、図1Aに示すように、シリコン半導体基板10上に選択トランジスタとして機能するMOSトランジスタ20を形成する。
詳細には、シリコン半導体基板10の表層に例えばSTI(Shallow Trench
Isolation)法により素子分離構造11を形成し、素子活性領域を確定する。
次に、素子活性領域に不純物、ここではホウ素(B)を例えばドーズ量3.0×1013/cm、加速エネルギー300keVの条件でイオン注入し、ウェル12を形成する。
First, as shown in FIG. 1A, a MOS transistor 20 that functions as a selection transistor is formed on a silicon semiconductor substrate 10.
More specifically, for example, on the surface layer of the silicon semiconductor substrate 10, for example, STI (Shallow Trench).
An element isolation structure 11 is formed by an isolation method, and an element active region is determined.
Next, an impurity, here boron (B), is ion-implanted into the element active region under conditions of a dose amount of 3.0 × 10 13 / cm 2 and an acceleration energy of 300 keV, for example, to form the well 12.

次に、素子活性領域に熱酸化等により膜厚3.0nm程度の薄いゲート絶縁膜13を形成し、ゲート絶縁膜13上にCVD法により膜厚180nm程度の多結晶シリコン膜及び膜厚29nm程度の例えばシリコン窒化膜を堆積し、シリコン窒化膜、多結晶シリコン膜、及びゲート絶縁膜13をリソグラフィー及びそれに続くドライエッチングにより電極形状に加工することにより、ゲート絶縁膜13上にゲート電極14をパターン形成する。このとき同時に、ゲート電極14上にはシリコン窒化膜からなるキャップ膜15がパターン形成される。   Next, a thin gate insulating film 13 having a thickness of about 3.0 nm is formed in the element active region by thermal oxidation or the like, and a polycrystalline silicon film having a thickness of about 180 nm and a thickness of about 29 nm are formed on the gate insulating film 13 by a CVD method. For example, a silicon nitride film is deposited, and the gate electrode 14 is patterned on the gate insulating film 13 by processing the silicon nitride film, the polycrystalline silicon film, and the gate insulating film 13 into an electrode shape by lithography and subsequent dry etching. Form. At the same time, a cap film 15 made of a silicon nitride film is patterned on the gate electrode 14.

次に、キャップ膜15をマスクとして素子活性領域に不純物、ここでは砒素(As)を例えばドーズ量5.0×1014/cm、加速エネルギー10keVの条件でイオン注入し、いわゆるLDD領域16を形成する。Next, using the cap film 15 as a mask, an impurity, for example, arsenic (As) here is ion-implanted into the element active region under the conditions of a dose amount of 5.0 × 10 14 / cm 2 and an acceleration energy of 10 keV to form a so-called LDD region 16. Form.

次に、全面に例えばシリコン酸化膜をCVD法により堆積し、このシリコン酸化膜をいわゆるエッチバックすることにより、ゲート電極14及びキャップ膜15の側面のみにシリコン酸化膜を残してサイドウォール絶縁膜17を形成する。   Next, for example, a silicon oxide film is deposited on the entire surface by the CVD method, and this silicon oxide film is so-called etched back, thereby leaving the silicon oxide film only on the side surfaces of the gate electrode 14 and the cap film 15 to form the sidewall insulating film 17. Form.

次に、キャップ膜15及びサイドウォール絶縁膜17をマスクとして素子活性領域に不純物、ここではリン(P)をLDD領域16よりも高不純物濃度となる条件でイオン注入し、LDD領域16と重畳されるソース/ドレイン領域18を形成して、MOSトランジスタ20を完成させる。なお、図1B以降では、シリコン半導体基板10、ウェル12、素子分離構造11、LDD領域16、及びソース/ドレイン領域18の図示を省略する。   Next, using the cap film 15 and the sidewall insulating film 17 as a mask, an impurity, in this case, phosphorus (P) is ion-implanted under a condition that the impurity concentration is higher than that of the LDD region 16 and overlapped with the LDD region 16. A source / drain region 18 is formed to complete the MOS transistor 20. In FIG. 1B and subsequent figures, illustration of the silicon semiconductor substrate 10, the well 12, the element isolation structure 11, the LDD region 16, and the source / drain region 18 is omitted.

続いて、図1Bに示すように、MOSトランジスタ10の保護膜21及び第1の層間絶縁膜22を形成する。
詳細には、MOSトランジスタ20を覆うように、保護膜21及び層間絶縁膜22を順次堆積する。ここで、保護膜21としては、シリコン酸化膜を材料とし、CVD法により膜厚20nm程度に堆積する。層間絶縁膜22としては、例えばプラズマSiON膜(膜厚200nm程度)、プラズマSiN膜(膜厚80nm程度)及びプラズマTEOS−NSG膜(膜厚600nm程度)を順次成膜した積層構造を形成し、積層後、CMPにより層間絶縁膜22の表層を例えば200nm程度研磨して平坦化する。
Subsequently, as shown in FIG. 1B, a protective film 21 and a first interlayer insulating film 22 of the MOS transistor 10 are formed.
Specifically, a protective film 21 and an interlayer insulating film 22 are sequentially deposited so as to cover the MOS transistor 20. Here, as the protective film 21, a silicon oxide film is used as a material, and is deposited to a film thickness of about 20 nm by a CVD method. As the interlayer insulating film 22, for example, a stacked structure in which a plasma SiON film (film thickness of about 200 nm), a plasma SiN film (film thickness of about 80 nm) and a plasma TEOS-NSG film (film thickness of about 600 nm) are sequentially formed is formed. After lamination, the surface layer of the interlayer insulating film 22 is planarized by polishing, for example, about 200 nm by CMP.

続いて、図1Cに示すように、層間絶縁膜22の上層膜23a及び後述する強誘電体キャパシタ構造30の強誘電体特性の劣化を防止するための水素拡散防止膜23bを順次形成する。   Subsequently, as shown in FIG. 1C, an upper layer film 23a of the interlayer insulating film 22 and a hydrogen diffusion preventing film 23b for preventing deterioration of ferroelectric characteristics of a ferroelectric capacitor structure 30 described later are sequentially formed.

詳細には、先ず、層間絶縁膜22上にプラズマTEOS−NSG膜を膜厚100nm程度に堆積して、上層膜23aを形成する。その後、例えばNガスを30リットル/分の流量で供給しながら650℃で30分間程度の脱水処理をTEOS−NSG膜に施す。Specifically, first, a plasma TEOS-NSG film is deposited on the interlayer insulating film 22 to a thickness of about 100 nm to form an upper layer film 23a. After that, for example, a TEOS-NSG film is subjected to dehydration treatment at 650 ° C. for about 30 minutes while supplying N 2 gas at a flow rate of 30 liters / minute.

次に、後述する強誘電体キャパシタ構造30の強誘電体膜25の受けるダメージ(強誘電体膜25に対する水分・水素の浸入等)を抑制するためのものであり、金属酸化膜、例えばアルミナ(Al)を材料として例えばスパッタ法により膜厚20nm程度に堆積し、水素拡散防止膜23bを形成する。Next, in order to suppress damage to the ferroelectric film 25 of the ferroelectric capacitor structure 30 to be described later (moisture and hydrogen permeation into the ferroelectric film 25, etc.), a metal oxide film such as alumina ( Al 2 O 3 ) is used as a material, for example, deposited to a film thickness of about 20 nm by a sputtering method to form a hydrogen diffusion preventing film 23b.

続いて、図1Dに示すように、下部電極層24、強誘電体膜25及び上部電極層26を順次形成する。
詳細には、先ずスパッタ法により例えば膜厚が20nm程度のTi膜及び膜厚が150nm程度のPt膜を順次堆積させ、Ti膜及びPt膜の積層構造に下部電極層24を形成する。
Subsequently, as shown in FIG. 1D, a lower electrode layer 24, a ferroelectric film 25, and an upper electrode layer 26 are sequentially formed.
Specifically, first, for example, a Ti film having a thickness of about 20 nm and a Pt film having a thickness of about 150 nm are sequentially deposited by sputtering to form the lower electrode layer 24 in a laminated structure of the Ti film and the Pt film.

次に、RFスパッタ法により、下部電極層24上に強誘電体である例えばPZTからなる強誘電体膜25を膜厚200nm程度に堆積する。そして、強誘電体膜25にRTA処理を施して当該強誘電体膜25を結晶化する。
なお、強誘電体膜25の材料としては、PZTの代わりに、Pb1−xLaZr1−yTi(0<x<1,0<y<1)、SrBi(TaNb1−x(0<x<1)、BiTi12等を用いても良い。
Next, a ferroelectric film 25 made of a ferroelectric material such as PZT is deposited on the lower electrode layer 24 to a thickness of about 200 nm by RF sputtering. Then, the ferroelectric film 25 is subjected to RTA treatment to crystallize the ferroelectric film 25.
As the material of the ferroelectric film 25, instead of PZT, Pb 1-x La x Zr 1-y Ti y O 3 (0 <x <1,0 <y <1), SrBi 2 (Ta x nb 1-x) 2 O 9 (0 <x <1), may be used Bi 4 Ti 2 O 12 and the like.

次に、反応性スパッタ法により、強誘電体膜25上に例えば導電性酸化物であるIrOを材料とする上部電極層26を膜厚200nm程度に堆積する。
なお、上部電極層26の材料として、IrOの代わりにIr、Ru、RuO、SrRuO、その他の導電性酸化物やこれらの積層構造としても良い。
Next, the upper electrode layer 26 made of, for example, IrO 2 which is a conductive oxide is deposited on the ferroelectric film 25 to a thickness of about 200 nm by the reactive sputtering method.
Note that the material of the upper electrode layer 26 may be Ir, Ru, RuO 2 , SrRuO 3 , other conductive oxides, or a stacked structure thereof instead of IrO 2 .

続いて、図2Aに示すように、上部電極31をパターン形成する。
詳細には、上部電極層26をリソグラフィー及びそれに続くドライエッチングにより複数の電極形状に加工して、上部電極31をパターン形成する。
Subsequently, as shown in FIG. 2A, the upper electrode 31 is patterned.
Specifically, the upper electrode layer 26 is processed into a plurality of electrode shapes by lithography and subsequent dry etching, and the upper electrode 31 is patterned.

続いて、図2Bに示すように、強誘電体膜25及び下部電極層24を加工して強誘電体キャパシタ構造30を形成する。
詳細には、先ず強誘電体膜25を上部電極31に整合させて若干上部電極31よりも大きいサイズとなるように、リソグラフィー及びそれに続くドライエッチングにより加工する。
Subsequently, as shown in FIG. 2B, the ferroelectric film 25 and the lower electrode layer 24 are processed to form a ferroelectric capacitor structure 30.
Specifically, first, the ferroelectric film 25 is processed by lithography and subsequent dry etching so that the ferroelectric film 25 is aligned with the upper electrode 31 and becomes slightly larger than the upper electrode 31.

次に、下部電極層24を、加工された強誘電体膜25に整合させて若干強誘電体膜25よりも大きいサイズとなるように、リソグラフィー及びそれに続くドライエッチングにより加工し、下部電極32をパターン形成する。これにより、下部電極32上に強誘電体膜25、上部電極31が順次積層され、強誘電体膜25を介して下部電極32と上部電極31とが容量結合する強誘電体キャパシタ構造30を完成させる。   Next, the lower electrode layer 24 is processed by lithography and subsequent dry etching so that the lower electrode layer 24 is aligned with the processed ferroelectric film 25 and has a slightly larger size than the ferroelectric film 25, and the lower electrode 32 is processed. Form a pattern. Thus, the ferroelectric film 25 and the upper electrode 31 are sequentially stacked on the lower electrode 32, and the ferroelectric capacitor structure 30 in which the lower electrode 32 and the upper electrode 31 are capacitively coupled through the ferroelectric film 25 is completed. Let

続いて、図2Cに示すように、層間絶縁膜33を成膜する。
詳細には、強誘電体キャパシタ構造30を覆うように、層間絶縁膜33を形成する。ここで、層間絶縁膜33としては、例えばプラズマTEOS−NSG膜を膜厚1500nm程度に堆積した後、CMPにより膜厚が1000nm程度となるまで研磨する。CMPの後に、層間絶縁膜33の表面の窒化を目的として、例えばNOのプラズマアニール処理(例えば350℃で2分間)を施す。
Subsequently, as shown in FIG. 2C, an interlayer insulating film 33 is formed.
Specifically, the interlayer insulating film 33 is formed so as to cover the ferroelectric capacitor structure 30. Here, as the interlayer insulating film 33, for example, a plasma TEOS-NSG film is deposited to a thickness of about 1500 nm, and then polished by CMP until the thickness becomes about 1000 nm. After CMP, for example, N 2 O plasma annealing (for example, at 350 ° C. for 2 minutes) is performed for the purpose of nitriding the surface of the interlayer insulating film 33.

続いて、図2Dに示すように、強誘電体キャパシタ構造30のプラグ34,35及びトランジスタ構造20のソース/ドレイン領域18と接続されるプラグ36を形成する。
先ず、強誘電体キャパシタ構造30へのビア孔34a,35aを形成する。
詳細には、リソグラフィー及びそれに続くドライエッチングとして、上部電極31の表面の一部が露出するまで層間絶縁膜33に施す加工と、下部電極32の表面の一部が露出するまで層間絶縁膜33に施す加工とを同時に実行し、それぞれの部位に例えば約0.5μm径のビア孔34a,35aを同時形成する。これらビア孔34a,35aの形成時には、上部電極31及び下部電極32がそれぞれエッチングストッパーとなる。
Subsequently, as shown in FIG. 2D, plugs 34 and 35 of the ferroelectric capacitor structure 30 and plugs 36 connected to the source / drain regions 18 of the transistor structure 20 are formed.
First, via holes 34a and 35a to the ferroelectric capacitor structure 30 are formed.
Specifically, as lithography and subsequent dry etching, processing performed on the interlayer insulating film 33 until a part of the surface of the upper electrode 31 is exposed, and on the interlayer insulating film 33 until a part of the surface of the lower electrode 32 is exposed. For example, via holes 34a and 35a having a diameter of about 0.5 μm are simultaneously formed in the respective portions. When these via holes 34a and 35a are formed, the upper electrode 31 and the lower electrode 32 each serve as an etching stopper.

次に、強誘電体キャパシタ構造30の形成後の諸工程により強誘電体キャパシタ構造30の受けたダメージを回復するためのアニール処理を行う。ここでは、処理温度500℃、酸素雰囲気で60分間のアニール処理を実行する。   Next, an annealing process is performed to recover the damage received by the ferroelectric capacitor structure 30 through various steps after the formation of the ferroelectric capacitor structure 30. Here, an annealing process is performed for 60 minutes in a processing temperature of 500 ° C. and an oxygen atmosphere.

次に、トランジスタ構造10のソース/ドレイン領域18へのビア孔36aを形成する。
詳細には、ソース/ドレイン領域18をエッチングストッパーとして、当該ソース/ドレイン領域18の表面の一部が露出するまで第2の層間絶縁膜33、水素拡散防止23b、上層膜23a、層間絶縁膜22、及び保護膜21をリソグラフィー及びそれに続くドライエッチングにより加工し、例えば約0.3μm径のビア孔36aを形成する。
Next, a via hole 36 a to the source / drain region 18 of the transistor structure 10 is formed.
Specifically, using the source / drain region 18 as an etching stopper, the second interlayer insulating film 33, the hydrogen diffusion preventing 23b, the upper layer film 23a, and the interlayer insulating film 22 until a part of the surface of the source / drain region 18 is exposed. The protective film 21 is processed by lithography and subsequent dry etching to form a via hole 36a having a diameter of about 0.3 μm, for example.

次に、プラグ34,35,36を形成する。
先ず、通常の酸化膜のエッチング換算で数10nm、ここでは10nm程度に相当するRF前処理を行った後、ビア孔34a,35a,36aの各壁面を覆うように、スパッタ法により例えばTiN膜を膜厚75nm程度に堆積して、下地膜(グルー膜)41を形成する。そして、CVD法によりグルー膜41を介してビア孔34a,35a,36aを埋め込むように例えばW膜を形成する。その後、CMPにより第2の層間絶縁膜33をストッパーとしてW膜及びグルー膜41を研磨し、ビア孔34a,35a,36a内をグルー膜41を介してWで埋め込むプラグ34,35,36を形成する。
Next, plugs 34, 35, and 36 are formed.
First, after performing RF pretreatment corresponding to several tens of nm in terms of etching of a normal oxide film, here about 10 nm, a TiN film, for example, is formed by sputtering so as to cover the wall surfaces of the via holes 34a, 35a, 36a. A base film (glue film) 41 is formed by depositing to a thickness of about 75 nm. Then, for example, a W film is formed so as to fill the via holes 34a, 35a, 36a via the glue film 41 by the CVD method. Thereafter, the W film and the glue film 41 are polished by CMP using the second interlayer insulating film 33 as a stopper to form plugs 34, 35, and 36 that fill the via holes 34 a, 35 a, and 36 a with W via the glue film 41. To do.

続いて、図3Aに示すように、プラグ34,35,36とそれぞれ接続される第1の配線45を形成する。
詳細には、先ず、全面に例えばPVD法によりバリアメタル膜42、配線膜43及びバリアメタル膜44を堆積する。バリアメタル膜42としては、スパッタ法により例えばTiN膜を膜厚150nm程度に成膜する。配線膜43としては、例えばAl合金膜(ここではAl−Cu膜)を膜厚550nm程度に成膜する。バリアメタル膜44としては、スパッタ法により例えばTi膜(膜厚5nm程度)及びTiN(膜厚150nm程度)を順次成膜する。ここで、配線膜43の構造は、同一ルールのFeRAM以外のロジック部と同じ構造とされているため、配線の加工や信頼性上の問題はない。
Subsequently, as shown in FIG. 3A, first wirings 45 connected to the plugs 34, 35, and 36, respectively, are formed.
Specifically, first, a barrier metal film 42, a wiring film 43, and a barrier metal film 44 are deposited on the entire surface by, eg, PVD. As the barrier metal film 42, for example, a TiN film is formed with a film thickness of about 150 nm by sputtering. As the wiring film 43, for example, an Al alloy film (here, an Al—Cu film) is formed to a film thickness of about 550 nm. As the barrier metal film 44, for example, a Ti film (film thickness of about 5 nm) and TiN (film thickness of about 150 nm) are sequentially formed by sputtering. Here, since the structure of the wiring film 43 is the same as that of the logic part other than the FeRAM having the same rule, there is no problem in processing of the wiring and reliability.

次に、反射防止膜として例えばSiON膜または反射防止膜(不図示)を成膜した後、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、バリアメタル膜44、配線膜43及びバリアメタル膜42を配線形状に加工し、第1の配線45をパターン形成する。ここで、第1の配線45と同一構造の耐湿リング45aも第1の配線45と同時に形成するが、図示の都合上、図4以降に示す。なお、配線膜43としてAl合金膜を形成する代わりに、いわゆるダマシン法等を利用してCu膜(又はCu合金膜)を形成し、第1の配線45としてCu配線を形成しても良い。   Next, after forming, for example, a SiON film or an antireflection film (not shown) as an antireflection film, the antireflection film, the barrier metal film 44, the wiring film 43, and the barrier metal film 42 are wired by lithography and subsequent dry etching. The first wiring 45 is patterned by processing into a shape. Here, the moisture-resistant ring 45a having the same structure as that of the first wiring 45 is also formed at the same time as the first wiring 45. However, for the sake of illustration, FIG. Instead of forming an Al alloy film as the wiring film 43, a Cu film (or Cu alloy film) may be formed using a so-called damascene method or the like, and a Cu wiring may be formed as the first wiring 45.

続いて、図3Bに示すように、強誘電体キャパシタ構造30の強誘電体特性劣化を防止するための水素拡散防止膜46を形成する。
詳細には、第1の配線45を覆うように、第2の層間絶縁膜33上に保護膜46を成膜する。保護膜46は、強誘電体キャパシタ構造30を形成した後の多層工程により当該強誘電体キャパシタ30の強誘電体膜25の受けるダメージ(強誘電体膜25に対する水分・水素の浸入等)を抑制するためのものであり、金属酸化膜、例えばアルミナ(Al)を材料として例えばスパッタ法により膜厚20nm程度に形成する。
Subsequently, as shown in FIG. 3B, a hydrogen diffusion preventing film 46 for preventing deterioration of the ferroelectric characteristics of the ferroelectric capacitor structure 30 is formed.
Specifically, a protective film 46 is formed on the second interlayer insulating film 33 so as to cover the first wiring 45. The protective film 46 suppresses damage received by the ferroelectric film 25 of the ferroelectric capacitor 30 (moisture / hydrogen intrusion into the ferroelectric film 25, etc.) due to the multilayer process after the ferroelectric capacitor structure 30 is formed. For example, a metal oxide film such as alumina (Al 2 O 3 ) is used as a material to form a film having a thickness of about 20 nm by sputtering.

続いて、図4に示すように、第1の配線45とプラグ48を介して接続される第2の配線53を形成する。
詳細には、先ず、水素拡散防止膜46を介して第1の配線45(及び耐湿リング45a)を覆うように層間絶縁膜47及びその上層膜47aを形成する。
Subsequently, as shown in FIG. 4, a second wiring 53 connected to the first wiring 45 through the plug 48 is formed.
Specifically, first, the interlayer insulating film 47 and the upper layer film 47a are formed so as to cover the first wiring 45 (and the moisture-resistant ring 45a) through the hydrogen diffusion preventing film 46.

層間絶縁膜47としては、プラズマTEOS−NSG膜を膜厚2600nm程度に堆積した後、その表層をCMP等により除去して表面を平坦化して形成する。そして、層間絶縁膜47の表面の窒化を目的として、例えばNOのプラズマアニール処理(例えば350℃で4分間)を施す。The interlayer insulating film 47 is formed by depositing a plasma TEOS-NSG film to a thickness of about 2600 nm and then removing the surface layer by CMP or the like to planarize the surface. Then, for the purpose of nitriding the surface of the interlayer insulating film 47, for example, N 2 O plasma annealing (for example, at 350 ° C. for 4 minutes) is performed.

上層膜47aとしては、プラズマTEOS−NSG膜を膜厚2600nm程度に堆積して形成する。そして、上層膜47aの表面の窒化を目的として、例えばNOのプラズマアニール処理(例えば350℃で2分間)を施す。As the upper layer film 47a, a plasma TEOS-NSG film is deposited to a thickness of about 2600 nm. Then, for the purpose of nitriding the surface of the upper layer film 47a, for example, N 2 O plasma annealing (for example, at 350 ° C. for 2 minutes) is performed.

次に、配線45と接続されるプラグ48を形成する。
第1の配線45の表面の一部が露出するまで、上層膜47a、層間絶縁膜47、及び水素拡散防止膜46をリソグラフィー及びそれに続くドライエッチングにより加工して、例えば約0.25μm径のビア孔48aを形成する。次に、このビア孔48aの壁面を覆うように下地膜(グルー膜)49を形成した後、CVD法によりグルー膜49を介してビア孔48aを埋め込むようにW膜を形成する。そして、上層膜47aをストッパーとして例えばW膜及びグルー膜49を研磨し、ビア孔48a内をグルー膜49を介してWで埋め込むプラグ48を形成する。
Next, a plug 48 connected to the wiring 45 is formed.
The upper layer film 47a, the interlayer insulating film 47, and the hydrogen diffusion prevention film 46 are processed by lithography and subsequent dry etching until a part of the surface of the first wiring 45 is exposed, for example, a via having a diameter of about 0.25 μm. Hole 48a is formed. Next, after forming a base film (glue film) 49 so as to cover the wall surface of the via hole 48a, a W film is formed by the CVD method so as to fill the via hole 48a through the glue film 49. Then, for example, the W film and the glue film 49 are polished using the upper layer film 47 a as a stopper to form a plug 48 that fills the via hole 48 a with W via the glue film 49.

次に、プラグ48とそれぞれ接続される第2の配線53を形成する。
先ず、全面に例えばPVD法により配線膜51及びバリアメタル膜52を堆積する。配線膜51としては、例えばAl合金膜(ここではAl−Cu膜)を膜厚550nm程度に成膜する。バリアメタル膜52としては、スパッタ法により例えばTi膜(膜厚5nm程度)及びTiN(膜厚150nm程度)を順次成膜する。ここで、配線膜51の構造は、同一ルールのFeRAM以外のロジック部と同じ構造とされているため、配線の加工や信頼性上の問題はない。
Next, the second wiring 53 connected to the plug 48 is formed.
First, the wiring film 51 and the barrier metal film 52 are deposited on the entire surface by, for example, the PVD method. As the wiring film 51, for example, an Al alloy film (here, an Al—Cu film) is formed to a film thickness of about 550 nm. As the barrier metal film 52, for example, a Ti film (film thickness of about 5 nm) and TiN (film thickness of about 150 nm) are sequentially formed by sputtering. Here, since the structure of the wiring film 51 is the same as that of the logic part other than the FeRAM having the same rule, there is no problem in processing of the wiring and reliability.

次に、反射防止膜として例えばSiON膜または反射防止膜(不図示)を成膜した後、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、バリアメタル膜52及び配線膜51を配線形状に加工し、第2の配線53をパターン形成する。このとき、第2の配線53と同一構造に、耐湿リング45aとプラグ47を介して接続されてなる耐湿リング53aを形成する。なお、配線膜51としてAl合金膜を形成する代わりに、いわゆるダマシン法等を利用してCu膜(又はCu合金膜)を形成し、第2の配線53としてCu配線を形成しても良い。   Next, after forming, for example, a SiON film or an antireflection film (not shown) as an antireflection film, the antireflection film, the barrier metal film 52 and the wiring film 51 are processed into a wiring shape by lithography and subsequent dry etching, A pattern of the second wiring 53 is formed. At this time, the moisture-resistant ring 53 a connected to the moisture-resistant ring 45 a and the plug 47 is formed in the same structure as the second wiring 53. Instead of forming an Al alloy film as the wiring film 51, a Cu film (or Cu alloy film) may be formed using a so-called damascene method or the like, and a Cu wiring may be formed as the second wiring 53.

続いて、図5に示すように、第2の配線53とプラグ55により接続される第3の配線63及び第1の導電パッド60を形成する。
詳細には、先ず、配線53(及び耐湿リング53a)を覆うように層間絶縁膜54及びその上層膜54aを形成する。
Subsequently, as shown in FIG. 5, the third wiring 63 and the first conductive pad 60 connected to the second wiring 53 and the plug 55 are formed.
Specifically, first, the interlayer insulating film 54 and the upper layer film 54a are formed so as to cover the wiring 53 (and the moisture-resistant ring 53a).

層間絶縁膜54としては、プラズマTEOS−NSG膜を膜厚2200nm程度に堆積した後、その表層をCMP等により除去して表面を平坦化して形成する。そして、層間絶縁膜54の表面の窒化を目的として、例えばNOのプラズマアニール処理(例えば350℃で4分間)を施す。The interlayer insulating film 54 is formed by depositing a plasma TEOS-NSG film to a thickness of about 2200 nm and then removing the surface layer by CMP or the like to planarize the surface. Then, for example, N 2 O plasma annealing (for example, at 350 ° C. for 4 minutes) is performed for the purpose of nitriding the surface of the interlayer insulating film 54.

上層膜54aとしては、プラズマTEOS−NSG膜を膜厚2600nm程度に堆積して形成する。そして、上層膜54aの表面の窒化を目的として、例えばNOのプラズマアニール処理(例えば350℃で2分間)を施す。As the upper layer film 54a, a plasma TEOS-NSG film is deposited to a thickness of about 2600 nm. Then, for the purpose of nitriding the surface of the upper layer film 54a, for example, plasma annealing of N 2 O (for example, at 350 ° C. for 2 minutes) is performed.

次に、第2の配線53と接続されるプラグ55を形成する。
第2の配線53の表面の一部が露出するまで、上層膜54a及び層間絶縁膜54をリソグラフィー及びそれに続くドライエッチングにより加工して、ビア孔55aを形成する。次に、このビア孔55aの壁面を覆うように下地膜(グルー膜)56を形成した後、CVD法によりグルー膜56を介してビア孔55aを埋め込むようにW膜を形成する。そして、上層膜54aをストッパーとして例えばW膜及びグルー膜56を研磨し、ビア孔55a内をグルー膜56を介してWで埋め込むプラグ55を形成する。
Next, a plug 55 connected to the second wiring 53 is formed.
The upper layer film 54a and the interlayer insulating film 54 are processed by lithography and subsequent dry etching until a part of the surface of the second wiring 53 is exposed, thereby forming a via hole 55a. Next, after forming a base film (glue film) 56 so as to cover the wall surface of the via hole 55a, a W film is formed by the CVD method so as to fill the via hole 55a through the glue film 56. Then, for example, the W film and the glue film 56 are polished using the upper layer film 54 a as a stopper to form a plug 55 that fills the via hole 55 a with W via the glue film 56.

次に、プラグ55とそれぞれ接続される第3の配線63及び第1の導電パッド60を形成する。
先ず、全面に例えばPVD法により配線膜61及びバリアメタル膜62を堆積する。配線膜61としては、例えばAl合金膜(ここではAl−Cu膜)を膜厚500nm程度に成膜する。バリアメタル膜62としては、スパッタ法により例えばTiNを膜厚150nm程度に成膜する。ここで、配線膜61の構造は、同一ルールのFeRAM以外のロジック部と同じ構造とされているため、配線の加工や信頼性上の問題はない。
Next, a third wiring 63 and a first conductive pad 60 connected to the plug 55 are formed.
First, a wiring film 61 and a barrier metal film 62 are deposited on the entire surface by, eg, PVD. As the wiring film 61, for example, an Al alloy film (here, an Al—Cu film) is formed to a thickness of about 500 nm. As the barrier metal film 62, for example, TiN is formed to a film thickness of about 150 nm by sputtering. Here, since the structure of the wiring film 61 is the same as that of the logic part other than the FeRAM of the same rule, there is no problem in processing of the wiring or reliability.

次に、反射防止膜として例えばSiON膜または反射防止膜(不図示)を成膜した後、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、バリアメタル膜62及び配線膜61を配線形状に加工し、第3の配線63をパターン形成する。このとき、第3の配線63と同一構造に、耐湿リング53aとプラグ55を介して接続されてなる耐湿リング63aを形成する。   Next, after forming, for example, a SiON film or an antireflection film (not shown) as an antireflection film, the antireflection film, the barrier metal film 62, and the wiring film 61 are processed into a wiring shape by lithography and subsequent dry etching, A pattern of the third wiring 63 is formed. At this time, the moisture-resistant ring 63 a formed by connecting the moisture-resistant ring 53 a and the plug 55 to the same structure as the third wiring 63 is formed.

ここで、第3の配線63と同時に、当該第3の配線63と同一構造であり第2の配線53とプラグ55を介して接続されてなる第1の導電パッド60をパターン形成する。この第1の導電パッド60は、後述の検査工程における各種試験(プローブによる針当て)が施される検査用パッドであり、ここでは略矩形状に形成されている。ところで、FeRAMの強誘電体キャパシタ構造は言わば圧電素子であり、強誘電体キャパシタ構造の近傍において圧力印加がなされることにより、強誘電特性の著しい劣化を招く。検査工程では針当てにより第1の導電パッド60に圧力が印加されることは避けられない。そこで本実施形態では、当該劣化を防止するために、強誘電体キャパシタ構造30の上方位置からできるだけ離間させた位置に第1の導電パッド60を設ける。   Here, simultaneously with the third wiring 63, the first conductive pad 60 having the same structure as the third wiring 63 and connected to the second wiring 53 via the plug 55 is patterned. The first conductive pad 60 is an inspection pad to be subjected to various tests (needle contact by a probe) in an inspection process described later, and is formed in a substantially rectangular shape here. By the way, the ferroelectric capacitor structure of FeRAM is a so-called piezoelectric element, and when a pressure is applied in the vicinity of the ferroelectric capacitor structure, the ferroelectric characteristics are significantly deteriorated. In the inspection process, it is inevitable that pressure is applied to the first conductive pad 60 by needle contact. Therefore, in this embodiment, in order to prevent the deterioration, the first conductive pad 60 is provided at a position as far as possible from the upper position of the ferroelectric capacitor structure 30.

続いて、図6に示すように、第3の配線63(耐湿リング63を含む)及び第1の導電パッド60を覆うパシベーション膜66を形成する。
詳細には、先ず、CVD法等によりプラズマTEOS−NSG膜を膜厚100nm程度に堆積し、下層絶縁膜64を形成する。そして、下層絶縁膜64の表面の窒化を目的として、例えばNOのプラズマアニール処理(例えば350℃で2分間)を施す。
Subsequently, as shown in FIG. 6, a passivation film 66 that covers the third wiring 63 (including the moisture-resistant ring 63) and the first conductive pad 60 is formed.
Specifically, first, a plasma TEOS-NSG film is deposited to a thickness of about 100 nm by a CVD method or the like to form a lower insulating film 64. Then, for example, N 2 O plasma annealing (for example, at 350 ° C. for 2 minutes) is performed for the purpose of nitriding the surface of the lower insulating film 64.

次に、下層絶縁膜64上に、CVD法等によりプラズマSiN膜を膜厚350nm程度に堆積し、上層絶縁膜65を形成する。このとき、下層絶縁膜64上に上層絶縁膜65が積層されてなる2層構造のパシベーション膜66が形成される。本実施形態では、パシベーション膜66が本発明の保護絶縁膜となる。なお、図示の例では、下層絶縁膜64及び上層絶縁膜65の各表面を平坦に示しているが、実際には当該表面は第3の配線63の影響を受けて若干凹凸状となる。   Next, a plasma SiN film is deposited to a thickness of about 350 nm on the lower insulating film 64 by a CVD method or the like to form an upper insulating film 65. At this time, a passivation film 66 having a two-layer structure in which an upper insulating film 65 is laminated on the lower insulating film 64 is formed. In the present embodiment, the passivation film 66 is the protective insulating film of the present invention. In the illustrated example, the surfaces of the lower insulating film 64 and the upper insulating film 65 are shown flat, but in actuality, the surfaces are slightly uneven due to the influence of the third wiring 63.

続いて、図7に示すように、パシベーション膜66に開口66aを形成する。
詳細には、リソグラフィー及びドライエッチングによりパシベーション膜66を加工し、第1の導電パッド60の表面の一部を露出させる開口66aを形成する。なお、図7〜図10では、第1の導電パッド60及びその周囲の様子を示す平面図を添付する。
Subsequently, as shown in FIG. 7, an opening 66 a is formed in the passivation film 66.
Specifically, the passivation film 66 is processed by lithography and dry etching to form an opening 66 a that exposes a part of the surface of the first conductive pad 60. In FIGS. 7 to 10, plan views showing the first conductive pad 60 and the surrounding state are attached.

続いて、図8に示すように、不図示の検査機器を用い、当該検査機器の探針(プローブ)58を開口66aから露出する第1の導電パッド60に当接(針当て)させて、各種の試験を行う。検査内容としては、装置の動作が正常に行われるか否かを調べる試験(PT1)、データの書き込み及び読み出しの良否を判定するリテンション試験(PT2,PT3)、最終的な確認試験(PT4)を順次行う。   Subsequently, as shown in FIG. 8, using an inspection device (not shown), the probe (probe) 58 of the inspection device is brought into contact (needle contact) with the first conductive pad 60 exposed from the opening 66a. Perform various tests. As inspection contents, a test (PT1) for checking whether the operation of the apparatus is normally performed, a retention test (PT2, PT3) for determining whether data is written and read, and a final confirmation test (PT4). Do it sequentially.

FeRAMの場合、上記のPT1〜PT4の各試験が必要であり、各試験時におけるプローブによる第1の導電パッド60の表面への複数回の当接により、第1の導電パッド60に亀裂59等が発生することが多い。   In the case of FeRAM, each of the above-described PT1 to PT4 is required, and the first conductive pad 60 is cracked 59 or the like by a plurality of contact with the surface of the first conductive pad 60 by the probe during each test. Often occurs.

続いて、図9に示すように、第1の導電パッド60と直接的に接続される第2の導電パッド70を形成する。
詳細には、開口66aの内壁面を覆うように、例えばPVD法により、パシベーション膜66上にAl合金膜(ここではAl−Cu膜:膜厚500nm程度)及びTiN膜(膜厚150nm程度)を積層する。そして、これらTiN膜及びAl合金膜をリソグラフィー及びそれに続くドライエッチングによりパターニングする。この場合、平面視で第1の導電パッド60よりも若干サイズが小さくなる程度に、第1の導電パッド60と同様の略矩形状となるように、当該パターニングを実行する。これにより、パシベーション膜66の開口66aの内壁底面(即ち第1の導電パッド60の表面)及び内壁側面からパシベーション膜66上にかけて覆い、平面視で第1の導電パッド60の形成領域に包含される第2の導電パッド70が形成される。この第2の導電パッド70は、ボンディングワイヤ等が接続される外部接続用パッドである。
Subsequently, as shown in FIG. 9, a second conductive pad 70 that is directly connected to the first conductive pad 60 is formed.
Specifically, an Al alloy film (here, Al—Cu film: about 500 nm thick) and a TiN film (about 150 nm thick) are formed on the passivation film 66 by, for example, PVD so as to cover the inner wall surface of the opening 66a. Laminate. Then, these TiN film and Al alloy film are patterned by lithography and subsequent dry etching. In this case, the patterning is performed so as to have a substantially rectangular shape similar to that of the first conductive pad 60 so that the size is slightly smaller than that of the first conductive pad 60 in plan view. Thus, the inner wall bottom surface (that is, the surface of the first conductive pad 60) and the inner wall side surface of the opening 66a of the passivation film 66 are covered from the side of the passivation film 66 to be included in the formation region of the first conductive pad 60 in plan view. A second conductive pad 70 is formed. The second conductive pad 70 is an external connection pad to which a bonding wire or the like is connected.

続いて、図10に示すように、緩衝防止膜71を形成する。   Subsequently, as shown in FIG. 10, a buffering prevention film 71 is formed.

詳細には、例えば感光性ポリイミドを膜厚3μm程度に塗布し、パシベーション膜66上を覆って保護し、第2の導電パッド70の表面の一部のみを露出させる開口71aを有する緩衝防止膜71を形成する。ここで、非感光性ポリイミドを用いる場合には、非感光性ポリイミド上にレジストパターンを形成し、専用現像液で非感光性ポリイミドを溶解する。その後、例えば横型炉で緩衝防止膜71に例えば310℃でNガスを100リットル/分の流量で40分間の熱処理を施し、ポリイミドを硬化させる。なお、緩衝防止膜71の材料として、ポリイミドの代わりに例えばノボラック樹脂を用いても良い。More specifically, for example, a photosensitive polyimide is applied to a film thickness of about 3 μm, covers and protects the passivation film 66, and has a buffering prevention film 71 having an opening 71 a that exposes only a part of the surface of the second conductive pad 70. Form. Here, when non-photosensitive polyimide is used, a resist pattern is formed on the non-photosensitive polyimide, and the non-photosensitive polyimide is dissolved with a dedicated developer. Thereafter, for example, in a horizontal furnace, the buffer film 71 is heat-treated at 310 ° C. at a flow rate of N 2 gas of 100 liters / minute for 40 minutes to cure the polyimide. For example, a novolac resin may be used as the material of the buffer preventing film 71 instead of polyimide.

しかる後、諸々の後工程を実行する。例えば、シリコン半導体基板10の背面研磨、基板のダイシング、ワイヤ・ボンディング等による、開口71aから露出する第2の導電パッド70の表面への外部接続、パッケージ化、及びパッケージ最終検査等を経て、本実施形態によるFeRAMを完成させる。   Thereafter, various post processes are executed. For example, after the backside polishing of the silicon semiconductor substrate 10, substrate dicing, wire bonding, etc., the external connection to the surface of the second conductive pad 70 exposed from the opening 71 a, packaging, and final package inspection, etc. The FeRAM according to the embodiment is completed.

本実施形態では、第1の導電パッド60の表面に針当てして各種試験を行う検査工程の後に、当該検査により亀裂59等が生じた第1の導電パッド60の表面を覆う第2の導電パッド70を形成する。この第2の導電パッド70は、第1の導電パッド60に整合した位置で当該第1の導電パッド60に包含されるサイズに形成される。即ち、第2の導電パッド70は、第1の導電パッド60と同様に、強誘電体キャパシタ構造30と可及的に離間しており、第2の導電パッド70の下方には強誘電体キャパシタ構造30が存しないため、第2の導電パッド70に外部との接続時に圧力が印加されても強誘電体キャパシタ構造30に悪影響を与えることはない。   In the present embodiment, the second conductive covering the surface of the first conductive pad 60 in which the crack 59 or the like is generated by the inspection after the inspection process in which various tests are performed by applying a needle to the surface of the first conductive pad 60. A pad 70 is formed. The second conductive pad 70 is formed in a size included in the first conductive pad 60 at a position aligned with the first conductive pad 60. That is, the second conductive pad 70 is separated from the ferroelectric capacitor structure 30 as much as possible, like the first conductive pad 60, and the ferroelectric capacitor is located below the second conductive pad 70. Since the structure 30 does not exist, even if a pressure is applied to the second conductive pad 70 when connected to the outside, the ferroelectric capacitor structure 30 is not adversely affected.

更に、第2の導電パッド70は、パシベーション膜66の開口66aの内壁底面及び内壁側面からパシベーション膜66上にかけて覆うように形成される。パシベーション膜66の開口の内壁側面が最も顕著な水分・水素の浸入経路となることから、この内壁底面(即ち第1の導電パッド60の表面)及び内壁側面からパシベーション膜66上にかけて覆うように第2の導電パッド70を形成することにより、例えば上記の後工程におけるダイシング及びパッケージ化の際にも、当該浸入経路が可及的に閉ざされている。従って、強誘電体膜25への水分・水素の浸入が可及的に抑止され、強誘電体膜25の高い強誘電特性が十分に保持される。   Further, the second conductive pad 70 is formed so as to cover the inner wall bottom surface and the inner wall side surface of the opening 66 a of the passivation film 66 over the passivation film 66. Since the inner wall side surface of the opening of the passivation film 66 is the most remarkable moisture / hydrogen infiltration path, the inner wall side surface (that is, the surface of the first conductive pad 60) and the inner wall side surface are covered to cover the passivation film 66. By forming the second conductive pad 70, the intrusion path is closed as much as possible, for example, in the dicing and packaging in the post-process described above. Therefore, the penetration of moisture and hydrogen into the ferroelectric film 25 is suppressed as much as possible, and the high ferroelectric characteristics of the ferroelectric film 25 are sufficiently maintained.

以上説明したように、本実施形態によれば、比較的簡易な構成で十分な水・水素の内部侵入を確実に防止し、強誘電体膜25を有する強誘電体キャパシタ構造30の高性能を保持する信頼性の高いFeRAMを実現することができる。   As described above, according to the present embodiment, sufficient internal penetration of water and hydrogen can be reliably prevented with a relatively simple configuration, and the high performance of the ferroelectric capacitor structure 30 having the ferroelectric film 25 can be improved. A highly reliable FeRAM can be realized.

(変形例)
以下、第1の実施形態の緒変形例について説明する。これらの変形例では、第1の実施形態と同様にプレーナ型のFeRAMを開示するが、第2の導電パッドの形態が若干異なる点で相違する。以下、第1の実施形態で開示した構成部材等と同様のものについては同符号を付して詳しい説明を省略する。
(Modification)
Hereinafter, modifications of the first embodiment will be described. In these modified examples, a planar type FeRAM is disclosed as in the first embodiment, but the second conductive pad is different in a slightly different form. Hereinafter, the same components as those disclosed in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

[変形例1]
図11A〜図11Dは、第1の実施形態の変形例1によるプレーナ型のFeRAMの構成をその製造方法(主要工程のみ)と共に工程順に示す概略断面図である。なお、図11A〜図11Dでは、第1及び第2の導電パッド及びその周辺のみを示す。
[Modification 1]
FIG. 11A to FIG. 11D are schematic cross-sectional views showing the structure of the planar type FeRAM according to the first modification of the first embodiment along with its manufacturing method (only main steps) in the order of steps. 11A to 11D show only the first and second conductive pads and the periphery thereof.

先ず、第1の実施形態と同様に、図1A〜図1D,図2A〜図2D,図3A,図3B及び図4〜図6の各工程を経て、第3の配線63(耐湿リング63を含む)及び第1の導電パッド60を覆う下層絶縁膜64及び上層絶縁膜65を積層形成する。   First, similarly to the first embodiment, the third wiring 63 (the moisture-resistant ring 63 is formed) through the steps of FIGS. 1A to 1D, 2A to 2D, 3A, 3B and 4 to 6. And a lower insulating film 64 and an upper insulating film 65 that cover the first conductive pad 60 are stacked.

続いて、図11Aに示すように、パシベーション膜66上に緩衝防止膜71を塗布形成する。
詳細には、例えば感光性ポリイミドを膜厚3μm程度に塗布し、上層絶縁膜65上を覆うように緩衝防止膜71を形成する。このとき、パシベーション膜66(下層絶縁膜64及び上層絶縁膜65)、及び緩衝防止膜71が順次積層されてなる3層構造の保護絶縁膜が形成される。ここで、非感光性ポリイミドを用いる場合には、非感光性ポリイミド上にレジストパターンを形成し、専用現像液で非感光性ポリイミドを溶解する。その後、例えば横型炉で緩衝防止膜71に例えば310℃でNガスを100リットル/分の流量で40分間の熱処理を施し、ポリイミドを硬化させる。なお、緩衝防止膜71の材料として、ポリイミドの代わりに例えばノボラック樹脂を用いても良い。
Subsequently, as shown in FIG. 11A, a buffer preventing film 71 is applied and formed on the passivation film 66.
Specifically, for example, photosensitive polyimide is applied to a film thickness of about 3 μm, and the buffer preventing film 71 is formed so as to cover the upper insulating film 65. At this time, a protective insulating film having a three-layer structure in which the passivation film 66 (the lower insulating film 64 and the upper insulating film 65) and the buffer preventing film 71 are sequentially stacked is formed. Here, when non-photosensitive polyimide is used, a resist pattern is formed on the non-photosensitive polyimide, and the non-photosensitive polyimide is dissolved with a dedicated developer. Thereafter, for example, in a horizontal furnace, the buffer film 71 is heat-treated at 310 ° C. at a flow rate of N 2 gas of 100 liters / minute for 40 minutes to cure the polyimide. For example, a novolac resin may be used as the material of the buffer preventing film 71 instead of polyimide.

続いて、図11Bに示すように、緩衝防止膜71及びパシベーション膜66に開口72を形成する。
詳細には、リソグラフィー及びドライエッチングにより緩衝防止膜71及びパシベーション膜66を加工し、第1の導電パッド60の表面の一部を露出させる開口72を形成する。
Subsequently, as shown in FIG. 11B, an opening 72 is formed in the buffering prevention film 71 and the passivation film 66.
Specifically, the buffer film 71 and the passivation film 66 are processed by lithography and dry etching to form an opening 72 that exposes a part of the surface of the first conductive pad 60.

続いて、図11Cに示すように、不図示の検査機器を用い、当該検査機器の探針(プローブ)58を開口72から露出する第1の導電パッド60に当接(針当て)させて、各種の試験を行う。検査内容としては、装置の動作が正常に行われるか否かを調べる試験(PT1)、データの書き込み及び読み出しの良否を判定するリテンション試験(PT2,PT3)、最終的な確認試験(PT4)を順次行う。   Subsequently, as shown in FIG. 11C, using an inspection device (not shown), the probe (probe) 58 of the inspection device is brought into contact (needle contact) with the first conductive pad 60 exposed from the opening 72, Perform various tests. As inspection contents, a test (PT1) for checking whether the operation of the apparatus is normally performed, a retention test (PT2, PT3) for determining whether data is written and read, and a final confirmation test (PT4). Do it sequentially.

FeRAMの場合、上記のPT1〜PT4の各試験が必要であり、各試験時におけるプローブによる第1の導電パッド60の表面への複数回の当接により、第1の導電パッド60に亀裂59等が発生することが多い。   In the case of FeRAM, each of the above-described PT1 to PT4 is required, and the first conductive pad 60 is cracked 59 or the like by a plurality of contact with the surface of the first conductive pad 60 by the probe during each test. Often occurs.

続いて、図11Dに示すように、第1の導電パッド60と直接的に接続される第2の導電パッド73を形成する。
詳細には、開口72の内壁面を覆うように、例えばPVD法により、緩衝防止膜71上にAl合金膜(ここではAl−Cu膜:膜厚500nm程度)及びTiN膜(膜厚150nm程度)を積層する。そして、これらTiN膜及びAl合金膜をリソグラフィー及びそれに続くドライエッチングによりパターニングする。この場合、平面視で第1の導電パッド60よりも若干サイズが小さくなる程度に、第1の導電パッド60と同様の略矩形状となるように、当該パターニングを実行する。これにより、緩衝防止膜71及びパシベーション膜66の開口72の内壁底面(即ち第1の導電パッド60の表面)及び内壁側面から緩衝防止膜71上にかけて覆い、平面視で第1の導電パッド60の形成領域に包含される第2の導電パッド73が形成される。この第2の導電パッド73は、ボンディングワイヤ等が接続される外部接続用パッドである。
Subsequently, as shown in FIG. 11D, a second conductive pad 73 that is directly connected to the first conductive pad 60 is formed.
Specifically, an Al alloy film (here, Al—Cu film: about 500 nm thick) and a TiN film (about 150 nm thick) are formed on the buffer prevention film 71 by, for example, PVD so as to cover the inner wall surface of the opening 72. Are stacked. Then, these TiN film and Al alloy film are patterned by lithography and subsequent dry etching. In this case, the patterning is performed so as to have a substantially rectangular shape similar to that of the first conductive pad 60 so that the size is slightly smaller than that of the first conductive pad 60 in plan view. Thereby, the buffer film 71 covers the buffer film 71 from the inner wall bottom surface (that is, the surface of the first conductive pad 60) and the inner wall side surface of the opening 72 of the buffer film 71 and the passivation film 66, and covers the buffer film 71 in plan view. A second conductive pad 73 included in the formation region is formed. The second conductive pad 73 is an external connection pad to which a bonding wire or the like is connected.

しかる後、諸々の後工程を実行する。例えば、シリコン半導体基板10の背面研磨、基板のダイシング、ワイヤ・ボンディング等による、開口72から露出する第2の導電パッド73の表面への外部接続、パッケージ化、及びパッケージ最終検査等を経て、本例によるFeRAMを完成させる。   Thereafter, various post processes are executed. For example, the external connection to the surface of the second conductive pad 73 exposed from the opening 72, packaging, and final inspection of the package by polishing the back surface of the silicon semiconductor substrate 10, dicing the substrate, wire bonding, etc. An example FeRAM is completed.

本例では、第1の導電パッド60の表面に針当てして各種試験を行う検査工程の後に、当該検査により亀裂59等が生じた第1の導電パッド60の表面を覆う第2の導電パッド73を形成する。この第2の導電パッド73は、第1の導電パッド60に整合した位置で当該第1の導電パッド60に包含されるサイズに形成される。即ち、第2の導電パッド73は、第1の導電パッド60と同様に、強誘電体キャパシタ構造30と可及的に離間しており、第2の導電パッド73の下方には強誘電体キャパシタ構造30が存しないため、第2の導電パッド73に外部との接続時に圧力が印加されても強誘電体キャパシタ構造30に悪影響を与えることはない。   In this example, the second conductive pad covering the surface of the first conductive pad 60 in which a crack 59 or the like is generated by the inspection after an inspection process in which various tests are performed by applying a needle to the surface of the first conductive pad 60. 73 is formed. The second conductive pad 73 is formed in a size included in the first conductive pad 60 at a position aligned with the first conductive pad 60. That is, the second conductive pad 73 is separated from the ferroelectric capacitor structure 30 as much as possible, like the first conductive pad 60, and the ferroelectric capacitor is located below the second conductive pad 73. Since the structure 30 does not exist, even if a pressure is applied to the second conductive pad 73 when connected to the outside, the ferroelectric capacitor structure 30 is not adversely affected.

更に、第2の導電パッド73は、緩衝防止膜71及びパシベーション膜66の開口72の内壁底面及び内壁側面から緩衝防止膜71上にかけて覆うように形成される。パシベーション膜66の開口の内壁側面が最も顕著な水分・水素の浸入経路となることから、開口72の内壁底面(即ち第1の導電パッド60の表面)及び内壁側面から緩衝防止膜71上にかけて覆うように第2の導電パッド73を形成することにより、例えば上記の後工程におけるダイシング及びパッケージ化の際にも、当該浸入経路が可及的に閉ざされている。従って、強誘電体膜25への水分・水素の浸入が可及的に抑止され、強誘電体膜25の高い強誘電特性が十分に保持される。   Further, the second conductive pad 73 is formed so as to cover from the inner wall bottom surface and inner wall side surface of the opening 72 of the buffer preventing film 71 and the passivation film 66 to the buffer preventing film 71. Since the inner wall side surface of the opening of the passivation film 66 becomes the most remarkable moisture / hydrogen intrusion path, it covers the inner wall bottom surface of the opening 72 (that is, the surface of the first conductive pad 60) and the inner wall side surface over the buffering prevention film 71. By forming the second conductive pad 73 as described above, the intrusion path is closed as much as possible, for example, in the dicing and packaging in the post-process described above. Therefore, the penetration of moisture and hydrogen into the ferroelectric film 25 is suppressed as much as possible, and the high ferroelectric characteristics of the ferroelectric film 25 are sufficiently maintained.

以上説明したように、本実施形態によれば、比較的簡易な構成で十分な水・水素の内部侵入を確実に防止し、強誘電体膜25を有する強誘電体キャパシタ構造30の高性能を保持する信頼性の高いFeRAMを実現することができる。   As described above, according to the present embodiment, sufficient internal penetration of water and hydrogen can be reliably prevented with a relatively simple configuration, and the high performance of the ferroelectric capacitor structure 30 having the ferroelectric film 25 can be improved. A highly reliable FeRAM can be realized.

[変形例2]
図12A〜図12Cは、第1の実施形態の変形例2によるプレーナ型のFeRAMの構成をその製造方法(主要工程のみ)と共に工程順に示す概略断面図である。なお、図12A〜図12Cでは、第1及び第2の導電パッド及びその周辺のみを示す。
[Modification 2]
12A to 12C are schematic cross-sectional views showing the structure of the planar type FeRAM according to the second modification of the first embodiment together with its manufacturing method (only main steps) in the order of steps. 12A to 12C show only the first and second conductive pads and the periphery thereof.

先ず、第1の実施形態と同様に、図1A〜図1D,図2A〜図2D,図3A,図3B及び図4〜図9の各工程を経て、第1の導電パッド60と直接的に接続される第2の導電パッド70を形成する。なお本例では、パシベーション膜66を第1のパシベーション膜66と称する。   First, similarly to the first embodiment, the first conductive pad 60 and the first conductive pad 60 are directly passed through the steps of FIGS. 1A to 1D, 2A to 2D, 3A, 3B, and 4 to 9. A second conductive pad 70 to be connected is formed. In this example, the passivation film 66 is referred to as a first passivation film 66.

続いて、図12Aに示すように、第2の導電パッド70を覆うように第1のパシベーション膜66上に第2のパシベーション膜76を形成する。
詳細には、先ず、第2の導電パッド70を覆うように第1のパシベーション膜66上に、CVD法等によりプラズマTEOS−NSG膜を膜厚100nm程度に堆積し、下層絶縁膜74を形成する。そして、下層絶縁膜74の表面の窒化を目的として、例えばNOのプラズマアニール処理(例えば350℃で2分間)を施す。
Subsequently, as shown in FIG. 12A, a second passivation film 76 is formed on the first passivation film 66 so as to cover the second conductive pad 70.
More specifically, first, a plasma TEOS-NSG film is deposited to a thickness of about 100 nm on the first passivation film 66 so as to cover the second conductive pad 70 by a CVD method or the like, thereby forming a lower insulating film 74. . Then, for example, N 2 O plasma annealing (for example, at 350 ° C. for 2 minutes) is performed for the purpose of nitriding the surface of the lower insulating film 74.

次に、下層絶縁膜74上に、CVD法等によりプラズマSiN膜を膜厚350nm程度に堆積し、上層絶縁膜75を形成する。このとき、下層絶縁膜74上に上層絶縁膜75が積層されてなる2層構造の第2のパシベーション膜76が形成される。   Next, a plasma SiN film is deposited on the lower insulating film 74 by a CVD method or the like to a thickness of about 350 nm to form an upper insulating film 75. At this time, a second passivation film 76 having a two-layer structure in which an upper insulating film 75 is laminated on the lower insulating film 74 is formed.

続いて、図12Bに示すように、第2のパシベーション膜76に開口76aを形成する。
詳細には、リソグラフィー及びドライエッチングにより第2のパシベーション膜76を加工し、第2の導電パッド70の表面の一部を露出させる開口76aを形成する。
Subsequently, as shown in FIG. 12B, an opening 76 a is formed in the second passivation film 76.
Specifically, the second passivation film 76 is processed by lithography and dry etching to form an opening 76 a that exposes a part of the surface of the second conductive pad 70.

続いて、図12Cに示すように、緩衝防止膜71を形成する。   Subsequently, as shown in FIG. 12C, a buffer preventing film 71 is formed.

詳細には、例えば感光性ポリイミドを膜厚3μm程度に塗布し、第2のパシベーション膜76上を覆って保護し、第2の導電パッド70の表面の一部のみを露出させる開口71aを有する緩衝防止膜71を形成する。ここで、非感光性ポリイミドを用いる場合には、非感光性ポリイミド上にレジストパターンを形成し、専用現像液で非感光性ポリイミドを溶解する。その後、例えば横型炉で緩衝防止膜71に例えば310℃でNガスを100リットル/分の流量で40分間の熱処理を施し、ポリイミドを硬化させる。なお、緩衝防止膜71の材料として、ポリイミドの代わりに例えばノボラック樹脂を用いても良い。Specifically, for example, a photosensitive polyimide is applied to a film thickness of about 3 μm, covers and protects the second passivation film 76, and has a buffer having an opening 71 a that exposes only a part of the surface of the second conductive pad 70. A prevention film 71 is formed. Here, when non-photosensitive polyimide is used, a resist pattern is formed on the non-photosensitive polyimide, and the non-photosensitive polyimide is dissolved with a dedicated developer. Thereafter, for example, in a horizontal furnace, the buffer film 71 is heat-treated at 310 ° C. at a flow rate of N 2 gas of 100 liters / minute for 40 minutes to cure the polyimide. For example, a novolac resin may be used as the material of the buffer preventing film 71 instead of polyimide.

しかる後、諸々の後工程を実行する。例えば、シリコン半導体基板10の背面研磨、基板のダイシング、ワイヤ・ボンディング等による、開口72から露出する第2の導電パッド70の表面への外部接続、パッケージ化、及びパッケージ最終検査等を経て、本例によるFeRAMを完成させる。   Thereafter, various post processes are executed. For example, the external connection to the surface of the second conductive pad 70 exposed from the opening 72 by packaging the back surface of the silicon semiconductor substrate 10, substrate dicing, wire bonding, etc., packaging, final inspection of the package, etc. An example FeRAM is completed.

本例では、第1の導電パッド60の表面に針当てして各種試験を行う検査工程の後に、当該検査により亀裂59等が生じた第1の導電パッド60の表面を覆う第2の導電パッド70を形成する。この第2の導電パッド73は、第1の導電パッド60に整合した位置で当該第1の導電パッド60に包含されるサイズに形成される。即ち、第2の導電パッド70は、第1の導電パッド60と同様に、強誘電体キャパシタ構造30と可及的に離間しており、第2の導電パッド70の下方には強誘電体キャパシタ構造30が存しないため、第2の導電パッド70に外部との接続時に圧力が印加されても強誘電体キャパシタ構造30に悪影響を与えることはない。   In this example, the second conductive pad covering the surface of the first conductive pad 60 in which a crack 59 or the like is generated by the inspection after an inspection process in which various tests are performed by applying a needle to the surface of the first conductive pad 60. 70 is formed. The second conductive pad 73 is formed in a size included in the first conductive pad 60 at a position aligned with the first conductive pad 60. That is, the second conductive pad 70 is separated from the ferroelectric capacitor structure 30 as much as possible, like the first conductive pad 60, and the ferroelectric capacitor is located below the second conductive pad 70. Since the structure 30 does not exist, even if a pressure is applied to the second conductive pad 70 when connected to the outside, the ferroelectric capacitor structure 30 is not adversely affected.

更に、第2の導電パッド70は、第1のパシベーション膜66の開口66aの内壁底面及び内壁側面から第1のパシベーション膜66上にかけて覆うように形成される。第1のパシベーション膜66の開口の内壁側面が最も顕著な水分・水素の浸入経路となることから、開口66aの内壁底面(即ち第1の導電パッド60の表面)及び内壁側面から第1のパシベーション膜66上にかけて覆うように第2の導電パッド70を形成することにより、例えば上記の後工程におけるダイシング及びパッケージ化の際にも、当該浸入経路が可及的に閉ざされている。更に本例では、第2の導電パッド70を形成した後に再度パシベーション膜として第2のパシベーション膜76を形成することにより、更に確実に当該浸入経路が閉ざされる。従って、強誘電体膜25への水分・水素の浸入が可及的に抑止され、強誘電体膜25の高い強誘電特性が十分に保持される。   Further, the second conductive pad 70 is formed so as to cover the inner wall bottom surface and the inner wall side surface of the opening 66 a of the first passivation film 66 over the first passivation film 66. Since the inner wall side surface of the opening of the first passivation film 66 becomes the most remarkable moisture / hydrogen infiltration path, the first passivation is performed from the inner wall bottom surface of the opening 66a (that is, the surface of the first conductive pad 60) and the inner wall side surface. By forming the second conductive pad 70 so as to cover the film 66, the intrusion path is closed as much as possible, for example, in the dicing and packaging in the post-process described above. Furthermore, in this example, after the second conductive pad 70 is formed, the second passivation film 76 is formed again as a passivation film, so that the entry path is more reliably closed. Therefore, the penetration of moisture and hydrogen into the ferroelectric film 25 is suppressed as much as possible, and the high ferroelectric characteristics of the ferroelectric film 25 are sufficiently maintained.

以上説明したように、本実施形態によれば、比較的簡易な構成で十分な水・水素の内部侵入を確実に防止し、強誘電体膜25を有する強誘電体キャパシタ構造30の高性能を保持する信頼性の高いFeRAMを実現することができる。   As described above, according to the present embodiment, sufficient internal penetration of water and hydrogen can be reliably prevented with a relatively simple configuration, and the high performance of the ferroelectric capacitor structure 30 having the ferroelectric film 25 can be improved. A highly reliable FeRAM can be realized.

[変形例3]
本例では、第1の実施形態の変形例2によるプレーナ型のFeRAMの構成に加え、上層膜54a以降に形成する上層の所定部位に、水素拡散防止膜を形成する。
[Modification 3]
In this example, in addition to the structure of the planar type FeRAM according to the second modification of the first embodiment, a hydrogen diffusion prevention film is formed at a predetermined portion of the upper layer formed after the upper layer film 54a.

具体的には、図13Aに示すように、上層膜54aと下層絶縁膜64との間(第1の導電パッド60の端部上から上層膜54a上を覆う部分)である第1の領域R1、下層絶縁膜64と上層絶縁膜65との間(下層絶縁膜64上)である第2の領域R2、上層絶縁膜65と下層絶縁膜74との間(上層絶縁膜65上)である第3の領域R3、下層絶縁膜74と上層絶縁膜75との間(下層絶縁膜74上)である第4の領域R4、及び上層絶縁膜75と緩衝防止膜71との間(上層絶縁膜75上)である第5の領域R5のうちから選ばれた少なくとも1つの領域に、アルミナ等の金属酸化物からなる水素拡散防止膜を形成する。   Specifically, as shown in FIG. 13A, the first region R1 between the upper layer film 54a and the lower layer insulating film 64 (the portion covering the upper layer film 54a from the end portion of the first conductive pad 60). The second region R2 between the lower insulating film 64 and the upper insulating film 65 (on the lower insulating film 64), and the second region R2 between the upper insulating film 65 and the lower insulating film 74 (on the upper insulating film 65). The third region R3, the fourth region R4 between the lower insulating film 74 and the upper insulating film 75 (on the lower insulating film 74), and the upper insulating film 75 between the upper insulating film 75 and the buffer preventing film 71 (upper insulating film 75). A hydrogen diffusion prevention film made of a metal oxide such as alumina is formed in at least one region selected from the fifth region R5.

ここで、水素拡散防止膜を所望の膜厚に形成し、エッチングストッパー等で削られることなく最も水素拡散防止機能を発揮できる領域はR2とR4であると考えられる。本例では、図13Bに示すように、領域R2,R4にそれぞれ水素拡散防止膜77,78を形成する。水素拡散防止膜77,78は、膜厚10nm以上で水素拡散防止機能を発揮するが、あまり厚く形成すると、エッチングが困難となる。そこで好ましくは、40nm〜60nm程度に形成する。   Here, it is considered that R2 and R4 are regions where the hydrogen diffusion preventing film is formed in a desired film thickness and the hydrogen diffusion preventing function can be most exerted without being cut by an etching stopper or the like. In this example, as shown in FIG. 13B, hydrogen diffusion preventing films 77 and 78 are formed in the regions R2 and R4, respectively. The hydrogen diffusion preventing films 77 and 78 exhibit a hydrogen diffusion preventing function when the film thickness is 10 nm or more. However, if the film is formed too thick, etching becomes difficult. Therefore, it is preferably formed in a thickness of about 40 to 60 nm.

領域R2については、図5において、上層膜54a上に膜厚50nm程度にアルミナ膜を成膜して、水素拡散防止膜77を形成する。
そして、水素拡散防止膜77、上層膜54a、及び層間絶縁膜54に開口したビア孔55aを充填するプラグ55を形成し、第1の導電プラグ60、第1のパシベーション膜66を順次形成する。
For the region R2, in FIG. 5, an alumina film is formed on the upper layer film 54a to a thickness of about 50 nm to form a hydrogen diffusion preventing film 77.
Then, the hydrogen diffusion preventing film 77, the upper layer film 54a, and the plug 55 filling the via hole 55a opened in the interlayer insulating film 54 are formed, and the first conductive plug 60 and the first passivation film 66 are sequentially formed.

領域R4については、第2の導電パッド70を覆うように第1のパシベーション膜66上に下層絶縁膜74を形成した後、下層絶縁膜74上に膜厚50nm程度にアルミナ膜を成膜して、水素拡散防止膜78を形成する。
そして、水素拡散防止膜78上に上層絶縁膜75を形成した後、上層絶縁膜75、水素拡散防止膜78、及び下層絶縁膜74に開口76aを形成した後、開口71aを有する緩衝防止膜71を形成する。
In the region R4, a lower insulating film 74 is formed on the first passivation film 66 so as to cover the second conductive pad 70, and then an alumina film is formed on the lower insulating film 74 to a thickness of about 50 nm. Then, a hydrogen diffusion prevention film 78 is formed.
Then, after forming the upper insulating film 75 on the hydrogen diffusion preventing film 78, after forming the opening 76a in the upper insulating film 75, the hydrogen diffusion preventing film 78, and the lower insulating film 74, the buffer preventing film 71 having the opening 71a. Form.

本例では、第1の導電パッド60の表面に針当てして各種試験を行う検査工程の後に、当該検査により亀裂59等が生じた第1の導電パッド60の表面を覆う第2の導電パッド70を形成する。この第2の導電パッド73は、第1の導電パッド60に整合した位置で当該第1の導電パッド60に包含されるサイズに形成される。即ち、第2の導電パッド70は、第1の導電パッド60と同様に、強誘電体キャパシタ構造30と可及的に離間しており、第2の導電パッド70の下方には強誘電体キャパシタ構造30が存しないため、第2の導電パッド70に外部との接続時に圧力が印加されても強誘電体キャパシタ構造30に悪影響を与えることはない。   In this example, the second conductive pad covering the surface of the first conductive pad 60 in which a crack 59 or the like is generated by the inspection after an inspection process in which various tests are performed by applying a needle to the surface of the first conductive pad 60. 70 is formed. The second conductive pad 73 is formed in a size included in the first conductive pad 60 at a position aligned with the first conductive pad 60. That is, the second conductive pad 70 is separated from the ferroelectric capacitor structure 30 as much as possible, like the first conductive pad 60, and the ferroelectric capacitor is located below the second conductive pad 70. Since the structure 30 does not exist, even if a pressure is applied to the second conductive pad 70 when connected to the outside, the ferroelectric capacitor structure 30 is not adversely affected.

更に、第2の導電パッド70は、第1のパシベーション膜66の開口66aの内壁底面及び内壁側面から第1のパシベーション膜66上にかけて覆うように形成される。第1のパシベーション膜66の開口の内壁側面が最も顕著な水分・水素の浸入経路となることから、開口66aの内壁底面(即ち第1の導電パッド60の表面)及び内壁側面から第1のパシベーション膜66上にかけて覆うように第2の導電パッド70を形成することにより、例えば上記の後工程におけるダイシング及びパッケージ化の際にも、当該浸入経路が可及的に閉ざされている。更に本例では、第2の導電パッド70を形成した後に再度パシベーション膜として第2のパシベーション膜76を形成することにより、更に確実に当該浸入経路が閉ざされる。   Further, the second conductive pad 70 is formed so as to cover the inner wall bottom surface and the inner wall side surface of the opening 66 a of the first passivation film 66 over the first passivation film 66. Since the inner wall side surface of the opening of the first passivation film 66 becomes the most remarkable moisture / hydrogen infiltration path, the first passivation is performed from the inner wall bottom surface of the opening 66a (that is, the surface of the first conductive pad 60) and the inner wall side surface. By forming the second conductive pad 70 so as to cover the film 66, the intrusion path is closed as much as possible, for example, in the dicing and packaging in the post-process described above. Furthermore, in this example, after the second conductive pad 70 is formed, the second passivation film 76 is formed again as a passivation film, so that the entry path is more reliably closed.

更に本例では、領域R2及びR4に水素拡散防止膜77,78が設けられており、水分・水素の内部浸入がより確実に抑止される。
従って、強誘電体膜25への水分・水素の浸入が可及的に抑止され、強誘電体膜25の高い強誘電特性が十分に保持される。
Further, in this example, the hydrogen diffusion preventing films 77 and 78 are provided in the regions R2 and R4, so that the intrusion of moisture and hydrogen is more reliably suppressed.
Therefore, the penetration of moisture and hydrogen into the ferroelectric film 25 is suppressed as much as possible, and the high ferroelectric characteristics of the ferroelectric film 25 are sufficiently maintained.

以上説明したように、本実施形態によれば、比較的簡易な構成で十分な水・水素の内部侵入を確実に防止し、強誘電体膜25を有する強誘電体キャパシタ構造30の高性能を保持する信頼性の高いFeRAMを実現することができる。   As described above, according to the present embodiment, sufficient internal penetration of water and hydrogen can be reliably prevented with a relatively simple configuration, and the high performance of the ferroelectric capacitor structure 30 having the ferroelectric film 25 can be improved. A highly reliable FeRAM can be realized.

(第2の実施形態)
本実施形態では、強誘電体キャパシタ構造の下部電極下及び上部電極上にそれぞれ導電プラグが形成されて導通がとられる構成の、いわゆるスタック型のFeRAMを例示する。
図14A〜図24は、第2の実施形態によるスタック型のFeRAMの構成をその製造方法と共に工程順に示す概略断面図である。
(Second Embodiment)
In the present embodiment, a so-called stack type FeRAM having a configuration in which conductive plugs are respectively formed below and on a lower electrode of a ferroelectric capacitor structure to establish conduction is illustrated.
FIG. 14A to FIG. 24 are schematic cross-sectional views showing the configuration of the stack type FeRAM according to the second embodiment in the order of steps together with the manufacturing method thereof.

先ず、図14Aに示すように、シリコン半導体基板110上に選択トランジスタとして機能するMOSトランジスタ120を形成する。
詳細には、シリコン半導体基板110の表層に例えばSTI(Shallow Trench
Isolation)法により素子分離構造111を形成し、素子活性領域を確定する。
次に、素子活性領域に不純物、ここではホウ素(B)を例えばドーズ量3.0×1013/cm、加速エネルギー300keVの条件でイオン注入し、ウェル112を形成する。
First, as shown in FIG. 14A, a MOS transistor 120 that functions as a selection transistor is formed on a silicon semiconductor substrate 110.
Specifically, for example, on the surface layer of the silicon semiconductor substrate 110, for example, STI (Shallow Trench).
An element isolation structure 111 is formed by an isolation method, and an element active region is determined.
Next, an impurity, here boron (B), is ion-implanted into the element active region, for example, under the conditions of a dose of 3.0 × 10 13 / cm 2 and an acceleration energy of 300 keV to form the well 112.

次に、素子活性領域に熱酸化等により膜厚3.0nm程度の薄いゲート絶縁膜113を形成し、ゲート絶縁膜113上にCVD法により膜厚180nm程度の多結晶シリコン膜及び膜厚29nm程度の例えばシリコン窒化膜を堆積し、シリコン窒化膜、多結晶シリコン膜、及びゲート絶縁膜113をリソグラフィー及びそれに続くドライエッチングにより電極形状に加工することにより、ゲート絶縁膜113上にゲート電極114をパターン形成する。このとき同時に、ゲート電極114上にはシリコン窒化膜からなるキャップ膜115がパターン形成される。   Next, a thin gate insulating film 113 having a thickness of about 3.0 nm is formed in the element active region by thermal oxidation or the like, and a polycrystalline silicon film having a thickness of about 180 nm and a thickness of about 29 nm are formed on the gate insulating film 113 by a CVD method. For example, a silicon nitride film is deposited, and the gate electrode 114 is patterned on the gate insulating film 113 by processing the silicon nitride film, the polycrystalline silicon film, and the gate insulating film 113 into an electrode shape by lithography and subsequent dry etching. Form. At the same time, a cap film 115 made of a silicon nitride film is patterned on the gate electrode 114.

次に、キャップ膜115をマスクとして素子活性領域に不純物、ここでは砒素(As)を例えばドーズ量5.0×1014/cm、加速エネルギー10keVの条件でイオン注入し、いわゆるLDD領域116を形成する。Next, using the cap film 115 as a mask, an impurity, for example, arsenic (As) here is ion-implanted into the element active region under the conditions of a dose amount of 5.0 × 10 14 / cm 2 and an acceleration energy of 10 keV to form a so-called LDD region 116. Form.

次に、全面に例えばシリコン酸化膜をCVD法により堆積し、このシリコン酸化膜をいわゆるエッチバックすることにより、ゲート電極114及びキャップ膜115の側面のみにシリコン酸化膜を残してサイドウォール絶縁膜117を形成する。   Next, for example, a silicon oxide film is deposited on the entire surface by a CVD method, and this silicon oxide film is so-called etched back to leave the silicon oxide film only on the side surfaces of the gate electrode 114 and the cap film 115, and the sidewall insulating film 117. Form.

次に、キャップ膜115及びサイドウォール絶縁膜117をマスクとして素子活性領域に不純物、ここではリン(P)をLDD領域116よりも不純物濃度が高くなる条件でイオン注入し、LDD領域116と重畳されるソース/ドレイン領域118を形成して、MOSトランジスタ120を完成させる。   Next, using the cap film 115 and the sidewall insulating film 117 as a mask, an impurity, in this case, phosphorus (P) is ion-implanted into the element active region under a condition that the impurity concentration is higher than that of the LDD region 116 and overlapped with the LDD region 116. A source / drain region 118 is formed to complete the MOS transistor 120.

続いて、図14Bに示すように、MOSトランジスタ120の保護膜121、層間絶縁膜122、及び上部絶縁膜123を順次形成する。
詳細には、MOSトランジスタ120を覆うように、保護膜121、層間絶縁膜122、及び上部絶縁膜123を順次形成する。ここで、保護膜121としては、シリコン酸化膜を材料とし、CVD法により膜厚20nm程度に堆積する。層間絶縁膜122としては、例えばプラズマSiO膜(膜厚20nm程度)、プラズマSiN膜(膜厚80nm程度)及びプラズマTEOS膜(膜厚1000nm程度)を順次成膜した積層構造を形成し、積層後、CMPにより膜厚が700nm程度となるまで研磨する。上部絶縁膜123としては、シリコン窒化膜を材料とし、CVD法により膜厚100nm程度に堆積する。
Subsequently, as shown in FIG. 14B, a protective film 121, an interlayer insulating film 122, and an upper insulating film 123 of the MOS transistor 120 are sequentially formed.
Specifically, a protective film 121, an interlayer insulating film 122, and an upper insulating film 123 are sequentially formed so as to cover the MOS transistor 120. Here, as the protective film 121, a silicon oxide film is used as a material, and is deposited to a thickness of about 20 nm by a CVD method. As the interlayer insulating film 122, for example, a stacked structure in which a plasma SiO film (film thickness of about 20 nm), a plasma SiN film (film thickness of about 80 nm) and a plasma TEOS film (film thickness of about 1000 nm) are sequentially formed is formed. Polishing is performed by CMP until the film thickness reaches about 700 nm. As the upper insulating film 123, a silicon nitride film is used as a material, and is deposited to a thickness of about 100 nm by a CVD method.

続いて、図14Cに示すように、トランジスタ構造120のソース/ドレイン領域118と接続されるプラグ119を形成する。なお、図14C以下の各図では、図示の便宜上、層間絶縁膜122から上部の構成のみを示し、シリコン半導体基板110やMOSトランジスタ120等の図示を省略する。   Subsequently, as shown in FIG. 14C, a plug 119 connected to the source / drain region 118 of the transistor structure 120 is formed. 14C and subsequent figures, for convenience of illustration, only the structure above the interlayer insulating film 122 is shown, and illustration of the silicon semiconductor substrate 110, the MOS transistor 120, and the like is omitted.

詳細には、先ず、ソース/ドレイン領域118をエッチングストッパーとして、当該ソース/ドレイン領域118の表面の一部が露出するまで上部絶縁膜223、層間絶縁膜122、及び保護膜121をリソグラフィー及びそれに続くドライエッチングにより加工し、例えば約0.3μm径のビア孔119aを形成する。   Specifically, first, using the source / drain region 118 as an etching stopper, lithography is performed on the upper insulating film 223, the interlayer insulating film 122, and the protective film 121 until a part of the surface of the source / drain region 118 is exposed. For example, a via hole 119a having a diameter of about 0.3 μm is formed by dry etching.

次に、ビア孔119aの壁面を覆うように、スパッタ法により例えばTi膜及びTiN膜を膜厚20nm程度及びに膜厚50nm程度に順次堆積して、下地膜(グルー膜)119bを形成する。そして、CVD法によりグルー膜119bを介してビア孔119aを埋め込むように例えばW膜を形成する。その後、CMPにより上部絶縁膜123をストッパーとしてW膜及びグルー膜119bを研磨し、ビア孔119a内をグルー膜119aを介してWで埋め込むプラグ119を形成する。CMPの後に、例えばNOのプラズマアニール処理を施す。Next, a base film (glue film) 119b is formed by sequentially depositing, for example, a Ti film and a TiN film to a film thickness of about 20 nm and a film thickness of about 50 nm so as to cover the wall surface of the via hole 119a. Then, for example, a W film is formed by the CVD method so as to fill the via hole 119a through the glue film 119b. Thereafter, the W film and the glue film 119b are polished by CMP using the upper insulating film 123 as a stopper, thereby forming a plug 119 filling the via hole 119a with W via the glue film 119a. After the CMP, for example, a plasma annealing treatment of N 2 O is performed.

続いて、図14Dに示すように、下部電極層124、強誘電体膜125及び上部電極層126を順次形成する。
詳細には、先ず、スパッタ法により例えば膜厚が150nm〜200nm程度にPt膜を堆積し、下部電極層124を形成する。
Subsequently, as shown in FIG. 14D, a lower electrode layer 124, a ferroelectric film 125, and an upper electrode layer 126 are sequentially formed.
Specifically, first, a Pt film is deposited to a thickness of, for example, about 150 nm to 200 nm by sputtering, and the lower electrode layer 124 is formed.

次に、RFスパッタ法により、下部電極層124上に強誘電体である例えばPZTからなる強誘電体膜225を膜厚100nm〜300nm程度に堆積する。そして、強誘電体膜125をアニール処理して当該強誘電体膜125を結晶化する。このアニール処理の条件としては、Ar/OガスをArが1.98リットル/分、Oが0.025リットル/分の流量で供給しながら、例えば550℃〜650℃で60秒間〜120秒間実行する。強誘電体膜125の材料としては、PZTの代わりに、Pb1−xLaZr1−yTi(0<x<1,0<y<1)、SrBi(TaNb1−x(0<x<1)、BiTi12等を用いても良い。Next, a ferroelectric film 225 made of a ferroelectric material such as PZT is deposited on the lower electrode layer 124 to a thickness of about 100 nm to 300 nm by RF sputtering. Then, the ferroelectric film 125 is annealed to crystallize the ferroelectric film 125. As conditions for the annealing treatment, Ar / O 2 gas is supplied at a flow rate of Ar of 1.98 liters / minute and O 2 of 0.025 liters / minute, for example, at 550 ° C. to 650 ° C. for 60 seconds to 120 seconds. Run for seconds. As the material of the ferroelectric film 125, instead of PZT, Pb 1-x La x Zr 1-y Ti y O 3 (0 <x <1,0 <y <1), SrBi 2 (Ta x Nb 1 -x) 2 O 9 (0 < x <1), may be used Bi 4 Ti 2 O 12 and the like.

次に、強誘電体膜125上に上部電極層126を堆積形成する。
上部電極層126としては、先ず反応性スパッタ法により、例えば導電性酸化物であるIrO膜126aを膜厚200nm程度に形成する。その後、IrO膜126aをアニール処理する。このアニール処理の条件としては、Ar/OガスをArが2.0リットル/分、Oが0.02リットル/分の流量で供給しながら、例えば650℃〜850℃で10秒間〜60秒間実行する。そして、IrO膜126a上に、当該IrO膜126aのキャップ膜として機能する貴金属膜、ここではPt膜126bをスパッタ法により膜厚100nm程度に形成する。IrO膜126a及びPt膜126bから上部電極層126が構成される。なお、上部電極層126において、IrO膜126aの代わりにIr、Ru、RuO、SrRuO、その他の導電性酸化物やこれらの積層構造としても良い。また、Pt膜126bの形成を省略することも可能である。
Next, an upper electrode layer 126 is deposited on the ferroelectric film 125.
As the upper electrode layer 126, first, for example, an IrO 2 film 126a, which is a conductive oxide, is formed to a thickness of about 200 nm by reactive sputtering. Thereafter, the IrO 2 film 126a is annealed. As conditions for this annealing treatment, Ar / O 2 gas is supplied at a flow rate of Ar of 2.0 liters / minute and O 2 of 0.02 liters / minute, for example, at 650 ° C. to 850 ° C. for 10 seconds to 60 seconds. Run for seconds. Then, on the IrO 2 film 126a, a noble metal film functioning as a cap film for the IrO 2 film 126a, here formed with a film thickness of approximately 100nm by sputtering Pt film 126b. The upper electrode layer 126 is composed of the IrO 2 film 126a and the Pt film 126b. In the upper electrode layer 126, Ir, Ru, RuO 2 , SrRuO 3 , other conductive oxides, or a stacked structure thereof may be used instead of the IrO 2 film 126a. In addition, the formation of the Pt film 126b can be omitted.

続いて、図15Aに示すように、TiN膜128及びシリコン酸化膜129を形成する。
詳細には、TiN膜128については、上部電極層126上にスパッタ法等により膜厚200nm程度に堆積形成する。シリコン酸化膜129については、TiN膜128上に、例えばTEOSを用いたCVD法により膜厚1000nm程度に堆積形成する。ここで、TEOS膜の代わりにHDP膜を形成しても良い。なお、シリコン酸化膜129上に更にシリコン窒化膜を形成しても好適である。
Subsequently, as shown in FIG. 15A, a TiN film 128 and a silicon oxide film 129 are formed.
Specifically, the TiN film 128 is deposited on the upper electrode layer 126 to a thickness of about 200 nm by sputtering or the like. The silicon oxide film 129 is deposited on the TiN film 128 to a thickness of about 1000 nm by, for example, a CVD method using TEOS. Here, an HDP film may be formed instead of the TEOS film. A silicon nitride film may be further formed on the silicon oxide film 129.

続いて、図15Bに示すように、レジストマスク101を形成する。
詳細には、シリコン酸化膜129上にレジストを塗布し、このレジストをリソグラフィーにより電極形状に加工して、レジストマスク101を形成する。
Subsequently, as shown in FIG. 15B, a resist mask 101 is formed.
Specifically, a resist is applied on the silicon oxide film 129, and this resist is processed into an electrode shape by lithography to form a resist mask 101.

続いて、図15Cに示すように、シリコン酸化膜129を加工する。
詳細には、レジストマスク101をマスクとしてシリコン酸化膜129をドライエッチングする。このとき、レジストマスク101の電極形状に倣ってシリコン酸化膜129がパターニングされ、ハードマスク129aが形成される。また、レジストマスク101のエッチングされて厚みが減少する。
Subsequently, as shown in FIG. 15C, the silicon oxide film 129 is processed.
Specifically, the silicon oxide film 129 is dry etched using the resist mask 101 as a mask. At this time, the silicon oxide film 129 is patterned following the electrode shape of the resist mask 101 to form a hard mask 129a. Further, the resist mask 101 is etched to reduce the thickness.

続いて、図15Dに示すように、TiN膜128を加工する。
詳細には、レジストマスク101及びハードマスク129aをマスクとして、TiN膜128をドライエッチングする。このとき、ハードマスク129aの電極形状に倣ってTiN膜128がパターニングされる。また、レジストマスク101は、当該エッチング中に自身がエッチングされて薄くなる。その後、灰化処理等によりレジストマスク101を除去する。
Subsequently, as shown in FIG. 15D, the TiN film 128 is processed.
Specifically, the TiN film 128 is dry etched using the resist mask 101 and the hard mask 129a as a mask. At this time, the TiN film 128 is patterned following the electrode shape of the hard mask 129a. Further, the resist mask 101 is thinned by being etched during the etching. Thereafter, the resist mask 101 is removed by ashing or the like.

続いて、図16Aに示すように、上部電極層126、強誘電体膜125、及び下部電極層124を加工する。
詳細には、ハードマスク129a及びTiN膜128をマスクとし、上部絶縁膜123をエッチングストッパーとして、上部電極層126、強誘電体膜125、及び下部電極層124をドライエッチングする。このとき、TiN膜128の電極形状に倣って、上部電極層126、強誘電体膜125、及び下部電極層124がパターニングされる。また、ハードマスク129aは、当該エッチング中に自身がエッチングされて薄くなる。その後、ハードマスク129aを全面ドライエッチング(エッチバック)によりエッチング除去する。
Subsequently, as shown in FIG. 16A, the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are processed.
More specifically, the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are dry etched using the hard mask 129a and the TiN film 128 as a mask and the upper insulating film 123 as an etching stopper. At this time, the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are patterned following the electrode shape of the TiN film 128. Further, the hard mask 129a is thinned by being etched during the etching. Thereafter, the hard mask 129a is removed by dry etching (etchback) on the entire surface.

続いて、図16Bに示すように、強誘電体キャパシタ構造130を完成させる。
詳細には、マスクとして用いられたTiN膜128をウェットエッチングにより除去する。このとき、下部電極131上に強誘電体膜125、上部電極132が順次積層され、強誘電体膜125を介して下部電極131と上部電極132とが容量結合する強誘電体キャパシタ構造130を完成させる。この強誘電体キャパシタ構造130においては、下部電極131がプラグ119と接続され、当該プラグ119を介してソース/ドレイン118と下部電極131とが電気的に接続される。
Subsequently, as shown in FIG. 16B, the ferroelectric capacitor structure 130 is completed.
Specifically, the TiN film 128 used as a mask is removed by wet etching. At this time, the ferroelectric film 125 and the upper electrode 132 are sequentially stacked on the lower electrode 131, and the ferroelectric capacitor structure 130 in which the lower electrode 131 and the upper electrode 132 are capacitively coupled through the ferroelectric film 125 is completed. Let In the ferroelectric capacitor structure 130, the lower electrode 131 is connected to the plug 119, and the source / drain 118 and the lower electrode 131 are electrically connected via the plug 119.

続いて、図16Cに示すように、強誘電体膜125への水素・水の浸入を防止するための水素拡散防止膜133及び層間絶縁膜134を形成する。
詳細には、先ず、強誘電体キャパシタ構造130の全面を覆うように、金属酸化物、例えばアルミナ(Al)を材料として、スパッタ法により膜厚20nm〜50nm程度に堆積し、水素拡散防止膜133を形成する。その後、水素拡散防止膜133をアニール処理する。
Subsequently, as shown in FIG. 16C, a hydrogen diffusion preventing film 133 and an interlayer insulating film 134 for preventing hydrogen / water from entering the ferroelectric film 125 are formed.
Specifically, first, a metal oxide, for example, alumina (Al 2 O 3 ) is used as a material so as to cover the entire surface of the ferroelectric capacitor structure 130, and is deposited to a thickness of about 20 nm to 50 nm by sputtering, and hydrogen diffusion is performed. A prevention film 133 is formed. Thereafter, the hydrogen diffusion preventing film 133 is annealed.

次に、強誘電体キャパシタ構造130を水素拡散防止膜133を介して覆うように、層間絶縁膜134を形成する。ここで、層間絶縁膜134としては、例えばTEOSを用いたプラズマCVD法により、シリコン酸化膜を膜厚1500nm〜2500nm程度に堆積した後、CMPにより例えば膜厚が1000nm程度となるまで研磨して形成する。CMPの後に、層間絶縁膜134の脱水を目的として、例えばNOのプラズマアニール処理を施す。Next, an interlayer insulating film 134 is formed so as to cover the ferroelectric capacitor structure 130 with the hydrogen diffusion preventing film 133 interposed therebetween. Here, the interlayer insulating film 134 is formed by depositing a silicon oxide film to a film thickness of about 1500 nm to 2500 nm by a plasma CVD method using TEOS, for example, and then polishing the film to a film thickness of about 1000 nm by CMP. To do. After the CMP, for example, N 2 O plasma annealing is performed for the purpose of dehydrating the interlayer insulating film 134.

続いて、図17Aに示すように、強誘電体キャパシタ構造130の上部電極132へのビア孔135aを形成する。
詳細には、リソグラフィー及びそれに続くドライエッチングにより層間絶縁膜134及び水素拡散防止膜133をパターニングし、上部電極132の表面の一部を露出させるビア孔135aを形成する。
Subsequently, as shown in FIG. 17A, a via hole 135a to the upper electrode 132 of the ferroelectric capacitor structure 130 is formed.
Specifically, the interlayer insulating film 134 and the hydrogen diffusion preventing film 133 are patterned by lithography and subsequent dry etching to form a via hole 135a exposing a part of the surface of the upper electrode 132.

続いて、図17Bに示すように、強誘電体キャパシタ構造130の上部電極132と接続されるプラグ135を形成する。
詳細には、先ず、ビア孔135aの壁面を覆うように、スパッタ法により例えばTi膜及びTiN膜を膜厚20nm程度及びに膜厚50nm程度に順次堆積して、下地膜(グルー膜)135bを形成する。
Subsequently, as shown in FIG. 17B, a plug 135 connected to the upper electrode 132 of the ferroelectric capacitor structure 130 is formed.
Specifically, first, for example, a Ti film and a TiN film are sequentially deposited to a thickness of about 20 nm and a thickness of about 50 nm by a sputtering method so as to cover the wall surface of the via hole 135a, and a base film (glue film) 135b is formed. Form.

次に、CVD法によりグルー膜135bを介してビア孔135aを埋め込むように例えばW膜を形成する。その後、CMPにより層間絶縁膜134をストッパーとしてW膜及びグルー膜135bを研磨し、ビア孔135a内をグルー膜135aを介してWで埋め込むプラグ135を形成する。CMPの後に、例えばNOのプラズマアニール処理を施す。Next, for example, a W film is formed by the CVD method so as to fill the via hole 135a through the glue film 135b. Thereafter, the W film and the glue film 135b are polished by CMP using the interlayer insulating film 134 as a stopper to form a plug 135 that fills the via hole 135a with W via the glue film 135a. After the CMP, for example, a plasma annealing treatment of N 2 O is performed.

続いて、図17Cに示すように、プラグ135と接続される第1の配線145を形成する。
詳細には、先ず、層間絶縁膜134上の全面にスパッタ法等によりバリアメタル膜142、配線膜143及びバリアメタル膜144を堆積する。バリアメタル膜142としては、スパッタ法により例えばTiN膜を膜厚150nm程度に成膜する。配線膜143としては、例えばAl合金膜(ここではAl−Cu膜)を膜厚550nm程度に成膜する。バリアメタル膜144としては、スパッタ法により例えばTi膜(膜厚5nm程度)及びTiN(膜厚150nm程度)を順次成膜する。ここで、配線膜143の構造は、同一ルールのFeRAM以外のロジック部と同じ構造とされているため、配線の加工や信頼性上の問題はない。
Subsequently, as shown in FIG. 17C, a first wiring 145 connected to the plug 135 is formed.
Specifically, first, the barrier metal film 142, the wiring film 143, and the barrier metal film 144 are deposited on the entire surface of the interlayer insulating film 134 by sputtering or the like. As the barrier metal film 142, for example, a TiN film is formed to a thickness of about 150 nm by sputtering. As the wiring film 143, for example, an Al alloy film (here, an Al—Cu film) is formed to a film thickness of about 550 nm. As the barrier metal film 144, for example, a Ti film (film thickness of about 5 nm) and TiN (film thickness of about 150 nm) are sequentially formed by sputtering. Here, since the structure of the wiring film 143 is the same as that of the logic part other than the FeRAM having the same rule, there is no problem in processing or reliability of the wiring.

次に、反射防止膜として例えばSiON膜または反射防止膜(不図示)を成膜した後、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、バリアメタル膜144、配線膜143及びバリアメタル膜142を配線形状に加工し、プラグ135と接続される第1の配線145をパターン形成する。ここで、第1の配線145と同一構造の耐湿リング145aも第1の配線145と同時に形成するが、図示の都合上、図18以降に示す。なお、配線膜143としてAl合金膜を形成する代わりに、いわゆるダマシン法等を利用してCu膜(又はCu合金膜)を形成し、第1の配線145としてCu配線を形成しても良い。   Next, after forming, for example, a SiON film or an antireflection film (not shown) as an antireflection film, the antireflection film, the barrier metal film 144, the wiring film 143, and the barrier metal film 142 are wired by lithography and subsequent dry etching. The first wiring 145 connected to the plug 135 is patterned by processing into a shape. Here, the moisture-resistant ring 145a having the same structure as that of the first wiring 145 is also formed at the same time as the first wiring 145. However, for the sake of illustration, FIG. Instead of forming an Al alloy film as the wiring film 143, a Cu film (or Cu alloy film) may be formed by using a so-called damascene method or the like, and a Cu wiring may be formed as the first wiring 145.

続いて、図18に示すように、第1の配線145とプラグ147を介して接続される第2の配線153を形成する。
詳細には、先ず、第1の配線145(及び耐湿リング145a)を覆うように層間絶縁膜146及びその上層膜146aを形成する。
Subsequently, as shown in FIG. 18, a second wiring 153 connected to the first wiring 145 via the plug 147 is formed.
Specifically, first, an interlayer insulating film 146 and an upper layer film 146a are formed so as to cover the first wiring 145 (and the moisture-resistant ring 145a).

層間絶縁膜146としては、プラズマTEOS−NSG膜を膜厚2600nm程度に堆積した後、その表層をCMP等により除去して表面を平坦化して形成する。そして、層間絶縁膜146の表面の窒化を目的として、例えばNOのプラズマアニール処理(例えば350℃で4分間)を施す。The interlayer insulating film 146 is formed by depositing a plasma TEOS-NSG film to a thickness of about 2600 nm and then removing the surface layer by CMP or the like to planarize the surface. Then, for example, N 2 O plasma annealing (for example, at 350 ° C. for 4 minutes) is performed for the purpose of nitriding the surface of the interlayer insulating film 146.

上層膜146aとしては、プラズマTEOS−NSG膜を膜厚2600nm程度に堆積して形成する。そして、上層膜146aの表面の窒化を目的として、例えばNOのプラズマアニール処理(例えば350℃で2分間)を施す。As the upper layer film 146a, a plasma TEOS-NSG film is deposited to a thickness of about 2600 nm. Then, for the purpose of nitriding the surface of the upper layer film 146a, for example, N 2 O plasma annealing (for example, at 350 ° C. for 2 minutes) is performed.

次に、第1の配線145と接続されるプラグ147を形成する。
第1の配線145の表面の一部が露出するまで、上層膜146a及び層間絶縁膜146をリソグラフィー及びそれに続くドライエッチングにより加工して、例えば約0.25μm径のビア孔147aを形成する。次に、このビア孔147aの壁面を覆うように下地膜(グルー膜)148を形成した後、CVD法によりグルー膜148を介してビア孔147aを埋め込むようにW膜を形成する。そして、上層膜146aをストッパーとして例えばW膜及びグルー膜148を研磨し、ビア孔147a内をグルー膜148を介してWで埋め込むプラグ147を形成する。
Next, a plug 147 connected to the first wiring 145 is formed.
The upper layer film 146a and the interlayer insulating film 146 are processed by lithography and subsequent dry etching until a part of the surface of the first wiring 145 is exposed, thereby forming a via hole 147a having a diameter of about 0.25 μm, for example. Next, after forming a base film (glue film) 148 so as to cover the wall surface of the via hole 147a, a W film is formed by the CVD method so as to fill the via hole 147a via the glue film 148. Then, for example, the W film and the glue film 148 are polished using the upper layer film 146a as a stopper to form a plug 147 that fills the via hole 147a with W via the glue film 148.

次に、プラグ147とそれぞれ接続される第2の配線153を形成する。
先ず、全面にスパッタ法等により配線膜151及びバリアメタル膜152を堆積する。配線膜152としては、例えばAl合金膜(ここではAl−Cu膜)を膜厚550nm程度に成膜する。バリアメタル膜152としては、スパッタ法により例えばTi膜(膜厚5nm程度)及びTiN(膜厚150nm程度)を順次成膜する。ここで、配線膜151の構造は、同一ルールのFeRAM以外のロジック部と同じ構造とされているため、配線の加工や信頼性上の問題はない。
Next, second wirings 153 connected to the plugs 147 are formed.
First, a wiring film 151 and a barrier metal film 152 are deposited on the entire surface by sputtering or the like. As the wiring film 152, for example, an Al alloy film (here, an Al—Cu film) is formed to a thickness of about 550 nm. As the barrier metal film 152, for example, a Ti film (film thickness of about 5 nm) and TiN (film thickness of about 150 nm) are sequentially formed by sputtering. Here, since the structure of the wiring film 151 is the same as that of the logic part other than the FeRAM having the same rule, there is no problem in processing of the wiring and reliability.

次に、反射防止膜として例えばSiON膜または反射防止膜(不図示)を成膜した後、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、バリアメタル膜153、配線膜152及びバリアメタル膜151を配線形状に加工し、第2の配線153をパターン形成する。このとき、第2の配線153と同一構造に、耐湿リング145aとプラグ147を介して接続されてなる耐湿リング153aを形成する。なお、配線膜152としてAl合金膜を形成する代わりに、いわゆるダマシン法等を利用してCu膜(又はCu合金膜)を形成し、第2の配線153としてCu配線を形成しても良い。   Next, after forming, for example, a SiON film or an antireflection film (not shown) as an antireflection film, the antireflection film, the barrier metal film 153, the wiring film 152, and the barrier metal film 151 are wired by lithography and subsequent dry etching. The second wiring 153 is patterned by processing into a shape. At this time, a moisture-resistant ring 153 a connected to the moisture-resistant ring 145 a and the plug 147 is formed in the same structure as the second wiring 153. Instead of forming an Al alloy film as the wiring film 152, a Cu film (or Cu alloy film) may be formed using a so-called damascene method or the like, and a Cu wiring may be formed as the second wiring 153.

続いて、図19に示すように、第2の配線153とプラグ155により接続される第3の配線163及び第1の導電パッド160を形成する。
詳細には、先ず、配線153(及び耐湿リング153a)を覆うように層間絶縁膜154及びその上層膜154aを形成する。
Subsequently, as shown in FIG. 19, a third wiring 163 and a first conductive pad 160 connected to the second wiring 153 and the plug 155 are formed.
Specifically, first, an interlayer insulating film 154 and an upper layer film 154a are formed so as to cover the wiring 153 (and the moisture-resistant ring 153a).

層間絶縁膜154としては、プラズマTEOS−NSG膜を膜厚2200nm程度に堆積した後、その表層をCMP等により除去して表面を平坦化して形成する。そして、層間絶縁膜154の表面の窒化を目的として、例えばNOのプラズマアニール処理(例えば350℃で4分間)を施す。The interlayer insulating film 154 is formed by depositing a plasma TEOS-NSG film to a thickness of about 2200 nm and then removing the surface layer by CMP or the like to planarize the surface. Then, for example, N 2 O plasma annealing (for example, at 350 ° C. for 4 minutes) is performed for the purpose of nitriding the surface of the interlayer insulating film 154.

上層膜154aとしては、プラズマTEOS−NSG膜を膜厚2600nm程度に堆積して形成する。そして、上層膜154aの表面の窒化を目的として、例えばNOのプラズマアニール処理(例えば350℃で2分間)を施す。As the upper layer film 154a, a plasma TEOS-NSG film is deposited to a thickness of about 2600 nm. Then, for the purpose of nitriding the surface of the upper layer film 154a, for example, N 2 O plasma annealing (for example, at 350 ° C. for 2 minutes) is performed.

次に、第2の配線153と接続されるプラグ155を形成する。
第2の配線153の表面の一部が露出するまで、上層膜154a及び層間絶縁膜154をリソグラフィー及びそれに続くドライエッチングにより加工して、ビア孔155aを形成する。次に、このビア孔155aの壁面を覆うように下地膜(グルー膜)156を形成した後、CVD法によりグルー膜156を介してビア孔155aを埋め込むようにW膜を形成する。そして、上層膜154aをストッパーとして例えばW膜及びグルー膜156を研磨し、ビア孔155a内をグルー膜156を介してWで埋め込むプラグ155を形成する。
Next, a plug 155 connected to the second wiring 153 is formed.
The upper layer film 154a and the interlayer insulating film 154 are processed by lithography and subsequent dry etching until a part of the surface of the second wiring 153 is exposed, thereby forming a via hole 155a. Next, after forming a base film (glue film) 156 so as to cover the wall surface of the via hole 155a, a W film is formed by the CVD method so as to fill the via hole 155a via the glue film 156. Then, for example, the W film and the glue film 156 are polished using the upper layer film 154a as a stopper to form a plug 155 that fills the via hole 155a with W via the glue film 156.

次に、プラグ155とそれぞれ接続される第3の配線163及び第1の導電パッド160を形成する。
先ず、全面に例えばPVD法により配線膜161及びバリアメタル膜162を堆積する。配線膜161としては、例えばAl合金膜(ここではAl−Cu膜)を膜厚500nm程度に成膜する。バリアメタル膜162としては、スパッタ法により例えばTiNを膜厚150nm程度に成膜する。ここで、配線膜161の構造は、同一ルールのFeRAM以外のロジック部と同じ構造とされているため、配線の加工や信頼性上の問題はない。
Next, a third wiring 163 and a first conductive pad 160 connected to the plug 155 are formed.
First, a wiring film 161 and a barrier metal film 162 are deposited on the entire surface by, eg, PVD. As the wiring film 161, for example, an Al alloy film (here, an Al—Cu film) is formed to a thickness of about 500 nm. As the barrier metal film 162, for example, TiN is formed to a thickness of about 150 nm by sputtering. Here, since the structure of the wiring film 161 is the same as that of the logic part other than the FeRAM having the same rule, there is no problem in processing of the wiring and reliability.

次に、反射防止膜として例えばSiON膜または反射防止膜(不図示)を成膜した後、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、バリアメタル膜162及び配線膜161を配線形状に加工し、第3の配線163をパターン形成する。このとき、第3の配線163と同一構造に、耐湿リング153aとプラグ155を介して接続されてなる耐湿リング163aを形成する。   Next, after forming, for example, a SiON film or an antireflection film (not shown) as an antireflection film, the antireflection film, the barrier metal film 162, and the wiring film 161 are processed into a wiring shape by lithography and subsequent dry etching, A pattern of the third wiring 163 is formed. At this time, a moisture-resistant ring 163a connected to the moisture-resistant ring 153a and the plug 155 in the same structure as the third wiring 163 is formed.

ここで、第3の配線63と同時に、当該第3の配線63と同一構造であり第2の配線153とプラグ155を介して接続されてなる第1の導電パッド160をパターン形成する。この第1の導電パッド160は、後述の検査工程における各種試験(プローブによる針当て)が施される検査用パッドであり、ここでは略矩形状に形成されている。ところで、FeRAMの強誘電体キャパシタ構造は言わば圧電素子であり、強誘電体キャパシタ構造の近傍において圧力印加がなされることにより、強誘電特性の著しい劣化を招く。検査工程では針当てにより第1の導電パッド160に圧力が印加されることは避けられない。そこで本実施形態では、当該劣化を防止するために、強誘電体キャパシタ構造130の上方位置からできるだけ離間させた位置に第1の導電パッド160を設ける。   Here, simultaneously with the third wiring 63, the first conductive pad 160 having the same structure as the third wiring 63 and connected to the second wiring 153 via the plug 155 is patterned. The first conductive pad 160 is an inspection pad to be subjected to various tests (needle contact with a probe) in an inspection process described later, and is formed in a substantially rectangular shape here. By the way, the ferroelectric capacitor structure of FeRAM is a so-called piezoelectric element, and when a pressure is applied in the vicinity of the ferroelectric capacitor structure, the ferroelectric characteristics are significantly deteriorated. In the inspection process, it is inevitable that pressure is applied to the first conductive pad 160 by needle contact. Therefore, in this embodiment, in order to prevent the deterioration, the first conductive pad 160 is provided at a position as far as possible from the upper position of the ferroelectric capacitor structure 130.

続いて、図20に示すように、第3の配線163(耐湿リング163を含む)及び第1の導電パッド160を覆うパシベーション膜166を形成する。
詳細には、先ず、CVD法等によりプラズマTEOS−NSG膜を膜厚100nm程度に堆積し、下層絶縁膜164を形成する。そして、下層絶縁膜164の表面の窒化を目的として、例えばNOのプラズマアニール処理(例えば350℃で2分間)を施す。
Subsequently, as shown in FIG. 20, a passivation film 166 that covers the third wiring 163 (including the moisture-resistant ring 163) and the first conductive pad 160 is formed.
Specifically, first, a plasma TEOS-NSG film is deposited to a thickness of about 100 nm by a CVD method or the like, and a lower insulating film 164 is formed. Then, for example, N 2 O plasma annealing (for example, at 350 ° C. for 2 minutes) is performed for the purpose of nitriding the surface of the lower insulating film 164.

次に、下層絶縁膜164上に、CVD法等によりプラズマSiN膜を膜厚350nm程度に堆積し、上層絶縁膜165を形成する。このとき、下層絶縁膜164上に上層絶縁膜165が積層されてなる2層構造のパシベーション膜166が形成される。本実施形態では、パシベーション膜166が本発明の保護絶縁膜となる。なお、図示の例では、下層絶縁膜164及び上層絶縁膜165の各表面を平坦に示しているが、実際には当該表面は第3の配線163の影響を受けて若干凹凸状となる。   Next, a plasma SiN film is deposited to a thickness of about 350 nm on the lower insulating film 164 by a CVD method or the like to form an upper insulating film 165. At this time, a passivation film 166 having a two-layer structure in which an upper insulating film 165 is stacked on the lower insulating film 164 is formed. In this embodiment, the passivation film 166 is the protective insulating film of the present invention. Note that, in the illustrated example, the surfaces of the lower insulating film 164 and the upper insulating film 165 are shown flat, but actually the surfaces are slightly uneven due to the influence of the third wiring 163.

続いて、図21に示すように、パシベーション膜166に開口166aを形成する。
詳細には、リソグラフィー及びドライエッチングによりパシベーション膜166を加工し、第1の導電パッド160の表面の一部を露出させる開口166aを形成する。なお、図21〜図24では、第1の導電パッド160及びその周囲の様子を示す平面図を添付する。
Subsequently, as shown in FIG. 21, an opening 166 a is formed in the passivation film 166.
Specifically, the passivation film 166 is processed by lithography and dry etching to form an opening 166a that exposes a part of the surface of the first conductive pad 160. 21 to 24, plan views showing the first conductive pads 160 and their surroundings are attached.

続いて、図22に示すように、不図示の検査機器を用い、当該検査機器の探針(プローブ)158を開口166aから露出する第1の導電パッド160に当接(針当て)させて、各種の試験を行う。検査内容としては、装置の動作が正常に行われるか否かを調べる試験(PT1)、データの書き込み及び読み出しの良否を判定するリテンション試験(PT2,PT3)、最終的な確認試験(PT4)を順次行う。   Next, as shown in FIG. 22, using an inspection device (not shown), the probe (probe) 158 of the inspection device is brought into contact (needle contact) with the first conductive pad 160 exposed from the opening 166a, Perform various tests. As inspection contents, a test (PT1) for checking whether the operation of the apparatus is normally performed, a retention test (PT2, PT3) for determining whether data is written and read, and a final confirmation test (PT4). Do it sequentially.

FeRAMの場合、上記のPT1〜PT4の各試験が必要であり、各試験時におけるプローブによる第1の導電パッド160の表面への複数回の当接により、第1の導電パッド160に亀裂159等が発生することが多い。   In the case of FeRAM, each of the above-described PT1 to PT4 is required, and a crack 159 or the like is formed in the first conductive pad 160 due to a plurality of times of contact with the surface of the first conductive pad 160 by the probe during each test. Often occurs.

続いて、図23に示すように、第1の導電パッド160と直接的に接続される第2の導電パッド170を形成する。
詳細には、開口166aの内壁面を覆うように、例えばPVD法により、パシベーション膜166上にAl合金膜(ここではAl−Cu膜:膜厚500nm程度)及びTiN膜(膜厚150nm程度)を積層する。そして、これらTiN膜及びAl合金膜をリソグラフィー及びそれに続くドライエッチングによりパターニングする。この場合、平面視で第1の導電パッド160よりも若干サイズが小さくなる程度に、第1の導電パッド160と同様の略矩形状となるように、当該パターニングを実行する。これにより、パシベーション膜166の開口166aの内壁底面(即ち第1の導電パッド160の表面)及び内壁側面からパシベーション膜166上にかけて覆い、平面視で第1の導電パッド160の形成領域に包含される第2の導電パッド170が形成される。この第2の導電パッド170は、ボンディングワイヤ等が接続される外部接続用パッドである。
Subsequently, as shown in FIG. 23, a second conductive pad 170 that is directly connected to the first conductive pad 160 is formed.
Specifically, an Al alloy film (here, Al—Cu film: about 500 nm thick) and a TiN film (about 150 nm thick) are formed on the passivation film 166 by, eg, PVD so as to cover the inner wall surface of the opening 166a. Laminate. Then, these TiN film and Al alloy film are patterned by lithography and subsequent dry etching. In this case, the patterning is performed so that the first conductive pad 160 has a substantially rectangular shape that is slightly smaller in size than the first conductive pad 160 in plan view. This covers the bottom surface of the inner wall of the opening 166a of the passivation film 166 (that is, the surface of the first conductive pad 160) and the side surface of the inner wall from the side of the passivation film 166, and is included in the formation region of the first conductive pad 160 in plan view. A second conductive pad 170 is formed. The second conductive pad 170 is an external connection pad to which a bonding wire or the like is connected.

続いて、図24に示すように、緩衝防止膜171を形成する。   Subsequently, as shown in FIG. 24, a buffer preventing film 171 is formed.

詳細には、例えば感光性ポリイミドを膜厚3μm程度に塗布し、パシベーション膜166上を覆って保護し、第2の導電パッド170の表面の一部のみを露出させる開口171aを有する緩衝防止膜171を形成する。ここで、非感光性ポリイミドを用いる場合には、非感光性ポリイミド上にレジストパターンを形成し、専用現像液で非感光性ポリイミドを溶解する。その後、例えば横型炉で緩衝防止膜171に例えば310℃でNガスを100リットル/分の流量で40分間の熱処理を施し、ポリイミドを硬化させる。なお、緩衝防止膜171の材料として、ポリイミドの代わりに例えばノボラック樹脂を用いても良い。Specifically, for example, a photosensitive polyimide is applied to a film thickness of about 3 μm, covers and protects the passivation film 166, and has an anti-buffer film 171 having an opening 171a that exposes only a part of the surface of the second conductive pad 170. Form. Here, when non-photosensitive polyimide is used, a resist pattern is formed on the non-photosensitive polyimide, and the non-photosensitive polyimide is dissolved with a dedicated developer. After that, for example, in a horizontal furnace, the buffer film 171 is heat-treated at 310 ° C., for example, with N 2 gas at a flow rate of 100 liters / minute for 40 minutes to cure the polyimide. For example, a novolac resin may be used as the material of the buffer preventing film 171 instead of polyimide.

しかる後、諸々の後工程を実行する。例えば、シリコン半導体基板110の背面研磨、基板のダイシング、ワイヤ・ボンディング等による、開口171aから露出する第2の導電パッド170の表面への外部接続、パッケージ化、及びパッケージ最終検査等を経て、本実施形態によるFeRAMを完成させる。   Thereafter, various post processes are executed. For example, the external connection to the surface of the second conductive pad 170 exposed from the opening 171a by packaging the back surface of the silicon semiconductor substrate 110, substrate dicing, wire bonding, etc., packaging, and final inspection of the package The FeRAM according to the embodiment is completed.

本実施形態では、第1の導電パッド160の表面に針当てして各種試験を行う検査工程の後に、当該検査により亀裂159等が生じた第1の導電パッド160の表面を覆う第2の導電パッド170を形成する。この第2の導電パッド170は、第1の導電パッド160に整合した位置で当該第1の導電パッド160に包含されるサイズに形成される。即ち、第2の導電パッド170は、第1の導電パッド160と同様に、強誘電体キャパシタ構造130と可及的に離間しており、第2の導電パッド170の下方には強誘電体キャパシタ構造130が存しないため、第2の導電パッド170に外部との接続時に圧力が印加されても強誘電体キャパシタ構造130に悪影響を与えることはない。   In the present embodiment, the second conductive layer covering the surface of the first conductive pad 160 in which a crack 159 or the like has been generated by the inspection after the inspection step of performing various tests by applying a needle to the surface of the first conductive pad 160. A pad 170 is formed. The second conductive pad 170 is formed in a size included in the first conductive pad 160 at a position aligned with the first conductive pad 160. That is, like the first conductive pad 160, the second conductive pad 170 is separated from the ferroelectric capacitor structure 130 as much as possible, and below the second conductive pad 170 is a ferroelectric capacitor. Since the structure 130 does not exist, even if a pressure is applied to the second conductive pad 170 when connected to the outside, the ferroelectric capacitor structure 130 is not adversely affected.

更に、第2の導電パッド170は、パシベーション膜166の開口166aの内壁底面及び内壁側面からパシベーション膜166上にかけて覆うように形成される。パシベーション膜166の開口の内壁側面が最も顕著な水分・水素の浸入経路となることから、この内壁底面(即ち第1の導電パッド160の表面)及び内壁側面からパシベーション膜166上にかけて覆うように第2の導電パッド170を形成することにより、例えば上記の後工程におけるダイシング及びパッケージ化の際にも、当該浸入経路が可及的に閉ざされている。従って、強誘電体膜125への水分・水素の浸入が可及的に抑止され、強誘電体膜125の高い強誘電特性が十分に保持される。   Further, the second conductive pad 170 is formed so as to cover the inner wall bottom surface and the inner wall side surface of the opening 166 a of the passivation film 166 over the passivation film 166. Since the inner wall side surface of the opening of the passivation film 166 is the most remarkable moisture / hydrogen infiltration path, the inner wall bottom surface (that is, the surface of the first conductive pad 160) and the inner wall side surface are covered to cover the passivation film 166. By forming the second conductive pads 170, the intrusion path is closed as much as possible, for example, in the dicing and packaging in the above-described post-process. Therefore, the penetration of moisture and hydrogen into the ferroelectric film 125 is suppressed as much as possible, and the high ferroelectric characteristics of the ferroelectric film 125 are sufficiently maintained.

以上説明したように、本実施形態によれば、比較的簡易な構成で十分な水・水素の内部侵入を確実に防止し、強誘電体膜125を有する強誘電体キャパシタ構造130の高性能を保持する信頼性の高いFeRAMを実現することができる。   As described above, according to the present embodiment, sufficient penetration of water and hydrogen can be reliably prevented with a relatively simple configuration, and the high performance of the ferroelectric capacitor structure 130 having the ferroelectric film 125 can be improved. A highly reliable FeRAM can be realized.

以上説明したように、本実施形態によれば、比較的簡易な構成で水素の強誘電体膜125への侵入を確実に防止し、強誘電体膜125を有する強誘電体キャパシタ構造130の高性能を保持する信頼性の高いスタック型のFeRAMを実現することができる。   As described above, according to the present embodiment, hydrogen can be surely prevented from entering the ferroelectric film 125 with a relatively simple configuration, and the ferroelectric capacitor structure 130 having the ferroelectric film 125 can be prevented from being high. A highly reliable stack-type FeRAM that maintains performance can be realized.

なお、本実施形態でも、第1の実施形態と同様に、変形例1〜3(図11A〜図13B)をそれぞれ適用しても良い。   In the present embodiment, as in the first embodiment, the first to third modifications (FIGS. 11A to 13B) may be applied.

本発明によれば、比較的簡易な構成で十分な水・水素の内部侵入を確実に防止し、強誘電体からなるキャパシタ膜を有するキャパシタ構造の高性能を保持する信頼性の高い半導体装置を実現することができる。
According to the present invention, there is provided a highly reliable semiconductor device that reliably prevents internal penetration of sufficient water and hydrogen with a relatively simple configuration and maintains high performance of a capacitor structure having a capacitor film made of a ferroelectric substance. Can be realized.

Claims (8)

半導体基板の上方に形成されており、下部電極と上部電極とにより強誘電体からなるキャパシタ膜を挟持してなるキャパシタ構造と、
前記キャパシタ構造の上方に形成されており、前記キャパシタ構造と電気的に接続されてなる配線構造と、
下方に前記キャパシタ構造の存しない局所的な形成領域で前記配線構造と電気的に接続されており、検査機器のプローブが直接的に当接することで各種の試験が施された第1の導電パッドと、
前記第1の導電パッド及び前記配線構造を覆い、前記第1の導電パッドの表面における前記検査の部位のみを露出させる開口を有する第1の保護絶縁膜と、
前記第1の保護絶縁膜上から前記開口の内壁面にかけて覆って前記第1の導電パッドと電気的に接続され、前記第1の導電パッドの前記形成領域に整合する位置に形成されており、外部との電気的接続を図る第2の導電パッドと、
前記第2の導電パッド及び前記第1の保護絶縁膜を覆い、前記第2の導電パッドの表面における前記外部との電気的接続の部位のみを露出させる開口を有する第2の保護絶縁膜と、
前記第2の保護絶縁膜を覆い、前記第2の導電パッドの表面における前記外部との電気的接続の部位を露出させる開口を有する絶縁膜と
を含み、
前記第1の保護絶縁膜は、第1酸化膜と、前記第1酸化膜上に形成された第1窒化膜とを含み、
前記第2の保護絶縁膜は、第2酸化膜と、前記第2酸化膜上に形成された第2窒化膜とを含み、
前記第1酸化膜と前記第1窒化膜との間、及び前記第2酸化膜と前記第2窒化膜との間の少なくとも一方にアルミナ膜が形成されていることを特徴とする半導体装置。
A capacitor structure formed above a semiconductor substrate and having a capacitor film made of a ferroelectric material sandwiched between a lower electrode and an upper electrode;
A wiring structure formed above the capacitor structure and electrically connected to the capacitor structure;
A first conductive pad which is electrically connected to the wiring structure in a local formation region where the capacitor structure does not exist below, and has been subjected to various tests by directly contacting a probe of an inspection device When,
A first protective insulating film that covers the first conductive pad and the wiring structure and has an opening that exposes only the inspection portion on the surface of the first conductive pad;
Covering from the first protective insulating film to the inner wall surface of the opening and electrically connected to the first conductive pad, the first conductive pad is formed at a position aligned with the formation region, A second conductive pad for electrical connection with the outside;
A second protective insulating film that covers the second conductive pad and the first protective insulating film and has an opening that exposes only the portion of the surface of the second conductive pad that is electrically connected to the outside;
It covers the second protective insulating film, look including an insulating film having an opening exposing a portion of the electrical connection between the outer the surface of the second conductive pad,
The first protective insulating film includes a first oxide film and a first nitride film formed on the first oxide film,
The second protective insulating film includes a second oxide film and a second nitride film formed on the second oxide film,
A semiconductor device, wherein an alumina film is formed between at least one of the first oxide film and the first nitride film and between the second oxide film and the second nitride film .
前記第2の導電パッドは、前記第1の導電パッドよりも小さく、前記第1の導電パッドの前記形成領域に包含される形状に形成されていることを特徴とする請求項1に記載の半導体装置。   2. The semiconductor according to claim 1, wherein the second conductive pad is smaller than the first conductive pad and is formed in a shape included in the formation region of the first conductive pad. apparatus. 前記第2の導電パッドは、前記第1の導電パッドと直接的に接続されていることを特徴とする請求項1又は2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the second conductive pad is directly connected to the first conductive pad. 前記絶縁膜は、ポリイミド又はノボラック樹脂を材料として形成されることを特徴とする請求項1〜のいずれか1項に記載の半導体装置。 The insulating layer, the semiconductor device according to any one of claims 1 to 3, characterized in that formed polyimide or novolac resin as a material. 半導体基板の上方に、下部電極と上部電極とにより強誘電体からなるキャパシタ膜を挟持してなるキャパシタ構造を形成する工程と、
前記キャパシタ構造の上方に、前記キャパシタ構造と電気的に接続されるように配線構造を形成する工程と、
下方に前記キャパシタ構造の存しない局所的な形成領域において、前記配線構造と電気的に接続されるように第1の導電パッドを形成する工程と、
前記第1の導電パッド及び前記配線構造を覆うように第1の保護絶縁膜を形成した後、前記第1の保護絶縁膜に、前記第1の導電パッドの表面における検査の部位のみを露出させる開口を形成する工程と、
前記開口から、検査機器のプローブを前記第1の導電パッドの表面に直接的に当接することにより、各種の試験を行う工程と、
前記第1の保護絶縁膜上から前記開口の内壁面にかけて覆って前記第1の導電パッドと電気的に接続され、前記第1の導電パッドの前記形成領域に整合する位置に、外部との電気的接続を図る第2の導電パッドを形成する工程と、
前記第2の導電パッド及び前記第1の保護絶縁膜を覆うように第2の保護絶縁膜を形成した後、前記第2の保護絶縁膜に、前記第2の導電パッドの表面における前記外部との電気的接続の部位のみを露出させる開口を形成する工程と、
前記第2の保護絶縁膜を覆うように絶縁膜を形成した後、前記絶縁膜に、前記第2の導電パッドの表面における前記外部との電気的接続の部位を露出させる開口を形成する工程と
を含み、
前記第1の保護絶縁膜は、第1酸化膜と、前記第1酸化膜上に形成された第1窒化膜とを含み、
前記第2の保護絶縁膜は、第2酸化膜と、前記第2酸化膜上に形成された第2窒化膜とを含み、
前記第1酸化膜と前記第1窒化膜との間、及び前記第2酸化膜と前記第2窒化膜との間の少なくとも一方にアルミナ膜が形成されることを特徴とする半導体装置の製造方法。
Forming a capacitor structure in which a capacitor film made of a ferroelectric material is sandwiched between a lower electrode and an upper electrode above a semiconductor substrate;
Forming a wiring structure above the capacitor structure so as to be electrically connected to the capacitor structure;
Forming a first conductive pad so as to be electrically connected to the wiring structure in a local formation region below the capacitor structure;
After forming a first protective insulating film so as to cover the first conductive pad and the wiring structure, only the inspection site on the surface of the first conductive pad is exposed to the first protective insulating film. Forming an opening;
A process of performing various tests by directly contacting the probe of the inspection device to the surface of the first conductive pad from the opening;
Covering from the first protective insulating film to the inner wall surface of the opening, and electrically connected to the first conductive pad and aligned with the formation area of the first conductive pad, Forming a second conductive pad for achieving a general connection;
After forming a second protective insulating film so as to cover the second conductive pad and the first protective insulating film, the second protective insulating film is formed on the surface of the second conductive pad with the outside. Forming an opening that exposes only the portion of the electrical connection;
Forming an insulating film so as to cover the second protective insulating film, and then forming an opening in the insulating film that exposes a portion of the second conductive pad that is electrically connected to the outside; only including,
The first protective insulating film includes a first oxide film and a first nitride film formed on the first oxide film,
The second protective insulating film includes a second oxide film and a second nitride film formed on the second oxide film,
A method of manufacturing a semiconductor device, wherein an alumina film is formed between at least one of the first oxide film and the first nitride film and between the second oxide film and the second nitride film. .
前記第2の導電パッドを、前記第1の導電パッドよりも小さく、前記第1の導電パッドの前記形成領域に包含される形状に形成することを特徴とする請求項に記載の半導体装置の製造方法。 6. The semiconductor device according to claim 5 , wherein the second conductive pad is formed in a shape that is smaller than the first conductive pad and is included in the formation region of the first conductive pad. Production method. 前記第2の導電パッドを、前記第1の導電パッドと直接的に接続されるように形成することを特徴とする請求項又はに記載の半導体装置の製造方法。 Said second conductive pad, manufacturing method of a semiconductor device according to claim 5 or 6, characterized in that formed so as to be connected directly with the first conductive pads. 前記絶縁膜は、ポリイミド又はノボラック樹脂を材料として形成されることを特徴とする請求項のいずれか1項に記載の半導体装置の製造方法。 The insulating layer, a method of manufacturing a semiconductor device according to any one of claims 5-7, characterized by being formed of polyimide or novolac resin as a material.
JP2008509652A 2006-03-31 2006-03-31 Semiconductor device and manufacturing method thereof Expired - Fee Related JP5353237B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306942 WO2007116501A1 (en) 2006-03-31 2006-03-31 Semiconductor device and its manufacturing method

Publications (2)

Publication Number Publication Date
JPWO2007116501A1 JPWO2007116501A1 (en) 2009-08-20
JP5353237B2 true JP5353237B2 (en) 2013-11-27

Family

ID=38580810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008509652A Expired - Fee Related JP5353237B2 (en) 2006-03-31 2006-03-31 Semiconductor device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5353237B2 (en)
WO (1) WO2007116501A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289438B2 (en) 2019-10-07 2022-03-29 Samsung Electronics Co., Ltd. Die-to-wafer bonding structure and semiconductor package using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401817B2 (en) * 2008-03-25 2014-01-29 富士通セミコンダクター株式会社 Semiconductor device manufacturing method and semiconductor device
JP5553923B2 (en) * 2013-06-14 2014-07-23 ルネサスエレクトロニクス株式会社 Semiconductor device
JP6478395B2 (en) * 2015-03-06 2019-03-06 住友電工デバイス・イノベーション株式会社 Semiconductor device
JP7117260B2 (en) * 2019-03-18 2022-08-12 ルネサスエレクトロニクス株式会社 Semiconductor device and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04102367A (en) * 1990-08-21 1992-04-03 Seiko Epson Corp Semiconductor device, semiconductor memory and cmos semiconductor integrated circuit using same, and manufacture of same
JPH0855850A (en) * 1994-03-11 1996-02-27 Ramtron Internatl Corp Inactivated method of using hard ceramic material,etc.and its structure
JP2003142491A (en) * 2001-11-08 2003-05-16 Mitsubishi Electric Corp Method for manufacturing semiconductor device
JP2003297869A (en) * 2002-04-05 2003-10-17 Rohm Co Ltd Electronic component provided with bump electrode and manufacturing method therefor
JP2004186321A (en) * 2002-12-02 2004-07-02 Fujitsu Ltd Method of evaluating semiconductor device and method of manufacturing evaluation device
JP2005175204A (en) * 2003-12-11 2005-06-30 Fujitsu Ltd Semiconductor device and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04102367A (en) * 1990-08-21 1992-04-03 Seiko Epson Corp Semiconductor device, semiconductor memory and cmos semiconductor integrated circuit using same, and manufacture of same
JPH0855850A (en) * 1994-03-11 1996-02-27 Ramtron Internatl Corp Inactivated method of using hard ceramic material,etc.and its structure
JP2003142491A (en) * 2001-11-08 2003-05-16 Mitsubishi Electric Corp Method for manufacturing semiconductor device
JP2003297869A (en) * 2002-04-05 2003-10-17 Rohm Co Ltd Electronic component provided with bump electrode and manufacturing method therefor
JP2004186321A (en) * 2002-12-02 2004-07-02 Fujitsu Ltd Method of evaluating semiconductor device and method of manufacturing evaluation device
JP2005175204A (en) * 2003-12-11 2005-06-30 Fujitsu Ltd Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289438B2 (en) 2019-10-07 2022-03-29 Samsung Electronics Co., Ltd. Die-to-wafer bonding structure and semiconductor package using the same
US11658141B2 (en) 2019-10-07 2023-05-23 Samsung Electronics Co., Ltd. Die-to-wafer bonding structure and semiconductor package using the same

Also Published As

Publication number Publication date
WO2007116501A1 (en) 2007-10-18
JPWO2007116501A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5141550B2 (en) Semiconductor device and manufacturing method thereof
JP4998262B2 (en) Semiconductor device and manufacturing method thereof
JP5399232B2 (en) Manufacturing method of semiconductor device
US20050127395A1 (en) Semiconductor device and fabrication method thereof
JP4954898B2 (en) Semiconductor device
JPWO2007074530A1 (en) Semiconductor device and manufacturing method thereof
JP5251129B2 (en) Semiconductor device and manufacturing method thereof
US8742479B2 (en) Semiconductor device and method of manufacturing the same
JP4791191B2 (en) Semiconductor device and manufacturing method thereof
US20060175642A1 (en) Semiconductor device and method of manufacturing the same
US8324671B2 (en) Semiconductor device and method of manufacturing the same
JP5353237B2 (en) Semiconductor device and manufacturing method thereof
US8367541B2 (en) Semiconductor device suitable for a ferroelectric memory and manufacturing method of the same
US7652377B2 (en) Semiconductor device and manufacturing method of the same
US20060054948A1 (en) Semiconductor memory device and method of manufacturing the same
JP4703937B2 (en) Manufacturing method of semiconductor device
JPWO2004095578A1 (en) Semiconductor device and manufacturing method thereof
JP4985401B2 (en) Semiconductor device and manufacturing method thereof
JP5785523B2 (en) Semiconductor device and manufacturing method thereof
JP5202846B2 (en) Semiconductor device and manufacturing method thereof
JP2011135116A (en) Semiconductor device and manufacturing method of the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130626

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees