JP5352343B2 - Hydrogen production catalyst - Google Patents

Hydrogen production catalyst Download PDF

Info

Publication number
JP5352343B2
JP5352343B2 JP2009122792A JP2009122792A JP5352343B2 JP 5352343 B2 JP5352343 B2 JP 5352343B2 JP 2009122792 A JP2009122792 A JP 2009122792A JP 2009122792 A JP2009122792 A JP 2009122792A JP 5352343 B2 JP5352343 B2 JP 5352343B2
Authority
JP
Japan
Prior art keywords
metal
oxide
hydrogen
production catalyst
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009122792A
Other languages
Japanese (ja)
Other versions
JP2010269239A (en
Inventor
貞夫 荒木
進 日数谷
匠磨 森
晃 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2009122792A priority Critical patent/JP5352343B2/en
Publication of JP2010269239A publication Critical patent/JP2010269239A/en
Application granted granted Critical
Publication of JP5352343B2 publication Critical patent/JP5352343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明は、アンモニアから水素を生成する反応に供される水素製造触媒に関する。本明細書および特許請求の範囲において、「金属」とはケイ素のような半金属も含むこととする。 The present invention relates to a hydrogen production catalyst used in a reaction for producing hydrogen from ammonia. In the present specification and claims, the term “metal” includes metalloids such as silicon.

アンモニア分解触媒の存在下にアンモニアを分解して水素を製造するためには、反応温度350℃以上で、下記式(I)の反応を進行させる必要がある。   In order to produce hydrogen by decomposing ammonia in the presence of an ammonia decomposing catalyst, it is necessary to proceed the reaction of the following formula (I) at a reaction temperature of 350 ° C. or higher.

2NH → 3H + N(吸熱反応)
・・・(I)
式(I)の反応はルテニウム系触媒を使用し反応温度400℃以上で進行させることが可能であるが、この反応は吸熱反応であるため、安定したアンモニア分解率を得るためには反応系に熱を与える必要がある。
2NH 3 → 3H 2 + N 2 (endothermic reaction)
... (I)
The reaction of formula (I) can be carried out using a ruthenium catalyst at a reaction temperature of 400 ° C. or higher. However, since this reaction is an endothermic reaction, in order to obtain a stable ammonia decomposition rate, a reaction system is used. It is necessary to give heat.

アンモニアが100%分解した場合の温度降下は約900℃であり、触媒層下流域でガス温度を例えば350℃以上にするには入口ガス温度を1250℃以上にする必要があり、現実的でない。そこで、吸熱反応によるガス温度降下を抑制するために従来は外部から熱を供給していたが、この方法では伝熱速度が反応速度より遅いため十分な伝熱速度を得るには伝熱面積を大きくせざるをえず、装置のコンパクト化が難しい。   The temperature drop when ammonia is 100% decomposed is about 900 ° C., and in order to increase the gas temperature to 350 ° C. or higher, for example, in the downstream region of the catalyst layer, the inlet gas temperature needs to be 1250 ° C. or higher. Therefore, in the past, heat was supplied from the outside in order to suppress the gas temperature drop due to endothermic reaction, but in this method the heat transfer rate is slower than the reaction rate, so a heat transfer area is required to obtain a sufficient heat transfer rate. It must be large and it is difficult to make the device compact.

また、外部からの熱供給の熱源としてアンモニアエンジンの排ガスを利用する方法も考えられるが、この方法ではエンジン排ガスの温度が350℃以下である場合は触媒が作動する温度より低いため、熱供給を行うことができず、所定量の水素を製造することができないという難点がある。   In addition, a method of using the exhaust gas of an ammonia engine as a heat source for supplying heat from the outside is conceivable. However, in this method, when the temperature of the engine exhaust gas is 350 ° C. or lower, the temperature is lower than the temperature at which the catalyst operates. There is a disadvantage that it cannot be performed and a predetermined amount of hydrogen cannot be produced.

熱供給の熱源としては、外部からの供給以外に下記式(II)に示されるように、アンモニアと酸素との反応により熱を発生させ、この熱を利用する方法がある。   As a heat source for heat supply, there is a method of generating heat by reaction of ammonia and oxygen and using this heat as shown in the following formula (II) in addition to external supply.

NH + 3/4O → 1/2N + 3/2HO (発熱反応)
・・・(II)
式(I)と式(II)の反応を同一の反応管内で起こさせると式(I)の吸熱分を式(II)で発生する熱で補うことが可能となる。また、式(II)の酸素量を制御することで触媒層温度を制御することができる。例えば、エンジン排ガスの廃熱を熱交換して予熱された供給ガス温度が変動する場合において、安定して水素を製造することが可能となる。
NH 3 + 3 / 4O 2 → 1 / 2N 2 + 3 / 2H 2 O (exothermic reaction)
... (II)
When the reactions of formula (I) and formula (II) are caused in the same reaction tube, the endothermic component of formula (I) can be supplemented with the heat generated by formula (II). Further, the temperature of the catalyst layer can be controlled by controlling the amount of oxygen in the formula (II). For example, when the supply gas temperature preheated by exchanging waste heat of engine exhaust gas fluctuates, hydrogen can be produced stably.

アンモニア酸化用触媒としては、通常、白金系触媒が用いられる。例えば特許文献1には、耐火性金属酸化物、この耐火性金属酸化物上に設けられた白金層、およびこの白金上に設けられたバナジア層を含んでなる多層化アンモニア酸化触媒が提案されている。   A platinum-based catalyst is usually used as the ammonia oxidation catalyst. For example, Patent Document 1 proposes a multilayered ammonia oxidation catalyst comprising a refractory metal oxide, a platinum layer provided on the refractory metal oxide, and a vanadia layer provided on the platinum. Yes.

しかし、この触媒の作動温度は200℃程度であり、それ以下の温度では酸化反応を進行することができず、電気ヒータ等でガス温度を200℃程度まで上げる必要がある。   However, the operating temperature of this catalyst is about 200 ° C., and the oxidation reaction cannot proceed at a temperature lower than that, and it is necessary to raise the gas temperature to about 200 ° C. with an electric heater or the like.

特許文献2には、セリウム及びプラセオジムから選択される少なくとも1種の元素の酸化物と、イットリウムを含む原子価非可変性希土類元素から選択される少なくとも1種の元素の酸化物と、コバルトの酸化物を含むアンモニア酸化触媒が提案され、また特許文献3には、本質的に白金、ロジウム、随時パラジウムからなるフィラメントを含み、該フィラメントが白金コーティングを有するアンモニア酸化触媒が提案されているが、これらも特許文献1と同じ問題を有する。   Patent Document 2 discloses an oxide of at least one element selected from cerium and praseodymium, an oxide of at least one element selected from valence-nonvariable rare earth elements including yttrium, and oxidation of cobalt. In addition, Patent Document 3 proposes an ammonia oxidation catalyst that includes a filament consisting essentially of platinum, rhodium, and optionally palladium, and the filament has a platinum coating. Also have the same problem as Patent Document 1.

特表2007-504945号公報Special Table 2007-504945 特許4165661号公報Japanese Patent No. 4165661 特開昭63-72344号公報JP 63-72344 JP

本発明は、上記のような問題を解消することができる水素製造触媒を提供することを目的とする。 An object of this invention is to provide the hydrogen production catalyst which can eliminate the above problems.

本発明は、酸化還元可能な金属酸化物からなる担体に触媒活性金属(担持金属ともいう)が担持されてなり、且つアンモニアと酸素を含むガスと接触させて水素を製造する水素製造触媒であって、前記金属酸化物は希土類金属酸化物を含む複合酸化物であり、前記希土類金属はセリウム、ランタンまたはサマリウムであり、前記触媒活性金属は第VIII族金属、スズ、クロムおよびバナジウムからなる群から選ばれる少なくとも一種の金属であり、200℃以上で還元処理した水素製造触媒を提供する。 The present invention (also referred to as a supported metal) catalytically active metal on a carrier consisting of oxide reducible metal oxides Ri is Na is supported, and you produce hydrogen is contacted with a gas containing ammonia and oxygen hydrogen production catalyst Wherein the metal oxide is a composite oxide containing a rare earth metal oxide, the rare earth metal is cerium, lanthanum or samarium, and the catalytically active metal is a Group VIII metal, tin, chromium and vanadium. Provided is a hydrogen production catalyst which is at least one metal selected from the group and reduced at 200 ° C. or higher.

酸化還元可能な金属酸化物とは、酸化状態と還元状態を可逆的に変換しうる金属をいう。   The metal oxide capable of redox refers to a metal that can reversibly convert an oxidation state and a reduction state.

化還元可能な金属酸化物は、希土類金属と、マグネシウム、チタン、ジルコニウム、イットリウム、アルミニウム、ケイ素、コバルト、鉄およびガリウムからなる群から選ばれる少なくとも1種の金属との複合酸化物であってもよく、また、希土類金属と、マグネシウム、チタン、ジルコニウム、イットリウム、アルミニウム、ケイ素、コバルト、鉄およびガリウムからなる群から選ばれる少なくとも2種の金属との複合酸化物であってもよい。 Oxidation reducible metal oxide is a composite oxide of a rare earth metal, magnesium, titanium, zirconium, yttrium, aluminum, silicon, cobalt, and at least one metal selected from the group consisting of iron and gallium Alternatively, it may be a composite oxide of a rare earth metal and at least two metals selected from the group consisting of magnesium, titanium, zirconium, yttrium, aluminum, silicon, cobalt, iron and gallium.

担体に担持される触媒活性金属は、好ましくは、ルテニウム、白金、ロジウム、パラジウム、鉄、コバルト、ニッケルなどの第VIII族金属、スズ、クロムおよびバナジウムからなる群から選ばれる少なくとも一種の金属である。 Catalytically active metal supported on the carrier is preferably ruthenium, platinum, rhodium, palladium, iron, cobalt, Group VIII metals such as nickel, tin, at least one metal selected from the group consisting of chromium and vanadium is there.

本発明による水素製造触媒は、水素気流中で200℃以上、好ましくは200〜700℃、特に好ましくは200〜600℃で加熱処理し、担体を構成する金属酸化物の一部または全部を還元した後、アンモニア酸化・分解反応に供される。水素製造触媒の還元処理は、同触媒反応器に充填する前に行っても後に行っても良い。 The hydrogen production catalyst according to the present invention is heat-treated in a hydrogen stream at 200 ° C. or higher, preferably 200 to 700 ° C., particularly preferably 200 to 600 ° C., to reduce part or all of the metal oxide constituting the support. Thereafter, it is subjected to ammonia oxidation / decomposition reaction. The reduction treatment of the hydrogen production catalyst may be performed before or after filling the catalyst reactor.

水素製造触媒の担体は例えば下記の方法で調製することができる。 The carrier for the hydrogen production catalyst can be prepared, for example, by the following method.

1.担体の前駆物質として金属塩、例えば硝酸塩を用い、これの水溶液をアンモニア水溶液で処理して金属水酸化物を析出させる。複合酸化物の場合は複数の金属塩の水溶液濃度が等モルずつになるように、金属塩濃度を調整する。   1. A metal salt such as nitrate is used as a support precursor, and an aqueous solution thereof is treated with an aqueous ammonia solution to precipitate a metal hydroxide. In the case of a complex oxide, the metal salt concentration is adjusted so that the aqueous solution concentrations of the plurality of metal salts are equimolar.

2.析出物を含む液を遠心分離に付す。   2. The liquid containing the precipitate is subjected to centrifugation.

3.析出物を回収し例えば120℃で乾燥させる。   3. The precipitate is collected and dried at 120 ° C., for example.

4.乾燥した析出物を空気中で例えば700℃で焼成し、担体を得る。   4). The dried precipitate is calcined in air at, for example, 700 ° C. to obtain a carrier.

こうして調製した担体に触媒活性金属を担持して水素製造触媒を得る方法は、例えば下記の通りである。 A method for obtaining a hydrogen production catalyst by supporting a catalytically active metal on the carrier thus prepared is as follows, for example.

1.貴金属系の金属の前駆物質として例えば金属塩化物、金属酸塩化物を用い、卑金属系の金属の前駆物質として例えば硝酸塩を用いる。   1. For example, a metal chloride or a metal acid chloride is used as a noble metal precursor, and a nitrate is used as a base metal precursor.

2.上記金属前駆物質を溶液に溶解させ、この溶液に、上記で得られた担体を、触媒活性金属の担持量が所望の値になるように分散させる。   2. The metal precursor is dissolved in a solution, and the support obtained above is dispersed in the solution so that the amount of the catalytically active metal supported becomes a desired value.

3.この分散液を加熱し、溶媒を緩やかに蒸発させる。   3. The dispersion is heated to slowly evaporate the solvent.

4.得られた粉末を例えば300℃の空気中で焼成し、水素製造触媒を得る。 4). The obtained powder is calcined in air at 300 ° C., for example, to obtain a hydrogen production catalyst.

上記の水素製造触媒を反応器内に充填し、例えば600℃に加熱しながら水素気流中で担体の還元を行う。つぎに、常温でアンモニアと空気を接触させると、まず還元状態にある担体が酸素と反応することで酸化熱が発生し、瞬時に触媒層温度が上昇する。一旦、触媒層温度がアンモニアと酸素が反応する温度(200℃)まで上昇すると、その後は自立的に上述した式(II)に従ってアンモニア酸化反応が進行する。この発熱反応(II)で生じた熱が、上述した式(I)に従って触媒活性金属の存在下にアンモニアを分解する過程で使われ、水素が生成する。 The hydrogen production catalyst is filled in the reactor, and the support is reduced in a hydrogen stream while being heated to, for example, 600 ° C. Next, when ammonia and air are brought into contact with each other at room temperature, first, the carrier in the reduced state reacts with oxygen to generate heat of oxidation, and the catalyst layer temperature rises instantaneously. Once the catalyst layer temperature rises to the temperature at which ammonia and oxygen react (200 ° C.), the ammonia oxidation reaction proceeds autonomously according to the above-described formula (II) thereafter. The heat generated in the exothermic reaction (II) is used in the process of decomposing ammonia in the presence of the catalytically active metal in accordance with the above-described formula (I) to generate hydrogen.

上述したように、本発明による酸化還元可能な金属酸化物からなる担体に触媒活性金属が担持されてなる水素製造触媒に、常温でアンモニアと空気を接触させることにより、まず還元状態にある担体が酸素と反応して酸化熱が発生し、瞬時に触媒層温度が上昇する。一旦、触媒層温度がアンモニアと酸素が反応する温度まで上昇すると、その後は自立的にアンモニア酸化反応が進行する。この発熱反応(II)で生じた熱が、上述した式(I)に従って触媒活性金属の存在下にアンモニアを分解する過程で使われ、水素が生成する。これにより、電気ヒータ等での予備加熱を不要とし、水素の製造コストを削減することができる。 As described above, by bringing ammonia and air into contact with a hydrogen production catalyst in which a catalytically active metal is supported on a support made of a redox-capable metal oxide according to the present invention at room temperature, first, the support in a reduced state is obtained. Oxidation heat is generated by reaction with oxygen, and the temperature of the catalyst layer rises instantaneously. Once the catalyst layer temperature rises to a temperature at which ammonia and oxygen react, the ammonia oxidation reaction proceeds autonomously thereafter. The heat generated in the exothermic reaction (II) is used in the process of decomposing ammonia in the presence of the catalytically active metal in accordance with the above-described formula (I) to generate hydrogen. This eliminates the need for preheating with an electric heater or the like, and reduces the hydrogen production cost.

つぎに、本発明を具体的に説明するために、実施例および比較例をいくつか挙げる。ただし実施例5〜9は本発明に合致する例として示したものであるが、実施例1〜4および10〜22は本発明に合致しない参考例として示したものである。 Next, in order to specifically explain the present invention , several examples and comparative examples are given. However, Examples 5 to 9 are shown as examples that match the present invention, while Examples 1 to 4 and 10 to 22 are shown as reference examples that do not match the present invention.

実施例1〜22
a)担体の調製
1.表1に示す各担体の前駆物質として硝酸塩を用い、この硝酸塩水溶液(濃度0.4mol/L)に金属量論量の1.2倍に相当するアンモニア水溶液(濃度28wt%)を加えて金属水酸化物を析出させた。複合酸化物の場合は複数の金属塩の水溶液濃度が等モルずつになるように、金属塩濃度を調整した。
Examples 1-22
a) Preparation of carrier Using nitrate as a precursor of each carrier shown in Table 1, an aqueous ammonia solution (concentration 28 wt%) corresponding to 1.2 times the stoichiometric amount of metal was added to the aqueous nitrate solution (concentration 0.4 mol / L) to add metallic water. Oxide was precipitated. In the case of the composite oxide, the metal salt concentration was adjusted so that the aqueous solution concentrations of the plurality of metal salts were equimolar.

2.析出物を含む液を遠心分離に付した。   2. The liquid containing the precipitate was subjected to centrifugation.

3.析出物を回収し120℃で乾燥させた。   3. The precipitate was collected and dried at 120 ° C.

4.乾燥した析出物を700℃の空気中で焼成し、それぞれ担体を得た。   4). The dried precipitates were fired in air at 700 ° C. to obtain carriers.

b)触媒活性金属の担持
1.表1に示す触媒活性金属の内、貴金属系の金属の前駆物質として、塩化ルテニウム、塩化白金酸、塩化ロジウム、硝酸パラジウムを用い、卑金属系の金属の前駆物質として硝酸塩を用いた。
b) Loading of catalytically active metal Of the catalytically active metals shown in Table 1, ruthenium chloride, chloroplatinic acid, rhodium chloride, and palladium nitrate were used as the noble metal precursors, and nitrates were used as the base metal precursors.

2.上記金属前駆物質を純水に溶解させ、この溶液に、上記で得られた担体を、触媒活性金属の担持量が2重量%(金属として)になるように分散させた。   2. The metal precursor was dissolved in pure water, and the carrier obtained above was dispersed in this solution so that the amount of the catalytically active metal supported was 2% by weight (as metal).

3.この分散液を加熱し、水を緩やかに蒸発させた。   3. This dispersion was heated to slowly evaporate the water.

4.得られた粉末を300℃の空気中で焼成し、触媒活性金属を2重量%含む水素製造触媒を得た。 4). The obtained powder was calcined in air at 300 ° C. to obtain a hydrogen production catalyst containing 2% by weight of a catalytically active metal.

比較例1〜2
1.塩化ルテニウムを水に溶解させ、この溶液に、酸化アルミニウム、酸化ケイ素を、触媒活性金属の担持量が2重量%(金属として)になるように分散させた。
Comparative Examples 1-2
1. Ruthenium chloride was dissolved in water, and aluminum oxide and silicon oxide were dispersed in this solution so that the amount of the catalytically active metal supported was 2% by weight (as metal).

2.この分散液を加熱し、水を緩やかに蒸発させた。   2. This dispersion was heated to slowly evaporate the water.

3.得られた粉末を300℃の空気中で焼成し、触媒活性金属を2重量%含む水素製造触媒を得た。 3. The obtained powder was calcined in air at 300 ° C. to obtain a hydrogen production catalyst containing 2% by weight of a catalytically active metal.

性能試験
実施例および比較例で得られた水素製造触媒について、下記の方法で性能試験を行った。
Performance test The hydrogen production catalysts obtained in Examples and Comparative Examples were subjected to performance tests by the following methods.

流通型反応器内に、表1に示す充填量で水素製造触媒を充填した後、水素気流中600℃で2時間加熱することで、同触媒を還元処理した。常温まで冷却した後、この反応器にアンモニアガスと空気を供給した。アンモニア供給量は100NL/minと一定にし、空気供給量は空気/NH=1.0とした。水素製造触媒の出口温度および水素発生量の計測を行った。水素発生量の計測は、質量分析計によりガス濃度を測定することにより行った。 The hydrogen production catalyst was charged into the flow reactor in the amount shown in Table 1, and then the catalyst was reduced by heating at 600 ° C. for 2 hours in a hydrogen stream. After cooling to room temperature, ammonia gas and air were supplied to the reactor. The ammonia supply amount was fixed at 100 NL / min, and the air supply amount was air / NH 3 = 1.0. The outlet temperature of the hydrogen production catalyst and the amount of hydrogen generation were measured. The amount of hydrogen generation was measured by measuring the gas concentration with a mass spectrometer.

試験結果を表1に示す。   The test results are shown in Table 1.



Figure 0005352343
Figure 0005352343

表1から明らかなように、本発明による水素製造触媒を用いることにより、アンモニア酸化反応を常温で起動させることができ、電気ヒータ等での予備加熱を用いることなく、アンモニアを分解して高い収率で水素を得ることができ、水素の製造コストダウンを達成することができる。 As is apparent from Table 1, by using the hydrogen production catalyst according to the present invention, the ammonia oxidation reaction can be started at room temperature, and ammonia is decomposed and high yield is obtained without using preheating with an electric heater or the like. Hydrogen can be obtained at a high rate, and the production cost of hydrogen can be reduced.

Claims (3)

酸化還元可能な金属酸化物からなる担体に触媒活性金属が担持されてなり、且つアンモニアと酸素を含むガスと接触させて水素を製造する水素製造触媒であって、前記金属酸化物は希土類金属酸化物を含む複合酸化物であり、前記希土類金属はセリウム、ランタンまたはサマリウムであり、前記触媒活性金属は第VIII族金属、スズ、クロムおよびバナジウムからなる群から選ばれる少なくとも一種の金属であり、200℃以上で還元処理した水素製造触媒。 Ri Na and catalytically active metal is supported on a carrier consisting of oxide reducible metal oxides, a hydrogen production catalyst you produce hydrogen and is contacted with a gas containing ammonia and oxygen, the metal oxide is a rare earth A composite oxide containing a metal oxide, wherein the rare earth metal is cerium, lanthanum or samarium, and the catalytically active metal is at least one metal selected from the group consisting of Group VIII metals, tin, chromium and vanadium Hydrogen production catalyst reduced at 200 ° C. or higher. 金属酸化物が希土類金属と、マグネシウム、チタン、ジルコニウム、イットリウム、アルミニウム、ケイ素、コバルト、鉄およびガリウムからなる群から選ばれる少なくとも1種の金属との複合酸化物である請求項1に記載の水素製造触媒。   2. The hydrogen according to claim 1, wherein the metal oxide is a composite oxide of a rare earth metal and at least one metal selected from the group consisting of magnesium, titanium, zirconium, yttrium, aluminum, silicon, cobalt, iron and gallium. Production catalyst. 金属酸化物が希土類金属と、マグネシウム、チタン、ジルコニウム、イットリウム、アルミニウム、ケイ素、コバルト、鉄およびガリウムからなる群から選ばれる少なくとも2種の金属との複合酸化物である請求項1に記載の水素製造触媒。   2. The hydrogen according to claim 1, wherein the metal oxide is a complex oxide of a rare earth metal and at least two metals selected from the group consisting of magnesium, titanium, zirconium, yttrium, aluminum, silicon, cobalt, iron and gallium. Production catalyst.
JP2009122792A 2009-05-21 2009-05-21 Hydrogen production catalyst Active JP5352343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122792A JP5352343B2 (en) 2009-05-21 2009-05-21 Hydrogen production catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122792A JP5352343B2 (en) 2009-05-21 2009-05-21 Hydrogen production catalyst

Publications (2)

Publication Number Publication Date
JP2010269239A JP2010269239A (en) 2010-12-02
JP5352343B2 true JP5352343B2 (en) 2013-11-27

Family

ID=43417718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122792A Active JP5352343B2 (en) 2009-05-21 2009-05-21 Hydrogen production catalyst

Country Status (1)

Country Link
JP (1) JP5352343B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015177773A1 (en) * 2014-05-22 2015-11-26 Sabic Global Technologies B.V. Mixed metal oxide catalysts for ammonia decomposition
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879029B2 (en) * 2010-11-09 2016-03-08 日立造船株式会社 Ammonia oxidation / decomposition catalyst
US8561578B2 (en) * 2010-12-30 2013-10-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Hydrogen generator and internal combustion engine provided with hydrogen generator
JP6145921B2 (en) * 2012-11-06 2017-06-14 国立大学法人 大分大学 Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus
JP6027467B2 (en) * 2013-03-14 2016-11-16 田中貴金属工業株式会社 Ammonia reforming catalyst and method for producing the same
JP6751606B2 (en) * 2016-07-01 2020-09-09 株式会社日本触媒 Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
US11891301B2 (en) 2018-08-21 2024-02-06 University Of South Carolina Ammonia decomposition catalyst systems

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841411B2 (en) * 1989-01-27 1998-12-24 日本鋼管株式会社 How to get hydrogen from ammonia
ZA90813B (en) * 1989-03-29 1991-03-27 Boc Group Inc Method of reducing the oxygen concentration in a psa nitrogen product stream
JPH0824651A (en) * 1994-07-22 1996-01-30 Nippon Shokubai Co Ltd Ammonia decomposition catalyst and method for decomposing ammonia using the same
JP3229136B2 (en) * 1994-09-26 2001-11-12 三菱重工業株式会社 Ammonia decomposition method
JP3546908B2 (en) * 1996-02-06 2004-07-28 株式会社豊田中央研究所 Ammonia purification catalyst device
JP3885139B2 (en) * 2003-10-28 2007-02-21 財団法人地球環境産業技術研究機構 Ethanol steam reforming catalyst, method for producing the same, and method for producing hydrogen
JP2006289211A (en) * 2005-04-07 2006-10-26 Ne Chemcat Corp Ammonia oxidation catalyst
GB2450484A (en) * 2007-06-25 2008-12-31 Johnson Matthey Plc Non-Zeolite base metal catalyst
JP5553484B2 (en) * 2008-04-17 2014-07-16 株式会社日本触媒 Ammonia decomposition catalyst and ammonia decomposition method
JP5547936B2 (en) * 2008-09-17 2014-07-16 株式会社日本触媒 Ammonia decomposition catalyst, production method thereof, and ammonia treatment method
JP5263677B2 (en) * 2009-03-12 2013-08-14 株式会社豊田中央研究所 Ammonia decomposition catalyst, ammonia decomposition method using the same, and ammonia decomposition reaction apparatus
JP5483705B2 (en) * 2009-03-17 2014-05-07 株式会社日本触媒 Hydrogen production catalyst and hydrogen production method using the same
JP5352323B2 (en) * 2009-04-07 2013-11-27 トヨタ自動車株式会社 Hydrogen generating apparatus and hydrogen generating method
EP2612706B1 (en) * 2010-08-31 2019-10-30 Hitachi Zosen Corporation Process for producing hydrogen
JP5879029B2 (en) * 2010-11-09 2016-03-08 日立造船株式会社 Ammonia oxidation / decomposition catalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015177773A1 (en) * 2014-05-22 2015-11-26 Sabic Global Technologies B.V. Mixed metal oxide catalysts for ammonia decomposition
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11769893B2 (en) 2021-08-17 2023-09-26 Amogy Inc. Systems and methods for processing hydrogen
US11843149B2 (en) 2021-08-17 2023-12-12 Amogy Inc. Systems and methods for processing hydrogen
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11840447B1 (en) 2022-10-06 2023-12-12 Amogy Inc. Systems and methods of processing ammonia
US11912574B1 (en) 2022-10-06 2024-02-27 Amogy Inc. Methods for reforming ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia

Also Published As

Publication number Publication date
JP2010269239A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5352343B2 (en) Hydrogen production catalyst
WO2012029122A1 (en) Ammonia oxidation/decomposition catalyst
JP5879029B2 (en) Ammonia oxidation / decomposition catalyst
JP5430224B2 (en) Hydrogen production system
JP5371542B2 (en) Hydrogen production system
JP5610408B2 (en) CeAlO3 perovskite containing transition metal
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
JP4849519B2 (en) Hydrogen generation method
JP2010240646A (en) Catalyst for producing hydrogen, and method of producing hydrogen using the same
KR101579776B1 (en) Manufacturing method of perovskite-type nickel based catalysts
JP5624343B2 (en) Hydrogen production method
JP6227023B2 (en) How to start the catalytic reactor
WO2021045101A1 (en) Methane producing method and production system
JP5580626B2 (en) Hydrogen production catalyst, hydrogen production catalyst production method, hydrogen production method, hydrogen production apparatus and fuel cell system
JP6081445B2 (en) HYDROGEN GENERATION CATALYST, HYDROGEN GENERATION CATALYST MANUFACTURING METHOD, AND HYDROGEN-CONTAINING GAS MANUFACTURING METHOD, HYDROGEN GENERATOR, FUEL CELL SYSTEM, AND SILICON-SUPPORTED CEZR BASED OXIDE
JP6286523B2 (en) How to start the catalytic reactor
JP2012213682A (en) Ammonia decomposition catalyst and ammonia decomposition method using the catalyst
JP2014058434A (en) Mesoporous metal oxide, fuel reforming catalyst and fuel reforming system
JP2005067917A (en) Co removal catalyst system and method for selective removal of co
JP6168519B2 (en) Catalyst, method for producing catalyst, method for producing hydrogen-containing gas, hydrogen production apparatus and fuel cell system
JPH0226801A (en) Method for reforming methanol
JP2013147375A (en) Hydrogen production catalyst, and method for producing hydrogen using the same
JP5389314B2 (en) Shift catalyst and preparation method thereof
KR20130113681A (en) The composition of the media for the hydrogen production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5352343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250