JP5331283B2 - プラズマの体積を制御する装置 - Google Patents

プラズマの体積を制御する装置 Download PDF

Info

Publication number
JP5331283B2
JP5331283B2 JP2001537767A JP2001537767A JP5331283B2 JP 5331283 B2 JP5331283 B2 JP 5331283B2 JP 2001537767 A JP2001537767 A JP 2001537767A JP 2001537767 A JP2001537767 A JP 2001537767A JP 5331283 B2 JP5331283 B2 JP 5331283B2
Authority
JP
Japan
Prior art keywords
plasma
magnetic
magnetic field
processing chamber
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001537767A
Other languages
English (en)
Other versions
JP2003514386A (ja
JP2003514386A5 (ja
Inventor
ベイリー・アンドリュー・ディ.,スリー
シェップ・アラン・エム.
ブライト・ニコラス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of JP2003514386A publication Critical patent/JP2003514386A/ja
Publication of JP2003514386A5 publication Critical patent/JP2003514386A5/ja
Application granted granted Critical
Publication of JP5331283B2 publication Critical patent/JP5331283B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32688Multi-cusp fields

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

関連出願の説明
本願は、同時出願された以下の米国特許出願に関連する。
出願番号09/439,661、名称「改良したプラズマ処理システム及びその方法」(代理人整理番号LAM1P122/P0527)
出願番号09/470,236、名称「動的ガス分配制御付きプラズマ処理システム」(代理人整理番号LAM1P123/P0557)
出願番号09/439,675、名称「プラズマ処理装置用温度制御システム」(代理人整理番号LAM1P124/P0558)
出願番号09/440,418、名称「均一処理速度を生成する方法及び装置」(代理人整理番号LAM1P125/P0560)
出願番号09/440,794、名称「プラズマ処理システム用材料及びガス化学物質」(代理人整理番号LAM1P128/P0561)
上で特定した各特許出願は、出典を明記することによりその開示内容全体を本願明細書の一部とする。
発明の背景
本発明は、IC製造で使用する半導体基板又はフラットパネルディスプレイ用途において使用するガラスパネル等の基板を処理する装置及び方法に関する。特に、本発明は、プラズマ処理チャンバ内部のプラズマの制御に関する。
プラズマ処理システムは、以前から存在している。長年の間に、誘導結合プラズマソース、電子サイクロトロン共鳴(ECR)ソース、容量ソース、及びその他を利用したプラズマ処理システムが、導入され、半導体基板及びガラスパネルの処理に様々な度合いで使用されてきた。
処理中には、通常、複数の堆積及び又はエッチングステップが利用される。堆積中、材料は、基板表面(ガラスパネル又はウェーハの表面等)に堆積する。例えば、SiO2 等の堆積層を、基板の表面に形成することができる。逆に、エッチングは、基板表面上の事前に定められた領域から材料を選択的に除去するために利用することができる。例えば、バイア、コンタクト、又はトレンチ等のエッチング特徴部を基板の層に形成することができる。
プラズマ処理の特定の一方法では、誘導ソースを使用して、プラズマを生成する。図1は、プラズマ処理に使用される従来技術の誘導プラズマ処理リアクタ100を例示している。通常の誘導プラズマ処理リアクタは、誘導窓106の上に配置されたアンテナ又は誘導コイル104付きのチャンバ102を含む。更に、誘導窓106と基板112との間の高周波誘導プラズマ領域に、エッチャントソースガス等のガスソース材料を送出するように準備されたガスポート110が、チャンバ102内部に設けられる。基板112は、チャンバ102内に導入され、チャック114上に配置され、このチャック114は、一般に底部電極として機能し、第二の高周波電源116と動作的に結合される。
プラズマを形成するために、ガスポート110を通じて、チャンバ102内にプロセスガスを流入させる。その後、第一の高周波電源108を使用して、誘導コイル104に電力を供給する。供給された高周波エネルギは、誘導窓106を通じて伝えられ、チャンバ102内に大きな電界が誘導される。この電界は、チャンバ内部に存在する少数の電子を加速し、プロセスガスのガス分子に衝突させる。この衝突により、イオン化及び放出の開始又はプラズマ118が生じる。この技術において広く知られているように、プロセスガスの中性ガス分子は、このように強い電界にさらされる時、電子を失い、正電荷イオンが残る。結果として、正電荷イオンと、負電荷電子と、中性ガス分子(及び又は原子)とが、プラズマ118内部に含まれる。
プラズマが形成されると、プラズマ内部の中性ガス分子は、基板表面に向けて送られる傾向が生じる。一例として、基板の位置に中性ガス分子が存在することを導くメカニズムの一つは、拡散にすることができる(つまり、チャンバ内部の分子のランダムな移動)。したがって、中性種(中性ガス分子等)の層は、通常、基板112の表面に沿って確認することができる。これに対して、底部電極114に電力を加える時、イオンは、基板に向けて加速される傾向があり、基板において、イオンは、中性種と共にエッチング反応を活性化する。
プラズマ118は、主にチャンバの上部領域(活性領域等)にとどまるが、しかしながら、プラズマの一部は、チャンバ全体を満たす傾向にある。このプラズマは、通常、プラズマを維持可能な場所へと進み、これはチャンバ内の略全域となる。例えば、プラズマは、ポンプ装置の下といった基板の下のエリア(非活性領域)を満たす場合もある。プラズマが、こうしたエリアに到達すると、このエリアでのエッチング、堆積、及び又は浸食が発生する場合があり、これは、このエリアのエッチング又は堆積材料の剥離によって、処理チャンバ内部での微粒子汚染につながる恐れがある。したがって、チャンバ部品の寿命は、通常、短くなる。
さらに、閉じ込められていないプラズマは、不均一なプラズマを形成する傾向にあり、これは、処理性能、つまりエッチング均一性、全体的なエッチング速度、エッチングプロフィール、マイクロローディング、選択性、及びその他の変動につながる恐れがある。結果として、プロセス性能の変動は、半導体回路内のデバイスの欠陥につながる恐れがあり、これは通常、製造業者のコスト増加に転換される。
プラズマを制御するための標準的なソリューションは、プラズマリアクタ内にプラズマスクリーンを設けることである。このプラズマスクリーンは、一般に、処理チャンバとプラズマスクリーンとによって画定される体積の中にプラズマを閉じ込める寸法にする。ほとんどのケースでは、このプラズマスクリーンは、更に、処理中に形成された副産物ガスを、プラズマリアクタの排気ポートへ通すことを可能にする複数の開口部を含む。
図1及び2では、プラズマ処理チャンバ100と共にプラズマスクリーン202を表示している。プラズマスクリーン202は、通常、チャンバ壁120の内周と静電チャック114の外周との間で形成される隙間を略満たすように構成される。さらに、プラズマスクリーン202は、通常、複数の穴204を含み、これは、処理中に形成された副産物ガスを逃し、排気ポート122から排気することが可能な寸法にする。同時に、穴204は、プラズマを処理チャンバ102によって画定される体積に閉じ込める寸法にする。この穴は、一般に、円、スロット、同心、及び又はその他の形状で作られる。更に又、このプラズマスクリーンは、通常、固定位置でチャンバに取り付けられる(ボルト留め等)。
しかしながら、このプラズマスクリーンには、いくつかの欠点がある。通常、処理中に処理チャンバ内部に配置される構造物は、基板の汚染を引き起こす傾向にある。これは、こうした構造物が、エッチング副産物及び堆積物等、吸収された材料が付着する部位又は表面を提供する可能性があり、これが基板上に剥離し、微粒子汚染を引き起こす恐れがあるためである。微粒子汚染は、望ましくない結果及び又は予測できない結果を生み出す可能性がある。例えば、基板表面の微粒子は、エッチングする必要がある基板の部分をブロックする場合がある。これにより、トレンチが、正しく形成されない場合があり、これは、デバイスの欠陥につながり、生産性が低下する恐れがある。更に、このプラズマスクリーンは、堆積物及びエッチング副産物の過剰な蓄積を防止するために、処理中の様々な時点で洗浄する必要がある。洗浄は、不都合なことに、基板のスループットを低下させ、通常は、生産物の損失によりコストが増加する。
加えて、このプラズマスクリーンは、副産物ガスの伝導経路を減少させる。例えば、このプラズマスクリーンは、通常、副産物ガスの伝導経路を30%ないし60%減少させる。これは、ポンプ装置の要求を増加させる傾向にある。つまり、減少した伝導経路を通じて効果的に副産物ガスを除去し、望ましいチャンバ圧を維持するために、大きなターボ分子ポンプを使用する必要がある。
更に、この穴は、処理中に詰まる可能性があり、これは、伝導性を更に減少させる恐れがある。ここでも、伝導性の低下は、ポンプシステムの正しい機能に悪影響を与える恐れがあり、つまり流量が減少する。これは、処理の変動につながり、ポンプの寿命を短くする恐れがあり、これにより更に、生産性は減少し、通常は、コストが増加する。更に又、プラズマスクリーンは、プラズマと接触し、プラズマ内の反応種が衝突する傾向にあるため、消耗アイテムとなりがちである。
加えて、チャンバにプラズマスクリーンをボルト留めすることから、一般には、通常の設置の際に破損なく使用可能な材料のタイプは、制限される。更に又、プラズマスクリーンとチャンバとの間の電気的及び熱的接触は、確保するのが困難な場合がある。
上述した観点から、処理チャンバ内部のプラズマの体積を制御する改良された手法及び装置が望まれる。
本発明は、一実施形態において、基板を処理するプラズマ処理装置に関する。この装置は、略円筒形の処理チャンバを含み、その内部では、処理のためにプラズマが点火及び維持される。この装置は、プラズマ閉じ込め装置を更に含む。このプラズマ閉じ込め装置は、処理チャンバの周囲に配置される外側磁気バケットを含む。この外側磁気バケットは、処理チャンバの軸線に対して半径方向に対称に配置される複数の第一の磁気要素を有する。この複数の第一の磁気要素は、第一の磁界を生成するように構成される。
このプラズマ閉じ込め装置は、処理チャンバ内部に配置され、外側磁気バケットよりも小さな直径を有する内側磁気バケットを更に含む。この内側磁気バケットは、処理チャンバの軸線に対して半径方向に対称に配置される複数の第二の磁気要素を有する。この複数の第二の磁気要素は、第二の磁界を生成するように構成される。このプラズマ閉じ込め装置は、第一の磁界と第二の磁界とを使用して、外側磁気バケットと内側磁気バケットとの間にプラズマ閉じ込め磁界を生成するように構成され、このプラズマ閉じ込め磁界は、少なくとも略円筒形の処理チャンバとプラズマ閉じ込め磁界とによって画定される体積の内部にプラズマを閉じ込めるとほぼ同時に、処理による副産物の通過を可能にする。
本発明は、別の実施形態において、プラズマ励起処理を使用して処理チャンバ内で基板を処理する際に、プラズマの体積を制御する方法に関する。この方法は、第一の磁気要素により、処理チャンバ内部で第一の磁界を生成することを含む。この方法は、第二の磁気要素により、処理チャンバ内部で第二の磁界を生成することを更に含む。この方法は、第一の磁界と第二の磁界とを結合させて、第一の磁気要素と第二の磁気要素との間に合成磁界を生成することを追加として含む。この方法は、処理チャンバ内部でプラズマを形成すること、及び少なくとも処理チャンバの一部と合成磁界とによって画定される体積の内部にプラズマを閉じ込めることを更に含む。
本発明は、別の実施形態において、プラズマ励起処理を使用して処理チャンバ内で基板を処理する際に、プラズマの体積を制御するプラズマ閉じ込め装置に関する。この装置は、複数の第一の磁気要素を有する第一の磁気バケットを含む。この第一の磁気要素は、処理チャンバ内部で第一の磁界を生成するように構成される。この装置は、複数の第二の磁気要素を有する第二の磁気バケットを更に含む。この第二の磁気要素は、処理チャンバ内部で第二の磁界を生成するように構成される。
この第二の磁界は、第一の磁界と結合し、第一の磁気バケットと第二の磁気バケットとの間に合成磁界が生成されるように構成される。この合成磁界は、少なくとも処理チャンバと合成磁界とによって画定される体積の内部にプラズマを閉じ込めるとほぼ同時に、処理による副産物の通過を可能にするように構成される。
好適な実施形態の詳細な説明
以下、本発明を、添付図面に例示されるそのいくつかの好適な実施形態に基づき、詳細に説明する。以下の説明においては、本発明の完全な理解を提供するために、多数の特定の詳細について述べている。しかしながら、当業者には、本発明がこうした特定の詳細の一部又は全部がなくとも実施可能であることは明らかであろう。また、本発明を不必要に曖昧にしないために、周知の処理ステップについては説明していない。
一実施形態において、本発明は、基板を処理するプラズマ処理装置を提供する。このプラズマ処理装置は、略円筒形の処理チャンバを含み、その内部では、基板の処理のためにプラズマが点火及び維持される。このプラズマ処理装置は、プラズマ閉じ込め装置を更に含み、このプラズマ閉じ込め装置は、第一の磁界を生成する外側磁気バケットと、第二の磁界を生成する内側磁気バケットとが付いた構成となる。この第一の磁界及び第二の磁界は、外側磁気バケットと内側磁気バケットとの間にプラズマ閉じ込め磁界を生成するために使用され、このプラズマ閉じ込め磁界は、少なくとも略円筒形の処理チャンバとプラズマ閉じ込め磁界とによって画定される体積の内部にプラズマを閉じ込めるとほぼ同時に、処理による副産物の通過を可能にする。
プラズマ処理は、プラズマ処理チャンバ内部のチャック上に基板が配置されている間に行われる。プロセスガスをプラズマ処理チャンバ内に流入させ、電圧を加えてプラズマを形成する。このプラズマは、処理チャンバ全体を満たす傾向にあり、活性エリアと非活性エリアとの両方に移動する。活性エリアにおいて、プラズマのイオンは、基板に向けて加速され、基板の表面で中性反応物と共に基板表面に配置された材料と反応し、基板が処理される。非活性エリアでは、通常、例えば、不均一なプラズマ密度、或いは保護されていないチャンバ領域との反応等、不利な反応条件が形成され、つまり排気ポートとの衝突が発生する可能性がある。
本発明の一態様によれば、処理チャンバ内部に磁界を導入することで、プラズマ処理リアクタ内部におけるプラズマの閉じ込めの改良が達成される。この磁界は、プラズマが処理チャンバの非活性エリアへ移動するのを防止するように構成される。詳しくは、この磁界は、プラズマが非活性エリアから離れた状態を強制し、処理チャンバの活性エリア近くにプラズマを集中させるように準備される。その結果、プラズマは、処理チャンバの事前に定められた領域(活性エリア等)に閉じ込められる。
理論に束縛されることは望まないが、磁界は、プラズマ内の負電荷電子及び正電荷イオン等の荷電粒子の方向に影響を与えるように構成可能であると考えられている。この磁界は、プラズマ内の荷電粒子を一時的に捕らえ(力線の周囲で螺旋状に動く)、最終的には磁界から離れる方向へ向きを変えさせるミラー磁界として機能するように準備することができる。言い換えるなら、荷電粒子は、この磁界を横切ろうとした場合、磁界の影響を感じて、方向転換するか、或いは跳ね返る傾向が強くなる。これにより、この磁界は、磁界により画定されるエリアを横切るプラズマの動きを抑制する。
好適な実施形態において、前記の磁界又はプラズマ閉じ込め磁界は、プラズマ処理システムに外側磁気バケットと内側磁気バケットとを導入することで形成される。この磁気バケットは、内側磁気バケットと外側磁気バケットとの間のエリアをカバーする磁界を形成する。前記のように、この磁界は、プラズマが処理チャンバの非活性エリアへ移動するのを防止し、少なくとも処理チャンバとプラズマ閉じ込め磁界によって画定される体積に、プラズマを閉じ込めるように構成される。好ましくは、外側磁気バケットは、処理チャンバの外周の周りに配置され、内側磁気バケットは、処理チャンバの外周の内側に配置される。しかしながら、実際の配置は、プラズマ処理システムそれぞれの特定の設計に応じて変化させることができる。
更に、外側磁気バケットは、好ましくは、複数の第一の磁気要素を有するように構成され、内側磁気バケットは、好ましくは、複数の第二の磁気要素を有するように構成され、これらは両方とも、処理チャンバの軸線に対して半径方向に対称に配置され、磁界を生成するように構成される。第一及び第二の磁気要素の結合磁界は、合成磁界(プラズマ閉じ込め磁界等)を生成し、この合成磁界は、少なくとも処理チャンバとプラズマ閉じ込め磁界とによって画定される体積の内部にプラズマを閉じ込めるとほぼ同時に、処理による副産物の通過を可能にする。詳しくは、このプラズマ閉じ込め磁界は、中性粒子の通過を可能にし、荷電粒子の通過をブロックするように構成される。
本発明の本態様の説明を容易にするために、図3及び4では、前記の磁気バケットを使用したプラズマ処理システム300の例を示している。このプラズマ処理システム300の例は、誘導結合プラズマリアクタとして表示されているが、しかしながら、本発明は、容量結合又はECRリアクタ等、プラズマを形成するのに適した任意のプラズマリアクタにおいて実施できる点に注意するべきである。
プラズマ処理システム300は、プラズマ処理チャンバ302を含み、その一部は、チャンバ壁303によって画定される。製造を容易にし、操作を簡略化するために、処理チャンバ302は、好ましくは略垂直なチャンバ壁303を有する略円筒形の形状となるように構成される。しかしながら、注意すべき点として、本発明は、こうした事柄に制限されず、様々な構成の処理チャンバを使用することができる。
チャンバ302の外側には、マッチングネットワーク(表示の簡略化のため図3には表示なし)を介して第一の高周波電源306に結合されるアンテナ装置304(コイルによって表示)が配置される。第一の高周波電源306は、アンテナ装置304に、約0.4MHzないし約50MHzの範囲の周波数を有する高周波エネルギを供給するように構成される。更に、誘導窓308が、アンテナ304と基板312との間に配置される。基板312は、処理されるワークを表し、これは、例えば、エッチング、堆積、その他の処理がなされる半導体基板、或いは処理によりフラットパネルディスプレイとなるガラスパネルを表す場合がある。一例として、このプラズマ処理システムの例において使用可能なアンテナ/誘導窓装置については、同じ日付で提出され、出典を明記することによりその開示内容全体を本願明細書の一部とする同時係属出願である「均一処理速度を生成する方法及び装置」(代理人整理番号LAM1P0125/P0560)において更に詳細に説明されている。
ガス注入器310は、通常、チャンバ302内に設けられる。ガス注入器310は、好ましくは、チャンバ302の内周の周辺に配置され、ガスソース材料、例えばエッチャントソースガスを、誘導窓308と基板312との間の高周波誘導プラズマ領域に放出するように準備される。代わりに、ガスソース材料は、チャンバ自体の壁に組み込まれたポートから放出すること、或いは、誘導窓に配置したシャワーヘッドを通じて放出することも可能である。一例として、このプラズマ処理システムの例において使用可能なガス分配システムについては、同じ日付で提出され、出典を明記することによりその開示内容全体を本願明細書の一部とする同時係属出願である「動的ガス分配制御付きプラズマ処理システム」(代理人整理番号LAM1P0123/P0557)において更に詳細に説明されている。
基板312は、概ね、チャンバ302内に導入され、処理中に基板を保持するように構成されたチャック314上に配置される。チャック314は、例えば、静電気力によってチャックの表面に基板312を固定するESC(静電)チャックを表すことができる。通常、チャック314は、底部電極として機能し、好ましくは、第二の高周波電源316によってバイアスが加えられる。第二の高周波電源316は、約0.4MHzないし約50MHzの範囲の周波数を有する高周波エネルギを供給するように構成される。
加えて、チャック314は、好ましくは、略円筒形の形状となり、処理チャンバ302と軸線が一致し、処理チャンバとチャックとが円筒として対称になるように準備される。しかしながら、注意すべき点として、これは、制限事項ではなく、チャックの配置は、プラズマ処理システムそれぞれの特定の設計に応じて変化させることができる。チャック314は、基板312搬入及び搬出用の第一の位置(図示せず)と、基板処理用の第二の位置(図示せず)との間で移動するように構成することもできる。
更に図3及び4を参照すると、排気ポート320が、チャンバ壁303とチャック314との間に配置される。しかしながら、注意すべき点として、排気ポートの実際の配置は、プラズマ処理システムそれぞれの特定の設計に応じて変化させることができる。好ましくは、排気ポート320は、処理中に形成された副産物ガスを排気するように構成される。更に、排気ポート320は、通常はチャンバ302の外側に位置するターボ分子ポンプ(図示せず)に結合される。当業者に広く知られるように、ターボ分子ポンプは、チャンバ302内部を適切な圧力に維持する。
更に、エッチング処理等の半導体処理の場合、処理チャンバ内の多数のパラメータを厳密に制御し、許容値の高い成果を維持する必要がある。処理チャンバの温度は、こうしたパラメータの一つである。エッチング許容値(及び結果として生じる半導体ベースのデバイスの性能)は、システム内の構成要素の温度変化に対して非常に敏感であるため、正確な制御が必要となる。このプラズマ処理システムの例において温度制御を実現するために使用可能な温度管理システムの例については、同じ日付で提出され、出典を明記することによりその開示内容全体を本願明細書の一部とする同時係属出願である「プラズマ処理装置用温度制御システム」(代理人整理番号LAM1P0124/P0558)において更に詳細に説明されている。
加えて、プラズマ処理の厳密な管理を達成することにおいて重要なもう一つの考慮事項は、プラズマ処理チャンバに利用する材料で、例えば、チャンバ壁といった内部表面に利用する材料である。更に別の重要な考慮事項は、基板の処理に使用するガス化学物質である。このプラズマ処理システムの例において使用可能な材料及びガス化学物質の両方の例については、同じ日付で提出され、出典を明記することによりその開示内容全体を本願明細書の一部とする同時係属出願である「プラズマ処理システム用材料及びガス化学物質」(代理人整理番号LAM1P0128/P0561−1)において更に詳細に説明されている。
プラズマを生成するために、プロセスガスは、ガス注入器310を通じて、チャンバ302に注入される。その後、第一の高周波電源306を使用して、電力をアンテナ304に供給し、チャンバ302内部に大きな電界を生成する。この電界は、チャンバ内に存在する少数の電子を加速し、プロセスガスのガス分子に衝突させる。この衝突により、イオン化及び放出の開始又はプラズマ320が生じる。この技術では周知であるように、プロセスガスの中性ガス分子は、こうした強力な電界にさらされる時、電子を失い、正電荷イオンが残る。結果として、正電荷イオンと、負電荷電子と、中性ガス分子とが、プラズマ320内部に含まれる。
プラズマが形成されると、プラズマ内部の中性ガス分子は、基板表面に向けて送られる傾向が生じる。一例として、基板の位置に中性ガス分子が存在することを導くメカニズムの一つは、拡散にすることができる(つまり、チャンバ内部の分子のランダムな移動)。したがって、中性種(中性ガス分子等)の層は、通常、基板112の表面に沿って確認することができる。これに対して、底部電極314に電力を加える時、イオンは、基板に向けて加速される傾向があり、基板において、イオンは、中性種と共に基板処理、つまりエッチング、堆積、及び又はその他を活性化する。
図3及び4には、更にプラズマ閉じ込め装置が表示されており、これは、外側磁気バケット352と内側磁気バケット354とを含む。前記のように、外側磁気バケット352と内側磁気バケット354とは、結合してプラズマ閉じ込め磁界356を形成するリンクした磁界を生成する。好適な実施形態において、プラズマ閉じ込め磁界356は、好ましくは、チャンバ壁303とチャック314との間に配置される。これにより、プラズマが、排気ポート318に入るのを防止するため、プラズマ320は、処理チャンバ302内部に閉じ込められる。しかしながら、注意すべき点として、処理チャンバ内でのプラズマ閉じ込め磁界の実際の配置は、プラズマ処理システムそれぞれの特定の設計に応じて変化させることができる。
図3及び4では、外側磁気バケット352と内側磁気バケット354とを同じ平面で示しているが、これらにはオフセットを付けることができると理解するべきである。唯一の要件は、外側磁気バケット352の一部と内側磁気バケット354とが、同じ平面に存在することである。重なり合っていない場合、プラズマ閉じ込め磁界は、プラズマの閉じ込めにおいて有効ではなくなる可能性がある。
図4を参照すると、プラズマ閉じ込め磁界356は、基板314と略平行に配置され、基板314の最上面によって画定される平面より下に配置されている。内部及び外側磁気バケットは、好ましくは、基板より約0.25ないし約1.5インチ(約0.635ないし約3.81cm)下に配置される。しかしながら、注意すべき点として、内部及び外側磁気バケットは、基板に近接する磁界を生成しない限り、処理チャンバの任意の場所に配置することができる。一例として、このプラズマ閉じ込め装置は、基板より上に配置し、プラズマを小さな領域に閉じ込めること、或いは、均一性リングのように、プラズマをチャンバの特定の領域に送ることが可能である。更に、このプラズマ閉じ込め磁界は、基板に平行な配置に限定されず、基板によって画定される平面に対して角度をなす位置等、他の位置に配置することができる。
有利なことに、通常は微粒子汚染を増加させ、消耗部品のコストを増加させ、洗浄ステップを増加させ、ガス流の伝導性を減少させるプラズマスクリーンの必要性は存在しない。更に、プラズマは、特定の体積に閉じ込められるため、均一性の高いプラズマ密度が得られ、これにより均一性の高いエッチングが達成可能となり、つまり、基板の中心部及びエッジ部での処理速度が略同じになる。
本発明の特徴と、従来技術を上回る利点について更に説明するために、図5及び6では、本発明の一態様による、プラズマ閉じ込め装置付きのプラズマ処理リアクタ300の平面図を示している。前記のように、プラズマ閉じ込め装置350は、外側磁気バケット352と内側磁気バケット354とを含む。好ましくは、外側磁気バケット352は、処理チャンバ302の外周の周囲に配置される。一実施形態において、外側磁気バケット352は、好ましくは、チャンバ壁の外側に配置される。しかしながら、注意すべき点として、外側磁気バケットは、チャンバ壁の内側、及び処理チャンバの内部に配置することも可能である。
これに対して、内側磁気バケット354は、処理チャンバ303の外周の内側に配置される。好ましくは、内側磁気バケット354の直径は、外側磁気バケット352の直径よりも小さい。一実施形態において、内側磁気バケット354は、チャック314の内部に配置される。しかしながら、注意すべき点として、これは制限事項ではなく、内側磁気バケットは、処理チャンバ内の様々な位置に置くことができる。一例として、内側磁気バケットは、チャックの上方に配置された均一性リングの内部に配置することができる。
図5及び6を参照すると、外側磁気バケット352は、処理チャンバ302の軸線362に関して半径方向に対称に配置された複数の第一の磁気要素360を含む。好ましくは、第一の磁気要素360は、尖頭の一方(N又はS等)が軸線362を指すように、処理チャンバの外周の周囲で軸線の方向を向く。当業者に広く知られているように、尖頭は、力線が集まる磁気要素のエリアであり、つまり、磁気要素の北側の端部又は南側の端部である。更に又、第一の磁気要素360には、第一の磁気要素360それぞれの間に間隔364が設けられるように、処理チャンバの外周に沿って、空間的なオフセットが付いている。この間隔の大きさは、プラズマ処理システムそれぞれの特定の設計に応じて変化させることができると理解するべきである。
図5及び6には、更に、処理チャンバ302の軸線362に関して半径方向に対称に配置された複数の第二の磁気要素366を含む内側磁気バケット354が表示されている。第一の磁気要素360と同じように、第二の磁気要素366は、尖頭の一方(N又はS等)が軸線362を指すように、チャックの外周の周囲で軸線の方向を向く。更に、第二の磁気要素366には、第二の磁気要素366それぞれの間に間隔368が設けられるように、チャックの外周に沿って、空間的なオフセットが付いている。ここでも、この間隔の大きさは、プラズマ処理システムそれぞれの特定の設計に応じて変化させることができると理解するべきである。
更に、第一の磁気要素360の合計数は、好ましくは、第二の磁気要素366の合計数と等しく、第一の磁気要素それぞれが、対応する第二の磁気要素を有するようになる。一実施において、第一の磁気要素の数は、約32である。しかしながら、チャンバ当たりの磁気要素の実際の数は、プラズマ処理システムそれぞれの特定の設計に応じて変化させることができる。一般には、プラズマを効果的に閉じ込める十分な強さのプラズマ閉じ込め磁界を確保するために、磁気要素の数は、十分に多くするべきである。磁気要素の数が少なすぎる場合、プラズマ閉じ込め磁界には低点が生じる可能性があり、その結果、プラズマは、望ましくないエリアに到達可能となる恐れがある。しかしながら、磁気要素が多すぎる場合、密度の増進が低下する可能性があり、これは、通常、力線に沿って尖頭での損失が最も高くなるためである。
好適な実施形態において、第一の磁気要素366の尖頭は、対応する第二の磁気要素360の尖頭と軸線が一致し、好ましくは同じ方向を指す磁気ベクトルを有する。当業者に広く知られているように、磁気要素の磁気ベクトルは、極(N/S等)の方向を定める。更に、第一の磁気要素と対応する第二の磁気要素との磁気ベクトルは、好ましくは、処理チャンバの軸線の周囲で方向性が交互になる(例えば、N/S、S/N、N/S、S/N等)。
必須ではないが好ましくは、第一の磁気要素及び第二の磁気要素は両方とも、略同じサイズで、略同じ磁束を生成する永久磁石で構成される。しかしながら、同じサイズ及び磁束を有することは、制限事項ではなく、一部の構成においては、異なる磁束及びサイズである磁気要素を有することが望ましい場合もある。一例として、プラズマの移動を抑制するのに十分な強さであるプラズマ閉じ込め磁界369を生成するのに適した磁束は、約50ないし約1500ガウスである。必要な磁束の量及び磁石のサイズに影響を与える可能性があるものには、ガス化学物質、電力、プラズマ密度、その他がある。好ましくは、この永久磁石は、十分に強力な永久磁性材料から形成され、例えば、NdFeB又はSmCo系の磁性材料から形成されたものである。一部の小さなチャンバでは、AlNiCo又はセラミックでも、十分に機能する場合がある。
このプラズマ閉じ込め装置の実施には永久磁石が利用されるが、電磁石を使用して、このプラズマ閉じ込め装置を実施することも可能である。電磁石は、磁束の量を制御する利点を提供し、優れた処理制御を達成できるようになる。しかしながら、電磁石は、システムの製造性を更に複雑にする傾向があり、そのため、実用的ではない可能性がある。
図6において、第一の磁気要素360は、第一の磁界370を生成するように構成され、第二の磁気要素366は、第二の磁界372を生成するように構成される。好ましくは、第一の磁界370の一部は、第二の磁界372の一部と重なり合う。詳しくは、磁気要素の力線の一部は、結合するように構成され、その結果として環状の隙間において生じる磁界の強さは、増加する。更に、磁気要素は、好ましくは、軸線方向を向いた磁気要素360、366の間の力線376を結合するように構成される。磁界構成要素370、372及び結合する力線376全体での牽引により、望ましいプラズマ閉じ込め磁界369が生成される。磁界370、372は、チャンバ壁303とチャック314との間の環状の隙間又は排気ポート全体で引っ張られ、環状の隙間をカバーする十分なプラズマ閉じ込め磁界369が提供される。表示では、チャックとチャンバ壁との間のエリアをカバーしているが、プラズマ閉じ込め磁界の配置は変化させることが可能であり、例えば、この磁界は、事前に定められた処理チャンバの任意の領域からプラズマを排除するために使用することができると理解するべきである。
大部分において、磁石から離れた位置で十分な磁界の強さを実現し、表示のような結合された磁界トポロジを達成するために、磁気要素の磁束の強さは、大きくする必要がある。選択された磁束が弱すぎる場合、プラズマ閉じ込め磁界において低磁界の領域が大きくなるため、このプラズマ閉じ込め磁界は、プラズマの抑制において有効ではなくなる可能性がある。したがって、好ましくは、磁界の重複を最大限にして、磁界を結合し、低磁界領域を最小化する。好ましくは、結合した第一及び第二の磁界又はプラズマ閉じ込め磁界は、プラズマがプラズマ閉じ込め磁界を通過するのを防止するのに有効な結合磁界の強さを有する。詳しくは、このプラズマ閉じ込めフィールドは、約15ないし約1500ガウス、好ましくは約50ないし約1000ガウス、更に好ましくは約100ないし約800ガウスの範囲の磁束を有する。
通常、第一の壁380は、第一の磁気要素360と処理チャンバ302との間に配置され、第二の壁382は、第二の磁気要素366と処理チャンバ302との間に配置される。第一の壁380は、例えば、チャンバ壁303を表すことが可能であり、第二の壁382は、例えば、チャック314の一部を表すことが可能である。好ましくは、壁(例えば、チャンバ壁及びチャックの一部)は、プラズマ環境に対する十分な耐久性のある非磁性材料から形成される。一例として、この壁は、SiC、SiN、石英、陽極酸化Al、窒化ホウ素、炭化ホウ素、及びその他から形成することができる。
更に、磁気要素と処理チャンバとの間の距離は、磁気要素によって生成された磁気エネルギを有効に利用するために、最小化するべきである。つまり、磁気要素が処理チャンバに近いほど、処理チャンバ内で生成される磁界の強度は大きくなる。この距離が大きい場合、望ましい磁界を得るには、大きな磁石が必要になる可能性がある。好ましくは、この距離は、約1/16ないし約1インチ(約0.22ないし約2.54cm)の間である。この距離は、磁気要素と処理チャンバとの間で使用される特定の材料に応じて変化させることができると理解するべきである。
利用される磁界に関して、一般には、基板の近隣では、ゼロ又はゼロに近い磁界を有することが好ましい。基板表面近くの磁束は、処理の均一性に悪影響を与える傾向がある。そのため、プラズマ閉じ込め装置によって生成される磁界は、好ましくは、基板上方では略ゼロの磁界を生成する。
本発明の別の態様によれば、プラズマ閉じ込め装置の第一及び第二の磁気要素によって生成された漂遊磁界を制御するために、複数の磁束プレートが提供される。この磁束プレートは、例えば、通常、磁気要素の使用されない側から突出する磁界等、磁界の存在が望ましくないエリアにおいて、磁界を短絡させる。更に、この磁束プレートは、磁界の一部の方向を変えるため、望ましいエリアに更に強力な磁界を送ることができる。好ましくは、この磁束プレートは、基板の領域で、磁界の強さを最小化し、その結果として、磁気要素を基板に近づけて配置することが可能になる。したがって、基板表面の近隣でゼロ又はゼロに近い磁界を達成することができる。
再び図4を参照すれば、プラズマ閉じ込め装置350は、漂遊磁界を制御する複数の磁束プレートを含む。一実施形態において、内部磁束プレート400は、内側磁気バケット354の内周及び最上面、つまり基板に最も近い側の周りに、連続的に配置される。内部磁束プレート400は、好ましくは、基板312に向けて送られる傾向がある漂遊磁界をブロックし、方向を変えるように準備される。好ましくは、内部磁束プレート400は、第一の構成要素402と第二の構成要素404とを含む。第一の構成要素402は、好ましくは、内側磁気バケット354の最上面に沿って配置され、第二の構成要素404は、好ましくは、内側磁気バケット354の内周に沿って配置される。更に、内部磁束プレート400は、好ましくは、内側磁気バケット354に近接して配置される。更に好ましくは、内部磁束プレート400は、内側磁気バケット354と密接に接触する。この配置は、磁界の方向を環状領域に向けて変えることにおいて、最も有利となる傾向にある。
こうした位置は、制限事項ではなく、第一及び第二の構成要素は、漂遊磁界が基板の近隣で形成されるのを十分に防止する限り、他の位置に配置することができると理解するべきである。更に、内部磁束プレートは、二つの要素に限られず、単一の構成要素、或いは二つより多くの構成要素として構成することができる。
別の実施形態においては、外部磁束プレート406が、外側磁気バケット352の外周の周りに連続的に配置され、磁界がプラズマ体積の制限に寄与するチャンバ内へと磁界の方向を変え、磁石を有効に利用する。加えて、外部磁束プレートは、外部の磁気の混乱が設計に影響を与えるのを制限する。更に、外部磁束プレート406は、好ましくは、外側磁気バケット352に近接して配置される。更に好ましくは、外部磁束プレート406は、外部磁束バケット352と密接に接触する(内部磁束プレートに関して述べたのと同じ理由による)。
一般に、これらの磁束プレートは、漂遊磁界を吸収(例えば、短絡)可能な材料によって形成される。例えば、これらの磁束プレートは、高い磁気透過性(μ)を有する材料によって形成することができる。一実施形態において、これらの磁束プレートは、冷間圧延鋼材によって形成される。別の実施形態において、これらの磁束プレートは、鉄によって形成される。
有利なことに、内部磁束プレートにより、基板表面近くに磁界を形成することなく、第二の磁気要素を基板の近くに配置することが可能となる。これにより、プラズマ閉じ込め磁場を基板の近くに配置することが可能となるため、プラズマの閉じ込めを強化することができる。加えて、磁気要素を基板の近くに配置することで、排気ポートの多くの部分をカバーすることができる。
更に、内側磁気バケットが、基板から十分に離れている時には、内部磁束プレートは必要ないと理解するべきである。この場合、内側磁気バケットの最上面と基板の底面との間の距離は、第一の磁気要素ほどのサイズ又は第一の磁気要素間の間隔ほどのサイズのいずれか小さい方にするべきである。磁石が小さい場合、力線は、磁石に近づく傾向にある。間隔が小さい場合、力線は、次の磁石に近づく傾向にある。いずれの場合においても、力線は、基板に近接しない傾向にある。一例として、磁石と基板との間の距離は、磁束プレートを使用しない時、約1ないし約2インチ(約2.54ないし約約5.08cm)にするべきである。
図3及び4では、外側磁気バケットが、処理チャンバの高さの一部にしか及ばない磁気要素を含むように表示されているが、これは要件ではない。一例として、図7は、大きな外側磁気バケット700を有する図3のプラズマ処理システム300を示している。大きな外側磁気バケットは、複数の長い磁気要素702を含み、この磁気要素702は、処理チャンバ302の最上部から処理チャンバ302の底部を超えた位置まで延びる。大きな外側磁気バケット702は、従来技術を上回る更に大きな利点を提供する。つまり、長い磁気要素702は、チャンバ壁303の近隣でチャンバ壁磁界704を生成することで、相当な数のプラズマ密度勾配が、基板から離れたチャンバ壁近くに集中する状態を強制する。これにより、基板312全体でのプラズマ密度勾配が最小化されるため、均一性が更に強化される。プラズマ閉じ込め磁界356との組み合わせにより、処理均一性は、改良されたプラズマ処理システムにおいて、多くのプラズマ処理システムにおいて可能なものよりも高い度合いまで改善される。こうしたバケット配置の例については、同じ日付で提出され、出典を明記することによりその開示内容全体を本願明細書の一部とする同時係属出願である「改良したプラズマ処理システム及びその方法」(代理人整理番号LAM1P0122/P0527)において更に詳細に説明されている。
前記から確認できるように、本発明は、従来技術を上回る多数の利点を提供する。一例として、本発明は、プラズマを閉じ込めるために構成された磁界を提供し、同時に処理による副産物ガスの通過を可能にする。これに対応して、この磁界は、プラズマが処理チャンバの非活性エリアに移動するのを略防止する。更に重要なことに、このプラズマは、処理チャンバ内部の特定の体積及び特定の位置で制御することが可能である。これにより、均一性の高いプラズマ密度が得られ、その結果として、均一性の高い処理を生み出す傾向が生じ、つまり、基板の中心部及びエッジ部が、エッチング中に略同じエッチング速度を有するようになる。更に、本発明は、有利なことに、基板表面の近隣に配置されない磁界をチャンバ内に生成する。その結果、基板表面での処理条件は、安定性が増加する。
有利なことに、通常は微粒子汚染を増加させ、消耗部品のコストを増加させ、洗浄ステップを増加させ、ガス流の伝導性を減少させるプラズマスクリーンの必要性は存在しない。これに対応して、本発明は、チャンバの伝導性を全体に増加させるため、処理ウインドウ、つまりポンプ速度、ガス流、及び圧力の範囲は拡大する。更に、伝導性を失わないため、この処理システムは、低い圧力で動作可能であり、小さなポンプを使用することができる。加えて、基板表面の周りで対称なガス流が生成され、その結果として、更に均一な処理速度が生じる。更に、本発明は、プラズマ処理システムの寿命を通じて、比較的安価である。
注意点として、好適な実施形態では、生成される磁界が、プラズマを閉じ込める十分な強度を有し、チャンバにプラズマスクリーンを導入する必要がない状態を考えているが、プラズマの閉じ込めを増強するために、プラズマスクリーンと共に本発明を利用することが可能である。一例として、プラズマを閉じ込める第一の手段として、磁界を使用することが可能であり、プラズマを閉じ込める第二の手段として、プラズマスクリーンを使用することが可能である。
更に、磁石設計の複雑性又はコストが過剰に高く、伝導性の損失については余裕がある場合、本発明の別の態様による、改良されたプラズマスクリーンを作成することができる。図8A及び8Bに関して、プラズマスクリーン802/803は、直接ボルト留めするのではなく、アルミニウム等の適切な材料であるホルダ804/806に接合させることができる。したがって、浸食率が低く、機械的強度が弱い(つまり、引張応力が低く、脆弱性が高い)物理的なプラズマスクリーン材料を、こうした更に頑丈なホルダによって、適所に保持することができる。プラズマスクリーン802/803に使用可能な材料には、Si及びSiCが含まれる。接合材料808は、適切な真空適合材料(接着剤等)を使用して、十分な電気的及び熱的接触を有するものを作成できる。更に、プラズマスクリーン802/803は、(単一又は複数のチャンバにおいて)チャンバ壁303又はチャック314に取り付けることができる。
通常とは異なるプラズマスクリーンの材料選択における柔軟性に加え、ホルダの設計の柔軟性を高め、非常に再現性の高い電気的及び熱的接触を形成し、再組立時に再現可能なシステム性能を提供することができる。例えば、高周波ガスケット及びボルト留め面を含む複雑な形状を、頑丈に設計し、SiC又はSiと比較して費用効率よく、アルミニウムによって製造することができる。もう一つの利点として、高周波接地へ戻る低インピーダンスパスを高周波マッチングシステム内にホルダを通じて提供することで、底部電極(チャック314等)からの高周波反流を確実に制御することができる。これにより、ツールの疑わしい接地リターンパスを通じた循環が減少する。追加の利点は、スクリーン材料を、費用効率よく製造できる小さなサイズに分割し、ホルダを介して取り付けることができる点である。更に、これは、基板312の搬入及び搬出を可能にするために、プラズマスクリーンの一部を移動させる必要がある場合に有利となる。更に、本発明により、真空の完全性の問題のため、或いは、プラズマに面するリアクタの内面を完全に純粋な材料にしたいことから、金属製留め具の存在によって生じる汚染の問題のため、直接ボルト留めするのが望ましくない位置に、SiC又はSi等の純粋材料のスクリーンを設置することにおいて、柔軟性を高めることができる。
更に、前記のプラズマスクリーン及びホルダ組立体は、図7に関して述べた内容と共に使用することができる。図9では、ホルダ804/806を使用して、磁気要素702の端部よりも十分に上にプラズマスクリーン802/803を取り付け可能であることを示している。以前に述べたプラズマスクリーン802/803を実施する時、プラズマ体積を壁に沿って定めるために磁界704を使用すると、問題が生じる可能性がある。表示のように、磁気要素702の端部の縁部力線900は、チャンバ902の低い位置に取り付けられたスクリーンを貫通する可能性がある。これは、プラズマがスクリーンを突破し、902の下方へと延びる能力を強化する可能性がある。スクリーンの穴は、これを防止できるように小さくすることが可能だが、しかしながら、ある程度の伝導性の損失が発生する恐れがある。代わりに、プラズマスクリーンを、縁部磁界から大きく離れた位置に配置することができる。しかしながら、これにより、場合によっては、プラズマ体積を定める磁気装置が与える利点を無効にする恐れのあるチャンバのエリアは、増加する。
本発明の特定の有利な実施形態において、プラズマスクリーン802/803は、力線906がプラズマスクリーン802/803の平面を横切るのではなく、この平面に存在する、磁石構成内の高い位置に配置することが可能である。この構成では、クロスフィールド拡散が減少し、磁気閉じ込めによって、スクリーンを通じたプラズマの拡散は局所的に抑制される。これにより、プラズマスクリーンの穴を大きくして、伝導性を増加させることが可能になる。
以上、本発明を、いくつかの好適な実施形態に基づき説明してきたが、本発明の範囲に属する変形例、置換例、及び均等物が存在する。また、本発明の方法及び装置を実施する多数の代替方法が存在することにも留意されたい。従って、前記特許請求の範囲は、本発明の趣旨と範囲内にあるこうしたすべての変形例、置換例、及び均等物を含むものとして解釈されるべきである。
本発明は、同様の参照符号が同様の要素を示す添付図面の各図において、例示的かつ非制限的に図示される。
プラズマ処理に使用される従来技術の誘導プラズマ処理リアクタを示す説明図である。 図1に示す従来技術の誘導プラズマ処理リアクタの平面図である。 本発明の一実施形態としてのプラズマ閉じ込め装置付きプラズマ処理システムの構成例を示す説明図である。 本発明の一実施形態としてのプラズマ閉じ込め装置付きプラズマ処理システムの構成例を示す破断側面図である。 本発明の一実施形態としてのプラズマ閉じ込め装置付きプラズマ処理リアクタを示す平面図である。 本発明の一実施形態としてのプラズマ閉じ込め装置付きプラズマ処理リアクタを示す破断平面図である。 本発明の一実施形態としてのチャンバ最上部からチャンバ底部に及ぶ第一の磁気要素を有する大きな外側バケットを有するプラズマ処理システムの例を示す説明図である。 本発明の一実施形態としてのプラズマ閉じ込め装置とプラズマスクリーンとを使用するプラズマ処理システムの例を示す説明図である。 本発明の一実施形態としての図8Aのプラズマスクリーンとホルダ組立体とを示す拡大側面図である。 本発明の一実施形態による、プラズマスクリーンを含む図7のプラズマ処理装置を示す説明図である。

Claims (18)

  1. 基板を処理するプラズマ処理装置であって、
    前記処理のために内部でプラズマが点火及び維持される円筒形の処理チャンバと、
    プラズマ閉じ込め装置と、
    を備え、
    前記プラズマ閉じ込め装置が、
    前記処理チャンバの外周の周りに配置され、かつ前記処理チャンバの軸線に対して半径方向に対称に配置され、複数の尖頭を有する第一の磁界を生成するように構成された複数の第一の磁気要素を有し、前記第一の磁気要素は隣接する磁気要素の磁気ベクトルが反対方向を向くように、前記第一の磁気要素の磁気ベクトルの方向を、前記処理チャンバの軸線の周りで交互に逆方向とした外側磁気バケットと、
    前記処理チャンバの内部に配置されて前記外側磁気バケットの直径よりも小さな直径を有し、かつ前記処理チャンバの軸線に対して半径方向に対称に配置され、複数の尖頭を有する第二の磁界を生成するように構成された複数の第二の磁気要素を有し、前記第二の磁気要素は隣接する磁気要素の磁気ベクトルが反対方向を向くように、前記第二の磁気要素の磁気ベクトルの方向を、前記処理チャンバの軸線の周りで交互に逆方向とした内側磁気バケットと、
    を含み、
    前記第一の磁気要素のそれぞれは、前記第二の磁気要素に対応付けられており、当該対応付けられた第一,第二の磁気要素の磁気ベクトルは、同じ方向を向いており、
    前記プラズマ閉じ込め装置が、前記第一の磁界と前記第二の磁界とを使用し、前記第一の磁界からの磁気力線と前記第二の磁界からの磁気力線とが重なり合い交叉するようにして、前記外側磁気バケットと前記内側磁気バケットとの間に、前記プラズマを閉じ込めるプラズマ閉じ込め磁界を形成し、
    前記プラズマ閉じ込め磁界は、少なくとも前記円筒形の処理チャンバと前記プラズマ閉じ込め磁界とによって画定される体積の内部にプラズマを閉じ込めると同時に、前記処理による副産物ガスの通過を可能にするように構成された
    プラズマ処理装置。
  2. 前記第一の磁界の一部が、前記第二の磁界の一部と結合し、該結合によりプラズマ閉じ込め磁界が生成され、前記プラズマ閉じ込め磁界が、前記プラズマが前記プラズマ閉じ込め磁界を通過するのを防ぐのに有効な磁界強度を有する請求項1記載のプラズマ処理装置。
  3. 前記プラズマ閉じ込め磁界が、第一の磁界と第二の磁界とによって生成され、50ないし1000ガウスの範囲の合成磁束を有する請求項1記載のプラズマ処理装置。
  4. 前記処理のために前記処理チャンバ内部に前記基板が配置されている時は、前記プラズマ閉じ込め装置が、前記基板の表面に近接する磁界を生成しない請求項1記載のプラズマ処理装置。
  5. 前記第一の磁気要素が、前記処理チャンバの軸線に沿って空間的に離間して設けられており、前記第二の磁気要素が、前記処理チャンバの軸線に沿って空間的に離間して設けられている請求項1記載のプラズマ処理装置。
  6. 前記第一の磁気要素及び前記第二の磁気要素が、永久磁石である請求項1記載のプラズマ処理装置。
  7. 前記プラズマ閉じ込め装置が、更に、前記第一の磁気要素と前記第二の磁気要素とによって生成される漂遊磁界を制御するように構成された複数の磁束プレートを含む請求項1記載のプラズマ処理装置。
  8. 前記複数の磁束プレートが、前記外側磁気バケットの外周の周囲に連続的に配置されて前記第一の磁気要素に近接する第一の磁束プレートを含む請求項7記載のプラズマ処理装置。
  9. 前記複数の磁束プレートが、前記内側磁気バケットの一部の周囲に配置される第二の磁束プレートを含み、前記第二の磁束プレートが、処理中に前記基板が前記処理チャンバ内部に配置されている時、前記漂遊磁界の方向を前記基板から離れる方向に変化させるように構成された請求項8記載のプラズマ処理装置。
  10. 前記第二の磁束プレートが、前記内側磁気バケットの頂部内周面の周囲に連続的に配置され、前記第二の磁束プレートが、前記第二の磁気要素に近接配置された請求項9記載のプラズマ処理装置。
  11. 前記複数の磁束プレートが、高磁気透過性を有する材料から形成された請求項7記載のプラズマ処理装置。
  12. 前記複数の磁束プレートが、冷間圧延鋼材から形成された請求項11記載のプラズマ処理装置。
  13. 請求項1記載のプラズマ処理装置であって、更に、
    前記処理チャンバ内部に配置されてプラズマスクリーンとプラズマスクリーン支持部とを含み、かつ、前記プラズマスクリーン支持部が前記処理チャンバに取り付けられ、前記プラズマスクリーンが前記プラズマスクリーン支持部に接合されるプラズマスクリーン装置を備えたプラズマ処理装置。
  14. 請求項1記載のプラズマ処理装置であって、
    更に、前記円筒形の処理チャンバの内周の内側に配置され、前記プラズマ処理の間、前記基板を保持するチャック装置を含み、該チャック装置が、前記円筒形の処理チャンバの内径よりも小さな外径を有する円筒形のハウジングを有すると共に、前記円筒形の処理チャンバと軸線方向に一致し、前記円筒形の処理チャンバの前記内周と前記円筒形のハウジングの前記外周とが、円筒形の対称性を有する環状の隙間をその間に画定したプラズマ処理装置。
  15. 前記基板が、前記円筒形のハウジングの上方に配置された請求項14記載のプラズマ処理装置。
  16. 前記内側磁気バケットが、前記円筒形のハウジング内に配置された請求項15記載のプラズマ処理装置。
  17. 前記プラズマ閉じ込め磁界が、前記処理のために前記処理チャンバ内部に前記基板が配置されている状態で前記基板の下方に配置された請求項16記載のプラズマ処理装置。
  18. 請求項14記載のプラズマ処理装置であって、更に、
    前記処理チャンバ内部に配置されてプラズマスクリーンとプラズマスクリーン支持部とを含み、かつ前記プラズマスクリーン支持部が前記処理チャンバに取り付けられ、前記プラズマスクリーンが前記プラズマスクリーン支持部に接合されるプラズマスクリーン装置を備えるプラズマ処理装置。
JP2001537767A 1999-11-15 2000-11-14 プラズマの体積を制御する装置 Expired - Fee Related JP5331283B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/439,759 US6322661B1 (en) 1999-11-15 1999-11-15 Method and apparatus for controlling the volume of a plasma
US09/439,759 1999-11-15
PCT/US2000/042158 WO2001037311A2 (en) 1999-11-15 2000-11-14 Method and apparatus for controlling the volume of a plasma

Publications (3)

Publication Number Publication Date
JP2003514386A JP2003514386A (ja) 2003-04-15
JP2003514386A5 JP2003514386A5 (ja) 2008-10-23
JP5331283B2 true JP5331283B2 (ja) 2013-10-30

Family

ID=23746030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001537767A Expired - Fee Related JP5331283B2 (ja) 1999-11-15 2000-11-14 プラズマの体積を制御する装置

Country Status (10)

Country Link
US (1) US6322661B1 (ja)
EP (1) EP1230667B1 (ja)
JP (1) JP5331283B2 (ja)
KR (1) KR100778258B1 (ja)
CN (2) CN1225005C (ja)
AT (1) ATE420455T1 (ja)
AU (1) AU3082201A (ja)
DE (1) DE60041350D1 (ja)
TW (1) TW530523B (ja)
WO (1) WO2001037311A2 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558504B1 (en) * 1998-12-21 2003-05-06 Research Triangle Institute Plasma processing system and method
US6518705B2 (en) 1999-11-15 2003-02-11 Lam Research Corporation Method and apparatus for producing uniform process rates
AU1606101A (en) * 1999-11-15 2001-05-30 Lam Research Corporation Materials and gas chemistries for processing systems
US6320320B1 (en) 1999-11-15 2001-11-20 Lam Research Corporation Method and apparatus for producing uniform process rates
US6744213B2 (en) * 1999-11-15 2004-06-01 Lam Research Corporation Antenna for producing uniform process rates
US20020142612A1 (en) * 2001-03-30 2002-10-03 Han-Ming Wu Shielding plate in plasma for uniformity improvement
US7374636B2 (en) * 2001-07-06 2008-05-20 Applied Materials, Inc. Method and apparatus for providing uniform plasma in a magnetic field enhanced plasma reactor
US7422654B2 (en) * 2003-02-14 2008-09-09 Applied Materials, Inc. Method and apparatus for shaping a magnetic field in a magnetic field-enhanced plasma reactor
KR100988085B1 (ko) * 2003-06-24 2010-10-18 삼성전자주식회사 고밀도 플라즈마 처리 장치
WO2008024392A2 (en) 2006-08-22 2008-02-28 Valery Godyak Inductive plasma source with high coupling efficiency
US8992725B2 (en) 2006-08-28 2015-03-31 Mattson Technology, Inc. Plasma reactor with inductie excitation of plasma and efficient removal of heat from the excitation coil
US8092605B2 (en) * 2006-11-28 2012-01-10 Applied Materials, Inc. Magnetic confinement of a plasma
US7824519B2 (en) * 2007-05-18 2010-11-02 Lam Research Corporation Variable volume plasma processing chamber and associated methods
MX345403B (es) 2009-05-13 2017-01-30 Sio2 Medical Products Inc Revestimiento por pecvd utilizando un precursor organosilícico.
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US20120160806A1 (en) * 2009-08-21 2012-06-28 Godyak Valery A Inductive plasma source
JP5367522B2 (ja) 2009-09-24 2013-12-11 東京エレクトロン株式会社 プラズマ処理装置及びシャワーヘッド
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
CN102573258B (zh) * 2010-12-15 2014-11-05 北京北方微电子基地设备工艺研究中心有限责任公司 感应耦合等离子体装置
JP5661513B2 (ja) 2011-03-03 2015-01-28 東京エレクトロン株式会社 プラズマ処理装置
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
JP5870568B2 (ja) * 2011-05-12 2016-03-01 東京エレクトロン株式会社 成膜装置、プラズマ処理装置、成膜方法及び記憶媒体
EP2776603B1 (en) 2011-11-11 2019-03-06 SiO2 Medical Products, Inc. PASSIVATION, pH PROTECTIVE OR LUBRICITY COATING FOR PHARMACEUTICAL PACKAGE, COATING PROCESS AND APPARATUS
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
CA2887352A1 (en) 2012-05-09 2013-11-14 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
EP2914762B1 (en) 2012-11-01 2020-05-13 SiO2 Medical Products, Inc. Coating inspection method
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
WO2014085348A2 (en) 2012-11-30 2014-06-05 Sio2 Medical Products, Inc. Controlling the uniformity of pecvd deposition on medical syringes, cartridges, and the like
JP5939147B2 (ja) 2012-12-14 2016-06-22 東京エレクトロン株式会社 成膜装置、基板処理装置及び成膜方法
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
KR102472240B1 (ko) 2013-03-11 2022-11-30 에스아이오2 메디컬 프로덕츠, 인크. 코팅된 패키징
WO2014144926A1 (en) 2013-03-15 2014-09-18 Sio2 Medical Products, Inc. Coating method
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
US20220102119A1 (en) * 2020-09-25 2022-03-31 Tokyo Electron Limited Plasma processing apparatus
CN113735632B (zh) * 2021-09-03 2022-05-17 重庆大学 一种磁控式空气等离子体制备氮肥***

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874084A (ja) * 1981-10-29 1983-05-04 Fujitsu Ltd 半導体装置
JPS6348826A (ja) * 1986-08-19 1988-03-01 Toshiba Corp ドライエツチング装置
KR920002864B1 (ko) * 1987-07-20 1992-04-06 가부시기가이샤 히다찌세이사꾸쇼 플라즈마 처리방법 및 그 장치
US5032205A (en) * 1989-05-05 1991-07-16 Wisconsin Alumni Research Foundation Plasma etching apparatus with surface magnetic fields
US5421891A (en) 1989-06-13 1995-06-06 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5122251A (en) 1989-06-13 1992-06-16 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5091049A (en) 1989-06-13 1992-02-25 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5429070A (en) 1989-06-13 1995-07-04 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US4990229A (en) 1989-06-13 1991-02-05 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US4948458A (en) 1989-08-14 1990-08-14 Lam Research Corporation Method and apparatus for producing magnetically-coupled planar plasma
JP3126405B2 (ja) * 1991-04-30 2001-01-22 株式会社日立製作所 スパッタデポジション装置
US5226967A (en) 1992-05-14 1993-07-13 Lam Research Corporation Plasma apparatus including dielectric window for inducing a uniform electric field in a plasma chamber
US5401350A (en) 1993-03-08 1995-03-28 Lsi Logic Corporation Coil configurations for improved uniformity in inductively coupled plasma systems
US5484485A (en) * 1993-10-29 1996-01-16 Chapman; Robert A. Plasma reactor with magnet for protecting an electrostatic chuck from the plasma
FR2715019B1 (fr) * 1994-01-13 1996-04-05 Plasmion Dispositif pour former un plasma par application de micro-ondes afin de produire un faisceau d'ions.
JP3365067B2 (ja) 1994-02-10 2003-01-08 ソニー株式会社 プラズマ装置およびこれを用いたプラズマ処理方法
US5587038A (en) 1994-06-16 1996-12-24 Princeton University Apparatus and process for producing high density axially extending plasmas
US5540800A (en) 1994-06-23 1996-07-30 Applied Materials, Inc. Inductively coupled high density plasma reactor for plasma assisted materials processing
US5811022A (en) * 1994-11-15 1998-09-22 Mattson Technology, Inc. Inductive plasma reactor
JP3585578B2 (ja) * 1995-05-30 2004-11-04 アネルバ株式会社 プラズマ処理装置
US5810932A (en) 1995-11-22 1998-09-22 Nec Corporation Plasma generating apparatus used for fabrication of semiconductor device
TW303480B (en) * 1996-01-24 1997-04-21 Applied Materials Inc Magnetically confined plasma reactor for processing a semiconductor wafer
US6054013A (en) 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
US5669975A (en) 1996-03-27 1997-09-23 Sony Corporation Plasma producing method and apparatus including an inductively-coupled plasma source
US6048435A (en) * 1996-07-03 2000-04-11 Tegal Corporation Plasma etch reactor and method for emerging films
US5824607A (en) * 1997-02-06 1998-10-20 Applied Materials, Inc. Plasma confinement for an inductively coupled plasma reactor
US6189484B1 (en) 1999-03-05 2001-02-20 Applied Materials Inc. Plasma reactor having a helicon wave high density plasma source
JP2001093699A (ja) * 1999-09-22 2001-04-06 Hitachi Kokusai Electric Inc プラズマ処理装置
US6341574B1 (en) 1999-11-15 2002-01-29 Lam Research Corporation Plasma processing systems

Also Published As

Publication number Publication date
WO2001037311A2 (en) 2001-05-25
AU3082201A (en) 2001-05-30
ATE420455T1 (de) 2009-01-15
KR100778258B1 (ko) 2007-11-22
EP1230667A2 (en) 2002-08-14
CN100437897C (zh) 2008-11-26
CN1423828A (zh) 2003-06-11
JP2003514386A (ja) 2003-04-15
US6322661B1 (en) 2001-11-27
CN1747133A (zh) 2006-03-15
TW530523B (en) 2003-05-01
CN1225005C (zh) 2005-10-26
DE60041350D1 (de) 2009-02-26
KR20020053854A (ko) 2002-07-05
EP1230667B1 (en) 2009-01-07
WO2001037311A3 (en) 2001-10-11

Similar Documents

Publication Publication Date Title
JP5331283B2 (ja) プラズマの体積を制御する装置
KR100988085B1 (ko) 고밀도 플라즈마 처리 장치
JP4527431B2 (ja) プラズマ処理装置
US7067034B2 (en) Method and apparatus for plasma forming inner magnetic bucket to control a volume of a plasma
KR100691294B1 (ko) 플라즈마의 체적을 제어하기 위해 자계를 변화시키는 방법및 장치
JP3833900B2 (ja) エッチング装置およびエッチング方法
JP2004535056A (ja) チャンバ排気内のプラズマに対する磁気障壁
JP2001257199A (ja) プラズマ処理方法及び装置
KR20020060969A (ko) 플라즈마 처리 시스템 및 그 방법
KR20000077308A (ko) 플라즈마 생성장치 및 반도체 제조방법
JP2004022935A (ja) プラズマ処理装置及びプラズマ処理方法
JP4527432B2 (ja) プラズマ処理方法及びプラズマ処理装置
KR20030067299A (ko) 유도 결합형 플라즈마 발생 장치 및 방법
JP5174848B2 (ja) プラズマ処理方法及びプラズマ処理装置
JP2001093699A (ja) プラズマ処理装置
KR100558929B1 (ko) 플라즈마 에칭 장치
KR20240003114A (ko) 윈도우 모듈 및 이를 포함하는 기판 처리 장치
JPH11251091A (ja) プラズマ発生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111205

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120625

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130301

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5331283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees