JP5310364B2 - Method for constructing underground continuous wall having shield penetration, and underground continuous wall having shield penetration - Google Patents

Method for constructing underground continuous wall having shield penetration, and underground continuous wall having shield penetration Download PDF

Info

Publication number
JP5310364B2
JP5310364B2 JP2009180999A JP2009180999A JP5310364B2 JP 5310364 B2 JP5310364 B2 JP 5310364B2 JP 2009180999 A JP2009180999 A JP 2009180999A JP 2009180999 A JP2009180999 A JP 2009180999A JP 5310364 B2 JP5310364 B2 JP 5310364B2
Authority
JP
Japan
Prior art keywords
underground continuous
continuous wall
excavation groove
stress material
shield machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009180999A
Other languages
Japanese (ja)
Other versions
JP2011032766A (en
Inventor
英俊 滝沢
明夫 稲積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2009180999A priority Critical patent/JP5310364B2/en
Publication of JP2011032766A publication Critical patent/JP2011032766A/en
Application granted granted Critical
Publication of JP5310364B2 publication Critical patent/JP5310364B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate construction of continuous underground wall through which a shield machine can penetrate. <P>SOLUTION: The construction method for a continuous underground wall 4 is first forming an excavated ditch 13 for constructing a continuous underground wall 4. A reinforcement cage having the passing portion of the shield machine without reinforcement is produced while dividing the cage into a lower side reinforcement cage 14 and an upper side reinforcement cage 22, positioning the lower side reinforcement cage 14 below the excavated ditch 13, filling foot-protection concrete 21 at the bottom of the excavated ditch 13, so that the lower end of the lower side reinforcement cage 14 is fixed in the excavated ditch 13. Then, the upper side reinforcement cage 22 is positioned above the excavated ditch 13, and concrete 23 is cast into the excavated ditch 13 till the lower side and upper side reinforcement cages 14, 22 are buried, allowing the concrete 23 to be cured. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、シールドマシンで直接貫通しやすくするため、応力材を設置しない部分を有する地中連続壁の構築方法、及びこのシールド貫通部を有する地中連続壁に関する。   The present invention relates to a method for constructing an underground continuous wall having a portion where a stress material is not installed, and an underground continuous wall having the shield penetrating portion in order to facilitate direct penetration by a shield machine.

シールド工法では、発進立坑と到達立坑を設けてシールド掘進を行うが、両立坑の間には付帯施設等を建設することを目的として中間立坑を構築する場合がある。従来のシールドマシンの性能では長距離掘進能力が高くなかったこともあり、中間立坑でシールドマシンの整備やカッタービットの交換等を行っていたが、近年ではシールドマシンの長距離掘進性能が向上し、中間立坑がこれらの役割を必要としない事例も出現してきた。   In the shield method, a shield shaft is provided with a start shaft and a reaching shaft, and an intermediate shaft may be constructed between the compatible shafts for the purpose of constructing incidental facilities. The long-distance digging capability was not high in the performance of the conventional shield machine, and maintenance of the shield machine and replacement of the cutter bit were carried out in the intermediate shaft, but in recent years the long-distance digging performance of the shield machine has improved. In some cases, intermediate shafts do not require these roles.

このような状況で、シールド掘削工程と中間立坑構築工程が合致しない場合、中間立坑の土留壁だけを先行して構築し、中間立坑構築前に、地中に埋設された状態の土留壁だけをシールドマシンで貫通することが考えられる。しかし、一般に地中連続壁の内部には鉄筋等の応力材が設けられており、シールドマシンによる切削を困難なものとしている。このような課題に関する技術が、次の特許文献に開示されている。   In this situation, if the shield excavation process and the intermediate shaft construction process do not match, only the retaining wall of the intermediate shaft will be constructed in advance, and only the retaining wall buried in the ground before the construction of the intermediate shaft will be constructed. It is possible to penetrate with a shield machine. However, in general, a stress material such as a reinforcing bar is provided inside the underground continuous wall, which makes cutting with a shield machine difficult. Techniques relating to such problems are disclosed in the following patent documents.

特許文献1は、シールドマシンの発進又は到達を行うための立坑の構築方法について開示する。この工法では、地盤に形成した掘削溝に、シールドマシン貫通部位を囲む鉄製枠を設けた鉄筋籠を建て込み、鉄製枠よりも外側の有筋部分には通常のコンクリートを打設し、鉄製枠よりも内側の無筋部分には繊維補強コンクリートを打設している。   Patent Document 1 discloses a method for constructing a shaft for starting or reaching a shield machine. In this method, a reinforcing bar with an iron frame surrounding the shield machine penetration site is built in the excavation groove formed in the ground, and ordinary concrete is placed on the barbed part outside the iron frame, A fiber-reinforced concrete is placed in the unlined part inside.

特許文献2は、シールドマシン通過後に中間立抗を構築する工法を開示する。この工法では、土留壁(地中連続壁)を構築し、この土留壁をシールドマシンで貫通させた後、土留壁の内側を掘削している。この工法では、土留壁をシールドマシンが貫通する前に、土留壁に土水圧がかかることがないので、繊維補強コンクリート等の高価な材料を用いなくても済む。   Patent Document 2 discloses a construction method for constructing an intermediate resistance after passing through a shield machine. In this method, a retaining wall (underground continuous wall) is constructed, and this retaining wall is penetrated by a shield machine, and then the inside of the retaining wall is excavated. In this construction method, since the soil water pressure is not applied to the retaining wall before the shield machine penetrates the retaining wall, it is not necessary to use an expensive material such as fiber reinforced concrete.

特開2000−130070号公報JP 2000-130070 特開2004−19099号公報JP 2004-19099 A

しかしながら、特許文献1の工法では、通常のコンクリートと繊維補強コンクリートとに分けて打設をしなければならず、作業が複雑になる上、繊維補強コンクリートが高価であることと相俟って、コスト高になってしまうという問題点があった。   However, in the construction method of Patent Document 1, it has to be divided into normal concrete and fiber reinforced concrete, and the work becomes complicated and coupled with the fact that fiber reinforced concrete is expensive, There was a problem that the cost would be high.

特許文献2の工法では、どのような工法によってシールドマシンが貫通可能な土留壁を構築するか不明である。ここで、2〜3m程度の小口径であれば、鉄筋籠に貫通部となる無筋部分を設けることも考えられる。しかし、大口径のシールドマシンが貫通するような12〜13mといった口径の場合、吊り下げ時の荷重で鉄筋籠が変形してしまう懸念があるので当該部分を無筋にすることは困難であり、一般的にはNOMST(登録商標)工法等のようにシールドマシンのカッタービットで容易に切削できる代替応力材が用いられている。   In the construction method of Patent Document 2, it is unclear which construction method is used to construct a retaining wall through which the shield machine can penetrate. Here, if it is a small diameter of about 2 to 3 m, it is also conceivable to provide an unreinforced portion that becomes a penetrating portion in the reinforcing bar rod. However, in the case of a caliber such as 12 to 13 m through which a shield machine with a large caliber penetrates, there is a concern that the reinforcing bar will be deformed by the load at the time of suspension, so it is difficult to make the part unbarred. Generally, an alternative stress material that can be easily cut with a cutter bit of a shield machine, such as a NOMST (registered trademark) method, is used.

本発明は、上記のような従来の問題に鑑みなされたものであって、シールドマシンが貫通可能な地中連続壁を、簡便に構築できる地中連続壁の構築方法を提供することを目的とするものである。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a method for constructing an underground continuous wall that can easily construct an underground continuous wall that can be penetrated by a shield machine. To do.

本発明の地中連続壁の構築方法は、
地中連続壁を構築するための掘削溝を地盤に形成し、
シールドマシンの通過部分には設置を省略している応力材を、下部側の下部応力材と上部側の上部応力材とに分けて作製し、
前記下部応力材を前記掘削溝の下部に位置決めし、前記掘削溝の底部に自硬性の根固め材を充填して、前記下部応力材の下端を前記掘削溝内に固定し、
前記上部応力材を前記下部応力材よりも上方の前記掘削溝の上部に位置決めし、前記下部応力材及び前記上部応力材が埋設されるまで自硬性充填材を前記掘削溝に充填して、前記自硬性充填材を硬化させる、ことを特徴とする。
The construction method of the underground continuous wall of the present invention,
Forming excavation grooves in the ground to build underground continuous walls,
The stress material that is not installed in the passing part of the shield machine is divided into a lower stress material on the lower side and an upper stress material on the upper side.
Positioning the lower stress material at the bottom of the excavation groove, filling the bottom of the excavation groove with a self-hardening rooting material, fixing the lower end of the lower stress material in the excavation groove,
Positioning the upper stress material above the excavation groove above the lower stress material, filling the excavation groove with a self-hardening filler until the lower stress material and the upper stress material are embedded, and The self-hardening filler is cured.

本発明によれば、シールドマシンの通過部分には設置を省略している応力材を、下部応力材と上部応力材とに分けて形成し、下部応力材を固定した状態で上部応力材を位置決めしているので、吊り下げ時における応力材の変形を抑制できる。その結果、シールドマシンによる通過部分に応力材が配置されていない地中連続壁を容易に構築できる。   According to the present invention, the stress material whose installation is omitted in the passing portion of the shield machine is divided into the lower stress material and the upper stress material, and the upper stress material is positioned in a state where the lower stress material is fixed. Therefore, the deformation of the stress material at the time of hanging can be suppressed. As a result, it is possible to easily construct an underground continuous wall in which no stress material is arranged in the passage portion by the shield machine.

本発明において、前記掘削溝を、前記地中連続壁の必要高さよりも所定深さだけ深く掘削し、前記根固め材を、前記掘削溝の底部に前記所定深さの分だけ充填することとすれば、根固め材の部分を先に硬化させても、地中連続壁として必要高さが確保されているので、設計断面に欠損が生じない。   In the present invention, the excavation groove is excavated deeper than the required height of the underground continuous wall by a predetermined depth, and the root solidifying material is filled in the bottom of the excavation groove by the predetermined depth. Then, even if the part of the root hardening material is hardened first, since the necessary height is secured as the underground continuous wall, there is no defect in the design cross section.

また、本発明において、前記下部応力材を、遠隔操作で係止状態を解除可能な係止機構を有する吊り下げ治具を介して吊り下げて前記掘削溝の下部に位置決めし、前記根固め材の硬化後に前記係止機構による係止状態を解除し、前記吊り下げ治具を前記掘削溝から引き上げることとすれば、下部応力材を掘削溝の下部に確実に固定できる。   Further, in the present invention, the lower stress material is hung via a hanging jig having a locking mechanism capable of releasing the locked state by remote operation, and is positioned at the lower portion of the excavation groove, and the rooting material If the latching state by the latching mechanism is released and the suspension jig is lifted from the excavation groove, the lower stress material can be reliably fixed to the lower part of the excavation groove.

さらに、本発明において、前記シールドマシンの通過部分が、前記地中連続壁の壁面方向に分割して形成されている場合には、大口径の通過部分を有する地中連続壁を容易に構築できる。   Furthermore, in this invention, when the passage part of the said shield machine is divided | segmented and formed in the wall surface direction of the said underground continuous wall, the underground continuous wall which has a large diameter passage part can be constructed | assembled easily. .

また、本発明の地中連続壁は、請求項1から4の何れか1項に記載の構築方法で構築されたことを特徴とする。   The underground continuous wall of the present invention is constructed by the construction method according to any one of claims 1 to 4.

本発明によれば、シールドマシンで直接貫通しやすい、応力材が設置されていない部分を有する地中連続壁を、簡便に構築できる。   ADVANTAGE OF THE INVENTION According to this invention, the underground continuous wall which has a part in which the stress material is not installed easily which can penetrate directly with a shield machine can be constructed | assembled simply.

(a),(b)は、発進立抗、中間立抗、到達立抗を説明する図である。(A), (b) is a figure explaining start resistance, intermediate resistance, and arrival resistance. シールドマシンが貫通する貫通壁部を説明する図である。It is a figure explaining the penetration wall part which a shield machine penetrates. (a)は左側掘削溝を説明する図、(b)は左側掘削溝に下部鉄筋籠を建て込んだ状態を説明する図、(c)は係止機構を説明する図である。(A) is a figure explaining a left excavation groove, (b) is a figure explaining the state which built the lower reinforcement rod in the left excavation groove, (c) is a figure explaining a locking mechanism. (a)は左側掘削溝に根固めコンクリートを充填した状態を説明する図、(b)は下部鉄筋籠との係止状態が解かれた吊り金具を引き上げている状態を説明する図、(c)は左側掘削溝に上部鉄筋籠を建て込んだ状態を説明する図、(d)は左側掘削溝の全体にコンクリートを打設した状態を説明する図である。(A) is a figure explaining the state which filled the left excavation groove with the solidified concrete, (b) is a figure explaining the state which is pulling up the suspension metal fitting with which the locked state with the lower reinforcement rod was lifted, (c) () Is a figure explaining the state which built the upper rebar rod in the left excavation groove, (d) is a figure explaining the state which laid concrete in the whole left excavation groove. (a)は中間掘削溝に下部鉄筋籠を建て込み、根固めコンクリートを充填した状態を説明する図、(b)は下部鉄筋籠との係止状態が解かれた吊り金具を引き上げている状態を説明する図、(c)は中間掘削溝に上部鉄筋籠を建て込んだ状態を説明する図である。(A) is a figure explaining the state which built the lower reinforcement rod in the intermediate excavation groove, and was filled with the solidified concrete, (b) is the state which has pulled up the suspension metal fitting which the locked state with the lower reinforcement rod was released (C) is a figure explaining the state which built the upper rebar rod in the intermediate excavation ditch. (a)は右側掘削溝に下部鉄筋籠を建て込み、根固めコンクリートを充填した状態を説明する図、(b)は右側掘削溝に上部鉄筋籠を建て込み、右側掘削溝の全体にコンクリートを打設した状態を説明する図である。(A) is a diagram illustrating a state in which a lower reinforcement rod is installed in the right excavation groove and is filled with solidified concrete. It is a figure explaining the state laid. (a)〜(d)は、シールドトンネルの構築を説明する図である。(A)-(d) is a figure explaining construction of a shield tunnel.

以下、本発明の好ましい実施形態について図面を用いて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1(a),(b)に示すように、このシールド工法では、発進立抗1と到達立抗2の間に中間立抗3構築時の土留壁となる地中連続壁4を構築する。この地中連続壁4は、シールドマシン6が到達するより前の段階に形成される。また、この地中連続壁4は、平面視矩形状をしており、シールドマシン6の進路に対向し、シールドマシン6によって貫通される貫通壁部5aと、貫通されない側壁部5bとを有する。   As shown in FIGS. 1 (a) and 1 (b), in this shield method, an underground continuous wall 4 is constructed between the starting stand 1 and the reaching stand 2 as a retaining wall when the intermediate stand 3 is constructed. . This underground continuous wall 4 is formed in a stage before the shield machine 6 arrives. Further, the underground continuous wall 4 has a rectangular shape in plan view, and has a through wall portion 5a that is opposed to the path of the shield machine 6 and is penetrated by the shield machine 6, and a side wall portion 5b that is not penetrated.

シールドマシン6が貫通する貫通壁部5aは、シールドマシン6が貫通可能な貫通部分(シールド貫通部)に、鉄筋籠等の応力材が配置されておらず、コンクリート等の充填材のみの部分となっている。これにより、シールドマシン6の貫通部分について、シールドマシン6による切削を容易にしている。図2に示す本実施形態における貫通壁部5aは、壁面方向に並ぶ複数の縦長エレメント7〜9で構成されており、3つのエレメント7〜9には、それぞれ鉄筋を配置していない無筋部分10〜12が設けられている。これらの無筋部分10〜12は全体で円形状をなし、シールドマシン6の貫通部分を構成する。   The through-wall portion 5a through which the shield machine 6 penetrates is a portion where only a filler such as concrete is not provided in a penetration portion (shield penetration portion) through which the shield machine 6 can penetrate, and a stress material such as a reinforcing bar is not disposed. It has become. Thereby, about the penetration part of shield machine 6, cutting by shield machine 6 is made easy. The through-wall portion 5a in the present embodiment shown in FIG. 2 is composed of a plurality of vertically long elements 7 to 9 arranged in the wall surface direction, and the three elements 7 to 9 have unreinforcing portions where no reinforcing bars are arranged respectively. 10 to 12 are provided. These unreasonable portions 10 to 12 form a circular shape as a whole and constitute a penetrating portion of the shield machine 6.

なお、図2の左側に位置する左側エレメント7のさらに左側や、右側に位置する右側エレメント9のさらに右側にも必要に応じてエレメントが設けられる。これらのエレメントは、鉄筋籠や鉄骨材等の応力材が全体に配置されている点で、図2の各エレメント7〜9と異なっている。同様に、地中連続壁4の一部を構成する側壁部5bも、応力材が全体に配置された複数の縦長エレメントで構成される。   2 are provided on the left side of the left side element 7 located on the left side of FIG. 2 and the right side of the right side element 9 located on the right side as needed. These elements are different from the elements 7 to 9 in FIG. 2 in that stress materials such as reinforcing bar rods and steel frames are disposed throughout. Similarly, the side wall part 5b which comprises a part of underground underground wall 4 is also comprised by the several vertically long element by which the stress material is arrange | positioned entirely.

図1(b)に示す地中連続壁4で囲まれた地盤Gは、シールドマシン6が貫通するまで掘削しないか、或いは、掘削したとしても、地表部近傍までの深さに留める。これは、貫通壁部5aが有する無筋部分を保護するためである。そして、この地盤Gは、シールドマシン6が貫通壁部5aを貫通した後に掘削が行われる。この手順で施工を行うことにより、地中連続壁4におけるシールドマシン6の貫通部分に応力材が配置されていなくても、土留めとしての機能を果たすことができる。   The ground G surrounded by the underground continuous wall 4 shown in FIG. 1 (b) is not excavated until the shield machine 6 penetrates, or even if excavated, it remains at a depth to the vicinity of the ground surface. This is for protecting the unmuscle part which the penetration wall part 5a has. And this ground G is excavated after the shield machine 6 penetrates the penetration wall part 5a. By performing the construction according to this procedure, even if no stress material is disposed in the penetrating portion of the shield machine 6 in the underground continuous wall 4, the function as a soil retaining can be achieved.

次に、地中連続壁4の構築方法について説明する。なお、シールドマシン6が貫通しない側壁部5bは公知の方法で構築される。このため、シールドマシン6が貫通する貫通壁部5aの構築方法について説明する。なお、説明の便宜上、図2に示す3つのエレメント7〜9、すなわち、無筋部分10〜12を有する左側エレメント7、中間エレメント8、及び右側エレメント9について、構築方法を説明する。   Next, the construction method of the underground continuous wall 4 will be described. In addition, the side wall part 5b which the shield machine 6 does not penetrate is constructed by a known method. For this reason, the construction method of the penetration wall part 5a which the shield machine 6 penetrates is demonstrated. For convenience of explanation, the construction method will be described with respect to the three elements 7 to 9 shown in FIG. 2, that is, the left element 7, the intermediate element 8, and the right element 9 having the unmuscle portions 10 to 12.

まず、左側エレメント7を構築するための掘削溝13(左側掘削溝13という)を地盤Gに形成する。このとき、図3(a)に示すように、左側掘削溝13の深さHは、地中連続壁4の必要高さH1よりも所定深さH2だけ深くなるように掘削(余堀り)する。これは、根固めコンクリート21(図4(a)を参照)を打設する部分を確保するためである。本実施形態では、地中連続壁4の必要長さが約44mであり、余堀り部分の深さが1mである。このため、地表から45mの深さまで左側掘削溝13を掘削する。このように、地中連続壁4の必要高さよりも深く余堀りしているので、根固めコンクリート21を先に硬化させても、地中連続壁4としての必要高さH1が確保されており、根入れ長を確保できる。   First, the excavation groove 13 (referred to as the left excavation groove 13) for constructing the left element 7 is formed in the ground G. At this time, as shown in FIG. 3 (a), the depth H of the left excavation groove 13 is excavated so as to be deeper than the required height H1 of the underground continuous wall 4 by a predetermined depth H2. To do. This is to secure a portion for placing the reinforced concrete 21 (see FIG. 4A). In this embodiment, the required length of the underground continuous wall 4 is about 44 m, and the depth of the surplus portion is 1 m. For this reason, the left excavation groove 13 is excavated to a depth of 45 m from the ground surface. Thus, since it is dug deeper than the required height of the underground continuous wall 4, the required height H <b> 1 as the underground continuous wall 4 is ensured even if the hardened concrete 21 is hardened first. It is possible to secure the root length.

また、左側掘削溝13の開口形状は平面視で長方形状であり、例えば、左側エレメント7の厚さ(貫通壁部5aの厚さ)となる短辺が1〜2mであって左側エレメント7の幅となる長辺が4〜5mの大きさとする。また、内壁が崩れてしまう不具合を抑制するため、左側掘削溝13の内部には、ベントナイトやポリマーを混ぜた安定液を注入する。   The opening shape of the left excavation groove 13 is rectangular in plan view. For example, the short side that is the thickness of the left element 7 (the thickness of the through wall 5a) is 1 to 2 m, and The long side as the width is 4 to 5 m. Moreover, in order to suppress the malfunction which an inner wall collapses, the stable liquid which mixed the bentonite and the polymer is inject | poured in the inside of the left excavation groove 13. FIG.

左側掘削溝13を形成したならば、左側エレメント7に設けられる下側鉄筋籠14を、左側掘削溝13の下部所定位置に建て込む。本実施形態において、下側鉄筋籠14は、シールドマシン6が通る部分を無筋にしている。下側鉄筋籠14の建て込みは、例えば図3(b)に示すように、長尺な吊り金具15を用いて行う。すなわち、吊り金具15の下端に設けた係止機構16によって下側鉄筋籠14を係止し、吊り金具15とともに下側鉄筋籠14をクレーンで吊り下げ、左側掘削溝13の下部に下側鉄筋籠14が位置するまで下降させる。   If the left excavation groove 13 is formed, the lower reinforcing bar 14 provided in the left element 7 is built at a predetermined position below the left excavation groove 13. In the present embodiment, the lower reinforcing bar rod 14 has no part where the shield machine 6 passes. For example, as shown in FIG. 3 (b), the lower rebar bar 14 is built using a long suspension fitting 15. That is, the lower reinforcement bar 14 is locked by the locking mechanism 16 provided at the lower end of the hanging bracket 15, the lower reinforcement bar 14 is suspended by the crane together with the hanging bracket 15, and the lower reinforcement bar 14 is placed below the left excavation groove 13. Lower until heel 14 is located.

係止機構16は、例えば図3(c)に示すように、係止ピン17を動作させる油圧ジャッキ18と油圧ジャッキ18を固定する吊り金具側プレート19で構成されている。この油圧ジャッキ18には地上からのホース(図示せず)が接続され、ホースを通じて伝達される油圧により、係止ピン17の移動を地上から遠隔操作できる。係止状態において、係止機構16は、吊り金具側プレート19の係止溝と下側鉄筋籠側プレート20の係止溝とを、係止ピン17によって貫通している。   For example, as shown in FIG. 3C, the locking mechanism 16 includes a hydraulic jack 18 that operates the locking pin 17 and a hanging metal plate 19 that fixes the hydraulic jack 18. The hydraulic jack 18 is connected to a hose (not shown) from the ground, and the movement of the locking pin 17 can be remotely operated from the ground by the hydraulic pressure transmitted through the hose. In the locked state, the locking mechanism 16 penetrates the locking groove of the hanging bracket side plate 19 and the locking groove of the lower reinforcing bar side plate 20 by the locking pin 17.

下側鉄筋籠14は、その下端が左側掘削溝13の余堀り部分には達するが、底面には接触しないように位置決めをする。下側鉄筋籠14の下端が底面に接触してしまうと、下側鉄筋籠14が傾き、本来あるべき位置からずれてしまう可能性が高くなるからである。下側鉄筋籠14を所定位置に建て込んだならば、図4(a)に示すように、左側掘削溝13の余堀部分に根固めコンクリート21を打設(充填)する。これにより、下側鉄筋籠14は、その下端部分が根固めコンクリート21に埋設され、根固めコンクリート21の硬化によって左側掘削溝13の下端部に固定される。   The lower reinforcing bar rod 14 is positioned so that the lower end reaches the surplus portion of the left excavation groove 13 but does not contact the bottom surface. This is because, if the lower end of the lower reinforcing bar rod 14 comes into contact with the bottom surface, the lower reinforcing bar rod 14 is inclined, and there is a high possibility that the lower reinforcing bar rod 14 is displaced from the original position. When the lower reinforcing bar 14 is built in a predetermined position, as shown in FIG. 4A, the solidified concrete 21 is placed (filled) in the extra excavation portion of the left excavation groove 13. As a result, the lower rebar bar 14 is embedded at the lower end portion of the left excavation groove 13 as the lower end portion of the lower reinforcing bar 14 is embedded in the root solidified concrete 21 and hardened.

下側鉄筋籠14が固定されたならば、係止機構16を動作させて係止ピン17による係止状態を解く。例えば、図3(c)に点線で示すように、油圧によって係止ピン17を後退させ、係止ピン17を鉄筋籠側プレート20の係止溝から抜き取る。これにより、下側鉄筋籠14を残した状態で、吊り金具15を上方へ移動させることができる。ここで、本実施形態では、係止機構16を油圧ジャッキ18によって構成しているので、安定液LQで満たされた左側掘削溝13であっても、地上からの遠隔操作で係止状態を確実に解除できる。   When the lower reinforcing bar rod 14 is fixed, the locking mechanism 16 is operated to release the locking state by the locking pin 17. For example, as shown by a dotted line in FIG. 3C, the locking pin 17 is retracted by hydraulic pressure, and the locking pin 17 is extracted from the locking groove of the reinforcing bar side plate 20. Thereby, the hanging metal fitting 15 can be moved upwards with the lower rebar bar 14 remaining. Here, in the present embodiment, since the locking mechanism 16 is constituted by the hydraulic jack 18, even the left excavation groove 13 filled with the stabilizing liquid LQ can be reliably locked by remote operation from the ground. Can be released.

図4(b)に示すように、係止機構16による係止状態が解かれた吊り金具15は、クレーンによって引き上げられる。吊り金具15が引き上げられた後、図4(c)に示すように、上側鉄筋籠22を、下側鉄筋籠14よりも上方の左側掘削溝13の上部に建て込む。上側鉄筋籠22もまた、シールドマシン6が通る部分を無筋にしている。上側鉄筋籠22の建て込み時も、吊り金具15を使って上側鉄筋籠22を吊り下げ、クレーンで所定位置に位置決めする。上側鉄筋籠22の建て込みが終了したならば、左側掘削溝13にコンクリート23を打設する。この場合、まず先端が根固めコンクリート21の付近に位置するまで、トレミー管(図示せず)を左側掘削溝13に挿入する。次に、コンクリート23を打設しつつ、打設された量にあわせてトレミー管を上方に移動させる。そして、図4(d)に示すように、下側鉄筋籠14及び上側鉄筋籠22が埋設されるまでコンクリート23を打設したならば、養生してコンクリート23を硬化させる。これにより、無筋部分10を有する左側エレメント7が構築される。   As shown in FIG. 4B, the hanging metal fitting 15 released from the locking state by the locking mechanism 16 is pulled up by the crane. After the suspension metal fitting 15 is pulled up, as shown in FIG. 4C, the upper reinforcing bar rod 22 is built in the upper part of the left excavation groove 13 above the lower reinforcing rod rod 14. The upper reinforcing bar rod 22 also makes the portion through which the shield machine 6 passes unreasonable. Even when the upper rebar rod 22 is built, the upper rebar rod 22 is hung using the hanging bracket 15 and positioned at a predetermined position by a crane. When the construction of the upper reinforcing bar 22 is finished, the concrete 23 is placed in the left excavation groove 13. In this case, first, a tremmy pipe (not shown) is inserted into the left excavation groove 13 until the tip is positioned in the vicinity of the solidified concrete 21. Next, while placing the concrete 23, the tremy tube is moved upward in accordance with the amount of placement. Then, as shown in FIG. 4 (d), if the concrete 23 is placed until the lower reinforcing bar 14 and the upper reinforcing bar 22 are buried, the concrete 23 is cured and hardened. Thereby, the left side element 7 having the non-muscle portion 10 is constructed.

左側エレメント7が構築されたならば、中間エレメント8を構築する。中間エレメント8の構築手順も、左側エレメント7の構築手順と同様である。例えば、図5(a)に示すように、まず中間エレメント8用の中間掘削溝24を左側エレメント7の右隣に形成する。この場合も、地中連続壁4の必要高さH1よりも所定深さH2分だけ余堀りをする。そして、中間掘削溝24の下部に下側鉄筋籠25を建て込み、余堀り部分に根固めコンクリート21を打設する。根固めコンクリート21が硬化したならば、係止機構16を動作させて吊り金具15と下側鉄筋籠25との係止状態を解除し、図5(b)に示すように、吊り金具15を引き上げる。その後、図5(c)に示すように、上側鉄筋籠26を中間掘削溝24の上部に建て込んで位置決めする。そして、中間掘削溝24の全体にコンクリート23を打設する。打設したコンクリート23の硬化により、中間エレメント8の構築が終了する。   If the left element 7 is constructed, the intermediate element 8 is constructed. The construction procedure of the intermediate element 8 is the same as the construction procedure of the left element 7. For example, as shown in FIG. 5A, first, an intermediate excavation groove 24 for the intermediate element 8 is formed on the right side of the left element 7. In this case, too, a predetermined depth H2 is dug beyond the required height H1 of the underground continuous wall 4. Then, a lower reinforcing bar 25 is built in the lower part of the intermediate excavation groove 24, and the concrete 21 is placed in the surplus portion. When the concrete foundation 21 is hardened, the locking mechanism 16 is operated to release the locking state between the hanging metal fitting 15 and the lower rebar rod 25, and the hanging metal fitting 15 is removed as shown in FIG. Pull up. Then, as shown in FIG.5 (c), the upper reinforcing bar rod 26 is built in the upper part of the intermediate excavation groove 24, and is positioned. Then, concrete 23 is placed in the entire intermediate excavation groove 24. Due to the hardening of the placed concrete 23, the construction of the intermediate element 8 is completed.

中間エレメント8が構築されたならば、右側エレメント9を構築する。右側エレメント9の構築手順も、左側エレメント7や中間エレメント8の構築手順と同様である。簡単に説明すると、図6(a)に示すように、中間エレメント8の右隣に右側掘削溝27を形成し、下側鉄筋籠28を建て込む。そして、余堀り部分に根固めコンクリート21を打設して下側鉄筋籠28を固定する。下側鉄筋籠28が固定されたら、図6(b)に示すように、上側鉄筋籠29を建て込み、右側掘削溝27の全体にコンクリート23を打設する。これにより、シールドマシン6の貫通部分が無筋部分10〜12とされた貫通壁部5aが構築される。   If the intermediate element 8 is constructed, the right element 9 is constructed. The construction procedure for the right element 9 is the same as the construction procedure for the left element 7 and the intermediate element 8. Briefly, as shown in FIG. 6A, the right excavation groove 27 is formed on the right side of the intermediate element 8, and the lower rebar bar 28 is built. Then, the reinforced concrete 21 is placed in the surplus portion to fix the lower reinforcing bar 28. When the lower rebar rod 28 is fixed, as shown in FIG. 6B, the upper rebar rod 29 is built and the concrete 23 is placed in the entire right excavation groove 27. Thereby, the penetration wall part 5a by which the penetration part of the shield machine 6 was made into the unmuscle part 10-12 is constructed | assembled.

なお、左側エレメント7、中間エレメント8、及び右側エレメント9では幅が不足する場合、前述したように、左側エレメント7の左側や右側エレメント9の右側にもエレメントを構築すればよい。   If the left element 7, the intermediate element 8, and the right element 9 have insufficient widths, the elements may be constructed on the left side of the left element 7 or the right side of the right element 9 as described above.

このように、本実施形態の構築方法では、簡易な設備のみでシールドマシン6の通過部分を無筋部分10〜12とした貫通壁部5aを簡便に構築できる。また、鉄筋籠を分割し、コンクリート23を打設しているので、鉄筋籠の変形を抑制しつつ、十分な強度を得ることができる。   Thus, in the construction method of the present embodiment, it is possible to simply construct the through-wall portion 5a in which the passing portion of the shield machine 6 is the unmuscle portions 10 to 12 with simple equipment. In addition, since the reinforcing bar is divided and the concrete 23 is placed, sufficient strength can be obtained while suppressing deformation of the reinforcing bar.

次に、この地中連続壁4を用いたシールド工法について説明する。このシールド工法では、まず図7(a)に示すように、発進立抗1を構築し、シールドマシン6を発進させる。この発進時において、中間立抗3や到達立抗2はまだ構築されていない。図7(b)に示すように、中間立抗3を構成する地中連続壁4(貫通壁部5a,側壁部5b)は、シールドマシン6の到達前に構築される。シールドマシン6は、構築された地中連続壁4の貫通壁部5aを貫通する。その際、貫通壁部5aにおける無筋部分10〜12を切削するので、シールドマシン6は容易に地中連続壁4を貫通できる。   Next, the shield method using the underground continuous wall 4 will be described. In this shield method, first, as shown in FIG. 7 (a), a starter 1 is constructed and the shield machine 6 is started. At the time of departure, the intermediate response 3 and the ultimate response 2 have not been established yet. As shown in FIG. 7 (b), the underground continuous wall 4 (through wall portion 5 a and side wall portion 5 b) constituting the intermediate wall 3 is constructed before the shield machine 6 arrives. The shield machine 6 penetrates the through wall portion 5a of the built underground continuous wall 4. In that case, since the unmuscle parts 10-12 in the penetration wall part 5a are cut, the shield machine 6 can penetrate the underground continuous wall 4 easily.

中間立抗3の構築時において、地中連続壁4で囲まれた地盤Gは、シールドマシン6の通過後に掘削される。すなわち、中間立抗3は、シールドマシン6がシールドトンネルを形成した後に完成する。このため、図7(c),(d)に示すように、中間立抗3の構築を到達立抗2の構築と並行して行うことができる。従って、中間立抗3の構築について工期の自由度を高めることができ、ひいては全体の工期を短縮させることができる。   At the time of constructing the intermediate stand 3, the ground G surrounded by the underground continuous wall 4 is excavated after passing through the shield machine 6. That is, the intermediate resistance 3 is completed after the shield machine 6 forms the shield tunnel. For this reason, as shown in FIGS. 7C and 7D, the construction of the intermediate reaction 3 can be performed in parallel with the construction of the arrival resistance 2. Accordingly, it is possible to increase the degree of freedom of the construction period for the construction of the intermediate structure 3, and thus to shorten the entire construction period.

ところで、本発明は上述の実施形態に限定されるものではなく、種々の変形が可能である。   By the way, this invention is not limited to the above-mentioned embodiment, A various deformation | transformation is possible.

前述の実施形態では、地中連続壁4に用いられる応力材として鉄筋籠14,22等を用いていたが、これに限定されない。例えば、応力材としてH型鋼を用いてもよい。この場合、H型鋼の長さを部位毎に定めることでシールドマシン6の貫通部分に対するH型鋼の設置を省略し、図2に示すような、H型鋼が設置されていない略円形の部分を有する貫通壁部を構築することができる。また、応力材としてH型鋼を用いた場合、H型鋼が十分な剛性を有しているので、自硬性充填材は、コンクリートよりも剛性の低い素材であってもよい。例えば、ソイルセメントを用いることができる。或いは、固化剤の混入によって硬化する自硬性安定液を用いてもよい。そして、自硬性安定液を用いると、この安定液をコンクリートで置換しなくても済むので、工期を短縮できる。   In the above-described embodiment, the reinforcing bar rods 14 and 22 are used as the stress material used for the underground continuous wall 4, but the present invention is not limited to this. For example, H-shaped steel may be used as the stress material. In this case, by setting the length of the H-shaped steel for each part, the installation of the H-shaped steel with respect to the penetrating portion of the shield machine 6 is omitted, and as shown in FIG. A through wall can be constructed. Further, when H-shaped steel is used as the stress material, the H-shaped steel has sufficient rigidity, so that the self-hardening filler may be a material having lower rigidity than concrete. For example, soil cement can be used. Or you may use the self-hardening stabilizer which hardens | cures by mixing of a solidifying agent. When the self-hardening stabilizing liquid is used, it is not necessary to replace the stabilizing liquid with concrete, so that the construction period can be shortened.

貫通壁部5a関し、この実施形態の事例では、左側エレメント7、中間エレメント8、右側エレメント9の順で構築されていたが、この構築順序に拘わらない。例えば、左側エレメント7、右側エレメント9、中間エレメント8の様な構築順序も考えられ、一般的に行われている。   Regarding the through wall 5a, in the example of this embodiment, the left element 7, the intermediate element 8, and the right element 9 are constructed in this order, but the construction order is not limited. For example, a construction order such as the left element 7, the right element 9, and the intermediate element 8 is also conceivable and is generally performed.

また、貫通壁部5aを壁面方向に3分割したが、分割数はこれに限定されない。2分割であっても4分割以上であってもよい。加えて、応力材の自重による変形が支障のない程度であり、応力材の重量がクレーンで吊り下げることのできる程度であれば、壁面方向への分割はしなくてもよい。   Moreover, although the penetration wall part 5a was divided into 3 in the wall surface direction, the number of divisions is not limited to this. It may be divided into two or more than four. In addition, it is not necessary to divide in the direction of the wall surface as long as the deformation due to the weight of the stress material is not hindered and the weight of the stress material can be suspended by the crane.

また、下部鉄筋籠を固定する際に根固めコンクリート21を用いたが、この構成に限定されない。下部鉄筋籠を固定できれば他の自硬性充填材を根固め材として用いてもよい。   Moreover, when the lower reinforcement rod is fixed, the reinforced concrete 21 is used, but it is not limited to this configuration. Other self-hardening fillers may be used as the rooting material as long as the lower reinforcing bar can be fixed.

さらに、中間立抗3を構成する地中連続壁4を例示したが、これに限定されない。例えば、シールドマシン6が貫通する地中連続壁基礎についても同様に構成できる。   Furthermore, although the underground continuous wall 4 which comprises the intermediate stand 3 was illustrated, it is not limited to this. For example, the underground continuous wall foundation through which the shield machine 6 penetrates can be similarly configured.

1 発進立抗
2 到達立抗
3 中間立抗
4地中連続壁
5a 貫通壁部
5b 側壁部
6 シールドマシン
7 左側エレメント
8 中間エレメント
9 右側エレメント
10〜12 無筋部分
13 左側掘削溝
14,25,28 下側鉄筋籠
15 吊り金具
16 係止機構
17 係止ピン
18 油圧ジャッキ
19 吊り金具側プレート
20 下側鉄筋籠側プレート
21 根固めコンクリート
22,26,29 上側鉄筋籠
23 コンクリート
24 中間掘削溝
27 右側掘削溝
G 地盤
H 左側掘削溝の深さ
H1 地中連続壁の必要高さ
H2 余堀り深さ
LQ 安定液
DESCRIPTION OF SYMBOLS 1 Start resistance 2 Reach resistance 3 Intermediate resistance 4 Underground continuous wall 5a Through-wall part 5b Side wall part 6 Shield machine 7 Left side element 8 Middle element 9 Right side element 10-12 Non-muscle part 13 Left side excavation groove 14, 25, 28 Reinforcing bar 15 Suspension bracket 16 Locking mechanism 17 Locking pin 18 Hydraulic jack 19 Suspension bracket side plate 20 Lower rebar saddle side plate 21 Securing concrete 22, 26, 29 Upper reinforcing bar 23 Concrete 24 Intermediate excavation groove 27 Right excavation groove G Ground H Left excavation groove depth H1 Necessary height of underground continuous wall H2 Excavation depth LQ Stabilizing liquid

Claims (5)

地中連続壁を構築するための掘削溝を地盤に形成し、
シールドマシンの通過部分には設置を省略している応力材を、下部側の下部応力材と上部側の上部応力材とに分けて作製し、
前記下部応力材を前記掘削溝の下部に位置決めし、前記掘削溝の底部に自硬性の根固め材を充填して、前記下部応力材の下端を前記掘削溝内に固定し、
前記上部応力材を前記下部応力材よりも上方の前記掘削溝の上部に位置決めし、前記下部応力材及び前記上部応力材が埋設されるまで自硬性充填材を前記掘削溝に充填して、前記自硬性充填材を硬化させる、ことを特徴とする地中連続壁の構築方法。
Forming excavation grooves in the ground to build underground continuous walls,
The stress material that is not installed in the passing part of the shield machine is divided into a lower stress material on the lower side and an upper stress material on the upper side.
Positioning the lower stress material at the bottom of the excavation groove, filling the bottom of the excavation groove with a self-hardening rooting material, fixing the lower end of the lower stress material in the excavation groove,
Positioning the upper stress material above the excavation groove above the lower stress material, filling the excavation groove with a self-hardening filler until the lower stress material and the upper stress material are embedded, and A method for constructing an underground continuous wall characterized by curing a self-hardening filler.
前記掘削溝を、前記地中連続壁の必要高さよりも所定深さだけ深く掘削し、
前記根固め材を、前記掘削溝の底部に前記所定深さの分だけ充填する、ことを特徴とする請求項1に記載の地中連続壁の構築方法。
Excavating the excavation groove by a predetermined depth deeper than the required height of the underground continuous wall;
2. The underground continuous wall construction method according to claim 1, wherein the root hardening material is filled in a bottom portion of the excavation groove by the predetermined depth.
前記下部応力材を、遠隔操作で係止状態を解除可能な係止機構を有する吊り下げ治具を介して吊り下げて前記掘削溝の下部に位置決めし、
前記根固め材の硬化後に前記係止機構による係止状態を解除し、前記吊り下げ治具を前記掘削溝から引き上げる、ことを特徴とする請求項1又は2に記載の地中連続壁の構築方法。
The lower stress material is hung through a hanging jig having a locking mechanism capable of releasing the locked state by remote operation, and positioned at the lower portion of the excavation groove,
The construction of the underground continuous wall according to claim 1 or 2, wherein after the root hardening material is cured, the locked state by the locking mechanism is released, and the hanging jig is pulled up from the excavation groove. Method.
前記シールドマシンの通過部分が、前記地中連続壁の壁面方向に分割して形成されている、ことを特徴とする請求項1から3の何れか1項に記載の地中連続壁の構築方法。   The underground continuous wall construction method according to any one of claims 1 to 3, wherein a passage portion of the shield machine is divided and formed in a wall surface direction of the underground continuous wall. . 請求項1から4の何れか1項に記載の構築方法で構築されたことを特徴とする地中連続壁。   An underground continuous wall constructed by the construction method according to any one of claims 1 to 4.
JP2009180999A 2009-08-03 2009-08-03 Method for constructing underground continuous wall having shield penetration, and underground continuous wall having shield penetration Expired - Fee Related JP5310364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009180999A JP5310364B2 (en) 2009-08-03 2009-08-03 Method for constructing underground continuous wall having shield penetration, and underground continuous wall having shield penetration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009180999A JP5310364B2 (en) 2009-08-03 2009-08-03 Method for constructing underground continuous wall having shield penetration, and underground continuous wall having shield penetration

Publications (2)

Publication Number Publication Date
JP2011032766A JP2011032766A (en) 2011-02-17
JP5310364B2 true JP5310364B2 (en) 2013-10-09

Family

ID=43762105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009180999A Expired - Fee Related JP5310364B2 (en) 2009-08-03 2009-08-03 Method for constructing underground continuous wall having shield penetration, and underground continuous wall having shield penetration

Country Status (1)

Country Link
JP (1) JP5310364B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3434011B2 (en) * 1994-04-21 2003-08-04 ケミカルグラウト株式会社 Wall construction method
JP2000130070A (en) * 1998-10-20 2000-05-09 Ohbayashi Corp Construction method for vertical shaft for shield

Also Published As

Publication number Publication date
JP2011032766A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5274145B2 (en) Cast-in-place pile and its construction method
JP5308116B2 (en) How to build a tunnel
JP2018024982A (en) Reinforcement method and reinforcement structure of existing pile foundation
JP2010236323A (en) Foundation pile structure for on-site formation, and construction method of foundation pile
JP5202708B2 (en) Steel pipe pile and pile foundation method using the steel pipe pile
KR20090007826A (en) Process of blocking water penetration and blocking earth collapsing by using impermeable wall without strut
JP6413469B2 (en) Pile foundation and pile foundation construction method
JP5229913B2 (en) Slope reinforcement method
KR100970440B1 (en) Beam penetrating after lower part casting type cast-in-place pile method
JP2008014000A (en) Construction method of cast-in-place concrete pile
JP2007162266A (en) Two-step earth retaining wall and its construction method
JP2006328666A (en) Construction method for integrating pile with column
JP2014122491A (en) Method of increasing horizontal resistance force of precast concrete pile foundation
KR101616846B1 (en) Precast concrete pile with sheath and the construction method therewith
KR101122330B1 (en) Permanent usage of Temporary earth wall as the part of the basement exterior Wall method
JP5310364B2 (en) Method for constructing underground continuous wall having shield penetration, and underground continuous wall having shield penetration
KR20120122024A (en) Uniting Method of Temporary earth wall with basement exterior Wall using Couplers and Bolts.
JP4611108B2 (en) Integrated construction method of pile and column
JP6006004B2 (en) Pile head space formation auxiliary tool, hollow ready-made pile provided with the same, pile head processing method using the hollow ready-made pile, and pile head space forming method
JP5016521B2 (en) Earth anchor and its removal method
JP2011157719A (en) Earth retaining method
KR101375155B1 (en) Construction Method of Reinforced Bar Insert Type in-situ Concrete Pile
JP2014105535A (en) Construction method for cast-in-place concrete pile
KR20130002797A (en) Reinforced concrete pile construction method for which steel pipe casing structure for steel pipe casing recovery this were used
JP5686414B2 (en) True pillar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees