JP5304894B2 - 交流電動機の制御装置および制御方法 - Google Patents

交流電動機の制御装置および制御方法 Download PDF

Info

Publication number
JP5304894B2
JP5304894B2 JP2011515817A JP2011515817A JP5304894B2 JP 5304894 B2 JP5304894 B2 JP 5304894B2 JP 2011515817 A JP2011515817 A JP 2011515817A JP 2011515817 A JP2011515817 A JP 2011515817A JP 5304894 B2 JP5304894 B2 JP 5304894B2
Authority
JP
Japan
Prior art keywords
motor
frequency
signal
carrier wave
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011515817A
Other languages
English (en)
Other versions
JPWO2010137162A1 (ja
Inventor
直義 高松
賢樹 岡村
貴章 出垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2010137162A1 publication Critical patent/JPWO2010137162A1/ja
Application granted granted Critical
Publication of JP5304894B2 publication Critical patent/JP5304894B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/08Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using pulses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

この発明は、交流電動機の制御装置および制御方法に関し、より特定的には、同期パルス幅変調(PWM)制御が適用される交流電動機の制御に関する。
直流電源を用いて交流電動機を駆動制御するために、インバータを用いた駆動方法が採用されている。たとえば、電気自動車やハイブリッド自動車、燃料電池自動車等の電動車両では、インバータによって、走行用の交流電動機の出力トルクが制御されることが一般的である。代表的には、電圧指令と搬送波との電圧比較に基づくPWM制御に従って、インバータによりスイッチングされた電圧が交流電動機に印加される。
交流電動機の制御において、たとえば特開2000−324842号公報(特許文献1)には、制御信号により複数のスイッチング素子をオン・オフ制御して直流−交流間で電力を変換し、基準電圧を出力する基準電圧発生器と、交流出力または交流入力の周波数よりも十分周波数の高い鋸歯搬送波を出力する搬送波発生器と、基準電圧のレベルと鋸歯搬送波の電圧レベルとを比較して複数のスイッチング素子をオン・オフ制御するPWM信号を出力する比較器と、交流出力または交流入力の周波数に対して対称波となる補正信号を出力する補正信号発生器とを備える電力変換装置の制御装置が開示される。
この特許文献1では、補正信号により搬送波発生器の鋸歯搬送波を交流出力または交流入力の周波数に対して対称波となる補正搬送波に補正し、この補正搬送波により比較器から出力されるPWM信号を補正する。これにより、PWM信号が交流出力または交流入力の周波数に対して対称波に補正され、補正されたPWM信号には偶数次の低次高調波が含まれないので、低次高調波による交流出力または交流入力の波形の歪みを低減することができる。
特開2000−324842号公報 特開平10−108474号公報 特開2008−086099号公報 特開2001−145387号公報 特開2008−294067号公報
しかしながら、特許文献1では、PWM信号を交流出力または交流入力の周波数に対して対称波に補正するためには、鋸歯搬送波を補正搬送波に補正するための補正信号を出力する補正信号発生器を新たに制御装置に設ける必要が生じる。この補正信号発生器を実装するにあたっては、制御装置を構成するマイコンなどにこのような制御ロジックが追加する必要があるが、特別なロジックを追加することは汎用性を損なうため、量産が難しいといったコスト上の問題が生じてしまう。
車両駆動用インバータにおいては、小型化・低コスト化の要求が厳しく、特に高トルクを発生させるときには、インバータ導通損も増加し発熱量が増大するため、この領域での過熱防止、発熱低減が必要となる。その一方で、車両駆動に必要なトルクを出力するために交流電動機に流すべき電流が制約されることから導通損を減らすことはできないため、発熱低減のためにはスイッチング損失を低減させることとなり、できるだけ少ないスイッチング回数での動作が求められている。
なお、インバータが熱的に厳しい高トルクを発生させるような動作領域は、電動車両の使われ方全体から見ると相対的に低頻度であるため、この領域で熱的に耐え得るようにインバータを設計することは無駄にインバータの大型化およびコストの増加を招いてしまい、得策ではない。なお、交流電動機は、熱容量が大きいため、インバータとの間で授受される交流電流に重畳する高調波成分が多少増加しても、比較的短時間であれば多少の損失増加を許容できる。これに対して、インバータの発熱部であるスイッチング素子は熱容量が小さく短時間で過熱してしまうことから、できるだけ少ないスイッチング回数で動作させてスイッチング損失を抑制することが必要となる。
この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、コストの増加を抑えつつ、インバータ過熱を防止させた交流電動機制御を実現することである。
本発明による交流電動機の制御装置は、インバータによって印加電圧が制御される交流電動機の制御装置であって、交流電動機を動作指令に従って動作させるための正弦波状の電圧指令信号と搬送波信号との比較に基づくパルス幅変調制御によって、インバータの制御指令を発生するパルス幅変調制御部と、電圧指令信号と搬送波信号との周波数比である同期数を整数に維持するとともに、交流電動機の動作状態に応じて同期数を切換えて搬送波信号を生成する搬送波発生部とを備える。搬送波発生部は、パルス幅変調制御部からの制御指令に従ってインバータおよび交流電動機の間で授受される交流電流が、正方向と負方向とで対称となるように、同期数に応じて電圧指令信号と搬送波信号との位相関係を調整する。
本発明による交流電動機の制御方法は、インバータによって印加電圧が制御される交流電動機の制御方法であって、交流電動機を動作指令に従って動作させるための正弦波状の電圧指令信号と搬送波信号との比較に基づくパルス幅変調制御によって、インバータの制御指令を発生するステップと、電圧指令信号と搬送波信号との周波数比である同期数を整数に維持するとともに、交流電動機の動作状態に応じて同期数を切換えて搬送波信号を生成するステップとを備える。そして、搬送波信号を生成するステップは、パルス幅変調制御部からの制御指令に従ってインバータおよび交流電動機の間で授受される交流電流が、正方向と負方向とで対称となるように、同期数に応じて電圧指令信号と搬送波信号との位相関係を調整する。
好ましくは、搬送波発生部は、搬送波信号の周波数が交流電動機の電気周波数に同期数を乗じた周波数となるように、交流電動機の電気周波数に応じて搬送波信号の周波数を制御する周波数制御部と、交流電流が正方向と負方向とで対称となるように、電圧指令信号の零点に一致させるための搬送波信号の基準位相を、同期数に応じて設定する基準位相設定部と、電圧指令信号と搬送波信号とが、基準位相設定部によって設定された位相関係を維持しながら同期するように、搬送波信号の周波数を補正する同期位相制御部とを含む。
好ましくは、搬送波信号を生成するステップは、搬送波信号の周波数が交流電動機の電気周波数に同期数を乗じた周波数となるように、交流電動機の電気周波数に応じて搬送波信号の周波数を制御するステップと、交流電流が正方向と負方向とで対称となるように、電圧指令信号の零点に一致させるための搬送波信号の基準位相を、同期数に応じて設定するステップと、電圧指令信号と搬送波信号とが、基準位相を設定するステップによって設定された位相関係を維持しながら同期するように、搬送波信号の周波数を補正するステップとを含む。
好ましくは、基準位相設定部または基準位相を設定するステップは、同期数が偶数となるときには、搬送波信号の基準位相を、交流電動機の動作状態に応じて可変に設定する。
好ましくは、周波数制御部または周波数を制御するステップは、交流電動機のトルクがしきい値以上となるときには、同期数が減少するように、交流電動機の電気周波数に応じて搬送波信号の周波数を制御する。基準位相設定部または基準位相を設定するステップは、同期数が偶数であって、かつ、交流電動機のトルクがしきい値以上となるときには、搬送波信号の基準位相を、交流電動機のトルクおよび回転数に応じて可変に設定する。
本発明によれば、専用の回路を必要とせずに、同期PWM制御において、偶数次の高周波成分が重畳することによって生じる交流電流の正負非対称性を抑制することができる。その結果、コストの増加を抑えつつ、インバータ過熱を防止させた交流電動機制御を実現できる。
本発明の実施の形態に従う交流電動機の制御装置および制御方法が適用あれるモータ駆動制御システムの全体構成図である。 図1の制御装置によるモータ制御構成の詳細を説明するブロック図である。 図2中の同期PWM制御回路の動作を説明する波形図である。 交流電動機のトルクと回転数との関係を示す図である。 図1中の同期PWM制御回路の動作を説明する波形図である。 同期数が偶数の場合のモータ電流の波形図である。 同期数が奇数の場合のモータ電流の波形図である。 同期数が偶数の場合における問題点を説明する図である。 電圧指令の零点に一致させるための搬送波の基準位相を説明する波形図である。 搬送波の基準位相を段階的に変化させたときのモータ電流およびモータ端子電圧の変化を示す波形図である。 本発明の実施の形態による交流電動機の制御装置における電流均等化制御を説明する図である。 同期数が奇数の場合における搬送波の基準位相を説明する波形図である。 図1の搬送波発生回路による搬送波の発生動作を説明するブロック図である。 同期数が6の場合の基準位相テーブルの一例を説明する図である。 同期数が6の場合の基準位相テーブルの一例を説明する図である。 図13中の同期位相制御演算部の動作を説明する波形図である。 搬送波発生回路による搬送波の発生動作を説明するためのフローチャートである。 本発明の実施の形態の変形例に従う搬送波発生回路による搬送波の発生動作を説明するブロック図である。 図18中の三角波生成ROMテーブルの一例を説明する図である。
以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。
(全体システム構成)
図1は、本発明の実施の形態に従う交流電動機の制御装置および制御方法が適用あれるモータ駆動制御システム100の全体構成図である。
図1を参照して、モータ駆動制御システム100は、直流電源10と、平滑コンデンサCと、インバータ14と、交流電動機M1と、制御装置30とを備える。
交流電動機M1は、たとえば、電動車両(ハイブリッド自動車、電気自動車や燃料電池車等の電気エネルギによって車両駆動力を発生する自動車等をいうものとする)の駆動輪を駆動するためのトルクを発生するための走行用電動機である。あるいは、この交流電動機M1は、エンジンにて駆動される発電機の機能を持つように構成されてもよく、電動機および発電機の機能を併せ持つように構成されてもよい。さらに、交流電動機M1は、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなものとしてハイブリッド自動車に組込まれるようにしてもよい。すなわち、本実施の形態において、「交流電動機」は、交流駆動の電動機、発電機および電動発電機(モータジェネレータ)を含むものである。
直流電源10は、蓄電装置を含んで構成されて、電源ライン2およびアースライン4の間に直流電圧を出力する。たとえば、直流電源10を二次電池(バッテリ)および昇降圧コンバータの組合せにより、二次電池の出力電圧を昇圧して電源ライン2およびアースライン4の間に出力する構成とすることが可能である。この場合には、昇降圧コンバータを双方向の電力変換可能なように構成して、電源ライン2およびアースライン4間の直流電圧を二次電池の充電電圧に変換する。
平滑コンデンサCは、電源ライン2およびアースライン4の間に接続される。
インバータ14は、電源ライン2およびアースライン4の間に並列に設けられる、U相上下アーム15と、V相上下アーム16と、W相上下アーム17とから成る。各相上下アームは、電源ライン2およびアースライン4の間に直列接続された電力用半導体スイッチング素子(以下、単に「スイッチング素子」と称する)から構成される。たとえば、U相上下アーム15は、スイッチング素子Qup,Qunから成り、V相上下アーム16は、スイッチング素子Qvp,Qvnから成り、W相上下アーム17は、スイッチング素子Qwp,Qwnから成る。また、スイッチング素子Qup,Qun,Qvp,Qvn,Qwp,Qwnに対して、逆並列ダイオードDup,Dun,Dvp,Dvn,Dwp,Dwnがそれぞれ接続されている。スイッチング素子Qup,Qun,Qvp,Qvn,Qwp,Qwnのオン・オフは、制御装置30からのスイッチング制御信号Gup,Gun,Gvp,Gvn,Gwp,Gwnによってそれぞれ制御される。
代表的には、交流電動機M1は、3相の永久磁石型同期電動機であり、U,V,W相の3つのコイルの一端が中性点に共通接続されて構成される。さらに、各相コイルの他端は、各相上下アーム15〜17のスイッチング素子の中間点と接続されている。
平滑コンデンサCは、直流電源10からの直流電圧を平滑化し、その平滑化した直流電圧をインバータ14へ供給する。
インバータ14は、交流電動機M1のトルク指令値が正(Trqcom>0)の場合には、平滑コンデンサCから直流電圧が供給されると制御装置30からのスイッチング制御信号Gup,Gun,Gvp,Gvn,Gwp,Gwnに応答したスイッチング動作により直流電圧を交流電圧に変換して正のトルクを出力するように交流電動機M1を駆動する。また、インバータ14は、交流電動機M1のトルク指令値が零の場合(Trqcom=0)には、スイッチング制御信号Gup,Gun,Gvp,Gvn,Gwp,Gwnに応答したスイッチング動作により、直流電圧を交流電圧に変換してトルクが零になるように交流電動機M1を駆動する。これにより、交流電動機M1は、トルク指令値Trqcomによって指定された零または正のトルクを発生するように駆動される。
さらに、モータ駆動制御システム100が搭載された電動車両の回生制動時には、交流電動機M1のトルク指令値Trqcomは負に設定される(Trqcom<0)。この場合には、インバータ14は、スイッチング制御信号Gup,Gun,Gvp,Gvn,Gwp,Gwnに応答したスイッチング動作により、交流電動機M1が発電した交流電圧を直流電圧に変換し、その変換した直流電圧を平滑コンデンサCを介して直流電源10へ供給する。なお、ここで言う回生制動とは、電動車両を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴なう制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
電流センサ20は、交流電動機M1に流れる電流を検出し、その検出したモータ電流を制御装置30へ出力する。なお、三相電流iu,iv,iwの瞬時値の和は零であるので、図1に示すように電流センサ20は2相分のモータ電流(たとえばV相電流ivおよびW相電流iw)を検出するように配置すれば足りる。
回転角センサ(レゾルバ)22は、交流電動機M1のロータ回転角θを検出し、その検出した回転角θを制御装置30へ送出する。制御装置30では、回転角θに基づき交流電動機M1の回転速度(回転数)Nmtおよび電気周波数fmを算出できる。なお、回転角センサ22については、回転角θを制御装置30にてモータ電圧や電流から直接演算することによって、配置を省略してもよい。
制御装置30は、電子制御ユニット(ECU)により構成され、予め記憶されたプログラムを図示しないCPUで実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、モータ駆動制御システム100の動作を制御する。
代表的な機能として、制御装置30は、入力されたトルク指令値Trqcom,電流センサ20からのモータ電流iv,iwおよび回転角センサ22からの回転角θ等に基づいて、正弦波状の電圧指令と搬送波との電圧比較に基づくPWM制御によって、交流電動機M1がトルク指令値Trqcomに従ったトルクを出力するように、インバータ14を制御するためのスイッチング制御信号Gup,Gun,Gvp,Gvn,Gwp,Gwnを生成して、インバータ14へ出力する。
制御装置30は、PWM制御によるモータ制御構成として、電圧指令演算部302と、同期PWM制御回路304と、搬送波発生回路306とを含む。
電圧指令演算部302は、交流電動機M1のトルク指令値Trqcom、電流センサ20からのモータ電流iv,iwおよび回転角センサ22からの回転角θに基づいて、交流電動機M1のU相、V相、W相の各相コイルに印加する電圧の操作量(以下、電圧指令とも称する)Vu,Vv,Vwを演算する。
搬送波発生回路306は、回転角センサ22の出力(回転角θ)に基づいて、交流電動機M1の電気周波数fmを演算する。そして、搬送波発生回路306は、交流電動機M1の電気周波数fmに基づいて、同期PWM制御で使用される搬送波周波数fcを演算し、その演算した搬送波周波数fcの搬送波を発生する。なお、搬送波は、周波数fcの三角波やのこぎり波によって構成することができる。以下では、三角波を例示する。
ここで、同期PWM制御では、交流電動機M1の電気周波数fmに対する搬送波周波数fcの周波数比fc/fmがk倍(k:2以上の整数)となるように、搬送波周波数fcが制御される。これにより、同期PWMでは、交流電動機M1の電気角360度(1周期)に含まれる搬送波のパルス数は一定値kに制御される。なお、本実施の形態では、交流電動機M1の電気周波数に同期させて正負1パルスの矩形波電圧が印加される、いわゆる矩形波電圧制御とは区別して同期PWM制御を適用するため、上記のようにk≧2としている。
同期PWM制御では、周波数比fc/fmを整数倍に維持するとともに、搬送波周波数fcを低く維持するために、電気周波数fmに応じて周波数比fc/fmが切換えられる。さらに、本実施の形態では、後述するように、高トルク出力時のインバータ損失を低減する観点から、交流電動機M1の動作状態(トルクおよび回転数)に応じて周波数比fc/fmを可変に設定する。
相電圧指令も、交流電動機M1の電気周波数に同期するので、この結果、搬送波および相電圧指令の周波数比もk:1となる。
同期PWM制御回路304は、搬送波発生回路306の発生した搬送波と、電圧指令演算部302が演算した正弦波状の各相電圧指令Vu,Vv,Vwとの比較を行ない、その比較結果に基づいてインバータ14を制御するためのスイッチング制御信号Gup,Gun,Gvp,Gvn,Gwp,Gwnを発生する。
具体的には、同期PWM制御回路304は、各相電圧指令Vu,Vv,Vwに対応付けられた比較器40,42,44と、各比較器40,42,44に対応付けられたNOT回路50,52,54とを含む。
比較器40は、正弦波状のU相電圧指令Vuと搬送波(三角波)とを比較して比較結果を出力する。比較器40から出力された比較結果信号は、スイッチング制御信号GunとしてU相上アームを構成するスイッチング素子Qunのゲートに入力される。また、NOT回路50で反転された比較結果信号は、スイッチング制御信号GupとしてU相下アームを構成するスイッチング素子Qupのゲートに入力される。
比較器42,44およびNOT回路52,54においても同様の方法によって、対応の電圧指令と搬送波との比較動作および比較結果信号の反転動作が行なわれることによってスイッチング制御信号Gvp,Gvn,Gwp,Gwnが生成され、スイッチング素子Qvp,Qvn,Qwp,Qwnのゲートにそれぞれ入力される。
図2は、図1の制御装置30によるモータ制御構成の詳細を説明するブロック図である。図2に示された各ブロックは、制御装置30によるハードウェア的あるいはソフトウェア的な処理によって実現される。
図2を参照して、制御装置30は、電流指令生成部400と、座標変換部410,440と、回転数演算部420と、PI演算部430と、同期PWM制御回路304(図1)と、搬送波発生回路306(図1)とを備える。なお、電流指令生成部400、座標変換部410,440、回転数演算部420およびPI演算部430は、図1に示した電圧指令演算部302を構成する。
電流指令生成部400は、予め作成されたテーブル等に従って、トルク指令値Trqcomに応じたd軸電流指令値Idcomおよびq軸電流指令値Iqcomを生成する。
座標変換部410は、回転角センサ22によって検出される交流電動機M1の回転角θを用いた座標変換(3相→2相)により、電流センサ20によって検出されたV相電流ivおよびW相電流iwを基に、d軸電流Idおよびq軸電流Iqを算出する。
回転数演算部420は、回転角センサ22からの出力(回転角θ)に基づいて、交流電動機M1の回転数Nmtを演算する。
PI演算部430には、d軸電流の指令値に対する偏差ΔId(ΔId=Idcom−Id)およびq軸電流の指令値に対する偏差ΔIq(ΔIq=Iqcom−Iq)が入力される。PI演算部430は、d軸電流偏差ΔIdおよびq軸電流偏差ΔIqについて所定ゲインによるPI演算を行って制御偏差を求め、この制御偏差に応じたd軸電圧指令Vd♯およびq軸電圧指令Vq♯を生成する。
座標変換部440は、交流電動機M1の回転角θを用いた座標変換(2相→3相)によって、d軸電圧指令Vd♯およびq軸電圧指令Vq♯を各相電圧指令Vu,Vv,Vwに変換する。なお、d軸,q軸電圧指令Vd♯,Vq♯から各相電圧指令Vu,Vv,Vwへの変換には、インバータ14の入力電圧も反映される。
同期PWM制御回路304は、図3に示すように、搬送波発生回路306からの搬送波270と座標変換部440からの電圧指令(Vu,Vv,Vwを包括的に示すもの)280との比較に基づき、インバータ14の各相の上下アームを構成するスイッチング素子のオン・オフを制御することによって、交流電動機M1の各相に擬似正弦波電圧を生成する。
ここで、同期PWM制御では、図1で説明したように、搬送波発生回路306は、交流電動機M1の回転数に従う電圧指令の周波数(すなわち、電気周波数fm)のk倍となるように、交流電動機M1の回転数に応じて搬送波周波数fcを制御する。そして、搬送波発生回路306は、電圧指令280の位相と同期させて、搬送波270を生成する。これにより、同期PWM制御では、交流電動機M1の1回転(電気角360度)中のパルス数kが所定個数に制御される。
以下では、搬送波周波数fcが電気周波数fmのk倍であってパルス数がkであるときに同期数がkというように、周波数比およびパルス数を「同期数」という用語を用いて説明する。この同期数は、交流電動機M1として三相モータを使用する場合には、交流電動機M1に印加されるパルス幅電圧の正負対称性を考慮して、3の倍数に設定されるのが一般的である。この場合、交流電動機M1の1回転中のパルス数は3n(n:自然数)個に制御される。
一方、車両駆動用インバータでは、PWM制御での搬送波周波数は、一般的には、電磁騒音の発生を回避するためにある程度高い周波数とされる。車内騒音の少ない定常走行などの低トルク時において、インバータのスイッチングによる電磁音が耳障りになるためである。そのため、同期数は、十数倍以上(12,15,・・・)に設定することが望ましい。
しかしながら、搬送波周波数を高めると、単位時間当たりのスイッチング回数が増加するため、スイッチング損失による電力損失が増大する。図4には交流電動機M1のトルクと回転数との関係が示される。この図4に示す交流電動機M1の出力特性において、特に高いトルクを発生させる領域RGN1では、搬送波周波数を高めることによって、スイッチング損失が増加するとともに、大電流によりインバータ導通損失も増大する。その結果、発熱量が増大してインバータが過熱するという問題が生じてしまう。
この領域での過熱を防止するためには、動作領域の全てで高い搬送波周波数で駆動できるようにインバータを設計することが好ましいが、インバータの大型化を招きコストも高いものになってしまう。したがって、このような不具合を回避するためには、図4の領域RGN1のように高トルクを発生させる場合には、同期数をより低い3,6などに切替えることによって、比較的低い搬送波周波数でPWM制御を実現させることが求められる。以下では、電磁騒音の発生をなるべく避けた上でインバータの過熱を抑制するように、同期数に「6」を選択する。
以下、図5から図8を用いて、同期数に「6」を選択した場合の同期PWM制御回路304の動作について説明する。
図5は、図1中の同期PWM制御回路304の動作を説明する波形図である。図5に示すように、搬送波と正弦波状のU相電圧指令Vuとの比較結果に基づいて、スイッチング制御信号Gup,Gunが生成される。そして、このスイッチング制御信号Gup,Gunに従って、U相上下アーム15(図1)を構成するスイッチング素子QupおよびQunのオン・オフが制御されることにより、交流電動機M1にはU相電流iuが流れる。このときインバータ14では、スイッチング素子Qup,Qunのオン・オフに応じて、スイッチング素子Qup,Qunおよび逆並列ダイオードDup,Dunに図5に示すような電流が流れ、それぞれの電流値に比例した導通損失が発生する。
ここで、同期数に6を選択したことによって、各相電流は正負で非対称となる。これは、同期数に偶数を選んだことによって、モータ電流に偶数次の高調波成分が重畳してしまうためである。図6には同期数が偶数のときのモータ電流が示される。また比較として、図7には、同期数が奇数のときのモータ電流が示される。
図6を参照して、同期数が偶数(たとえば同期数が6)の場合には、基本波成分に6次高調波成分が重畳するため、合成波成分であるモータ電流は正負で非対称となる。これに対して、同期数が奇数(たとえば同期数が5)の場合には、図7に示すように、基本波成分に5次高調波成分が重畳した結果、合成波成分であるモータ電流は正負で対称となる。
したがって、図5のように同期数が6の場合には、偶数次の高調波成分が重畳することに起因してモータ電流が正負で非対称となるため、スイッチング素子Qupおよびスイッチング素子Qunの間で導通損失が異なり、発熱量にアンバランス(不均衡)が生じる。また、スイッチング素子がターンオフするときの電流値Iup,Iunがスイッチング素子Qupおよびスイッチング素子Qunの間で異なるため、ターンオフ時に発生するサージ電圧もスイッチング素子Qupおよびスイッチング素子Qunの間で不均衡が生じる。なお、このサージ電圧は、インバータの入力電圧に重畳されてオフ状態にあるスイッチング素子のコレクタ−エミッタ間に印加される。
このような同相の上下アーム間で生じる発熱量およびサージ電圧の不均衡は、大電流時ほど大きくなるため、特に高いトルクを発生させる領域(図4の領域RGN1)において顕著となる。その結果、図8に示すように、発熱量が大きい方のスイッチング素子(たとえばスイッチング素子Qup)においては、素子温度がスイッチング素子の耐熱温度を上回る可能性がある。また、サージ電圧が高い方のスイッチング素子(たとえばスイッチング素子Qup)においては、インバータ入力電圧とサージ電圧との和がスイッチング素子の素子耐圧を超えてしまう可能性がある。その結果、スイッチング素子が損傷するおそれが生じる。
このようなモータ電流の正負非対称性に起因して生じるスイッチング素子の発熱量およびサージ電圧の不均衡からスイッチング素子を保護するためには、常に同期数に奇数を選ぶように制限を設けることによって、偶数次高調波成分を抑制することが有効である。しかしながら、交流電動機M1として三相モータを使用する場合には、設定可能な同期数が最低でも、同期数「6」に対して1.5倍の「9」と高い同期数に制約されてしまうため、搬送波周波数の増加に伴ないスイッチング損失による電力損失を増大させてしまう。その結果、損失増加によりインバータが過熱する問題が生じる。
そこで、本発明の実施の形態に従う交流電動機の制御装置では、偶数次高調波成分に起因して生じるモータ電流の正負非対称性を抑制する手法として、同期PWM制御での同期数に応じて電圧指令と搬送波との位相関係を調整する構成とする。具体的には、制御装置は、モータ電流の正負対称性が確保されるように、電圧指令の零点に一致させるための搬送波の基準位相を同期数に応じて可変に設定する。
図9は、電圧指令の零点に一致させるための搬送波の基準位相を説明する図である。
図9を参照して、同期PWM制御での同期数が6の場合には、正弦波状の電圧指令の1周期が三角波である搬送波の6周期分となる。図9では、電圧指令の零点と搬送波の最小出力とが一致するときの搬送波の基準位相αをα=0[deg]と仮定する。したがって、α=0[deg]を起点として基準位相αを徐々に増やしていくと、すなわち、搬送波を電圧指令に対して徐々に位相をシフトさせると、相対的に電圧指令の零点と搬送波の最大値とが一致するときには、搬送波の基準位相α=180[deg]となる。また、再び電圧指令の零点と搬送波の最小値とが一致するときの搬送波の基準位相α=360[deg]となる。
図10には、搬送波の基準位相αを段階的に変化させたときのインバータ14と交流電動機M1との間で授受されるモータ電流iu,iv,iwおよびモータ端子電圧(線間電圧)Vuvの波形の変化が示される。
図10を参照して、搬送波の基準位相αを段階的に変化させることによって、モータ電流およびモータ端子電圧の波形が徐々に変化する。そして、基準位相ごとのモータ電流の波形から、正方向の電流ピークおよび負方向の電流ピークをそれぞれ検出すると、モータ電流の電流ピークと搬送波の基準位相αとの間には、図11のような関係が現われる。
図11を参照して、正方向の電流ピークおよび負方向の電流ピークはそれぞれ、搬送波の基準位相αに応じて変化する。そして、図11の場合では、基準位相α=30[deg],210[deg]のときに、電流ピークの絶対値が正方向と負方向とで等しくなっている。したがって、搬送波の基準位相αに30[deg]および210[deg]のいずれかを選択することにより、モータ電流の正負対称性を確保することができる。なお、正方向の電流ピークと負方向の電流ピークとが均等となるように搬送波の基準位相αを調整する制御を、以下では、単に「電流均等化制御」とも称する。
このように同期数が偶数(たとえば同期数が6)の場合には、同期数に応じた偶数次高調波成分が重畳することによってモータ電流の正負非対称性が生じるところ、電圧指令の零点に一致させるための搬送波の基準位相αを調整することによって、同期数を保持したままでモータ電流の正負対称性を確保することができる。したがって、偶数次高調波成分を抑制するために、同期数をより高い奇数(たとえば同期数が9)に切替える必要がなくなることから、搬送波周波数の増加によってスイッチング損失による電力損失が増加するのを抑制することができる。
なお、同期数が奇数の場合には、モータ電流に偶数次高調波成分が重畳するといった事由が存在しないため、図12に示すように、電圧指令と搬送波との重なり具合が正負で対称となるように基準位相α(たとえばα=270[deg])を選択することで、モータ電流の正負対称性を容易に確保することができる。その一例として、図12では、同期数が9の場合において、電圧指令の零点と搬送波の零点とを一致させるように基準位相α(たとえばα=270[deg])が選択されている。
以上説明したような電流均等化制御は、図1中の搬送波発生回路306における搬送波の発生処理において実行される。次に、図13から図19を用いて本発明の実施の形態による交流電動機の制御装置および制御方法における、搬送波の発生処理について詳細に説明する。
図13は、図1の搬送波発生回路306による搬送波の発生処理を説明するブロック図である。図13に示された各ブロックは、制御装置30によるハードウェア的あるいはソフトウェア的な処理によって実現される。
図13を参照して、搬送波発生回路306は、基準位相テーブル510と、回転数・電気周波数演算部520と、搬送波周波数演算部530と、同期位相制御演算部540と、三角波生成発振器550とを含む。
回転数・電気周波数演算部520は、回転角センサ22の出力(回転角θ)に基づいて、交流電動機M1の回転数Nmtおよび電気周波数fmを演算する。詳細には、回転数Nmt[rpm]および電気周波数fm[Hz]は、下記式(1),(2)に従って算出される。
Nmt=Δθ[deg]/Δt[sec]/360[回転/deg]×60 (1)
fm=Nmt[rpm]/60×p (2)
(2)式において、pは交流電動機M1の極対数である。
基準位相テーブル510は、予め設定された同期PWMでの同期数に対して、モータ電流の正負対称性を確保するために必要な搬送波の基準位相αを設定するためのテーブルとして、予め作成されたものである。なお、この基準位相テーブルは同期数ごとに作成されており、各同期数において図11で示したようなモータ電流の電流ピークと搬送波の基準位相αとの関係を予め実験等で取得するとともに、その取得した関係から電流ピークが正負で均等となるときの基準位相αを抽出することによって作成される。
さらに、基準位相テーブル510では、同期数ごとに、交流電動機M1の動作状態(交流電動機M1の出力トルクTrqおよび回転数Nmt)に応じて基準位相αが可変に設定される。図14および図15は、同期数が6の場合の基準位相テーブルの一例を説明するための図である。
図14および図15を参照して、搬送波の基準位相αは、交流電動機M1の動作状態(トルクTrqおよび回転数Nmt)に応じて可変に設定される。本実施の形態では、図14の領域RGN1に示すようにトルクがしきい値T3以上となる領域では、上述した電流均等化制御を実行し、しきい値T3よりもトルクが小さい領域では、電流均等化制御を非実行とする。なお、図14の領域RGN1は、実質的に図4の領域RGN1に対応している。この領域では、モータ電流の正負非対称性に起因して生じるスイッチング素子の発熱量およびサージ電圧の不均衡によってスイッチング素子が損傷する可能性が高いことから、電流均等化制御の実行が必要と判断されるためである。
図15には、基準位相テーブルの一例として、図14の交流電動機M1の状態ごとに設定された基準位相αが示される。この図15において、電流均等化制御が実行される図14の領域RGN1以外の領域における基準位相αは、領域RGN1の最下端の基準位相α(α=α1)がそのまま使用される。電流均等化制御の実行/非実行の切替えによって、搬送波の位相が急変するのを防ぐためである。
再び図13を参照して、基準位相テーブル510では、予め設定された同期PWM制御での同期数k、交流電動機M1の出力トルクTrqおよび回転数・電気周波数演算部520によって演算された回転数Nmtに基づいて、搬送波の基準位相αが設定される。なお、トルクTrqについては、交流電動機M1の各相の電圧、電流の積に従って求められる電力Pmと、電気周波数fmとから求めることができる(Trq=Pm/fm)。あるいは、トルクセンサ(図示せず)を配置して検出してもよい。
搬送波周波数演算部530は、回転数・電気周波数演算部520によって演算された電気周波数fmおよび同期PWM制御での同期数に基づいて、下記(3)式により同期PWM制御を行なうのに必要な基本搬送波周波数f0を演算する。
f0=k・fm (3)
なお、(3)式において同期数kについては、上述したように、搬送波周波数fcを低く維持するために、電気周波数fmに応じて切換えられるとともに、高トルク出力時のインバータ損失を低減する観点から、交流電動機M1の動作状態(トルクおよび回転数)に応じて可変に設定される。本実施の形態では、特に高いトルクを発生させる領域(図4の領域RGN1)では、相対的に小さい同期数(たとえば、同期PWM制御に最低限必要な同期数6)に切替えられる。そして、搬送波周波数演算部530により設定された同期数kは、基準位相テーブル510へ送出される。
同期位相制御演算部540は、電圧指令と搬送波とが基準位相テーブル510によって設定された位相関係(基準位相α)を維持しながら同期するように、回転角センサ22の出力(回転角θ)に応じて基本搬送波周波数f0を補正する。具体的には、図16に示すように、交流電動機M1の回転数Nmtの変化を受けて電気周波数fmが変化したことによって、電圧指令に対する搬送波の位相ずれが生じた場合には、電圧指令と搬送波とが再び基準位相テーブル510によって設定された所望の位相関係となるように、基本搬送波周波数f0を補正する。このとき、所望の位相関係に対して搬送波の位相が進んでいる場合には、周波数を上げるように基本搬送波周波数f0が補正され、所望の位相関係に対して搬送波の位相が遅れている場合には、周波数を下げるように基本搬送波周波数f0が補正される。
そして、補正後の搬送波周波数は、周波数指令fcとして三角波生成発振器550に与えられる。三角波生成発振器550は、周波数指令fcにより指示された搬送波周波数fcの三角波を発生する。
図17は、搬送波発生回路306による搬送波の発生処理を説明するためのフローチャートである。このフローチャートの処理は、車両の走行制御のメインルーチンから一定時間経過ごとまたは所定の条件が成立するごとに呼び出されて実行される。
図17を参照して、まず、処理が開始されると、ステップS01において、交流電動機M1のトルクTrqおよび回転数Nmtが取得される。ステップS01による回転数Nmtは、図13の回転数・電気周波数演算部520における回転角θに基づく演算によって取得される。また、ステップS01によるトルクTrqは、上述のように、交流電動機M1の電圧、電流、電気周波数に基づく演算によって取得されてもよく、トルクセンサの出力の取込みによって実現されてもよい。そして、ステップS02において、予め設定された同期PWM制御での同期数kが偶数であるか否かが判断される。
同期数が奇数である場合(S02のNO判定時)には、ステップS05において、搬送波発生回路306は、搬送波の基準位相αを予め定められた固定値に設定する。この固定値は、図12で説明したように、搬送波と電圧指令との重なり具合が正負で対称となるときの基準位相α(たとえば270[deg])に設定される。
これに対して、同期数が偶数である場合(S02のYES判定時)には、ステップS03により、搬送波発生回路306はさらに、交流電動機M1の動作状態(トルクTrqおよび回転数Nmt)に基づいて電流均等化制御を行なう必要があるか否かを判断する。この判断は、交流電動機M1のトルクTrqおよび回転数Nmtが図14の領域RGN1に位置するか否かを判断することによって行なわれる。
電流均等化制御を行なう必要がない場合(S03のNO判定時)には、ステップS05において、搬送波発生回路306は、搬送波の基準位相αを予め定められた固定値に設定する。このときの固定値としては、図14で述べたように、領域RGN1の最下端の基準位相α1が使用される。
一方、電流均等化制御を行なう必要がある場合(S03のYES判定時)には、ステップS04において、搬送波発生回路306は、基準位相テーブル(図15)を参照して、交流電動機M1のトルクTrqおよび回転数Nmtに基づき、搬送波の基準位相αを設定する。
そして、ステップS04またはS05によって搬送波の基準位相αが設定されると、搬送波発生回路306は、ステップS06により、その設定した位相関係を維持しながら電圧指令と搬送波とが同期するように、回転角センサ22の出力(回転角θ)に応じて基本搬送波周波数f0を補正する。なお、基本搬送波周波数f0は、定められた同期数kと、演算された電気周波数fmとに基づいて演算される。そして、電圧指令に対する搬送波の位相ずれの方向および大きさに応じて、演算された基本搬送波周波数f0が補正される。
補正後の搬送波周波数は、周波数指令fcとして図13の三角波生成発振器550に与えられると、ステップS07において、周波数指令fcにより指示された搬送波周波数fcの三角波が発生する。
[変形例]
図18は、本発明の実施の形態の変形例に従う搬送波発生回路306Aによる搬送波の発生動作を説明するブロック図である。図18に示された各ブロックは、制御装置30(図1)によるハードウェア的あるいはソフトウェア的な処理によって実現される。
図18を参照して、搬送波発生回路306Aは、回転数・電気周波数演算部520と、三角波生成ROMテーブル560とを含む。
回転数・電気周波数演算部520は、回転角センサ22の出力(回転角θ)に基づいて、上記式(1)により交流電動機M1の回転数Nmtを演算する。
三角波生成ROMテーブル560は、予め設定された同期PWMの同期数に対して、モータ電流の正負対称性の確保が可能な搬送波(三角波)の出力波形を設定するために、予め作成されたものである。なお、この三角波生成ROMテーブル560は同期数ごとに作成されており、各同期数において図11で示したようなモータ電流の電流ピークと搬送波の基準位相αとの関係を予め実験等で取得した結果に基づいて作成される。
さらに、三角波生成ROMテーブル560では、同期数ごとに、交流電動機M1の動作状態(交流電動機M1の出力トルクTrqおよび回転数Nmt)に応じて、三角波の出力波形(位相)が可変に設定される。図19は、同期数が6の場合の三角波生成ROMテーブルの一例を説明する図である。
図19を参照して、搬送波(三角波)の出力波形(位相)は、交流電動機M1の動作状態(トルクTrqおよび回転数Nmt)に応じて可変に設定される。詳細には、トルクTrqと回転数Nmtとの1つの組合せに対して、電圧指令の位相θと搬送波出力との関係が設定されている。たとえば図19(A)において、交流電動機M1のトルクTrq=T1であって、回転数Nmt=N5であるときに、電圧指令の位相θごとに設定された搬送波出力を図示すると、図19(B)のような波形が得られる。この図19(B)に示される搬送波は、図示しない電圧指令に対して、モータ電流の正負対称性が確保されるような位相関係となっている。すなわち、本変更例では、図14の交流電動機M1の状態ごとに設定された基準位相αを有するように、搬送波(三角波)の出力波形を予め定められている。
再び図18を参照して、三角波生成ROMテーブル560では、予め設定された同期PWM制御での同期数、交流電動機M1の出力トルクTrqおよび回転数・電気周波数演算部520によって演算された回転数Nmtに基づいて、搬送波出力が決定され、電圧指令の位相θに応じて、その決定された搬送波が生成される。
以上説明したように、本発明の実施の形態による交流電動機の制御装置によれば、モータ電流に偶数次高調波成分が重畳する場合であっても、電圧指令と搬送波との位相関係を調整することによってモータ電流の正負対称性を確保することができる。これにより、同期数に偶数を選択することが可能となり、同期数の選択の自由度が高められる。この結果、インバータ発熱が大きい高トルクの出力時においては、同期数を下げて搬送波周波数を低下させることによって、スイッチング回数を減らしてスイッチング損失による電力損失の増加を抑えることができる。
なお、本実施の形態では、好ましい構成例として、モータ駆動制御システム100の負荷となる交流電動機M1を電動車両(ハイブリッド自動車、電気自動車等)に車両駆動用として搭載された永久磁石モータとしたが、それ以外の機器に用いられる任意の交流電動機を負荷とする構成についても、本願発明を適用可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明は、交流電動機の同期PWM制御に適用することができる。
2 電源ライン、4 アースライン、10 直流電源、14 インバータ、15 U相上下アーム、16 V相上下アーム、17 W相上下アーム、20 電流センサ、22 回転角センサ、30 制御装置、40,42,44 比較器、50,52,54 NOT回路、100 モータ駆動制御システム、270 搬送波、280 電圧指令、302 電圧指令演算部、304 同期PWM制御回路、306,306A 搬送波発生回路、400 電流指令生成部、410,440 座標変換部、420 回転数演算部、430 PI演算部、510 基準位相テーブル、520 回転数・電気周波数演算部、530 搬送波周波数演算部、540 同期位相制御演算部、550 三角波生成発振器、560 三角波生成ROMテーブル、C 平滑コンデンサ、Dup,Dun,Dvp,Dvn,Dwp,Dwn 逆並列ダイオード、M1 交流電動機、Qup,Qun,Qvp,Qvn,Qwp,Qwn スイッチング素子。

Claims (8)

  1. インバータ(14)によって印加電圧が制御される交流電動機(M1)の制御装置であって、
    前記交流電動機(M1)を動作指令に従って動作させるための正弦波状の電圧指令信号と搬送波信号との比較に基づくパルス幅変調制御によって、前記インバータ(14)の制御指令を発生するパルス幅変調制御部(304)と、
    前記電圧指令信号と前記搬送波信号との周波数比である同期数を整数に維持するとともに、前記交流電動機(M1)の動作状態に応じて前記同期数を切換えて前記搬送波信号を生成する搬送波発生部(306)とを備え、
    前記搬送波発生部(306)は、前記パルス幅変調制御部(304)からの前記制御指令に従って前記インバータ(14)および前記交流電動機(M1)の間で授受される交流電流が、正方向と負方向とで対称となるように、前記同期数に応じて前記電圧指令信号と前記搬送波信号との位相関係を調整する、交流電動機の制御装置。
  2. 前記搬送波発生部(306)は、
    前記搬送波信号の周波数が前記交流電動機(M1)の電気周波数に前記同期数を乗じた周波数となるように、前記交流電動機(M1)の電気周波数に応じて前記搬送波信号の周波数を制御する周波数制御部(530)と、
    前記交流電流が正方向と負方向とで対称となるように、前記電圧指令信号の零点に一致させるための前記搬送波信号の基準位相を、前記同期数に応じて設定する基準位相設定部(510)と、
    前記電圧指令信号と前記搬送波信号とが、前記基準位相設定部(510)によって設定された位相関係を維持しながら同期するように、前記搬送波信号の周波数を補正する同期位相制御部(540)とを含む、請求の範囲第1項に記載の交流電動機の制御装置。
  3. 前記基準位相設定部(510)は、前記同期数が偶数となるときには、前記搬送波信号の基準位相を、前記交流電動機(M1)の動作状態に応じて可変に設定する、請求の範囲第2項に記載の交流電動機の制御装置。
  4. 前記周波数制御部(530)は、前記交流電動機(M1)のトルクがしきい値以上となるときには、前記同期数が減少するように、前記交流電動機(M1)の電気周波数に応じて前記搬送波信号の周波数を制御し、
    前記基準位相設定部(510)は、前記同期数が偶数であって、かつ、前記交流電動機(M1)のトルクが前記しきい値以上となるときには、前記搬送波信号の基準位相を、前記交流電動機のトルクおよび回転数に応じて可変に設定する、請求の範囲第3項に記載の交流電動機の制御装置。
  5. インバータ(14)によって印加電圧が制御される交流電動機(M1)の制御方法であって、
    前記交流電動機(M1)を動作指令に従って動作させるための正弦波状の電圧指令信号と搬送波信号との比較に基づくパルス幅変調制御によって、前記インバータ(14)の制御指令を発生するステップと、
    前記電圧指令信号と前記搬送波信号との周波数比である同期数を整数に維持するとともに、前記交流電動機(M1)の動作状態に応じて前記同期数を切換えて前記搬送波信号を生成するステップとを備え、
    前記搬送波信号を生成するステップは、前記制御指令に従って前記インバータ(14)および前記交流電動機(M1)の間で授受される交流電流が、正方向と負方向とで対称となるように、前記同期数に応じて前記電圧指令信号と前記搬送波信号との位相関係を調整する、交流電動機の制御方法。
  6. 前記搬送波信号を生成するステップは、
    前記搬送波信号の周波数が前記交流電動機(M1)の電気周波数に前記同期数を乗じた周波数となるように、前記交流電動機(M1)の電気周波数に応じて前記搬送波信号の周波数を制御するステップと、
    前記交流電流が正方向と負方向とで対称となるように、前記電圧指令信号の零点に一致させるための前記搬送波信号の基準位相を、前記同期数に応じて設定するステップと、
    前記電圧指令信号と前記搬送波信号とが、前記基準位相を設定するステップによって設定された位相関係を維持しながら同期するように、前記搬送波信号の周波数を補正するステップとを含む、請求の範囲第5項に記載の交流電動機の制御方法。
  7. 前記基準位相を設定するステップは、前記同期数が偶数となるときには、前記搬送波信号の基準位相を、前記交流電動機(M1)の動作状態に応じて可変に設定する、請求の範囲第6項に記載の交流電動機の制御方法。
  8. 前記搬送波信号の周波数を制御するステップは、前記交流電動機(M1)のトルクがしきい値以上となるときには、前記同期数が減少するように、前記交流電動機(M1)の電気周波数に応じて前記搬送波信号の周波数を制御し、
    前記基準位相を設定するステップは、前記同期数が偶数であって、かつ、前記交流電動機(M1)のトルクが前記しきい値以上となるときには、前記搬送波信号の基準位相を、前記交流電動機(M1)のトルクおよび回転数に応じて可変に設定する、請求の範囲第7項に記載の交流電動機の制御方法。
JP2011515817A 2009-05-29 2009-05-29 交流電動機の制御装置および制御方法 Active JP5304894B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059853 WO2010137162A1 (ja) 2009-05-29 2009-05-29 交流電動機の制御装置および制御方法

Publications (2)

Publication Number Publication Date
JPWO2010137162A1 JPWO2010137162A1 (ja) 2012-11-12
JP5304894B2 true JP5304894B2 (ja) 2013-10-02

Family

ID=43222303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011515817A Active JP5304894B2 (ja) 2009-05-29 2009-05-29 交流電動機の制御装置および制御方法

Country Status (4)

Country Link
US (1) US8519653B2 (ja)
EP (1) EP2437392B1 (ja)
JP (1) JP5304894B2 (ja)
WO (1) WO2010137162A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377634B2 (ja) * 2009-06-09 2013-12-25 本田技研工業株式会社 負荷駆動システムの制御装置
WO2011077581A1 (ja) * 2009-12-26 2011-06-30 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP5553288B2 (ja) * 2011-03-15 2014-07-16 株式会社豊田自動織機 回転電機のインバータ装置、及び回転電機の駆動方法
JP5659945B2 (ja) * 2011-05-02 2015-01-28 トヨタ自動車株式会社 回転電機の制御装置
CN102611370B (zh) * 2012-03-19 2014-09-03 矽力杰半导体技术(杭州)有限公司 一种永磁同步电机的正弦调制控制方法及其控制电路
JP6173773B2 (ja) * 2013-05-24 2017-08-02 株式会社東芝 可変速制御装置及び運転方法
KR101405237B1 (ko) * 2013-06-25 2014-06-10 현대자동차 주식회사 친환경 자동차의 모터 제어 시스템
US9735722B2 (en) * 2014-02-19 2017-08-15 Deere & Company Methods of controlling a machine using a torque command limit derived from a current limit and systems thereof
KR101620172B1 (ko) * 2014-07-03 2016-05-13 현대자동차주식회사 차량의 냉시동 방법
US11159115B2 (en) * 2015-08-12 2021-10-26 Mitsubishi Electric Corporation Motor driving device and refrigerating air-conditioning device
DE102016103290A1 (de) * 2016-02-24 2017-08-24 Bauer Gear Motor GmbH Verfahren zum Betreiben eines Drehstrommotors an einem Gleichspannungsnetz, Wechselrichter für das Verfahren, System mit Wechselrichter und Verfahren zur Bereitstellung eines Drehstrommotors
FR3048568B1 (fr) 2016-03-07 2018-03-09 Renault S.A.S Procede et systeme de pilotage d'un moteur electrique en cas de defaillance du signal de position du rotor
ITUA20162878A1 (it) * 2016-04-26 2017-10-26 Phase Motion Control S P A Dispositivo di alimentazione e azionamento per un motore elettrico a magneti permanenti
WO2018139295A1 (ja) * 2017-01-30 2018-08-02 日立オートモティブシステムズ株式会社 インバータ制御装置
JP6838469B2 (ja) * 2017-04-10 2021-03-03 トヨタ自動車株式会社 駆動装置
JP6812896B2 (ja) 2017-04-28 2021-01-13 株式会社デンソー 駆動装置および自動車
JP6791072B2 (ja) * 2017-09-08 2020-11-25 トヨタ自動車株式会社 駆動装置
FR3073993B1 (fr) * 2017-11-23 2019-10-18 Renault S.A.S Procede de commande d'un onduleur triphase
US11303224B2 (en) * 2018-01-25 2022-04-12 Kabushiki Kaisha Toyota Jidoshokki Inverter device with high follow-up capability
US10944352B2 (en) 2018-03-19 2021-03-09 Tula eTechnology, Inc. Boosted converter for pulsed electric machine control
US11623529B2 (en) 2018-03-19 2023-04-11 Tula eTechnology, Inc. Pulse modulated control with field weakening for improved motor efficiency
US10742155B2 (en) 2018-03-19 2020-08-11 Tula eTechnology, Inc. Pulsed electric machine control
BR112020022425A2 (pt) * 2018-07-02 2021-02-09 Nippon Steel Corporation método de ajuste da frequência do transportador, sistema de acionamento do motor, e dispositivo de ajuste da frequência do transportador
EP3846332A4 (en) * 2018-08-30 2022-06-01 Hitachi Astemo, Ltd. INVERTER DEVICE
CN111656664B (zh) * 2018-10-30 2023-09-19 东芝三菱电机产业***株式会社 电力转换装置
WO2020241423A1 (ja) * 2019-05-27 2020-12-03 三菱電機株式会社 電力変換装置および電力変換装置の製造方法
WO2021186841A1 (ja) * 2020-03-18 2021-09-23 株式会社日立製作所 電力変換装置、および電力変換装置の制御方法
DE112021004405T5 (de) 2020-10-21 2023-06-15 Hitachi Astemo, Ltd. Motorsteuervorrichtung, elektromechanische integrierte einheit, hybridsystem und elektrisches servolenkungssystem
US11628730B2 (en) 2021-01-26 2023-04-18 Tula eTechnology, Inc. Pulsed electric machine control
KR20230156335A (ko) 2021-03-15 2023-11-14 툴라 이테크놀로지 아이엔씨. 전기 모터를 위한 파형 최적화 방법
CN117426049A (zh) 2021-06-14 2024-01-19 图拉E技术公司 具有高效扭矩转换的电机
KR20240025508A (ko) 2021-06-28 2024-02-27 툴라 이테크놀로지 아이엔씨. 전기 기계의 선택적 위상 제어
US11557996B1 (en) 2021-07-08 2023-01-17 Tula eTechnology, Inc. Methods of reducing vibrations for electric motors
US11345241B1 (en) 2021-08-12 2022-05-31 Tula eTechnology, Inc. Method of optimizing system efficiency for battery powered electric motors
WO2023038760A1 (en) 2021-09-08 2023-03-16 Tula eTechnology, Inc. Electric machine torque adjustment based on waveform integer multiples
WO2023069131A1 (en) 2021-10-18 2023-04-27 Tula eTechnology, Inc. Mechanical and electromechanical arrangements for field-weakening of an electric machine that utilizes permanent magnets
US11888424B1 (en) 2022-07-18 2024-01-30 Tula eTechnology, Inc. Methods for improving rate of rise of torque in electric machines with stator current biasing
JP7471543B1 (ja) 2022-08-23 2024-04-19 三菱電機株式会社 回転機制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100495U (ja) * 1981-12-28 1983-07-08 東洋電機製造株式会社 インバ−タのゲ−ト信号発生回路
JPS60190169A (ja) * 1984-03-08 1985-09-27 Meidensha Electric Mfg Co Ltd Pwmインバータのパルス数切換装置
JP2008312420A (ja) * 2007-06-18 2008-12-25 Toyota Central R&D Labs Inc 交流電動機の駆動制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532569A (en) * 1987-06-03 1996-07-02 Hitachi, Ltd. Inverter control apparatus
JPH0746918B2 (ja) * 1987-06-03 1995-05-17 株式会社日立製作所 電力変換装置
US5736825A (en) * 1996-06-25 1998-04-07 Allen-Bradley Company, Inc. Method and apparatus for linearizing pulse width modulation by modifying command voltges
JPH10108474A (ja) 1996-09-27 1998-04-24 Denso Corp マルチレベルスイッチング式電力変換器
JP3708292B2 (ja) * 1997-06-17 2005-10-19 三菱電機株式会社 Pwmインバータ装置の制御方法および制御装置
US6023417A (en) * 1998-02-20 2000-02-08 Allen-Bradley Company, Llc Generalized discontinuous pulse width modulator
JP3326790B2 (ja) 1999-05-10 2002-09-24 サンケン電気株式会社 電力変換装置の制御装置
JP2001145387A (ja) 1999-11-15 2001-05-25 Hitachi Ltd 電動機駆動装置,電動機駆動方法及びインバータ装置
US6324085B2 (en) * 1999-12-27 2001-11-27 Denso Corporation Power converter apparatus and related method
US6819077B1 (en) * 2003-05-21 2004-11-16 Rockwell Automation Technologies, Inc. Method and apparatus for reducing sampling related errors in a modulating waveform generator used with a PWM controller
JP4576970B2 (ja) * 2004-01-06 2010-11-10 株式会社明電舎 パルス幅変調インバータ装置及びその制御方法
GB2413905B (en) * 2004-05-05 2006-05-03 Imra Europ S A S Uk Res Ct Permanent magnet synchronous motor and controller therefor
JP4417323B2 (ja) * 2005-11-18 2010-02-17 三菱電機株式会社 モータ制御装置
JP2008086099A (ja) 2006-09-27 2008-04-10 Honda Motor Co Ltd インバータ装置
JP5099417B2 (ja) 2007-05-22 2012-12-19 アイシン・エィ・ダブリュ株式会社 半導体モジュール及びインバータ装置
JP4798075B2 (ja) * 2007-06-26 2011-10-19 トヨタ自動車株式会社 モータ駆動システム
JP4605274B2 (ja) * 2008-08-27 2011-01-05 トヨタ自動車株式会社 車両
US8330405B2 (en) * 2009-06-18 2012-12-11 Rockwell Automation Technologies, Inc. Method and apparatus for increased current stability in a PWM drive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100495U (ja) * 1981-12-28 1983-07-08 東洋電機製造株式会社 インバ−タのゲ−ト信号発生回路
JPS60190169A (ja) * 1984-03-08 1985-09-27 Meidensha Electric Mfg Co Ltd Pwmインバータのパルス数切換装置
JP2008312420A (ja) * 2007-06-18 2008-12-25 Toyota Central R&D Labs Inc 交流電動機の駆動制御装置

Also Published As

Publication number Publication date
JPWO2010137162A1 (ja) 2012-11-12
EP2437392A4 (en) 2013-10-23
EP2437392B1 (en) 2014-04-30
EP2437392A1 (en) 2012-04-04
US8519653B2 (en) 2013-08-27
WO2010137162A1 (ja) 2010-12-02
US20120056569A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5304894B2 (ja) 交流電動機の制御装置および制御方法
JP5413505B2 (ja) モータ駆動システムのための制御装置およびそれを搭載した車両
JP5297953B2 (ja) 電動車両の電動機駆動システム
JP5133834B2 (ja) 交流電動機の制御装置
JP5471255B2 (ja) 電動機駆動装置の制御装置
JP4329880B1 (ja) 交流電動機の制御装置および電動車両
JP5633639B2 (ja) 電動機の制御装置およびそれを備える電動車両、ならびに電動機の制御方法
JP5482574B2 (ja) 交流電動機の制御システム
JP5803559B2 (ja) 回転電機制御装置
WO2012017766A1 (ja) 制御装置
JP5369630B2 (ja) 交流電動機の制御装置
JP2011087429A (ja) 交流電動機の制御装置および制御方法
JP5659945B2 (ja) 回転電機の制御装置
JP5375679B2 (ja) モータ駆動システムの制御装置
JP2011067010A (ja) 車両のモータ駆動装置
JP2010200527A (ja) モータ駆動システムの制御装置
JP2010124566A (ja) 交流電動機の制御装置およびそれを搭載した電動車両
JP2010166707A (ja) 交流電動機の制御装置
JP5686110B2 (ja) 交流電機駆動システムの制御装置
JP2011072103A (ja) 交流電動機の制御装置
JP5884297B2 (ja) モータ駆動制御システムおよびそれを搭載する車両、ならびにモータ駆動制御システムの制御方法
JP2010259227A (ja) モータの制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R151 Written notification of patent or utility model registration

Ref document number: 5304894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250