JP5304636B2 - Laser welding thermoplastic resin injection molding - Google Patents

Laser welding thermoplastic resin injection molding Download PDF

Info

Publication number
JP5304636B2
JP5304636B2 JP2009501130A JP2009501130A JP5304636B2 JP 5304636 B2 JP5304636 B2 JP 5304636B2 JP 2009501130 A JP2009501130 A JP 2009501130A JP 2009501130 A JP2009501130 A JP 2009501130A JP 5304636 B2 JP5304636 B2 JP 5304636B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin injection
acid
laser
injection molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009501130A
Other languages
Japanese (ja)
Other versions
JPWO2008105167A1 (en
Inventor
修司 久保田
順一 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009501130A priority Critical patent/JP5304636B2/en
Publication of JPWO2008105167A1 publication Critical patent/JPWO2008105167A1/en
Application granted granted Critical
Publication of JP5304636B2 publication Critical patent/JP5304636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1228Joining preformed parts by the expanding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1658Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning once, e.g. contour laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7461Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7465Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1606Ultraviolet [UV] radiation, e.g. by ultraviolet excimer lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、熱可塑性樹脂射出成形体と、熱可塑性樹脂射出成形体とは異なる材料を合わせた状態でレーザー光の照射により、熱可塑性樹脂を加熱溶融させて局所的な発泡を起こすことにより、熱可塑性樹脂射出成形体と、熱可塑性樹脂射出成形体とは異なる材料とを溶着接合する方法に使用されるレーザー溶着用熱可塑性樹脂射出成形体に関する。   In the present invention, the thermoplastic resin injection molded article and the thermoplastic resin injection molded article are combined with different materials to cause local foaming by heating and melting the thermoplastic resin by laser light irradiation. The present invention relates to a laser welding thermoplastic resin injection-molded body used in a method of welding and joining a thermoplastic resin injection-molded body and a material different from the thermoplastic resin injection-molded body.

従来、熱可塑性樹脂の材料と、金属、セラミック、またはガラスなどの材料の接合方法としては、リベット締結方法や接着剤を用いて接合する方法がある。しかしながら、これらの方法はリベットや接着剤という第三の材料が必要であり、しかも適用分野が極めて限定されてしまうという問題点があった。   Conventionally, as a method for joining a thermoplastic resin material and a material such as metal, ceramic, or glass, there are a rivet fastening method and a joining method using an adhesive. However, these methods require a third material such as a rivet or an adhesive, and have a problem that the application field is extremely limited.

一方、近年、レーザーを用いて樹脂材料同士を接合する方法が提案されている(特許文献1参照)。この方法では、レーザーを透過する樹脂とレーザーを吸収する樹脂を組み合わせて樹脂材料同士を接合することができるが、樹脂材料と、金属、セラミック、またはガラスの材料の接合には適用できなかった。   On the other hand, in recent years, a method of bonding resin materials using a laser has been proposed (see Patent Document 1). In this method, the resin materials can be bonded to each other by combining a resin that transmits a laser and a resin that absorbs the laser, but it cannot be applied to bonding a resin material and a metal, ceramic, or glass material.

この点について、樹脂材料と、金属、セラミック、またはガラスの材料を合わせた状態でレーザー光の照射により熱可塑性樹脂を加熱溶融させて局所的な発泡を起こすことにより両材料を接合する方法が提案されている(特許文献2参照)。
特開2002−67165号公報 WO2007/029440
In this regard, a method has been proposed in which both materials are joined by causing local foaming by heating and melting the thermoplastic resin by laser irradiation in a state where the resin material and the metal, ceramic, or glass material are combined. (See Patent Document 2).
JP 2002-67165 A WO2007 / 029440

本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、熱可塑性樹脂射出成形体と、熱可塑性樹脂射出成形体とは異なる材料(特に、金属、セラミック、またはガラス)を合わせた状態でレーザー光の照射により熱可塑性樹脂を加熱溶融させて局所的な発泡を起こすことにより、熱可塑性樹脂射出成形体と、熱可塑性樹脂射出成形体とは異なる材料とを溶着接合する方法に使用される最適なレーザー溶着用熱可塑性樹脂射出成形体を提供することにある。   The present invention was created in view of the current state of the prior art, and the object thereof is a thermoplastic resin injection molded body and a material different from the thermoplastic resin injection molded body (particularly metal, ceramic, or glass). In this state, the thermoplastic resin is heated and melted by irradiation with laser light to cause local foaming, thereby welding and joining the thermoplastic resin injection molded body and a material different from the thermoplastic resin injection molded body. An object of the present invention is to provide an optimum thermoplastic resin injection molded article for laser welding used in the method.

本発明者等は、上記目的を達成するために鋭意研究した結果、以下に示す手段を見出し、本発明の完成に至った。   As a result of intensive studies to achieve the above object, the present inventors have found the following means and have completed the present invention.

すなわち、本発明は、以下の構成からなるものである。
(1)熱可塑性樹脂射出成形体と、熱可塑性樹脂射出成形体とは異なる材料を合わせた状態でレーザー光の照射により熱可塑性樹脂を加熱溶融させて局所的な発泡を起こすことにより、熱可塑性樹脂射出成形体と、熱可塑性樹脂射出成形体とは異なる材料とを溶着接合する方法に使用されるレーザー溶着用熱可塑性樹脂射出成形体であって、射出成形体が3.5以下の収縮異方性を有すること、および熱可塑性樹脂が鎖状分子100原子当たり4個以上のアミド結合を持つポリアミド重合体を含むことを特徴とするレーザー溶着用熱可塑性樹脂射出成形体。
(2)熱可塑性樹脂射出成形体と、熱可塑性樹脂射出成形体とは異なる材料を合わせた状態でレーザー光の照射により熱可塑性樹脂を加熱溶融させて局所的な発泡を起こすことにより、熱可塑性樹脂射出成形体と、熱可塑性樹脂射出成形体とは異なる材料とを溶着接合する方法に使用されるレーザー溶着用熱可塑性樹脂射出成形体であって、射出成形体が3.5以下の収縮異方性を有すること、および熱可塑性樹脂がエステル結合を主鎖に持つ重合体を含むことを特徴とするレーザー溶着用熱可塑性樹脂射出成形体。
That is, this invention consists of the following structures.
(1) Thermoplastic resin is produced by heating and melting the thermoplastic resin by irradiation with laser light in a state where materials different from those of the thermoplastic resin injection molded article and the thermoplastic resin injection molded article are combined. A thermoplastic resin injection molded body for laser welding used in a method of welding and bonding a resin injection molded body and a material different from the thermoplastic resin injection molded body, wherein the injection molded body has a shrinkage difference of 3.5 or less. A thermoplastic resin injection-molded article for laser welding, characterized in that the thermoplastic resin contains a polyamide polymer having four or more amide bonds per 100 atoms of chain molecules.
(2) Thermoplastic resin is produced by heating and melting the thermoplastic resin by irradiation with laser light in a state where materials different from the thermoplastic resin injection molded article and the thermoplastic resin injection molded article are combined. A thermoplastic resin injection molded body for laser welding used in a method of welding and bonding a resin injection molded body and a material different from the thermoplastic resin injection molded body, wherein the injection molded body has a shrinkage difference of 3.5 or less. A thermoplastic resin injection-molded article for laser welding, comprising a polymer having an isotropic property and a thermoplastic resin having an ester bond as a main chain.

本発明によれば、熱可塑性樹脂射出成形体と、熱可塑性樹脂射出成形体とは異なる材料(特に、金属、セラミック、またはガラスの材料)の間の高い強度のレーザー溶着接合が可能である。特に、本発明のレーザー溶着用熱可塑性樹脂射出成形体は、特定の収縮異方性を有しかつレーザー接合時の局所的発泡を生起する特定の構造の熱可塑性樹脂を含むので、両材料の局所的な接合やピンポイント的な溶着接合、さらには自由な曲線の接合等を迅速かつ安価に行なうことができる。   According to the present invention, high-intensity laser welding joining is possible between a thermoplastic resin injection-molded body and a material different from the thermoplastic resin injection-molded body (particularly, a metal, ceramic, or glass material). In particular, the thermoplastic resin injection-molded article of the present invention for laser welding contains a thermoplastic resin having a specific structure that has a specific shrinkage anisotropy and causes local foaming during laser bonding. Local joining, pin-point welding joining, and free curve joining can be performed quickly and inexpensively.

成形収縮率の測定のための平板を示す((a)平面図、(b)側面図)。The flat plate for a measurement of a molding shrinkage rate is shown ((a) top view, (b) side view). レーザー溶着接合強度を評価するための試験片を示す((a)平面図、(b)側面図)。The test piece for evaluating laser welding joining strength is shown ((a) top view, (b) side view).

符号の説明Explanation of symbols

1 フイルムゲート
L 樹脂の流れ方向(金型寸法:100mm)
W 直角方向(金型寸法:100mm)
2 熱可塑性樹脂射出成形体の試験片
3 熱可塑性樹脂射出成形体とは異なる材料の試験片
4 レーザー光の照射により溶着した部分
5 レーザー光の照射の方向
w 熱可塑性樹脂射出成形体とは異なる材料の試験片の幅(30mm)
d 熱可塑性樹脂射出成形体とは異なる材料の試験片の厚さ(2mm)
1 Film gate L Flow direction of resin (mold size: 100mm)
W Right-angle direction (Mold dimension: 100mm)
2 Test piece of thermoplastic resin injection molded article 3 Test piece of material different from thermoplastic resin injection molded article 4 Portion welded by laser light irradiation 5 Direction of laser light irradiation w Different from thermoplastic resin injection molded article Specimen width of material (30mm)
d Thickness of the test piece made of a material different from that of the thermoplastic resin injection-molded body (2 mm)

以下に本発明を具体的に説明する。
本発明は、熱可塑性樹脂射出成形体と、熱可塑性樹脂射出成形体とは異なる材料を合わせた状態でレーザー光の照射により熱可塑性樹脂を加熱溶融させて局所的な発泡を起こすことにより、熱可塑性樹脂射出成形体と、熱可塑性樹脂射出成形体とは異なる材料とを溶着接合する方法に使用されるレーザー溶着用熱可塑性樹脂射出成形体に関するものである。本発明における熱可塑性樹脂射出成形体とは異なる材料とは、レーザー光による接合に適切な熱可塑性樹脂以外の材料であれば特に限定されないが、一般に金属、セラミック、またはガラスの材料から選択されることが好ましい。
The present invention will be specifically described below.
In the present invention, a thermoplastic resin injection molded article and a thermoplastic resin injection molded article are combined with materials different from each other to cause local foaming by heating and melting the thermoplastic resin by laser irradiation. The present invention relates to a laser welding thermoplastic resin injection-molded article used in a method of welding and joining a plastic resin injection-molded article and a material different from the thermoplastic resin injection-molded article. The material different from the thermoplastic resin injection-molded body in the present invention is not particularly limited as long as it is a material other than a thermoplastic resin suitable for joining with a laser beam, but is generally selected from a metal, ceramic, or glass material. It is preferable.

金属材料としては、鉄、アルミニウム、チタン、銅等及びそれらの合金が挙げられるが、特に限定されない。本発明においては、接合部を高い温度まで急速加熱できる、炭素鋼、ステンレス鋼、チタン合金等からなる金属材料が特に好ましい。金属材料の厚さは特に限定されず、0.1mm以上、さらには1mm以上、さらには3mm以上の厚さの金属材料であっても構わない。   Examples of the metal material include iron, aluminum, titanium, copper, and alloys thereof, but are not particularly limited. In the present invention, a metal material made of carbon steel, stainless steel, titanium alloy or the like that can rapidly heat the joint to a high temperature is particularly preferable. The thickness of the metal material is not particularly limited, and may be a metal material having a thickness of 0.1 mm or more, further 1 mm or more, and further 3 mm or more.

ガラス材料としては、化学成分による分類から、珪酸、ソーダ灰および石灰から作られている「ソーダガラス」、珪酸、炭酸カルシウムおよび酸化鉛からなる「鉛ガラス」、珪酸、硼酸およびソーダ灰からなる「硼珪酸ガラス」などが挙げられるが、これらに限定されるものではない。ガラス材料の厚さは特に限定されず、0.1mm以上、さらには1mm以上、さらには3mm以上の厚さのガラス材料であっても構わない。   As the glass material, from the classification by chemical components, "soda glass" made from silicic acid, soda ash and lime, "lead glass" composed of silicic acid, calcium carbonate and lead oxide, "silicic acid, boric acid and soda ash" Examples thereof include, but are not limited to, “borosilicate glass”. The thickness of the glass material is not particularly limited, and may be a glass material having a thickness of 0.1 mm or more, further 1 mm or more, and further 3 mm or more.

セラミック材料としては、組成の面から、アルミナやジルコニアなどの酸化物系、炭化珪素などの炭化物系、窒化珪素などの窒化物系、およびその他 炭酸塩系、リン酸塩系、水酸化物系、ハロゲン化物系および元素系等が挙げられるが、これらに限定されるものではない。セラミック材料の厚さは特に限定されず、0.1mm以上、さらには1mm以上、さらには3mm以上のセラミック材料であっても構わない。   Ceramic materials include oxides such as alumina and zirconia, carbides such as silicon carbide, nitrides such as silicon nitride, and other carbonates, phosphates, hydroxides, Examples thereof include, but are not limited to, halide systems and element systems. The thickness of the ceramic material is not particularly limited, and may be a ceramic material of 0.1 mm or more, further 1 mm or more, and further 3 mm or more.

本発明における熱可塑性樹脂とは、鎖状分子100原子当たり4個以上のアミド結合を持つポリアミド重合体、またはエステル結合(−COO−)を主鎖に持つ重合体を含むものである。   The thermoplastic resin in the present invention includes a polyamide polymer having 4 or more amide bonds per 100 atoms of chain molecules, or a polymer having an ester bond (—COO—) in the main chain.

本発明のポリアミド重合体としては、分子中に酸アミド結合(−CONH−)を有するものであり、ε―カプロラクタム、6−アミノカプロン酸、ω―エナントラクタム、7−アミノヘプタン酸、11−アミノウンデカン酸、9−アミノノナン酸、α―ピロリドン、α―ピペリジン、ラウリルラクタムなどから得られる重合体または共重合体もしくはこれらのブレンド物、ヘキサメチレンジアミン、ナノメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、メタキシリレンジアミン、トリメチルヘキサメチレンジアミンなどのジアミンとテレフタール酸、イソフタール酸、アジピン酸、セバシン酸などのジカルボン酸を重縮合して得られる重合体または共重合体もしくはこれらのブレンド物、ハード成分にナイロン11、ナイロン12、およびナイロン6等を用い、ソフト成分にポリエーテルや脂肪族ポリエステル等からなるブロック共重合体を用いたポリアミドエラストマー等を例示することができるが、これらに限定されるものではない。   The polyamide polymer of the present invention has an acid amide bond (—CONH—) in the molecule, and ε-caprolactam, 6-aminocaproic acid, ω-enantolactam, 7-aminoheptanoic acid, 11-aminoundecane. A polymer or copolymer obtained from an acid, 9-aminononanoic acid, α-pyrrolidone, α-piperidine, lauryl lactam, or a blend thereof, hexamethylenediamine, nanomethylenediamine, undecamethylenediamine, dodecamethylenediamine, Polymers or copolymers obtained by polycondensation of diamines such as metaxylylenediamine and trimethylhexamethylenediamine and dicarboxylic acids such as terephthalic acid, isophthalic acid, adipic acid, and sebacic acid, blends thereof, and hard components Nylon 11, Nylon 12, and with nylon 6 and the like, can be exemplified a polyamide elastomer or the like using a block copolymer consisting of polyether and aliphatic polyester soft component, but is not limited thereto.

本発明のポリアミド重合体としては、ポリアミド重合体の分子中における鎖状分子100原子当たり4個以上のアミド結合を持つポリアミド重合体を使用する。即ち、アミド結合の濃度の高いポリアミド樹脂材料が好ましく、具体的にはナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン46、ナイロン610、6Tナイロン、6Iナイロン、MXD―6ナイロン、6T/6Iナイロン、6T/6ナイロン、およびポリアミドエラストマー等の重合体またはこれらを成分とする共重合体もしくはブレンド物等が挙げられる。好ましくは、ポリアミド重合体の分子中における鎖状分子100原子当たりのアミド結合数は6個以上、より好ましくは8個以上であり、アミド結合濃度が高いほど接着強度が強くなる傾向がある。
本発明において、熱可塑性樹脂の鎖状分子100原子当たりのアミド結合の数の計算は、ポリアミド重合体分子中の繰り返し単位を認定し、この繰り返し単位中の分子中の鎖の骨格をなす原子の数とアミド結合の数をカウントし、鎖状分子100原子当たりのアミド結合の数に換算することによって求められる。例えばポリアミド重合体がナイロン6の場合、
ナイロン6の構造式

Figure 0005304636
の繰り返し単位を有するが、この一つの繰り返し単位においては6個の炭素原子と1個の窒素原子が分子中の鎖の骨格をなす原子となり、そして1個のアミド結合を有することとなるので、一つの繰り返し単位内で鎖状分子7原子当たり1個のアミド結合を持つことになる。従って、ナイロン6は、鎖状分子100原子当たり14.3個のアミド結合を持つポリアミド重合体になる。
なお、ポリアミド重合体分子が環構造を有する場合、環における鎖の骨格をなす原子とはその環の結合部位の2個の原子と、当該2個の原子間の原子数が最短となる2個の原子間の原子である。例えばポリアミド重合体がMXD−6ナイロンである場合、
MXD6ナイロン構造式
Figure 0005304636
の繰り返し単位を有するが、この一つの繰り返し単位においては、矢印部分の三つの炭素原子が環における鎖の骨格をなす原子となり、そして2個のアミド結合を有することになるので、一つの繰り返し単位内で鎖状分子13原子当たり2個のアミド結合を持つことになる。従って、MXD6ナイロンは、鎖状分子100原子当たり15.4個のアミド結合を持つポリアミド重合体になる。As the polyamide polymer of the present invention, a polyamide polymer having 4 or more amide bonds per 100 atoms of chain molecules in the polyamide polymer molecule is used. That is, a polyamide resin material having a high amide bond concentration is preferable. Specifically, nylon 6, nylon 11, nylon 12, nylon 66, nylon 46, nylon 610, 6T nylon, 6I nylon, MXD-6 nylon, 6T / 6I Examples thereof include polymers such as nylon, 6T / 6 nylon, and polyamide elastomer, and copolymers or blends containing these as components. Preferably, the number of amide bonds per 100 chain molecules in the polyamide polymer molecule is 6 or more, more preferably 8 or more, and the higher the amide bond concentration, the stronger the adhesive strength tends to be.
In the present invention, the calculation of the number of amide bonds per 100 atoms of the chain molecule of the thermoplastic resin identifies the repeating unit in the polyamide polymer molecule, and the number of atoms constituting the chain skeleton in the molecule in the repeating unit. The number and the number of amide bonds are counted and converted to the number of amide bonds per 100 atoms of chain molecules. For example, when the polyamide polymer is nylon 6,
Nylon 6 structural formula
Figure 0005304636
In this single repeating unit, six carbon atoms and one nitrogen atom form an atom forming a chain skeleton in the molecule and have one amide bond. One amide bond per 7 atoms of chain molecules in one repeating unit. Therefore, nylon 6 becomes a polyamide polymer having 14.3 amide bonds per 100 atoms of chain molecules.
When the polyamide polymer molecule has a ring structure, the atoms forming the chain skeleton in the ring are the two atoms at the bonding site of the ring and the two atoms with the shortest number of atoms between the two atoms. Between the atoms. For example, when the polyamide polymer is MXD-6 nylon,
MXD6 nylon structural formula
Figure 0005304636
In this single repeating unit, the three carbon atoms in the arrow portion are atoms forming a chain skeleton in the ring and have two amide bonds. It has two amide bonds per 13 atoms of chain molecules. Therefore, MXD6 nylon becomes a polyamide polymer having 15.4 amide bonds per 100 atoms of chain molecules.

ポリアミド重合体の相対粘度は、98%硫酸法で測定すると好ましくは1.8〜3.6であり、より好ましくは2.1〜3.4である。相対粘度が1.8未満では強度やタフネスが充分でなく、3.6を越えると流動性が不足して良好な成形体が得られなくなるおそれがある。   The relative viscosity of the polyamide polymer is preferably 1.8 to 3.6, more preferably 2.1 to 3.4, as measured by a 98% sulfuric acid method. If the relative viscosity is less than 1.8, the strength and toughness are not sufficient, and if it exceeds 3.6, the fluidity is insufficient and a good molded product may not be obtained.

また、本発明のエステル結合を主鎖に持つ重合体としては、ポリエステル重合体を挙げることができる。ポリエステル重合体は、多塩基酸(一般にジカルボン酸)と多価アルコールとの重縮合により得られる重合体の総称である。多塩基酸としては、多価カルボン酸、もしくはそのアルキルエステル、酸無水物を使用できる。多価カルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボンル酸、4,4’−ジフェニルジカルボン酸、2,2’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、5−スルホン酸ナトリウムイソフタル酸、5−ヒドロキシイソフタル酸等の芳香族ジカルボン酸、フマル酸、マレイン酸、コハク酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、1,12−ドデカン二酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,2−シクロヘキサンジカルボン酸、4−メチル−1,2−シクロヘキサンジカルボン酸、ダイマー酸等の脂肪族や脂環族ジカルボン酸、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)等の芳香族多価カルボン酸等が挙げられる。多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、1,2−ブタンジオ−ル、1,3−ブタンジオ−ル、1、4−ブタンジオール、1,5−ペンタンジオ−ル、1,6−ヘキサンジオ−ル、3−メチル−1,5−ペンタンジオール、ネオペンチルグリコ−ル、ジプロピレングリコ−ル、2,2,4−トリメチル−1,5−ペンタンジオ−ル、ネオペンチルヒドロキシピバリン酸エステル、ビスフェノ−ルAのエチレンオキサイド付加物およびプロピレンオキサイド付加物、水素化ビスフェノ−ルAのエチレンオキサイド付加物およびプロピレンオキサイド付加物、1,9−ノナンジオール、2−メチルオクタンジオール、1,10−デカンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、ダイマージオール、ポリカーボネートグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジメチロールブタン酸、ジメチロールプロピオン酸、ポリカーボネートジオール、ポリエーテルグリコール等が挙げられる。さらに、ポリエステルの原料としては、ε−カプロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン、β−プロピオラクトン、γ−ブチロラクトンなどのラクトン類、乳酸、グリコール酸、2−ヒドロキシイソブタン酸、3−ヒドロキシブタン酸、4−ヒドロキシブタン酸、6−ヒドロキシカプロン酸などのヒドロキシカルボン酸およびその環状二量体などが挙げられる。ポリエステル重合体としては、特に、ポリアリレート、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートなどの結晶性ポリエステル、これらにシクロヘキサンジメタノール、ネオペンチルグリコール、イソフタル酸などを共重合し、結晶性を低下もしくは非晶化した重合体が好ましい。エステル結合を主鎖に持つ重合体を使用することにより、エステル結合を主鎖に持たない重合体と比較して接着強度を強くすることができる。   Moreover, a polyester polymer can be mentioned as a polymer which has the ester bond of this invention in a principal chain. The polyester polymer is a general term for polymers obtained by polycondensation of a polybasic acid (generally a dicarboxylic acid) and a polyhydric alcohol. As the polybasic acid, a polyvalent carboxylic acid, an alkyl ester thereof, or an acid anhydride can be used. Examples of the polyvalent carboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, and 2,2′-diphenyl. Aromatic dicarboxylic acids such as dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 5-sulfonic acid sodium isophthalic acid, 5-hydroxyisophthalic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, Sebacic acid, 1,12-dodecanedioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, dimer acid, etc. Aliphatic and alicyclic dicarboxylic acids, trimellitic acid, pyrome Tsu DOO acid, benzophenonetetracarboxylic acid, biphenyltetracarboxylic acid, ethylene glycol bis (anhydrotrimellitate), and aromatic polycarboxylic acids, such as glycerol tris (anhydrotrimellitate) and the like. Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,2-butanediol, 1,3- Butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, dipropylene glycol, 2,2,4-trimethyl-1,5-pentanediol, neopentylhydroxypivalate ester, ethylene oxide adduct and propylene oxide adduct of bisphenol A, ethylene oxide adduct of hydrogenated bisphenol A and Propylene oxide adduct, 1,9-nonanediol 2-methyloctanediol, 1,10-decanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, dimer diol, polycarbonate glycol, glycerin, Examples include trimethylolpropane, pentaerythritol, dimethylolbutanoic acid, dimethylolpropionic acid, polycarbonate diol, and polyether glycol. Furthermore, as raw materials for polyester, lactones such as ε-caprolactone, δ-valerolactone, β-methyl-δ-valerolactone, β-propiolactone, γ-butyrolactone, lactic acid, glycolic acid, 2-hydroxyisobutanoic acid , Hydroxycarboxylic acids such as 3-hydroxybutanoic acid, 4-hydroxybutanoic acid and 6-hydroxycaproic acid, and cyclic dimers thereof. As the polyester polymer, in particular, crystalline polyesters such as polyarylate, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like, cyclohexanedimethanol, neopentyl glycol, isophthalic acid, etc. A polymer in which the crystallinity is lowered or made amorphous is preferable. By using a polymer having an ester bond in the main chain, the adhesive strength can be increased as compared with a polymer having no ester bond in the main chain.

本発明の熱可塑性樹脂射出成形体には、熱可塑性樹脂に加えて、本発明の目的を損わない範囲で強化材や充填剤を配合しても構わない。強化材や充填剤としては、ガラス繊維、扁平ガラス繊維、カーボン繊維、セラミックス繊維、針状ワラスト、ウイスカーなどの繊維状無機強化材、シリカ、アルミナ、タルク、カオリン、石英、ガラスフレーク、マイカ、グラファイト等の粉末状の充填剤等を挙げることができるが、これらに限定されるものではない。これらの強化材や充填剤は単独または二種類以上の組み合わせで配合することができる。また、これらの強化材や充填剤は表面処理剤としてエポキシシランやアミノシラン等で処理されたものを使用しても良い。   In addition to the thermoplastic resin, the thermoplastic resin injection-molded article of the present invention may be blended with a reinforcing material or a filler as long as the object of the present invention is not impaired. Reinforcing materials and fillers include glass fiber, flat glass fiber, carbon fiber, ceramic fiber, acicular wallast, whisker and other fibrous inorganic reinforcing materials, silica, alumina, talc, kaolin, quartz, glass flakes, mica, graphite Examples thereof include, but are not limited to, powdery fillers and the like. These reinforcing materials and fillers can be blended alone or in combination of two or more. These reinforcing materials and fillers may be those treated with epoxy silane or amino silane as a surface treatment agent.

また、熱可塑性樹脂射出成形体には、本発明の目的を損わない範囲で他のポリマー類を配合しても良い。他のポリマー類としては、例えばポリスチレン系樹脂やポリオレフィン系樹脂を挙げることができる。これらのポリマー類は、熱可塑性樹脂との相溶性を向上させるために、エポキシ化合物やオキサドリン化合物および無水マレイン酸等で変性することもでき、そのようなものとして、変性ポリスチレン系樹脂や変性ポリオレフィン系樹脂を例示することができる。   Moreover, you may mix | blend other polymers with a thermoplastic resin injection molded object in the range which does not impair the objective of this invention. Examples of other polymers include polystyrene resins and polyolefin resins. These polymers can also be modified with epoxy compounds, oxadrine compounds, maleic anhydride, etc. to improve compatibility with thermoplastic resins, such as modified polystyrene resins and modified polyolefin resins. Resins can be exemplified.

本発明の熱可塑性樹脂射出成形体には、同様に本発明の目的を損なわない範囲で、必要に応じて結晶核剤、滑剤、離型剤、可塑剤、光または熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、難燃剤、顔料、染料あるいは他種ポリマーなどを添加できる。   Similarly, the thermoplastic resin injection-molded article of the present invention includes a crystal nucleating agent, a lubricant, a mold release agent, a plasticizer, a light or heat stabilizer, and an antioxidant as long as the object of the present invention is not impaired. UV absorbers, light stabilizers, antistatic agents, flame retardants, pigments, dyes or other polymers can be added.

本発明の熱可塑性樹脂射出成形体は、熱可塑性樹脂射出成形体とは異なる材料と合わせた状態でレーザー溶着されることから密着性が必要である。従って、本発明の熱可塑性樹脂射出成形体は、低ソリ特性を有するものを使用することが重要である。熱可塑性樹脂射出成形体のソリ変形は、熱可塑性樹脂の結晶化に伴う収縮率の異方性から発生する場合が多い。収縮異方性が大きい場合、成形時のソリ変形が大きくなり、接合しようとする熱可塑性樹脂射出成形体と、熱可塑性樹脂射出成形体とは異なる材料とのクリアランスが大きくなり、レーザー溶着が不充分となって接合強度が弱くなる。本発明では、この低ソリ性を実現するために、低い収縮異方性を持つ熱可塑性樹脂射出成形体を使用する。   The thermoplastic resin injection molded article of the present invention requires adhesion because it is laser-welded in a state combined with a material different from the thermoplastic resin injection molded article. Therefore, it is important to use the thermoplastic resin injection-molded article of the present invention having a low warp characteristic. The warp deformation of the thermoplastic resin injection-molded body often occurs due to the shrinkage anisotropy accompanying the crystallization of the thermoplastic resin. If the shrinkage anisotropy is large, warping deformation during molding increases, and the clearance between the thermoplastic resin injection molded product to be joined and a material different from the thermoplastic resin injection molded product increases, and laser welding is not possible. It becomes sufficient and the bonding strength is weakened. In the present invention, in order to realize this low warpage, a thermoplastic resin injection-molded body having a low shrinkage anisotropy is used.

本発明の収縮異方性とは、平板を射出成形したときに発生する、射出方向に対して流れ方向の収縮率と直角方向の収縮率の比であり、次式で表される。
収縮異方性 = (直角方向の収縮率)/(流れ方向の収縮率)
収縮異方性を求める平板の金型キャビティ寸法は100mm×100mm×2mmであり、フィルムゲートで成形される。収縮率は射出成形後の成形品の実寸と金型キャビティ寸法から求めることができる。
The shrinkage anisotropy of the present invention is the ratio of the shrinkage rate in the flow direction to the shrinkage rate in the direction perpendicular to the injection direction, which occurs when a flat plate is injection molded, and is expressed by the following equation.
Shrinkage anisotropy = (Shrinkage rate in the right-angle direction) / (Shrinkage rate in the flow direction)
The mold cavity size of the flat plate for which the shrinkage anisotropy is obtained is 100 mm × 100 mm × 2 mm, and is formed by a film gate. The shrinkage rate can be determined from the actual size of the molded product after injection molding and the die cavity size.

本発明の熱可塑性樹脂射出成形体の収縮異方性は3.5以下であることが必要である。3.5より大きい場合、流れ方向の収縮率が小さいのに対して直角方向の収縮率が大きいためソリ変形が大きくなり、接合しようとする二つの材料のクリアランスが大きくなってレーザー溶着が困難となる。   The shrinkage anisotropy of the thermoplastic resin injection molded article of the present invention is required to be 3.5 or less. When the ratio is larger than 3.5, the shrinkage rate in the flow direction is small, but the shrinkage rate in the perpendicular direction is large, so warpage deformation becomes large, and the clearance between the two materials to be joined becomes large, which makes laser welding difficult. Become.

熱可塑性樹脂射出成形体の3.5以下の収縮異方性は、熱可塑性樹脂の種類や射出成形時の金型温度を適宜選択することによって容易に達成できる。例えば、ガラス繊維等の方向性の出やすい強化材を使用したために収縮異方性が高くなる場合には、結晶性の高い樹脂と結晶性の低い樹脂または非晶性の樹脂を組み合わせて使用したり、結晶性の高い樹脂を低温金型で成形することによって、収縮異方性を低下させることができる。更には、ガラスフレーク、タルク、マイカ等の形状が板状であるフィラーを添加し、直角方向の収縮率を下げることによって収縮異方性を低下させることも有効である。   The shrinkage anisotropy of 3.5 or less of the thermoplastic resin injection-molded product can be easily achieved by appropriately selecting the type of thermoplastic resin and the mold temperature at the time of injection molding. For example, when shrinkage anisotropy is high due to the use of a reinforcing material that tends to be oriented such as glass fiber, use a combination of a highly crystalline resin and a low crystalline resin or an amorphous resin. Alternatively, the shrinkage anisotropy can be reduced by molding a highly crystalline resin with a low temperature mold. Furthermore, it is also effective to reduce shrinkage anisotropy by adding a filler having a plate shape such as glass flakes, talc, mica, etc., and reducing the shrinkage rate in the perpendicular direction.

本発明においてレーザー溶着に用いられるレーザー光としては、特に限定されるものではないが、一般的に、ルビー、ガラス、YAG等の固体レーザー、GaAs、InGaAsP等の半導体レーザー、ヘリウムーネオン、アルゴン、炭酸ガス、エキシマ等の気体レーザー等を挙げることができる。好ましいレーザーは、半導体レーザー(LDレーザーダイオード、波長808〜940nm)やYAGレーザー(イットリウム・アルミニュウム・ガーネット結晶、波長1064nm)であるが、これらに限定されるものではない。レーザーの波長が400nmより短いと、熱可塑性樹脂射出成形体が著しく劣化する可能性があり、好ましくない。   The laser beam used for laser welding in the present invention is not particularly limited, but generally, solid lasers such as ruby, glass, and YAG, semiconductor lasers such as GaAs and InGaAsP, helium-neon, argon, carbon dioxide gas And gas lasers such as excimer. A preferable laser is a semiconductor laser (LD laser diode, wavelength 808 to 940 nm) or a YAG laser (yttrium / aluminum / garnet crystal, wavelength 1064 nm), but is not limited thereto. If the laser wavelength is shorter than 400 nm, the thermoplastic resin injection molded article may be significantly deteriorated, which is not preferable.

本発明の熱可塑性樹脂射出成形体は、レーザー光の照射によって熱可塑性樹脂が加熱溶融されて局所的な発泡を起こすことが必要である。レーザー光の出力は100〜1000Wの高出力であり、これにより接合される材料の合わせた部分は急速加熱される。金属、セラミック等の材料の表面温度は500〜1500℃程度になり、これらに接触している熱可塑性樹脂射出成形体は小さい収縮異方性のためにソリ変形が少ないことから密着性が良く、熱伝導により急速に加熱される。レーザー光が照射されている部分は溶融し、その中心部では局所的に極めて高温となり、発泡が起こる。熱可塑性樹脂の局所的な発泡により、両材料の接合部で高圧力が発生し強固な溶着接合が起こる。この高圧力の発生はレーザー光の高出力と両材料の密着性による急速発熱および局所的な熱可塑性樹脂の発泡によってもたらされる。一方、この高圧力によって熱可塑性樹脂の極性基と接合される材料(例えば金属材料)との間で何らかの化学的な反応が起こる。従って、熱可塑性樹脂の主鎖中のエステル結合の有無やアミド結合の濃度は、熱可塑性樹脂射出成形体とは異なる材料との溶着結合の強度を高めるために極めて重要な因子である。   The thermoplastic resin injection-molded article of the present invention requires that the thermoplastic resin is heated and melted by laser light irradiation to cause local foaming. The output power of the laser light is as high as 100 to 1000 W, so that the combined portions of the materials to be joined are rapidly heated. The surface temperature of materials such as metals and ceramics is about 500 to 1500 ° C., and the thermoplastic resin injection molded body in contact with these has good adhesion because it has little warpage due to small shrinkage anisotropy, It is heated rapidly by heat conduction. The portion irradiated with the laser light is melted, and in the central portion, the temperature is locally extremely high and foaming occurs. Due to the local foaming of the thermoplastic resin, a high pressure is generated at the joint between the two materials, resulting in a strong welded joint. The generation of this high pressure is caused by rapid heat generation due to high output of laser light and adhesion between the two materials, and local foaming of the thermoplastic resin. On the other hand, this high pressure causes some chemical reaction between a material (for example, a metal material) joined to the polar group of the thermoplastic resin. Accordingly, the presence or absence of an ester bond in the main chain of the thermoplastic resin and the concentration of the amide bond are extremely important factors for increasing the strength of the welded bond with a material different from the thermoplastic resin injection molded article.

本発明の熱可塑性樹脂の材料を調製する方法としては、特に限定されるものではない。混錬装置として一般の単軸押出機、二軸押出機および加圧ニーダー等が使用できるが、本発明においては二軸押出機が特に好ましい。例えば必要に応じて複数の熱可塑性樹脂および強化材や充填剤や他の配合剤等を混合し、これを二軸押出機に投入して均一に溶融混錬することにより熱可塑性樹脂の材料を製造することができる。混錬温度は熱可塑性樹脂の種類により異なるが、一般的に180℃〜360℃であり、混錬時間は0.5〜15分程度が好ましい。かくして調製される熱可塑性樹脂を使用して常法により射出成形して本発明の熱可塑性樹脂射出成形体を得ることができる。   The method for preparing the thermoplastic resin material of the present invention is not particularly limited. A general single-screw extruder, a twin-screw extruder, a pressure kneader, or the like can be used as the kneading apparatus. In the present invention, the twin-screw extruder is particularly preferable. For example, if necessary, a plurality of thermoplastic resins and reinforcing materials, fillers, other compounding agents, etc. are mixed, and this is put into a twin-screw extruder and uniformly melted and kneaded to obtain a thermoplastic resin material. Can be manufactured. Although the kneading temperature varies depending on the type of thermoplastic resin, it is generally 180 ° C. to 360 ° C., and the kneading time is preferably about 0.5 to 15 minutes. The thermoplastic resin injection molded article of the present invention can be obtained by injection molding by a conventional method using the thermoplastic resin thus prepared.

以下に実施例により本発明の熱可塑性樹脂射出成形体の優位性を示すが、本発明はこれらの実施例により何ら制限されるものではない。   Although the superiority of the thermoplastic resin injection-molded article of the present invention is shown below by examples, the present invention is not limited by these examples.

本発明の実施例、比較例に使用した原材料は以下の通りである。
・ナイロン6(NY6)は東洋紡ナイロンT―800(東洋紡績(株))を使用した。
・ナイロン12(NY12)はダイアミドL1801(ダイセル・ヒュルス(株))を使用した。
・ポリエーテルアミド共重合体(ポリアミドエラストマー)は、ダイアミドPEA、E40(ショアーD=40)とダイアミドPAE、E62(ショアーD=62)、(ダイセル・ヒュルス(株))を使用した。
・ナイロン6T/6Iは東洋紡ナイロンT−714E(東洋紡績(株))を使用した。
・ナイロンMXD6は東洋紡ナイロンT−600(東洋紡績(株))を使用した。
・ポリブチレンテレフタレート(PBT)はタフテックPBT N1000(三菱レイヨン(株))を使用した。
・ポリエチレンテレフタレート(PET)はRE530(東洋紡績(株))を使用した。
・ポリカーボネート(PC)はユーピロンS−1000(三菱エンジニアリングプラスチックス(株))を使用した。
・ポリアリレート(PAR)はUポリマーU1000(ユニチカ(株))を使用した。
・ポリアセタール(POM)はデルリン500(デュポン(株))を使用した。
・低密度ポリエチレン(低密度PE)はスミカセンG801(住友化学(株))を使用した。
・ガラス繊維はFT2A(オーエンスコーニング製造(株))を使用した。
・タルクはKSTW(勝鉱山鉱業所(株))を使用した。
・熱可塑性樹脂射出成形体とは異なる材料として、金属材料(SUS304のステンレス板)、ガラス材料(ソーダガラス製フロートガラス板)またはセラミック材料(酸化物系のアルミナ(Al)製板)を使用した。
The raw materials used in Examples and Comparative Examples of the present invention are as follows.
-Nylon 6 (NY6) used Toyobo nylon T-800 (Toyobo Co., Ltd.).
-Nylon 12 (NY12) was Daiamide L1801 (Daicel Huls Co., Ltd.).
-As the polyetheramide copolymer (polyamide elastomer), diamide PEA, E40 (Shore D = 40) and diamide PAE, E62 (Shore D = 62), (Daicel Huls Co., Ltd.) were used.
-Toyobo nylon T-714E (Toyobo Co., Ltd.) was used for nylon 6T / 6I.
-Nylon MXD6 used Toyobo nylon T-600 (Toyobo Co., Ltd.).
-Polybutylene terephthalate (PBT) used Tuftec PBT N1000 (Mitsubishi Rayon Co., Ltd.).
-Polyethylene terephthalate (PET) used RE530 (Toyobo Co., Ltd.).
-As the polycarbonate (PC), Iupilon S-1000 (Mitsubishi Engineering Plastics Co., Ltd.) was used.
-Polyarylate (PAR) used U polymer U1000 (Unitika Ltd.).
-Delrin 500 (DuPont Co., Ltd.) was used for polyacetal (POM).
-Sumikasen G801 (Sumitomo Chemical Co., Ltd.) was used as the low density polyethylene (low density PE).
-Glass fiber used FT2A (Owens Corning Manufacturing Co., Ltd.).
・ Talc used KSTW (Katsu Mining Co., Ltd.).
・ Metal material (SUS304 stainless steel plate), glass material (float glass plate made of soda glass) or ceramic material (plate made of oxide-based alumina (Al 2 O 3 )) as a material different from the thermoplastic resin injection molded body It was used.

表1〜4の実施例及び比較例に示した配合割合で各原料をタンブラーで混合した後、二軸押出機に投入して溶融混錬して実施例1〜8、比較例1〜3、実施例1′〜9′、比較例1′〜4′の熱可塑性樹脂を調製した。なお、ガラス繊維は二軸押出機のベント口から別に投入した。二軸押出機の設定条件はシリンダー温度300℃であり、混錬時間は0.5〜5分である。これらの熱可塑性樹脂を射出成形機で成形して評価用試料とした。成形はそれぞれの原料のカタログに記載されている代表的な条件で行なった。また、ソリ変形量に密接に関連する金型温度は表1〜4に記載のように設定した。   After mixing each raw material with a tumbler at the blending ratio shown in the Examples and Comparative Examples in Tables 1 to 4, the raw materials were put into a twin-screw extruder and melt-kneaded, and Examples 1 to 8, Comparative Examples 1 to 3, The thermoplastic resins of Examples 1 ′ to 9 ′ and Comparative Examples 1 ′ to 4 ′ were prepared. The glass fiber was added separately from the vent port of the twin screw extruder. The setting conditions of the twin screw extruder are a cylinder temperature of 300 ° C. and a kneading time of 0.5 to 5 minutes. These thermoplastic resins were molded with an injection molding machine and used as samples for evaluation. Molding was performed under typical conditions described in the catalog of each raw material. The mold temperature closely related to the warp deformation was set as shown in Tables 1-4.

成形収縮率(樹脂の流れ方向、直角方向の収縮率)は図1に示した100mm×100mm×2mmの平板(フィルムゲート)で測定し、各収縮率の値から収縮異方性を求めた。一方、レーザー溶着接合強度は図2に示した試験片で測定した。図2において2は各熱可塑性樹脂射出成形体であり、3は熱可塑性樹脂射出成形体とは異なる材料(金属、セラミック、またはガラスの材料)を表わす。レーザーは半導体レーザー(940nm)を使用し、出力200W、照射速度2.5mm/secの条件で両材料の合わされた部分に照射した。レーザー光は図2(b)の5の方から照射され、4の部分で両材料が溶融溶着した。溶着接合強度は、各材料の2および3の部分を測定機のチャックに挟み、5mm/分の速度で引っ張ったとき、破断が溶着した接合部分でなく、各熱可塑性樹脂射出成形体の母材部分で破壊が起こった場合に○印を付け、両材料の接合面で剥離が起こった場合に×印を付けた。評価結果は表1〜4に記載した。   The molding shrinkage (resin flow direction, perpendicular shrinkage) was measured with a 100 mm × 100 mm × 2 mm flat plate (film gate) shown in FIG. 1, and shrinkage anisotropy was determined from the respective shrinkage values. On the other hand, the laser welding joint strength was measured with the test piece shown in FIG. In FIG. 2, reference numeral 2 denotes each thermoplastic resin injection molded body, and 3 denotes a material (metal, ceramic, or glass material) different from the thermoplastic resin injection molded body. As the laser, a semiconductor laser (940 nm) was used, and the combined portion of both materials was irradiated under the conditions of an output of 200 W and an irradiation speed of 2.5 mm / sec. The laser beam was irradiated from the direction 5 in FIG. 2B, and both materials were melted and welded in the portion 4. The weld joint strength is not the joint part where the fracture is welded when the parts 2 and 3 of each material are sandwiched between chucks of a measuring machine and pulled at a speed of 5 mm / min, but the base material of each thermoplastic resin injection molded body A circle was marked when a fracture occurred in the part, and a cross was marked when peeling occurred on the joint surface of both materials. The evaluation results are shown in Tables 1 to 4.

Figure 0005304636
Figure 0005304636

Figure 0005304636
Figure 0005304636

Figure 0005304636
Figure 0005304636

Figure 0005304636
Figure 0005304636

表1からわかる通り、射出成形体の収縮異方性が3.5以下であっても、射出成形体に含まれるポリアミド重合体の鎖状分子100原子当たりのアミド結合の数が4個未満ではレーザー溶着接合強度が劣る(比較例1)か又は全く接合できない(比較例2)。また、表2からわかる通り、射出成形体に含まれるポリアミド重合体の鎖状分子100原子当たりのアミド結合の数が4個以上であっても、射出成形体の収縮異方性が3.5より大きいとレーザー溶着接合強度が劣る(比較例3及び4)。一方、射出成形体の収縮異方性が3.5以下でありかつ熱可塑性樹脂が、鎖状分子100原子当たり4個以上のアミド結合を持つポリアミド重合体を含む場合は、接合される相手が金属、ガラスまたはセラミックのいずれであっても高いレーザー溶着接合強度を達成することができる(実施例1〜9)。   As can be seen from Table 1, even when the shrinkage anisotropy of the injection molded product is 3.5 or less, the number of amide bonds per 100 atoms of chain molecules of the polyamide polymer contained in the injection molded product is less than 4. Laser welding joint strength is inferior (Comparative Example 1) or cannot be joined at all (Comparative Example 2). Further, as can be seen from Table 2, even when the number of amide bonds per 100 atoms of chain molecules of the polyamide polymer contained in the injection molded product is 4 or more, the shrinkage anisotropy of the injection molded product is 3.5. If it is larger, the laser welding joint strength is inferior (Comparative Examples 3 and 4). On the other hand, when the shrinkage anisotropy of the injection-molded product is 3.5 or less and the thermoplastic resin contains a polyamide polymer having 4 or more amide bonds per 100 atoms of chain molecules, the partner to be joined is High laser welding joint strength can be achieved with any of metal, glass, and ceramic (Examples 1 to 9).

表3からわかる通り、射出成形体の収縮異方性が3.5以下であっても射出成形体に含まれる熱可塑性樹脂がエステル結合を主鎖に持たない場合はレーザー溶着接合強度が劣る(比較例1′及び2′)。また、表4からわかる通り、射出成形体に含まれる熱可塑性樹脂がエステル結合を主鎖に持つ場合であっても、射出成形体の収縮異方性が3.5より大きいと、レーザー溶着接合強度が劣る(比較例3′)。一方、射出成形体の収縮異方性が3.5以下でありかつ熱可塑性樹脂がエステル結合を主鎖に持つ重合体を含む場合は、接合される相手が金属、ガラスまたはセラミックのいずれであっても高いレーザー溶着接合強度を達成することができる(実施例1′〜8′)。   As can be seen from Table 3, even when the shrinkage anisotropy of the injection-molded product is 3.5 or less, if the thermoplastic resin contained in the injection-molded product does not have an ester bond in the main chain, the laser welding joint strength is inferior ( Comparative examples 1 'and 2'). Further, as can be seen from Table 4, even if the thermoplastic resin contained in the injection-molded body has an ester bond in the main chain, if the shrinkage anisotropy of the injection-molded body is greater than 3.5, laser welding bonding The strength is inferior (Comparative Example 3 ′). On the other hand, when the shrinkage anisotropy of the injection-molded product is 3.5 or less and the thermoplastic resin contains a polymer having an ester bond in the main chain, the partner to be joined is either metal, glass, or ceramic. Even high laser weld joint strength can be achieved (Examples 1 'to 8').

本発明のレーザー溶着用熱可塑性樹脂射出成形体は、金属、セラミック、ガラスなどの熱可塑性樹脂射出成形体とは異なる材料との間で高い強度のレーザー溶着接合を達成することができる。従って、本発明は、自動車産業などの異種材料間レーザー溶着を必要とする分野に広く応用することができる。   The thermoplastic resin injection-molded article of the present invention for laser welding can achieve high-strength laser-welded bonding with a material different from the thermoplastic resin injection-molded article such as metal, ceramic, and glass. Therefore, the present invention can be widely applied to fields that require laser welding between different materials, such as the automobile industry.

Claims (1)

熱可塑性樹脂射出成形体と、金属材料を合わせた状態でレーザー光の照射により熱可塑性樹脂を加熱溶融させて局所的な発泡を起こすことにより、熱可塑性樹脂射出成形体と、金属材料とを溶着接合することによって得られるレーザー溶着接合体であって、射出成形体が3.5以下の収縮異方性を有すること、および熱可塑性樹脂が鎖状分子100原子当たり4個以上のアミド結合を持つポリアミド重合体を含むことを特徴とするレーザー溶着接合体The thermoplastic resin injection molded body and the metal material are welded by locally melting the thermoplastic resin by heating and melting the thermoplastic resin by laser light irradiation with the thermoplastic resin injection molded body and the metal material combined. A laser-welded joined body obtained by joining , wherein an injection-molded product has a shrinkage anisotropy of 3.5 or less, and a thermoplastic resin has 4 or more amide bonds per 100 atoms of chain molecules A laser-welded joined body comprising a polyamide polymer.
JP2009501130A 2007-02-27 2008-02-26 Laser welding thermoplastic resin injection molding Active JP5304636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009501130A JP5304636B2 (en) 2007-02-27 2008-02-26 Laser welding thermoplastic resin injection molding

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007047332 2007-02-27
JP2007047332 2007-02-27
JP2007048713 2007-02-28
JP2007048713 2007-02-28
PCT/JP2008/000338 WO2008105167A1 (en) 2007-02-27 2008-02-26 Thermoplastic resin injection molded body for laser welding
JP2009501130A JP5304636B2 (en) 2007-02-27 2008-02-26 Laser welding thermoplastic resin injection molding

Publications (2)

Publication Number Publication Date
JPWO2008105167A1 JPWO2008105167A1 (en) 2010-06-03
JP5304636B2 true JP5304636B2 (en) 2013-10-02

Family

ID=39721009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009501130A Active JP5304636B2 (en) 2007-02-27 2008-02-26 Laser welding thermoplastic resin injection molding

Country Status (2)

Country Link
JP (1) JP5304636B2 (en)
WO (1) WO2008105167A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158297A (en) * 2011-02-02 2012-08-23 Bridgestone Corp Tire and tire manufacturing method
JP5833323B2 (en) * 2011-03-11 2015-12-16 帝人株式会社 Manufacturing method of carbon fiber composite material joining member
CN107206703A (en) 2015-01-22 2017-09-26 三菱工程塑料株式会社 Laser welding component and formed products
IT201600118515A1 (en) * 2016-11-25 2018-05-25 Vincenzo Tagliaferri New process for making joints of polymeric material or polymeric material with other materials.
US20240017500A1 (en) * 2022-07-14 2024-01-18 Edison Welding Institute, Inc. System and method for welding thermoplastic materials to glass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296053A (en) * 1996-03-06 1997-11-18 Toray Ind Inc Fiber-reinforced thermoplastic resin molding
JP2005231144A (en) * 2004-02-18 2005-09-02 Denso Corp Laser welding apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4104073B2 (en) * 2004-06-02 2008-06-18 財団法人名古屋産業科学研究所 Member joining method and joining formation recognition apparatus using laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296053A (en) * 1996-03-06 1997-11-18 Toray Ind Inc Fiber-reinforced thermoplastic resin molding
JP2005231144A (en) * 2004-02-18 2005-09-02 Denso Corp Laser welding apparatus

Also Published As

Publication number Publication date
WO2008105167A1 (en) 2008-09-04
JPWO2008105167A1 (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5194629B2 (en) Joining method of thermoplastic resin material and metal material
JP4894761B2 (en) Laser welding material, laser welding method and molded product using the same
JP5304636B2 (en) Laser welding thermoplastic resin injection molding
JP5085928B2 (en) Laser welding resin composition and molded article
JP5788790B2 (en) Welded polybutylene terephthalate resin composition and composite molded article
JP2005194532A (en) Polyamide resin and car component comprising the same
JP2008163167A (en) Laser-weldable modified polyester resin composition and composite molding using the same
JP2003292752A (en) Resin composition for laser welding and composite molding article using the same
JP2007186584A (en) Polyester resin composition for laser welding and molded article produced by using the same
WO2006085659A1 (en) Laser weld of laser transmitting member containing alkaline earth metal salt of anthrapyridone acid dye
JP7486056B2 (en) Polyamide resin composition for foam molding and foam molded article
JP4633384B2 (en) Laser-bonded polyarylene sulfide resin composition and molded article
KR20110043724A (en) Long-term heat aging resistant impact modified poly(cyclohexylene-dimethylene) terephthalate compositions
JP2007517700A (en) Method for laser welding polyester compositions
JP2008208247A (en) Resin or resin composition for laser welding use, and molded form using the same
JP2007503339A (en) Method for laser welding articles molded from polyolefins to articles molded from other thermoplastic resins, and welded articles made therefrom
JP7265979B2 (en) Molded products for laser welding, agents for suppressing variations in laser transmittance of molded products for laser welding
JP4633532B2 (en) Airtight switch parts
JP2006257338A (en) Resin composition for laser welding and compound molded product
JP2006273992A (en) Resin composition for welding and method for welding resin
JP5206933B2 (en) Polyamide molding material with excellent weldability.
JP2009256538A (en) Polyoxymethylene resin composition for laser welding, and welding method of resin molded article
JP2006274121A (en) Polyamide resin composition for welding
JP7291528B2 (en) Polybutylene terephthalate resin composition for laser welding
JP2010126646A (en) Thermoplastic resin composition for laser welding and composite molding product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R151 Written notification of patent or utility model registration

Ref document number: 5304636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350