JP2006257338A - Resin composition for laser welding and compound molded product - Google Patents

Resin composition for laser welding and compound molded product Download PDF

Info

Publication number
JP2006257338A
JP2006257338A JP2005079160A JP2005079160A JP2006257338A JP 2006257338 A JP2006257338 A JP 2006257338A JP 2005079160 A JP2005079160 A JP 2005079160A JP 2005079160 A JP2005079160 A JP 2005079160A JP 2006257338 A JP2006257338 A JP 2006257338A
Authority
JP
Japan
Prior art keywords
polybutylene terephthalate
laser beam
laser welding
resin
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005079160A
Other languages
Japanese (ja)
Inventor
Satoshi Ishii
智 石井
Shunji Sato
俊二 佐藤
Masahiro Nishizawa
昌洋 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005079160A priority Critical patent/JP2006257338A/en
Publication of JP2006257338A publication Critical patent/JP2006257338A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1658Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning once, e.g. contour laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polybutylene terephthalate resin composition superior in laser beam transmission, moldability, mechanical strength and resistance to heat discoloration, and useful for laser welding in a variety of use of resin molded products, and to provide a laser welded molded product using it. <P>SOLUTION: This resin composition for laser welding comprises a polybutylene terephthalate resin (A), at least one resin selected from a polycarbonate resin and an acrylonitrile-styrene copolymer (B) wherein (B) is 1-50 wt% of the total of (A) and (B) and a styrene elastomer of a styrene-butadiene copolymer (C) a copolymerization ratio of butadiene of which is ≤50 wt% and which contains 1-25 pts.wt. of the total of (A) and (B) of 100 pts.wt. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐熱性、冷熱性、成形品表面外観、寸法安定性、レーザー溶着性が均衡して優れたレーザー溶着用樹脂組成物およびそれを用いた複合成形体に関し、更には他の物品にレーザー溶着して得られる複合成形体などに適したポリブチレンテレフタレート系樹脂組成物およびそれを用いた複合成形体に関するものである。   The present invention relates to a resin composition for laser welding having excellent balance of heat resistance, heat resistance, molded article surface appearance, dimensional stability, and laser weldability, and a composite molded article using the same, and further to other articles. The present invention relates to a polybutylene terephthalate resin composition suitable for a composite molded body obtained by laser welding and a composite molded body using the same.

ポリブチレンテレフタレート樹脂は、その優れた射出成形性、機械特性、耐熱性、電気特性、耐薬品性などを利用して、機械部品、電気・通信部品、自動車部品などの分野で射出成形品として広範囲に利用されている。しかし、射出成形品の成形効率は良いが、その流動特性や金型構造の点から形状に制限があり、あまり複雑なものは成形が困難である。   Polybutylene terephthalate resin is widely used as an injection-molded product in the fields of mechanical parts, electrical / communication parts, automobile parts, etc. by utilizing its excellent injection moldability, mechanical properties, heat resistance, electrical properties, chemical resistance, etc. Has been used. However, although the molding efficiency of the injection molded product is good, the shape is limited in terms of its flow characteristics and mold structure, and it is difficult to mold a complicated one.

従来から、製品形状の複雑化に伴う各パーツの接合においては、接着剤による接合、ボルトなどによる機械的接合などが行われてきた。しかしながら、接着剤ではその接着強度が、また、ボルトなどによる機械的接合では、費用、締結の手間、重量増が問題となっている。一方、レーザー溶着、熱板溶着などの外部加熱溶着、振動溶着、超音波溶着などの摩擦熱溶着に関しては短時間で接合が可能であり、また、接着剤や金属部品を使用しないので、それにかかるコストや重量増、環境汚染等の問題が発生しないことから、これらの方法による組立が増えてきている。   Conventionally, in joining parts due to the complexity of product shape, joining with an adhesive, mechanical joining with a bolt or the like has been performed. However, adhesives have problems of adhesive strength, and mechanical joining with bolts and the like has problems of cost, labor for fastening, and weight increase. On the other hand, external heat welding such as laser welding and hot plate welding, friction heat welding such as vibration welding and ultrasonic welding can be performed in a short time, and no adhesive or metal parts are used. Since problems such as cost, weight increase and environmental pollution do not occur, assembly by these methods is increasing.

外部加熱溶着のひとつであるレーザー溶着は、重ね合わせた樹脂成形体にレーザー光を照射し、照射した一方を透過させてもう一方で吸収させ溶融、融着させる工法であり、三次元接合が可能、非接触加工、バリ発生が無いなどの利点を利用して、幅広い分野に広がりつつある工法である。   Laser welding, which is one of external heat welding, is a method of irradiating a laser beam to the superimposed resin moldings, transmitting the irradiated one, absorbing it, melting and fusing it, and enabling three-dimensional bonding It is a method that is spreading in a wide range of fields, taking advantage of non-contact processing and the absence of burrs.

当工法において、レーザー光線透過側成形体に適用する樹脂材料においては、レーザー光線を透過する特徴が必須となり、照射したレーザー光線のエネルギーを100%とした場合、そのレーザー光線透過側成形体の裏側に透過して出てくるエネルギーは、10%以上は必要であることが本発明者らの検討結果から判明した。10%未満のレーザー光線透過率の成形体をレーザー光線透過側成形体に用いた場合、レーザー光線入射表面で溶融、発煙するなどの不具合を生じる可能性が十分に考えられる。   In this construction method, in the resin material applied to the laser beam transmission side molded body, the characteristic of transmitting the laser beam is essential, and when the energy of the irradiated laser beam is 100%, it is transmitted to the back side of the laser beam transmission side molded body. As a result of the examination by the present inventors, it has been found that the energy to be output needs to be 10% or more. When a molded article having a laser beam transmittance of less than 10% is used as the molded article on the laser beam transmission side, there is a sufficient possibility that defects such as melting and smoke generation may occur on the laser beam incident surface.

各種用途に数多く使用されているポリブチレンテレフタレート系樹脂においては、ナイロン樹脂などの熱可塑性樹脂に比べてレーザー光線透過率が非常に低く、ポリブチレンテレフタレート系樹脂をレーザー光線透過側の成形品として用い、レーザー溶着工法を適用する際には、そのレーザー光線透過率の低さから厚み制限が非常に厳しく、レーザー光線透過率の向上のために薄肉化による対応が必要となり、製品設計自由度が小さかった。   The polybutylene terephthalate resin used in many applications has a very low laser beam transmittance compared to thermoplastic resins such as nylon resin. The polybutylene terephthalate resin is used as a molded product on the laser beam transmission side. When applying the welding method, the thickness limit is very strict due to its low laser beam transmittance, and it is necessary to deal with the thinning to improve the laser beam transmittance, and the degree of freedom in product design is small.

特許文献1には、レーザー溶着工法においてポリブチレンテレフテレート系共重合体を用いることによる融点のコントロールによって、溶着条件幅を広くすると記載されているが、融点のコントロールだけでは、レーザー光線透過性の大きな向上は望めず、従って成形体の肉厚設計の自由度向上も望めず、またポリブチレンテレフタレート系樹脂の成形性を損なう問題点があった。   In Patent Document 1, it is described that the welding condition width is widened by controlling the melting point by using a polybutylene terephthalate copolymer in the laser welding method. A great improvement cannot be expected. Therefore, an improvement in the degree of freedom in the thickness design of the molded article cannot be expected, and the moldability of the polybutylene terephthalate resin is impaired.

また、各種用途に数多く使用されているポリブチレンテレフタレート系樹脂においては、特許文献2に開示されているエラストマ添加による耐衝撃性改質、及び耐冷熱性改良を行うケースもあるが、実使用環境下での寸法変化抑制のために熱処理を行う場合に、添加したエラストマ変色による意匠性低下とその変色に伴うレーザー光線透過率低下の問題がある。
特開2001−26656号公報([0008]〜[0024]段落) 特開2003−292752号公報([0025]〜[0027]段落)
In addition, in polybutylene terephthalate-based resins that are widely used in various applications, there are cases where impact resistance is improved by adding an elastomer and cold and heat resistance is improved as disclosed in Patent Document 2, but under actual use environment. When heat treatment is performed in order to suppress dimensional change at, there is a problem of design deterioration due to the added elastomer discoloration and a decrease in laser beam transmittance associated with the discoloration.
JP 2001-26656 A (paragraphs [0008] to [0024]) Japanese Patent Laying-Open No. 2003-292752 (paragraphs [0025] to [0027])

本発明は、上述した従来の問題点を解消し、ポリブチレンテレフタレート系樹脂においても、製品設計自由度を低下させることなく、また、熱処理による変色を抑制し、意匠性低下と透過率低下を損なうことなく、レーザー光線透過側成形体として適用することのできるレーザー溶着用ポリブチレンテレフタレート系樹脂組成物を提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems, and even in polybutylene terephthalate resin, it does not reduce the degree of freedom in product design, suppresses discoloration due to heat treatment, and impairs design deterioration and transmittance decrease. It aims at providing the polybutylene terephthalate type-resin composition for laser welding which can be applied as a laser beam transmission side molded object, without using it.

本発明者らは以上の状況を鑑み、鋭意検討を重ねた結果、ポリブチレンテレフタレート系樹脂に、ポリカーボネート樹脂またはアクリロニトリル・スチレン共重合体を配合し、さらにスチレンとブタジエンとの共重合物であり、且つブタジエンの共重合比率が50重量%未満でスチレン系エラストマ添加することで、レーザー透過率の低下がなく、且つ耐熱変色性に優れたレーザー溶着用樹脂組成物が得られることを見出し、本発明に到達した。   In light of the above situation, the present inventors have conducted extensive studies, and as a result, blended a polybutylene terephthalate resin with a polycarbonate resin or an acrylonitrile / styrene copolymer, and further a copolymer of styrene and butadiene, In addition, it has been found that by adding a styrene-based elastomer with a copolymerization ratio of butadiene of less than 50% by weight, a laser welding resin composition having no reduction in laser transmittance and excellent heat discoloration can be obtained. Reached.

前記課題を解決するため、本発明は次の構成からなる。すなわち、
(1)ポリブチレンテレフタレートまたはポリブチレンテレフタレートとポリブチレンテレフタレート共重合体の混合物(A)であるポリブチレンテレフタレート系樹脂(A)と、ポリカーボネート樹脂またはアクリロニトリル・スチレン共重合体(B)を配合してなり、(B)は、(A)と(B)の合計に対し1〜50重量%であり、さらにスチレンとブタジエンとの共重合体であり、且つブタジエンの共重合比率が50重量%未満であるスチレン系エラストマ(C)を(A)、(B)の合計量100重量部に対し、1〜25重量部添加配合してなるレーザー溶着用樹脂組成物、
(2)(A)がポリブチレンテレフタレートまたはポリブチレンテレフタレートとポリブチレンテレフタレート/イソフタレート共重合体の混合物である、(1)のレーザー溶着用樹脂組成物、
(3)(C)がスチレン−ブタジエンブロック共重合体のエポキシ化物であり、且つブタジエンの共重合比率が50重量%未満のスチレン系エラストマである、(1)または(2)のレーザー溶着用樹脂組成物。
(4)さらに無機充填材及び有機系充填材から選択される少なくとも1種(D)を、(A)、(B)の合計量100重量部に対し、1〜200重量部添加配合してなる(1)〜(3)いずれかのレーザー溶着用樹脂組成物。
(5)(1)〜(4)いずれかのレーザー溶着用樹脂組成物からなる成形品をレーザー溶着した複合成形体、
である。
In order to solve the above problems, the present invention has the following configuration. That is,
(1) A polybutylene terephthalate resin (A) which is polybutylene terephthalate or a mixture of polybutylene terephthalate and polybutylene terephthalate copolymer (A) and a polycarbonate resin or an acrylonitrile / styrene copolymer (B) are blended. (B) is 1 to 50% by weight based on the total of (A) and (B), and is a copolymer of styrene and butadiene, and the copolymerization ratio of butadiene is less than 50% by weight. Laser welding resin composition comprising 1 to 25 parts by weight of a certain styrene elastomer (C) added to 100 parts by weight of the total amount of (A) and (B),
(2) The laser welding resin composition of (1), wherein (A) is polybutylene terephthalate or a mixture of polybutylene terephthalate and polybutylene terephthalate / isophthalate copolymer,
(3) The laser welding resin according to (1) or (2), wherein (C) is an epoxidized product of a styrene-butadiene block copolymer, and is a styrene elastomer having a butadiene copolymerization ratio of less than 50% by weight. Composition.
(4) Further, at least one selected from inorganic fillers and organic fillers (D) is added and blended in an amount of 1 to 200 parts by weight per 100 parts by weight of the total amount of (A) and (B). (1)-(3) The resin composition for laser welding according to any one of the above.
(5) A composite molded article obtained by laser welding a molded article comprising the resin composition for laser welding according to any one of (1) to (4),
It is.

本発明は、ポリブチレンテレフタレート系樹脂に、ポリカーボネート樹脂またはアクリロニトリル・スチレン共重合体を配合し、さらにスチレンとブタジエンとの共重合物であり、且つブタジエンの共重合比率が50重量%未満でスチレン系エラストマ添加することで、レーザー光線透過率の低下がなく、且つ耐熱変色性に優れたレーザー溶着用樹脂組成物が得ることが可能であり、レーザー光線透過側成形体として好適に用いることができる。   The present invention is a polybutylene terephthalate resin blended with a polycarbonate resin or an acrylonitrile / styrene copolymer, a copolymer of styrene and butadiene, and a butadiene copolymer ratio of less than 50% by weight. By adding an elastomer, it is possible to obtain a resin composition for laser welding that does not have a decrease in laser beam transmittance and is excellent in heat discoloration, and can be suitably used as a laser beam transmission side molded article.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明でいうポリブチレンテレフタレート系樹脂(以下、(A)成分とも言う)とは、前記ポリブチレンテレフタレート単独であっても良いし、ポリブチレンテレフタレートとポリブチレンテレフタレート共重合体の混合物であっても良い。   The polybutylene terephthalate-based resin (hereinafter also referred to as the component (A)) in the present invention may be the polybutylene terephthalate alone or a mixture of polybutylene terephthalate and polybutylene terephthalate copolymer. good.

本発明において用いられるポリブチレンテレフタレートとは、テレフタル酸(あるいはそのジメチルテレフタレート等エステル形成性誘導体)と1,4−ブタンジオール(あるいはそのエステル形成性誘導体)とを重縮合反応して得られる重合体である。   The polybutylene terephthalate used in the present invention is a polymer obtained by polycondensation reaction of terephthalic acid (or its ester-forming derivative such as dimethyl terephthalate) and 1,4-butanediol (or its ester-forming derivative). It is.

また、上記ポリブチレンテレフタレートと混合して用いることができるポリブチレンテレフタレート共重合体としては、テレフタル酸(あるいはそのジメチルテレフタレート等エステル形成性誘導体)と1,4−ブタンジオール(あるいはそのエステル形成性誘導体)およびこれらと共重合可能なその他のジカルボン酸(あるいはそのエステル形成性誘導体)あるいはその他のジオール(あるいはそのエステル形成性誘導体)を共重合したものが挙げられ、なかでも第三成分としてその他のジカルボン酸(あるいはそのエステル形成性誘導体)を共重合した共重合体が好ましい。   The polybutylene terephthalate copolymer that can be used by mixing with the polybutylene terephthalate includes terephthalic acid (or an ester-forming derivative such as dimethyl terephthalate) and 1,4-butanediol (or an ester-forming derivative thereof). ) And other dicarboxylic acids copolymerizable therewith (or ester-forming derivatives thereof) or other diols (or ester-forming derivatives thereof), and other dicarboxylic acids as the third component. A copolymer obtained by copolymerizing an acid (or an ester-forming derivative thereof) is preferable.

その他のジカルボン酸(あるいはそのエステル形成性誘導体)の共重合割合は、全ジカルボン酸成分中、3〜30モル%の範囲であることが成形性の点から好ましく、3〜20モル%の範囲であることがより好ましい。   The copolymerization ratio of other dicarboxylic acids (or ester-forming derivatives thereof) is preferably in the range of 3 to 30 mol% in the total dicarboxylic acid component from the viewpoint of moldability, and in the range of 3 to 20 mol%. More preferably.

また、その他のジオール(あるいはそのエステル形成性誘導体)の共重合割合は、全ジオール成分中、3〜30モル%の範囲であることが成形性の点から好ましく、3〜20モル%の範囲であることがより好ましい。   In addition, the copolymerization ratio of other diols (or ester-forming derivatives thereof) is preferably in the range of 3 to 30 mol% in the total diol component from the viewpoint of moldability, and in the range of 3 to 20 mol%. More preferably.

上記その他のジカルボン酸としては、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、ビス(p−カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、5−ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸などの芳香族ジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸などが挙げられ、好ましくは芳香族ジカルボン酸であり、より好ましくはイソフタル酸である。すなわち、本発明で使用されるポリブチレンテレフタレート共重合体は、ポリブチレンテレフタレート/芳香族ジカルボン酸共重合体が好ましく、より好ましくはポリブチレンテレフタレート/イソフタレート共重合体である。   Examples of the other dicarboxylic acids include isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid. Acids, aromatic dicarboxylic acids such as 5-sodiumsulfoisophthalic acid, aromatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, etc. Alicyclic dicarboxylic acid, and the like, preferably aromatic dicarboxylic acid, and more preferably isophthalic acid. That is, the polybutylene terephthalate copolymer used in the present invention is preferably a polybutylene terephthalate / aromatic dicarboxylic acid copolymer, and more preferably a polybutylene terephthalate / isophthalate copolymer.

(A)成分としてポリブチレンテレフタレート共重合体のみを使用した場合は、ポリカーボネート樹脂、アクリロニトリル・スチレン共重合体、ポリフェニレンオキシド、スチレン樹脂、アクリル樹脂、ポリエーテルスルホン、ポリアリレート、ポリエチレンテレフタレート樹脂の中から選ばれる少なくとも1種の添加により成形性が低下するため好ましくない。   When only the polybutylene terephthalate copolymer is used as the component (A), from among polycarbonate resin, acrylonitrile / styrene copolymer, polyphenylene oxide, styrene resin, acrylic resin, polyethersulfone, polyarylate, polyethylene terephthalate resin Since at least one selected additive deteriorates moldability, it is not preferable.

(A)成分の粘度は溶融混練が可能であれば特に制限は無いが、通常、o−クロロフェノール溶液を25℃で測定したときの固有粘度は0.36〜1.60であることが好ましい。また、(A)成分がポリブチレンテレフタレートとポリブチレンテレフタレート共重合体からなる場合には、その物理的あるいは溶融混合物を粉砕後もしくはペレット状のまま用いてo−クロロフェノールに溶解し、o−クロロフェノール溶液を調整し、粘度測定した結果が前記粘度条件内にあればよい。   The viscosity of the component (A) is not particularly limited as long as it can be melt-kneaded. However, it is usually preferable that the intrinsic viscosity when an o-chlorophenol solution is measured at 25 ° C. is 0.36 to 1.60. . When component (A) is composed of polybutylene terephthalate and polybutylene terephthalate copolymer, the physical or molten mixture is dissolved in o-chlorophenol after pulverization or in the form of pellets, and o-chloro The result of adjusting the phenol solution and measuring the viscosity only has to be within the viscosity condition.

本発明においては上記(A)成分と共にポリカーボネート樹脂またはアクリロニトリル・スチレン共重合体(以下(B)成分とも言う)を用いるが、レーザー光線透過性に優れた組成物を得るためにはポリカーボネート樹脂を用いることが好ましい。   In the present invention, a polycarbonate resin or an acrylonitrile / styrene copolymer (hereinafter also referred to as the component (B)) is used together with the component (A). However, in order to obtain a composition excellent in laser beam transmission, a polycarbonate resin is used. Is preferred.

(A)と(B)の合計に対する(B)成分の配合量は、レーザー光線透過性向上効果の点から1〜50重量%であり、好ましくは5〜40重量%である。(B)成分の配合量が1重量%未満であると、レーザー光線透過性が不十分であり、50重量%を越えると成形性および高温剛性が低下するため好ましくない。上記の樹脂を用いることによって試料厚さ3mmで測定した近赤外線800〜1200nm波長領域でのレーザー透過率を10%以上とすることが可能となり、良好なレーザー透過性を得ることができる。   The blending amount of the component (B) relative to the sum of (A) and (B) is 1 to 50% by weight, preferably 5 to 40% by weight, from the viewpoint of improving the laser beam transmittance. When the blending amount of the component (B) is less than 1% by weight, the laser beam permeability is insufficient, and when it exceeds 50% by weight, the moldability and high-temperature rigidity are deteriorated. By using the above resin, the laser transmittance in the near infrared 800-1200 nm wavelength region measured at a sample thickness of 3 mm can be made 10% or more, and good laser transmittance can be obtained.

本発明においては(A)成分と(B)成分に対し、スチレン系エラストマ(以下(C)成分とも言う)を配合することにより耐衝撃性、耐冷熱性を付与することができる。ここでの耐冷熱性とは、ポリブチレンテレフタレート樹脂などと大きく線膨張係数の異なる、例えば金属などを内部にインサート成形してなる樹脂成形体において、低温、高温の繰り返し環境下においての割れに対する耐性を言う。前記(C)成分としては、スチレン−ブタジエンブロック共重合体が好ましく挙げられ、さらに好ましくはスチレン−ブタジエンブロック共重合体のエポキシ化物が挙げられる。このスチレン−ブタジエンブロック共重合体のブタジエン共重合比率としては、熱処理による変色度と耐衝撃特性のバランスから50重量%未満がより好ましい。50重量%以上であると、耐熱変色性が低下する。   In the present invention, impact resistance and cold resistance can be imparted by blending (A) component and (B) component with a styrene elastomer (hereinafter also referred to as (C) component). Here, the resistance to cold and heat is a resin molded body formed by insert molding of metal or the like, which is greatly different from polybutylene terephthalate resin, etc., and has resistance to cracking in repeated environments at low and high temperatures. To tell. As said (C) component, a styrene-butadiene block copolymer is mentioned preferably, More preferably, the epoxidized material of a styrene-butadiene block copolymer is mentioned. The butadiene copolymer ratio of the styrene-butadiene block copolymer is more preferably less than 50% by weight in view of the balance between the degree of discoloration caused by heat treatment and impact resistance. When it is 50% by weight or more, the heat discoloration is lowered.

本発明で用いられる(C)成分の添加量は、レーザー光線透過性と成形性、耐冷熱性、及び耐熱変色性のバランスから、(A)成分と(B)成分の合計量100重量部に対し1〜25重量部の範囲であり、2〜20重量部の範囲がより好ましい。添加量が1重量部未満では(C)成分添加による耐衝撃性、耐冷熱性の効果が殆ど無く、また25重量部を越えると成形性、特に流動性が低下し、耐熱変色性も低下するので好ましくない。   The addition amount of the component (C) used in the present invention is 1 with respect to 100 parts by weight of the total amount of the component (A) and the component (B) from the balance of laser beam transmittance, moldability, heat resistance, and heat discoloration resistance. It is the range of -25 weight part, The range of 2-20 weight part is more preferable. If the added amount is less than 1 part by weight, there is almost no effect of impact resistance and cold resistance due to the addition of the component (C), and if it exceeds 25 parts by weight, the moldability, particularly the fluidity is lowered, and the heat discoloration is also lowered. It is not preferable.

本発明においては試料厚さ3mmで測定した近赤外線800〜1100nm波長領域のレーザー光線透過率が10%以上であることが好ましい。試料厚さ3mmで測定した近赤外線800〜1100nm波長領域のレーザー光線透過率が10%以上であることにより、本発明のレーザー溶着用樹脂組成物をレーザー溶着した場合に高い溶着強度を得ることができる。上記(A)〜(C)の特定の組み合わせによりレーザー光線透過率をこの範囲とすることができる。レーザー光線透過率は好ましくは12%以上である。12%以上とすることにより高い溶着強度を得ることができるからである。本発明においては、レーザー光線透過性評価には(株)島津製作所製の紫外近赤外分光高度計(UV−3100)を用い、また検出器には積分球を用いる。レーザー光線透過率は厚さ3mmの試料を用いて近赤外線800〜1100nm波長領域の光線透過率を測定し、透過光量と入射光量の比を百分率で表す。近赤外線800〜1100nm波長領域でのレーザー光線透過率の測定は10nm毎にレーザー光線透過率を測定し、近赤外線800〜1100nm波長領域でのレーザー光線透過率の最大値と最小値とを求める。図2(a)は、レーザー光線透過性評価試験片を表す平面図であり、(b)は同試験片を表す側面図である。レーザー光線透過性評価試験片8は形状を底辺が正方形の直方体とし、底辺の一辺L2を80mm、厚みD1を3mmとした。この試験片のレーザー光線透過率を測定することによって厚み3mmのレーザー光線透過率を測定する。   In the present invention, it is preferable that the laser beam transmittance in the near infrared 800 to 1100 nm wavelength region measured at a sample thickness of 3 mm is 10% or more. When the laser beam transmittance in the near infrared ray 800 to 1100 nm wavelength region measured at a sample thickness of 3 mm is 10% or more, high welding strength can be obtained when the laser welding resin composition of the present invention is laser welded. . The laser beam transmittance can be set within this range by the specific combination of the above (A) to (C). The laser beam transmittance is preferably 12% or more. It is because high welding strength can be obtained by setting it as 12% or more. In the present invention, an ultraviolet and near-infrared spectrophotometer (UV-3100) manufactured by Shimadzu Corporation is used for laser beam transmittance evaluation, and an integrating sphere is used for the detector. The laser beam transmittance is obtained by measuring the beam transmittance in the near infrared 800 to 1100 nm wavelength region using a sample having a thickness of 3 mm, and expressing the ratio between the transmitted light amount and the incident light amount as a percentage. In the measurement of the laser beam transmittance in the near infrared 800 to 1100 nm wavelength region, the laser beam transmittance is measured every 10 nm, and the maximum value and the minimum value of the laser beam transmittance in the near infrared 800 to 1100 nm wavelength region are obtained. Fig.2 (a) is a top view showing a laser beam transmittance | permeability evaluation test piece, (b) is a side view showing the test piece. The laser beam transmittance evaluation test piece 8 was a rectangular parallelepiped with a square bottom, the bottom side L2 being 80 mm, and the thickness D1 being 3 mm. The laser beam transmittance of 3 mm in thickness is measured by measuring the laser beam transmittance of this test piece.

本発明においては、前記(C)成分を用いることにより、150℃、20時間処理後の色調変化(未処理品と処理後のイエローインデックス差異(ΔYI値))が、10以下となり、耐熱変色性に優れたレーザー溶着用樹脂組成物が得られる。   In the present invention, by using the component (C), the change in color tone after treatment at 150 ° C. for 20 hours (difference in yellow index after treatment (ΔYI value)) is 10 or less, and heat discoloration resistance An excellent resin composition for laser welding is obtained.

本発明においては、さらに無機及び有機系充填材(以下、(D)成分と言う)を配合することができる。(D)成分としては、ガラス繊維、炭素繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミックス繊維、アスベスト繊維、石膏繊維、金属繊維等の繊維状強化材、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、クレー、パイロフィラメント、ベントナイト、アスベスト、タルク、アルミナリケート等の珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄等の金属化合物、炭化カルシウム、炭酸マグネシウム、ドロマイト等の炭酸塩、硫酸カルシウム、硫酸バリウム等の硫酸塩、ガラスビーズ、セラミックスビーズ、窒化硼素、炭化珪素及びシリカ等の非繊維状強化材等が挙げられ、好ましい例としてはガラス繊維が挙げられる。   In the present invention, inorganic and organic fillers (hereinafter referred to as component (D)) can be further blended. As component (D), glass fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, gypsum fiber, metal fiber, etc. Reinforcing materials, wollastonite, zeolite, sericite, kaolin, mica, clay, pyrofilament, bentonite, asbestos, talc, alumina silicate and other silicates, alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide, iron oxide, etc. Metal compounds, carbonates such as calcium carbide, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, glass beads, ceramic beads, boron nitride, silicon carbide and non-fibrous reinforcing materials such as silica and the like. As a preferable example, Las fiber and the like.

さらに、これら充填材をシラン系、エポキシ系あるいはチタネート系などのカップリング剤で予備処理して使用することは、機械的強度などの面からより好ましい。   Furthermore, it is more preferable to use these fillers after being pretreated with a coupling agent such as silane, epoxy, or titanate.

本発明で用いられる(D)成分の添加量は、流動性と機械的強度のバランスから、(A)成分と(B)成分の合計量100重量部に対し1〜200重量部であることが好ましく、より好ましくは5〜120重量部であり、特に10〜85重量部が好ましい。   The addition amount of the component (D) used in the present invention is 1 to 200 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B), from the balance between fluidity and mechanical strength. More preferably, it is 5-120 weight part, Especially 10-85 weight part is preferable.

本発明のポリブチレンテレフタレート系樹脂組成物には、本発明の効果を損なわない範囲で、離型剤、酸化防止剤、安定剤、滑剤、結晶核剤、末端封鎖剤、紫外線吸収剤、着色剤、難燃剤などの、通常の添加剤および少量の他種ポリマーを添加することができるが、特に結晶核剤を添加することにより、結晶化速度(固化速度)が速くなり、成形サイクルを短くすることが可能である。   The polybutylene terephthalate resin composition of the present invention includes a release agent, an antioxidant, a stabilizer, a lubricant, a crystal nucleating agent, a terminal blocker, an ultraviolet absorber, and a colorant as long as the effects of the present invention are not impaired. Normal additives such as flame retardants and small amounts of other polymers can be added, but especially by adding a crystal nucleating agent, the crystallization rate (solidification rate) is increased and the molding cycle is shortened. It is possible.

例えば離型剤としては、モンタン酸ワックス類、またはステアリン酸リチウム、ステアリン酸アルミニウム等の金属石鹸、エチレンビスステアリルアミド等の高級脂肪酸アミド、エチレンジアミン・ステアリン酸・セバシン酸重縮合物などを挙げることができ、なかでも、モンタン酸ワックス類、エチレンビスステアリルアミドが好ましい。   Examples of mold release agents include montanic acid waxes, metal soaps such as lithium stearate and aluminum stearate, higher fatty acid amides such as ethylene bisstearyl amide, and ethylenediamine / stearic acid / sebacic acid polycondensates. Among them, montanic acid waxes and ethylene bisstearylamide are preferable.

酸化防止剤の例としては、2,6−ジ−t−ブチル−4−メチルフェノール、テトラキス(メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)メタン、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジン)イソシアヌレート等のフェノール系化合物、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート等のイオウ化合物、トリスノニルフェニルホスファイト、ジスエアリルペンタエリスリトールジホスファイト等のリン系化合物等が挙げられ、なかでも、2,6−ジ−t−ブチル−4−メチルフェノール、テトラキス(メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)メタンが好ましい。   Examples of antioxidants include 2,6-di-t-butyl-4-methylphenol, tetrakis (methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) methane, tris Phenol compounds such as (3,5-di-t-butyl-4-hydroxybenzidine) isocyanurate, sulfur such as dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate Examples thereof include phosphorus compounds such as compounds, trisnonylphenyl phosphite, disaryl pentaerythritol diphosphite, among others, 2,6-di-t-butyl-4-methylphenol, tetrakis (methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) methane is preferred.

安定剤の例としては、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾールを含むベンゾトリアゾール系化合物、ならびに2,4−ジヒドロキシベンゾフェノンのようなベンゾフェノン系化合物、モノまたはジステアリルホスフェート、トリメチルホスフェートなどのリン酸エステルなどを挙げることができる。   Examples of stabilizers include benzotriazole-based compounds including 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, as well as benzophenone-based compounds such as 2,4-dihydroxybenzophenone, mono- or distearyl phosphate, Examples thereof include phosphate esters such as trimethyl phosphate.

また、結晶核剤としてはポリエーテルエーテルケトン樹脂、タルク等を挙げることができる。これら結晶核剤を添加することにより、結晶化速度(固化速度)が速くなり、成形サイクルを短くすることが可能となる。   Examples of the crystal nucleating agent include polyetheretherketone resin and talc. By adding these crystal nucleating agents, the crystallization speed (solidification speed) is increased and the molding cycle can be shortened.

また、末端封鎖剤としては脂肪族および芳香族のグリシジルエステルもしくはグリシジルエーテル等を挙げることができる。   Examples of the end-capping agent include aliphatic and aromatic glycidyl esters or glycidyl ethers.

これらの各種添加剤は、2種類以上を組み合わせることによって相乗的な効果が得られることがあるので、併用して使用してもよい。   These various additives may have a synergistic effect by combining two or more kinds, and may be used in combination.

なお、例えば酸化防止剤として例示した添加剤は、安定剤や紫外線吸収剤として作用することもある。また、安定剤として例示したものについても酸化防止作用や紫外線吸収作用のあるものがある。すなわち前記分類は便宜的なものであり、作用を限定したものではない。   For example, the additive exemplified as the antioxidant may act as a stabilizer or an ultraviolet absorber. Some of those exemplified as stabilizers also have an antioxidant action and an ultraviolet absorption action. In other words, the classification is for convenience and does not limit the action.

本発明のポリブチレンテレフタレート系樹脂組成物の製造方法については通常知られている方法で実施すればよく、特に限定する必要はない。代表例としては、単軸あるいは2軸の押出機、バンバリーミキサー、ニーダーあるいはミキシングロールなど、公知の溶融混合機を用いて、200〜350℃の温度で溶融混練する方法を挙げることができる。各成分は、予め一括して混合しておき、それから溶融混練してもよい。あるいは(A)〜(D)成分の合計量100重量部に対し、例えば1重量部以下であるような少量添加剤成分については、他の成分を上記の方法などで混練しペレット化した後、成形前に添加することもできる。なお、各成分に付着している水分は少ない方がよく、予め事前乾燥しておくことが望ましいが、必ずしも全ての成分を乾燥させる必要がある訳ではない。   What is necessary is just to implement about the manufacturing method of the polybutylene terephthalate-type resin composition of this invention by the method generally known, and it does not need to specifically limit. Typical examples include a melt kneading method at a temperature of 200 to 350 ° C. using a known melt mixer such as a single or twin screw extruder, a Banbury mixer, a kneader, or a mixing roll. Each component may be mixed in advance and then melt kneaded. Alternatively, for 100 parts by weight of the total amount of the components (A) to (D), for a small amount of additive component such as 1 part by weight or less, after kneading and pelletizing the other components by the above method, etc. It can also be added before molding. In addition, although it is better that the water | moisture content adhering to each component is less and it is desirable to dry beforehand, not all the components need to be dried.

好ましい製造方法の例としては、シリンダ温度230〜300℃の2軸押出機を用い、(D)成分以外を該押出機の上流側から供給・混練し、次いで(D)成分をサイドフィードしてさらに混練する方法が挙げられる。   As an example of a preferable production method, a twin screw extruder having a cylinder temperature of 230 to 300 ° C. is used, and components other than the component (D) are supplied and kneaded from the upstream side of the extruder, and then the component (D) is side-feeded. Furthermore, the method of kneading is mentioned.

本発明の樹脂組成物は、射出成形、押出成形、ブロー成形、トランスファー成形、真空成形など一般に熱可塑性樹脂の公知の成形方法により成形されるが、なかでも射出成形が好ましい。   The resin composition of the present invention is generally molded by a known thermoplastic resin molding method such as injection molding, extrusion molding, blow molding, transfer molding, vacuum molding, etc., among which injection molding is preferable.

本発明のポリブチレンテレフタレート系樹脂組成物は、その優れた特性を活かしてレーザー溶着に供される材料として用いられるが、レーザー溶着工法のレーザー光線透過側成形体に好適であり、また、該組成物にカーボンブラック等の近赤外線吸収剤を添加することにより、レーザー光線吸収側成形体にも容易に適用可能である。   The polybutylene terephthalate-based resin composition of the present invention is used as a material for laser welding taking advantage of its excellent characteristics, and is suitable for a laser beam transmission side molded body of a laser welding method, and the composition By adding a near-infrared absorber such as carbon black, it can be easily applied to a molded article on the laser beam absorption side.

以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。以下に実施例および比較例の材料特性評価方法を示す。   Examples Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the description of these examples. The material property evaluation method of an Example and a comparative example is shown below.

(1)成形性評価
射出成形機(日精60E9ASE)を使用して、シリンダ温度260℃、金型温度80℃の成形条件において引張試験片(ASTM1号タイプ、厚み3.2mm)を作製した。成形の際に、成形品突き出し時に試験片が変形したり、突き出し箇所が大きく挫屈するようなものを成形性不良として表中「×」で示した。一方、変形のないものには表中「○」で示した。
(1) Formability evaluation Using an injection molding machine (Nissei 60E9ASE), tensile test pieces (ASTM No. 1 type, thickness 3.2 mm) were produced under molding conditions of a cylinder temperature of 260 ° C and a mold temperature of 80 ° C. In the table, “x” in the table indicates that the test piece is deformed when the molded product is ejected or the projecting portion is greatly cramped as a formability defect. On the other hand, those with no deformation are indicated by “◯” in the table.

成形不良であった「×」表示のものは、その他の特性評価を実施するための試験片作製が困難であったため、その後の評価ができなかった。これらについては表中の特性の項で「−」と示した。   Since the test piece for carrying out the other characteristic evaluation was difficult, the subsequent evaluation could not be performed for the sample with “x” which was a molding defect. These are indicated by “−” in the characteristic section of the table.

(2)成形サイクル性評価
成形サイクルについては、金型内での樹脂の固化速度を現すゲートシール時間を評価した。ゲートシール時間は、試験片を射出成形した際に最低充填圧力から1次保圧時間を順次延ばし、成形品重量が一定となる1次保圧時間をゲートシール時間と定義した。ゲートシール時間は(1)における射出成形の際に、この定義に従って測定を行った。ゲートシール時間が短い材料は、固化速度が速く、ハイサイクル成形に好適である。
(2) Evaluation of molding cycle performance With respect to the molding cycle, the gate seal time indicating the solidification rate of the resin in the mold was evaluated. The gate sealing time was defined as the gate sealing time when the test piece was injection-molded and the primary pressure holding time was sequentially extended from the lowest filling pressure and the weight of the molded product was constant. The gate sealing time was measured according to this definition during the injection molding in (1). A material having a short gate seal time has a high solidification rate and is suitable for high cycle molding.

(3)引張強度
ASTM D638に準拠する方法で評価を行った。試験片はASTM1号タイプ(厚み3.2mm)を用い、その成形条件はシリンダ温度260℃、金型温度80℃とした。
(3) Tensile strength It evaluated by the method based on ASTMD638. The test piece was an ASTM No. 1 type (thickness 3.2 mm), and the molding conditions were a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C.

(4)曲げ弾性率
ASTM D790に準拠する方法で評価を行った。試験片は厚さ3.2mmのものを用い、成形条件をシリンダ温度260℃、金型温度80℃とした。
(4) Bending elastic modulus It evaluated by the method based on ASTM D790. The test piece had a thickness of 3.2 mm, and the molding conditions were a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C.

(5)衝撃強度
ASTM D256に準拠する方法で評価を行った。試験片は幅3.2mmのノッチ付き試験片を用いた。試験片の成形条件をシリンダ温度260℃、金型温度80℃とした。
(5) Impact strength It evaluated by the method based on ASTMD256. A test piece with a width of 3.2 mm was used as the test piece. The molding conditions of the test piece were a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C.

(6)荷重たわみ温度
ASTM D648に準拠する方法で評価を行った。負荷応力を1.82MPaとした。試験片は厚さ6.4mmとして、成形条件をシリンダ温度260℃、金型温度80℃とした。
(6) Deflection temperature under load It evaluated by the method based on ASTM D648. The load stress was 1.82 MPa. The test piece had a thickness of 6.4 mm, and the molding conditions were a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C.

(7)耐冷熱性評価
下記方法によって得られた成形品を130℃環境下1時間処理後、−40℃環境下1時間処理を行い、再び130℃環境下に放置する冷熱サイクル処理を行い、成形品の外観を目視した。インサート成形品にクラックが発生したサイクル数を表中に記載し、その数値の大小を耐冷熱性の指標とした。
(7) Evaluation of cold and heat resistance Molded products obtained by the following method were treated in a 130 ° C environment for 1 hour, then treated in a -40 ° C environment for 1 hour, and then left in a 130 ° C environment, followed by a thermal cycle treatment, and molded. The appearance of the product was visually observed. The number of cycles in which cracks occurred in the insert-molded product was described in the table, and the numerical value was used as an index for cold resistance.

インサート成形品は以下の方法により作成される。図1(a)に上記インサート成形品の平面図、および(b)に同成形品の側面図を示す。インサート成形品1は、金型キャビティ内にインサート金属4(図1(a)および(b)波線で明示)を装着・固定し、インサート金属4を覆うように溶融樹脂を射出し、樹脂2およびスプルー3を固化させる射出成形法により成形される。作製条件はシリンダ温度260℃、金型温度80℃である。   The insert molded product is prepared by the following method. FIG. 1A shows a plan view of the insert molded product, and FIG. 1B shows a side view of the molded product. The insert molded product 1 has an insert metal 4 (shown by wavy lines in FIGS. 1A and 1B) mounted and fixed in a mold cavity, and a molten resin is injected so as to cover the insert metal 4. The sprue 3 is molded by an injection molding method for solidifying. The production conditions are a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C.

インサート成形品1の、四角柱部分の底面(正方形)の辺の長さL1は50mm、高さは30mm、そして樹脂2の厚みW1は1.5mmである。   The length L1 of the side of the bottom (square) of the quadrangular prism portion of the insert molded product 1 is 50 mm, the height is 30 mm, and the thickness W1 of the resin 2 is 1.5 mm.

(8)熱変色
試験片は図2を用い、150℃で20時間処理後にスガ試験機(株)のSMカラーコンピューター(SM−5)で黄変度(イエローインデックス:YI値)を測定、未処理品とのYI値の差をΔYIとして熱変色の指標とした。
(8) Thermal discoloration The test piece was measured for the degree of yellowing (yellow index: YI value) with SM color computer (SM-5) of Suga Test Instruments Co., Ltd. The difference in YI value from the treated product was taken as ΔYI and used as an indicator of thermal discoloration.

(9)レーザー光線透過性評価
レーザー光線透過性評価には(株)島津製作所製の紫外近赤外分光高度計(UV−3100)を用い、また検出器には積分球を用いた。レーザー光線透過性は厚さ3mmの試料の近赤外線800〜1100nm波長領域の光線透過率を測定し、透過光量と入射光量の比を百分率で表中に表した。近赤外線800〜1100nm波長領域でのレーザー光線透過率の測定は10nm毎にレーザー光線透過率を測定し、近赤外線800〜1100nm波長領域でのレーザー光線透過率の最大値と最小値とを求める。この測定を5回行い、その上限値と下限値とのそれぞれの平均値を求めた。図2(a)は、レーザー光線透過性評価試験片を表す平面図であり、(b)は同試験片を表す側面図である。レーザー光線透過性評価試験片8は形状を底辺が正方形の直方体とし、底辺の一辺L2を80mm、厚みD1を3mmとした。また、成形条件をシリンダ温度260℃、金型温度80℃として、射出成形後にスプルー3、ランナー6、ゲート7から切断して作製した。
(9) Laser beam transmittance evaluation An ultraviolet sphere near infrared spectrophotometer (UV-3100) manufactured by Shimadzu Corporation was used for laser beam transmittance evaluation, and an integrating sphere was used for the detector. The laser beam transmittance was measured by measuring the light transmittance in the near infrared 800 to 1100 nm wavelength region of a sample having a thickness of 3 mm, and the ratio between the transmitted light amount and the incident light amount was expressed in percentage in the table. In the measurement of the laser beam transmittance in the near infrared 800 to 1100 nm wavelength region, the laser beam transmittance is measured every 10 nm, and the maximum value and the minimum value of the laser beam transmittance in the near infrared 800 to 1100 nm wavelength region are obtained. This measurement was performed 5 times, and the average value of the upper limit value and the lower limit value was obtained. Fig.2 (a) is a top view showing a laser beam transmittance | permeability evaluation test piece, (b) is a side view showing the test piece. The laser beam transmittance evaluation test piece 8 was a rectangular parallelepiped with a square bottom, the bottom side L2 being 80 mm, and the thickness D1 being 3 mm. The molding conditions were set to a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. After injection molding, the mold was cut from the sprue 3, the runner 6, and the gate 7.

(10)レーザー溶着性評価
レーザー溶着性評価にはライスター社のMODULAS C(レーザー光線の波長は940nmで、近赤外線であり、最大出力が35W、焦点距離Lが38mm、焦点径Dが0.6mmである)を用いて、レーザー光線透過側試料に厚み3mmの試験片を用いた場合と、厚み3mmの試験片を用いた場合の溶着可否を評価した。レーザー光線透過試料の光線入射表面に溶融痕が認められる場合は「×」、溶融痕が認められず、溶着が可能な場合は「○」と記載した。図3(a)はレーザー溶着用試験片(レーザー光線吸収側試料)9の概略を表す平面図であり、(b)は側面図である。レーザー溶着用試験片9は、幅W2が24mm、長さL3が70mm、厚みD2が3mmである。また、レーザー溶着用試験片9はレーザー光線透過性評価試験片と同様に作製し、成形条件をシリンダ温度260℃、金型温度80℃として、射出成形後にスプルー3、ランナー6、ゲート7から切断して作製した。
(10) Laser weldability evaluation For laser weldability evaluation, Leister's MODULAS C (laser beam wavelength is 940 nm, near infrared, maximum output is 35 W, focal length L is 38 mm, focal diameter D is 0.6 mm) ) Was used to evaluate whether or not welding was performed when a 3 mm-thick test piece was used for the laser beam transmission side sample and when a 3 mm-thick test piece was used. When the melting mark was recognized on the light incident surface of the laser beam transmitting sample, it was indicated as “X”, and when the melting mark was not recognized and welding was possible, it was indicated as “◯”. FIG. 3A is a plan view showing an outline of a laser welding test piece (laser beam absorption side sample) 9, and FIG. 3B is a side view. The laser welding test piece 9 has a width W2 of 24 mm, a length L3 of 70 mm, and a thickness D2 of 3 mm. Further, the laser welding test piece 9 was prepared in the same manner as the laser beam transmission evaluation test piece, and the molding conditions were set to a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C., and cut from the sprue 3, runner 6, and gate 7 after injection molding. Made.

図4はレーザー溶着方法の概略を示す概略図である。レーザー溶着方法は図4に示すように、レーザー光線透過側試料13を上部に、下部にレーザー溶着用試験片14を置き、重ね合わせ、上部よりレーザー光線を照射する。レーザー照射はレーザー溶着軌道12に沿って行い、レーザー溶着条件は、出力15〜35W範囲および、レーザー走査速度1〜50mm/secの範囲で最も良好な溶着強度が得られる条件で行った。なお、焦点距離は38mm、焦点径は0.6mm固定で実施した。   FIG. 4 is a schematic view showing an outline of the laser welding method. As shown in FIG. 4, the laser welding method is such that the laser beam transmitting side sample 13 is placed on the upper side, a laser welding test piece 14 is placed on the lower side, and the laser beam is irradiated from above. Laser irradiation was performed along the laser welding trajectory 12, and the laser welding conditions were performed under conditions where the best welding strength was obtained in the range of 15 to 35 W output and 1 to 50 mm / sec. The focal length was 38 mm and the focal diameter was fixed at 0.6 mm.

(11)溶着強度
溶着強度測定には引張試験器(AG−500B)を用い、試験片の両端を固定し、溶着部位に引張剪断応力が発生するように引張試験を行った。強度測定時の引張速度は1mm/min、スパンは40mmであり、測定回数は5回であり、その平均値を溶着強度とした。溶着強度は溶着部位が破断したときの応力とした。図5(a)には上記方法でレーザー溶着したレーザー溶着強度測定用試験片の概略平面図、(b)は側面図を示した。レーザー溶着強度測定用試験片15はレーザー光線透過側試料13とレーザー光線吸収側試料14とを、重ね合わせ長さL4が30mm、溶着距離Yが20mmとなるように重ね合わせてレーザー溶着部16で溶着したものである。なお、レーザー光線透過試料へは本発明のレーザー溶着用着色樹脂組成物を用い、レーザー光線吸収側試料へは、ポリブチレンテレフタレート樹脂100重量部に対し、ガラス繊維を43重量部添加し、さらにはカーボンブラックを0.4部添加した材料を用いた。レーザー光線吸収側試料は実施例と同様の製造法を用いて製造した。
(11) Weld strength For the weld strength measurement, a tensile tester (AG-500B) was used, both ends of the test piece were fixed, and a tensile test was performed so that a tensile shear stress was generated at the weld site. The tensile speed at the time of strength measurement was 1 mm / min, the span was 40 mm, the number of measurements was 5, and the average value was taken as the welding strength. The welding strength was the stress when the welded site was broken. FIG. 5A is a schematic plan view of a laser weld strength measurement test piece laser-welded by the above method, and FIG. 5B is a side view. The laser welding strength measurement test piece 15 was prepared by laminating the laser beam transmission side sample 13 and the laser beam absorption side sample 14 so that the overlapping length L4 was 30 mm and the welding distance Y was 20 mm, and was welded at the laser welding portion 16. Is. In addition, the laser-welded colored resin composition of the present invention is used for the laser beam transmission sample, and 43 parts by weight of glass fiber is added to 100 parts by weight of the polybutylene terephthalate resin to the laser beam absorption side sample. The material which added 0.4 part of was used. The laser beam absorption side sample was manufactured using the same manufacturing method as in the examples.

以下に実施例および比較例に使用した配合組成物を示す。   The compounding composition used for the Example and the comparative example below is shown.

[参考例1]ポリブチレンテレフタレート系樹脂
(A−1)固有粘度0.81dl/gのポリブチレンテレフタレート(東レ株式会社製“トレコン”1100S)
(A−2)ポリブチレンテレフタレート/イソフタレート共重合体の製造方法
テレフタル酸(以下、TPAともいう)450部、イソフタル酸(以下、IPAともいう)50部[TPA/IPA=90/10mol%]、1,4−ブタンジオール407部、テトラ−n−ブチルチタネート1部を精留塔付き反応器に仕込み、500mmHgの減圧環境下で、180℃から230℃まで徐々に昇温してエステル化反応率95%以上にまで反応させ、次いで240℃、0.5mmHgにまで昇温、減圧して3時間30分後に重合を完結させ、イソフタル酸10mol%のポリブチレンテレフタレート共重合体を得た。得られた共重合体の固有粘度は0.80dl/gであった。
[Reference Example 1] Polybutylene terephthalate resin (A-1) Polybutylene terephthalate having an intrinsic viscosity of 0.81 dl / g ("Toraycon" 1100S manufactured by Toray Industries, Inc.)
(A-2) Production method of polybutylene terephthalate / isophthalate copolymer 450 parts of terephthalic acid (hereinafter also referred to as TPA), 50 parts of isophthalic acid (hereinafter also referred to as IPA) [TPA / IPA = 90/10 mol%] , 407 parts of 1,4-butanediol and 1 part of tetra-n-butyl titanate were charged into a reactor equipped with a rectification column, and the temperature was gradually raised from 180 ° C. to 230 ° C. in a reduced pressure environment of 500 mmHg. The reaction was carried out to a rate of 95% or more, then the temperature was raised to 240 ° C. and 0.5 mmHg, and the pressure was reduced and the polymerization was completed after 3 hours and 30 minutes to obtain a polybutylene terephthalate copolymer with 10 mol% of isophthalic acid. The intrinsic viscosity of the obtained copolymer was 0.80 dl / g.

[参考例2]
(B−1)出光石油化学社製ポリカーボネート樹脂“タフロン”A−1900(粘度平均分子量:19000)。
(B−2)AS樹脂:アクリロニトリル−スチレン共重合体(アクリロニトリルとスチレンの共重合比:アクリロニトリル/スチレン=24/76(重量比)、固有粘度:0.60dl/g)。
[Reference Example 2]
(B-1) Polycarbonate resin “Taflon” A-1900 (viscosity average molecular weight: 19000) manufactured by Idemitsu Petrochemical Co., Ltd.
(B-2) AS resin: acrylonitrile-styrene copolymer (copolymerization ratio of acrylonitrile and styrene: acrylonitrile / styrene = 24/76 (weight ratio), intrinsic viscosity: 0.60 dl / g).

[参考例3]スチレン系エラストマ
(C−1)スチレン−ブタジエンブロック共重合体エポキシ化物、ダイセル化学工業(株)製エポフレンドAT504(スチレンとブタジエンの共重合比:スチレン/ブタジエン=70/30(重量比)、エポキシ当量1000。
(C−2)スチレン−ブタジエンブロック共重合体エポキシ化物、ダイセル化学工業(株)製エポフレンドAT501(スチレンとブタジエンの共重合比:スチレン/ブタジエン=40/60(重量比)、エポキシ当量1000)。
[Reference Example 3] Styrene elastomer (C-1) epoxidized styrene-butadiene block copolymer, Epofriend AT504 manufactured by Daicel Chemical Industries, Ltd. (copolymerization ratio of styrene and butadiene: styrene / butadiene = 70/30) Weight ratio), epoxy equivalent 1000.
(C-2) Epoxidized styrene-butadiene block copolymer, manufactured by Daicel Chemical Industries, Ltd. Epofriend AT501 (copolymerization ratio of styrene and butadiene: styrene / butadiene = 40/60 (weight ratio), epoxy equivalent 1000) .

[参考例4]ガラス繊維
(D−1)日本電気硝子社製ガラス繊維“T−120”(平均繊維径:13μm、繊維長3mmのチョップドストランド)。
[Reference Example 4] Glass fiber (D-1) Glass fiber “T-120” manufactured by Nippon Electric Glass Co., Ltd. (average fiber diameter: 13 μm, chopped strand having a fiber length of 3 mm).

[参考例5]
(E−1)タルク(結晶核剤):含水ケイ酸マグネシウム、見掛け比重=0.20g/cc、pH=9.3、平均粒子径=5.29μm。
[Reference Example 5]
(E-1) Talc (crystal nucleating agent): hydrous magnesium silicate, apparent specific gravity = 0.20 g / cc, pH = 9.3, average particle size = 5.29 μm.

[実施例1〜9]、[比較例1〜7]
実施例1〜9及び比較例1〜7に記載した材料の製造方法は次の通りである。すなわちシリンダ温度250℃に設定したスクリュー径57mm直径の2軸押出機を用いて製造した。(A)成分(ポリブチレンテレフタレート系樹脂)、(B)成分(ポリカーボネート樹脂、AS樹脂)、(C)成分(スチレン系エラストマ)並びにその他の添加剤は元込め部から、(D)成分(ガラス繊維)をサイドフィーダーから供給して溶融混練を行い、ダイスから吐出されたストランドを冷却バス内で冷却した後、ストランドカッターにてペレット化した。得られた各材料は、130℃の熱風乾燥機で3時間乾燥した後、前記評価方法記載の方法を用いて成形し、評価を行った。
[Examples 1 to 9], [Comparative Examples 1 to 7]
The manufacturing method of the material described in Examples 1-9 and Comparative Examples 1-7 is as follows. That is, it was manufactured using a twin screw extruder having a screw diameter of 57 mm set at a cylinder temperature of 250 ° C. Component (A) (polybutylene terephthalate-based resin), component (B) (polycarbonate resin, AS resin), component (C) (styrene-based elastomer) and other additives are added from the original filling portion, component (D) (glass Fiber) was supplied from the side feeder and melted and kneaded. The strand discharged from the die was cooled in a cooling bath, and then pelletized with a strand cutter. Each of the obtained materials was dried for 3 hours with a hot air dryer at 130 ° C., and then molded and evaluated using the method described in the evaluation method.

実施例1〜9及び比較例1〜7の配合処方と結果を表1に記載した。実施例1〜9で得られた組成物は、いずれも3mm厚みの試料をレーザー光線透過側に用いた場合に、レーザー光線透過試料の光線入射表面に溶融痕が発生することなく、高い溶着強度を示し、耐冷熱性、及び耐熱変色性は良好であった。一方、比較例1、4で得られた樹脂組成物は、レーザー溶着可能なレーザー光線透過率を保持しているものの、熱変色が大きく、比較例2、5、7で得られた組成物は、レーザー光線透過率が低いため、該成形体のレーザー入射表面に溶融痕が発生する不具合が生じ、比較例3で得られた組成物は、成形品突き出し時に突き出し箇所が大きく挫屈する成形性不良が発生、また、比較例6で得られたレーザー溶着可能なレーザー光線透過性レベル保持し、且つ熱変色レベルも小さいが、十分な耐冷熱性が得られず、比較例に示した組成物はいずれもレーザー溶着性、耐熱変色性、及び耐冷熱性のバランスが劣るものであった。   Table 1 shows the formulation and results of Examples 1-9 and Comparative Examples 1-7. The compositions obtained in Examples 1 to 9 show high welding strength without any melting marks on the light incident surface of the laser beam transmitting sample when a 3 mm thick sample is used on the laser beam transmitting side. Further, the heat resistance and the heat discoloration resistance were good. On the other hand, the resin compositions obtained in Comparative Examples 1 and 4 have a laser beam transmittance that allows laser welding, but have a large thermal discoloration. The compositions obtained in Comparative Examples 2, 5, and 7 Since the laser beam transmittance is low, there is a problem that melting marks are generated on the laser incident surface of the molded product, and the composition obtained in Comparative Example 3 has a moldability defect that causes the protruding portion to be greatly bent when the molded product is extruded. Further, the laser beam transmission level that can be laser welded obtained in Comparative Example 6 is maintained, and the thermal discoloration level is small, but sufficient cold resistance is not obtained, and all the compositions shown in Comparative Examples are laser welded. The balance of heat resistance, heat discoloration resistance, and cold heat resistance was poor.

Figure 2006257338
Figure 2006257338

(a)は実施例で耐冷熱性評価に用いたインサート成形品の平面図であり、(b)は同成形品の側面図である。(A) is a top view of the insert molded product used for cold-heat resistance evaluation in the Example, (b) is a side view of the molded product. (a)は実施例で用いたレーザー光線透過性評価試験片のであり、(b)は同試験片の側面図である。(A) is a laser beam transmittance | permeability evaluation test piece used in the Example, (b) is a side view of the test piece. (a)は実施例で用いたレーザー溶着用試験片の平面図であり、(b)は同試験片の側面図である。(A) is a top view of the laser welding test piece used in the Example, (b) is a side view of the test piece. レーザー溶着方法の概略を示す概略図である。It is the schematic which shows the outline of the laser welding method. (a)は実施例で用いたレーザー溶着強度測定試験片の平面図であり、(b)は同試験片の側面図である。(A) is a top view of the laser welding strength measurement test piece used in the Example, (b) is a side view of the test piece.

符号の説明Explanation of symbols

1.インサート成形品
2.樹脂
3.スプルー
4.インサート金属
5.樹脂未充填部
6.ランナー
7.ゲート
8.レーザー光線透過性評価試験片
9.レーザー溶着用試験片
10.レーザー光線照射部
11.レーザー光線
12.レーザー光の軌道
13.レーザー光線透過側試料
14.レーザー光線吸収側試料
15.レーザー溶着強度測定用試験片
16.レーザー溶着部
1. 1. Insert molded product Resin 3. Sprue 4. 4. Insert metal 5. Unfilled part of resin Runner 7. Gate 8. 8. Laser beam transmission evaluation test piece Laser welding specimen 10. Laser beam irradiation unit 11. Laser beam 12. 12. Laser beam trajectory Laser beam transmission side sample 14. Laser beam absorption side sample 15. Test piece for laser welding strength measurement 16. Laser welding part

Claims (5)

ポリブチレンテレフタレート、またはポリブチレンテレフタレートとポリブチレンテレフタレート共重合体の混合物であるポリブチレンテレフタレート系樹脂(A)と、ポリカーボネート樹脂またはアクリロニトリル・スチレン共重合体(B)を配合してなり、(B)は(A)と(B)の合計に対し1〜50重量%であり、更にスチレン−ブタジエンブロック共重合体であり、且つブタジエンの共重合比率が50重量%未満のスチレン系エラストマ(C)を(A)、(B)の合計量100重量部に対し、1〜25重量部添加配合してなるレーザー溶着用樹脂組成物。 A blend of polybutylene terephthalate or polybutylene terephthalate resin (A), which is a mixture of polybutylene terephthalate and polybutylene terephthalate copolymer, and polycarbonate resin or acrylonitrile / styrene copolymer (B). Is a styrene-based elastomer (C) that is 1 to 50% by weight based on the total of (A) and (B), is a styrene-butadiene block copolymer, and has a butadiene copolymerization ratio of less than 50% by weight. A resin composition for laser welding formed by adding 1 to 25 parts by weight to 100 parts by weight of the total amount of (A) and (B). (A)がポリブチレンテレフタレートまたはポリブチレンテレフタレートとポリブチレンテレフタレート/イソフタレート共重合体の混合物である、請求項1記載のレーザー溶着用樹脂組成物。 The resin composition for laser welding according to claim 1, wherein (A) is polybutylene terephthalate or a mixture of polybutylene terephthalate and polybutylene terephthalate / isophthalate copolymer. (C)がスチレン−ブタジエンブロック共重合体のエポキシ化物であり、且つブタジエンの共重合比率が50重量%未満のスチレン系エラストマである、請求項1または2に記載のレーザー溶着用樹脂組成物。 The resin composition for laser welding according to claim 1 or 2, wherein (C) is an epoxidized product of a styrene-butadiene block copolymer, and is a styrene elastomer having a butadiene copolymerization ratio of less than 50% by weight. さらに無機充填材及び有機系充填材から選択される少なくとも1種(D)を、(A)、(B)の合計量100重量部に対し、1〜200重量部添加配合してなる請求項1〜3のいずれかに記載のレーザー溶着用樹脂組成物。 Furthermore, at least one selected from inorganic fillers and organic fillers (D) is added and blended in an amount of 1 to 200 parts by weight per 100 parts by weight of the total amount of (A) and (B). The laser welding resin composition according to any one of -3. 請求項1〜4のいずれかに記載のレーザー溶着用樹脂組成物からなる成形品をレーザー溶着した複合成形体。 A composite molded article obtained by laser welding a molded article comprising the resin composition for laser welding according to claim 1.
JP2005079160A 2005-03-18 2005-03-18 Resin composition for laser welding and compound molded product Pending JP2006257338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079160A JP2006257338A (en) 2005-03-18 2005-03-18 Resin composition for laser welding and compound molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079160A JP2006257338A (en) 2005-03-18 2005-03-18 Resin composition for laser welding and compound molded product

Publications (1)

Publication Number Publication Date
JP2006257338A true JP2006257338A (en) 2006-09-28

Family

ID=37096946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079160A Pending JP2006257338A (en) 2005-03-18 2005-03-18 Resin composition for laser welding and compound molded product

Country Status (1)

Country Link
JP (1) JP2006257338A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503338A (en) * 2007-11-19 2011-01-27 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Laser-weldable thermoplastic polymer, its production method and article
JP2019081362A (en) * 2017-10-31 2019-05-30 三菱エンジニアリングプラスチックス株式会社 Manufacturing method of laser welded body
JP2019081363A (en) * 2017-10-31 2019-05-30 三菱エンジニアリングプラスチックス株式会社 Laser welded body
JP7401027B1 (en) 2022-06-20 2023-12-19 東レ株式会社 Polybutylene terephthalate resin compositions and molded products
WO2023248679A1 (en) * 2022-06-20 2023-12-28 東レ株式会社 Polybutylene terephthalate resin composition and molded article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503338A (en) * 2007-11-19 2011-01-27 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Laser-weldable thermoplastic polymer, its production method and article
JP2019081362A (en) * 2017-10-31 2019-05-30 三菱エンジニアリングプラスチックス株式会社 Manufacturing method of laser welded body
JP2019081363A (en) * 2017-10-31 2019-05-30 三菱エンジニアリングプラスチックス株式会社 Laser welded body
JP7168414B2 (en) 2017-10-31 2022-11-09 三菱エンジニアリングプラスチックス株式会社 Laser welding body
JP7168413B2 (en) 2017-10-31 2022-11-09 三菱エンジニアリングプラスチックス株式会社 Manufacturing method of laser welded body
JP7401027B1 (en) 2022-06-20 2023-12-19 東レ株式会社 Polybutylene terephthalate resin compositions and molded products
WO2023248679A1 (en) * 2022-06-20 2023-12-28 東レ株式会社 Polybutylene terephthalate resin composition and molded article

Similar Documents

Publication Publication Date Title
JP4911548B2 (en) Laser welding resin composition and composite molded body using the same
JP5245265B2 (en) Laser-welded polyester resin composition and composite molded body
JP5034217B2 (en) Laser welding resin composition and composite molded body using the same
JP3876141B2 (en) Polyester resin composition and molded article thereof
JP5788790B2 (en) Welded polybutylene terephthalate resin composition and composite molded article
JP6183822B1 (en) Laser welding resin composition and welded body thereof
JP2008163167A (en) Laser-weldable modified polyester resin composition and composite molding using the same
WO2017146196A1 (en) Resin composition for laser welding, and welded body of same
US20050119377A1 (en) Colored resin composition for laser welding and composite molding product using the same
JP4492522B2 (en) Resin composition for laser marking and molded product using the same
WO2020022208A1 (en) Polybutylene terephthalate resin composition
JP5058565B2 (en) Polybutylene terephthalate resin composition and molded article
JP2006249260A (en) Hydrolysis-resistant polyester resin composition weldable by laser
JP4720149B2 (en) Laser-welded colored resin composition and composite molded body using the same
JP2006257338A (en) Resin composition for laser welding and compound molded product
EP1701835A1 (en) Process for laser welding polyester compositions
CA2548182A1 (en) Laser weldable polyester composition and process for laser welding
JP2005537160A (en) Method of laser welding poly (ethylene terephthalate)
JP2010070626A (en) Polyester resin composition and composite molded article
JP4633532B2 (en) Airtight switch parts
WO2021125205A1 (en) Molded article for laser welding, and agent for suppressing variation in laser transmittance of molded article for laser welding
KR102189455B1 (en) White-colored opaque laser weldable thermoplastic composition with excellent thermal dimensional stability
JP2006273992A (en) Resin composition for welding and method for welding resin
JP3929889B2 (en) Polybutylene terephthalate resin composition and molded article
JP2007320995A (en) Resin composition for laser welding and molded article produced by using the same