JP5304450B2 - 内燃機関の暖機装置 - Google Patents

内燃機関の暖機装置 Download PDF

Info

Publication number
JP5304450B2
JP5304450B2 JP2009133830A JP2009133830A JP5304450B2 JP 5304450 B2 JP5304450 B2 JP 5304450B2 JP 2009133830 A JP2009133830 A JP 2009133830A JP 2009133830 A JP2009133830 A JP 2009133830A JP 5304450 B2 JP5304450 B2 JP 5304450B2
Authority
JP
Japan
Prior art keywords
heat
combustion engine
internal combustion
cooling water
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009133830A
Other languages
English (en)
Other versions
JP2010281236A (ja
Inventor
元哉 坂部
昌夫 戸井
秀之 幸光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009133830A priority Critical patent/JP5304450B2/ja
Publication of JP2010281236A publication Critical patent/JP2010281236A/ja
Application granted granted Critical
Publication of JP5304450B2 publication Critical patent/JP5304450B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Description

本発明は、ループ式ヒートパイプ構造の排熱回収装置で内燃機関の排気熱を回収して内燃機関の冷却水を昇温させるための暖機装置に関する。
従来から、自動車等の車両に搭載される内燃機関の排気ガスの熱を、ヒートパイプでもって回収し、内燃機関の暖機運転を促進させるためや、触媒の活性化を促進させるため等に利用することが知られている(特許文献1,2参照。)。
特許文献1に係る従来例は、内燃機関10の排気管11において触媒コンバータ12より下流側に排気管部130を設け、この排気管部130に水タンク140を積層し、排気管部130と水タンク140とに跨ってヒートパイプ110を設け、水タンク140に内燃機関10の冷却水流路30を接続した構成である。
この従来例では、その要約書に示されているように、冷却水流路30において水タンク140への冷却水流入側にバルブ31を設け、排気熱を冷却水に輸送したい場合に、バルブ31を閉じることで水タンク140への冷却水の流入を停止させるようにしている。
特許文献2に係る従来例は、内燃機関10の排気熱によって内部の流体を蒸発させる蒸発部110と、この蒸発した流体を内燃機関10の冷却水によって冷却する凝縮部130と、蒸発部110と凝縮部130とを連通する連通部161とを備えるループ式ヒートパイプ101を有している。
この従来例では、その明細書の段落0087,0090に示されているように、凝縮部130の下流側に弁機構150を設け、ヒートパイプ101の内圧Piが閉弁圧を超えると、弁機構150の弁体155が閉弁して凝縮水を蒸発部110に還流させないようにして、排気熱の回収を停止させるようにしている。
この特許文献1,2に係る従来例の排熱回収装置は、いずれも、蒸発部と凝縮部とを隣り合わせに一体化した構成になっている。
特開2007−46469号公報 特開2008−51479号公報
上記特許文献1,2に係る従来例では、蒸発部と凝縮部とを隣り合わせに一体化した構成であるために、内燃機関の排気通路近傍に設置される凝縮部の存在位置まで、内燃機関の冷却水取り出し流路を引き延ばす必要がある。
つまり、排気熱を回収するという観点からは、排気通路において触媒より下流側がもっとも高温であるので、この位置に、前記の蒸発部を設置するのが好ましいが、その場合、前記のように蒸発部と凝縮部とが隣り合わせに配置される関係より、この凝縮部に付設される前記冷却水取り出し流路を長く引き延ばす必要がある。このようなことから、前記冷却水取り出し流路や還流流路などの配管の取り回しが煩雑になるとともに、冷却水の使用量を多くする必要が生じる等といった不具合が懸念される。
さらに、上記特許文献1に係る従来例では、蒸発部と凝縮部との間の作動媒体の循環量を制御するという技術思想がなく、当然ながら前記循環量を制御するためのバルブも設けられていない。
さらに、上記特許文献2に係る従来例では、排気ガスの熱によって冷却水を過剰に加熱することを回避するために、弁機構150を閉弁することにより凝縮部から蒸発部への凝縮水の還流を阻止するようになっているものの、内燃機関の冷却水は常に凝縮部内を流通するようになっている。そのために、排熱回収装置内に熱を蓄える状態にすることは不可能であり、また、そのようにするという技術思想も存在しない。
ところで、特開2008−38827号公報(参考例1)には、排気ガスと冷却水との間で直接、熱交換を行わせる装置において、内燃機関から取り出した冷却水を回収器4に流通させる経路と、内燃機関から取り出した冷却水を回収器4に流通させないようにする経路とを選択的に確保することが可能になっている。この経路の切り換えは、冷却水の取り出し通路に回収器4をバイパスするバイパス配管17を設け、このバイパス配管17に流路切り換え用のバルブV1を設けるようになっている。
また、特開2008−231942号公報(参考例2)には、排気ガスと冷却水との間で直接、熱交換を行わせる装置において、排気熱回収器150からエンジン100への冷却水の還流路に流量制御機構300を設け、前記還流路の冷却水が低温時に流量制御機構300による冷却水流量を非制限として、排気熱回収を実行する状態にする一方で、前記還流路の冷却水が上昇すると、冷却水流量を制限して排気熱回収を非実行にすることが開示されている。
しかしながら、この参考例1,2は、ループ式ヒートパイプ構造の排熱回収装置ではないので、本発明と前提構成が異なる。しかも、ループ式ヒートパイプ構造の排熱回収装置において、蒸発部(受熱部)と凝縮部(放熱部)との間の流体の循環量を制御するといった技術思想やそれを実現するための構成もない。そのため、当然ながら、排熱回収装置の流体循環量と、内燃機関の冷却水の循環量とを関連付けて制御するといった技術思想は見られない。
このような事情に鑑み、本発明は、ループ式ヒートパイプ構造の排熱回収装置で内燃機関の排気熱を回収して内燃機関の冷却水を昇温させるための暖機装置において、必要に応じて内燃機関の冷却水を排気熱で加熱可能にしたうえで、冷却水を排気熱で再加熱する必要が生じたときに素早く対応可能とすることを目的としている。
本発明に係る内燃機関の暖機装置は、内燃機関の冷却水を外部へ一旦取り出して戻す外部流路と、内燃機関の排気熱を回収して前記外部流路の熱交換領域で冷却水に伝達するための排熱回収装置とを備える。前記外部流路には、その熱交換領域をバイパスするためのバイパス路と、当該バイパス路への冷却水流入量を制御するためのバイパス制御弁とが設けられる。前記排熱回収装置は、内燃機関の排気通路に設けられかつ内部の流体を排気熱で蒸発させるための受熱部と、この受熱部と離隔した前記外部流路の熱交換領域に付設されかつ前記受熱部で蒸発された流体を受け入れて当該流体と前記熱交換領域を流通する冷却水との間で熱交換させるための放熱部と、前記受熱部で蒸発される気相状の流体を前記放熱部へ移送するための移送経路と、前記放熱部での熱交換に伴い凝縮される液相状の流体を前記受熱部へ戻すための還流経路とを含むループ式ヒートパイプ構造とされ、前記還流経路に前記放熱部から前記受熱部に流体を戻す量を制御するための循環制御弁が設けられている。前記バイパス制御弁は、前記外部流路に対する前記バイパス路の上流側接続部分に設けられ、かつ冷却水を前記外部流路の熱交換領域のみに流通させる熱交換経路と、前記バイパス路のみに流通させるバイパス経路とを選択的に確保するための三方弁とされている。
なお、ループ式ヒートパイプ構造の排熱回収装置とは、受熱部と放熱部との間で流体を相転移させながら循環させることによって、排気熱の回収と放熱とを繰り返すようなものである。
そして、循環制御弁とバイパス制御弁との各開度を連係して制御すれば、例えば前記排熱回収装置で前記外部流路内の冷却水を積極的に加熱するための処理と、前記外部流路内の冷却水を非加熱としながら排熱回収装置内に熱を蓄えるための処理と、前記排熱回収装置内の蓄熱を休止するための処理と、排熱回収装置の流体循環経路における内圧の過上昇による排熱回収装置の構成要素の万一の破損を防止するための処理とのうち、いずれかを必要に応じて実行することが可能になる。
まず、例えば内燃機関を冷間始動した状態で排気熱を利用して内燃機関の暖機運転を促進する場合には、バイパス制御弁で冷却水をバイパス路に流さずに熱交換領域のみに流通させる経路(熱交換経路)を確保して、循環制御弁を開放する。
これにより、受熱部内の液相状流体が排気熱で蒸発されて放熱部に移送され、放熱部内の気相状流体の熱が、内燃機関から取り出されて外部流路の熱交換領域を流通する冷却水に伝達されるようになるので、冷却水の昇温が促進される。
また、例えば内燃機関の冷却水が必要温度に昇温して暖機運転が終了した場合には、バイパス制御弁で冷却水をバイパス路のみに流して熱交換領域に流通させない経路(バイパス経路)を確保して、循環制御弁を開放する。
これにより、受熱部で排気熱を回収して流体の循環が継続されるものの、放熱部の熱が内燃機関の冷却水に伝達されなくなるので、内燃機関の冷却水を必要以上に加熱することが避けられるようになって、排熱回収装置内の流体循環経路内に熱を蓄えることが可能になる。そのため、後で排熱回収装置により冷却水を再加熱する場合に前記流体循環経路内に蓄えた熱を直ぐに使えるようになる等、応答性が良好となる。
さらに、内燃機関の温間運転中において排熱回収装置の蓄熱が十分になった場合には、バイパス制御弁で冷却水をバイパス路のみに流して熱交換領域に流通させない経路(バイパス経路)を確保して、循環制御弁を閉塞する。
これにより、放熱部で凝縮した液相状の流体が受熱部に戻されなくなるので、受熱部が空焚き状態になって放熱部に蒸気を送れなくなる。この状態が、排気熱の回収を停止した状態となる。そのため、外部流路の熱交換経路に残留している冷却水に、放熱部内に残留する熱が伝達されるものの、所定時間の経過に伴い残留熱が無くなるので、熱交換経路に残留している冷却水が沸騰せずに済むようになる。
この他、内燃機関の温間運転中において排熱回収装置の蓄熱が過剰になった場合には、例えばバイパス制御弁で冷却水をバイパス路に流さずに熱交換領域のみに流通させる経路(熱交換経路)を確保して、循環制御弁を閉塞する。
これにより、外部流路の熱交換領域内に冷却水が残留せずに流通するようになる。その一方で、排熱回収装置の放熱部で凝縮した液相状の流体が受熱部に戻されなくなるので、受熱部が空焚き状態になって放熱部に蒸気を送れなくなる。そのため、外部流路の熱交換経路を流れる冷却水が、所定期間にわたって放熱部内に残留する熱を奪うことになるので、放熱部が冷却されることになる。これに伴い排熱回収装置の内圧が低下することになって、排熱回収装置の構成要素が熱破損せずに済むようになる。しかも、外部流路の熱交換領域を流れる冷却水は放熱部内の残留熱を奪うだけで、この残留熱が無くなった後では冷却水が加熱されないので、内燃機関に付設されるラジエータの負荷が必要以上に増大することも避けられるようになる。
好ましくは、前記放熱部は、前記排気通路に設けられる触媒に、熱伝導性に優れた支持部材を介して支持される。
この構成では、放熱部と触媒とが支持部材を介して互いに熱伝導されるようになる。これにより、例えば放熱部が触媒よりも高温である場合には、放熱部の熱を触媒に伝達することが可能になって触媒が昇温されることになる。一方、触媒が放熱部よりも高温である場合には、触媒の熱を放熱部に伝達することが可能になって触媒が冷却されることになる他、放熱部に熱を蓄える状態のときには放熱部内の気相状の流体が凝縮されなくなる。
好ましくは、前記内燃機関を冷間始動した場合には、前記バイパス制御弁で冷却水をバイパス路に流さずに前記熱交換領域のみに流通させる熱交換経路を確保するとともに、前記循環制御弁を開放する処理が行われる。
好ましくは、前記内燃機関の暖機運転が終了した場合には、前記バイパス制御弁で冷却水をバイパス路のみに流して熱交換経路に流通させないバイパス経路を確保するとともに、前記循環制御弁を開放する処理が行われる。
好ましくは、前記内燃機関の温間運転中において排熱回収装置の蓄熱が目標に到達した場合には、前記バイパス制御弁で冷却水をバイパス路のみに流して熱交換経路に流通させないバイパス経路を確保するとともに、前記循環制御弁を閉塞する処理が行われる。
好ましくは、前記内燃機関の温間運転中において排熱回収装置の蓄熱が過剰になった場合には、前記バイパス制御弁で冷却水をバイパス路に流さずに前記熱交換領域のみに流通させる熱交換経路を確保するとともに、前記循環制御弁を閉塞する処理が行われる。
好ましくは、前記バイパス制御弁および循環制御弁は、それぞれ、弁体の駆動源としてアクチュエータを有するアクチュエータ駆動式とされ、予め設定される条件に従い前記アクチュエータを制御するための制御装置をさらに備える。
この構成によれば、制御装置は、例えば内燃機関の冷却水を排熱回収装置で加熱する必要がある場合、排熱回収装置に熱を蓄わえさせる場合、ならびに排熱回収装置の蓄熱が過剰になった場合等、必要に応じて、前記バイパス制御弁や前記循環制御弁を適宜に動作させることによって対応できるようになる。
本発明は、ループ式ヒートパイプ構造の排熱回収装置で内燃機関の排気熱を回収して内燃機関の冷却水を昇温させるための暖機装置において、必要に応じて内燃機関の冷却水を排気熱で加熱可能にしたうえで、冷却水を排気熱で再加熱する必要が生じたときに素早く対応することが可能になる。
本発明に係る内燃機関の暖機装置の一実施形態を示す概略構成図である。 図1中の排熱回収装置の具体構成を示す断面図である。 図1の暖機装置の動作説明に用いるフローチャートである。
以下、本発明を実施するための最良の形態について添付図面を参照して詳細に説明する。
図1から図3に本発明の一実施形態を示している。図1を参照して、車両に搭載される内燃機関の暖機装置の概略構成を説明する。図中、1は水冷式の内燃機関である。
この内燃機関1は、吸気系から供給される空気と燃料供給系から供給される燃料とを適宜の空燃比で混合してなる混合気を内燃機関1の燃焼室に供給して燃焼させた後、燃焼室内の排気ガスを排気系から大気放出させるようになっている。
排気系は、内燃機関1に取り付けられるエキゾーストマニホールド2と、このエキゾーストマニホールド2に球面継手3を介して接続される排気管4とを少なくとも有する構成である。エキゾーストマニホールド2と排気管4とが、排気通路を構成している。
球面継手3は、エキゾーストマニホールド2と排気管4との適度な揺動を許容するとともに、内燃機関1の振動や動きを排気管4に伝達させないか、あるいは減衰して伝達するように機能する。
排気管4には、2つの触媒5,6が直列に設置されており、この2つの触媒5,6により排気ガスが浄化される。
これらの触媒5,6のうち、排気管4において排気ガスの流れ方向の上流側に設置される触媒5は、いわゆるスタートキャタリスタ(S/C)と呼ばれるもので、上流側触媒と言うことにし、一方、排気管4において排気ガスの流れ方向の下流側に設置される触媒6は、いわゆるメインキャタリスト(M/C)またはアンダーフロアキャタリスタ(U/F)と呼ばれるもので、下流側触媒と言うことにする。
これらの触媒5,6は、共に、例えば三元触媒と呼ばれるものとすることができる。この三元触媒は、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)を一括して化学反応により無害な成分に変化させる、浄化作用を発揮するものである。
内燃機関1には、その内部に封入されるロングライフクーラント(LLC)と呼ばれる冷媒(以下、単に冷却水と言う)が冷却水取り出し路8から一旦取り出されてラジエータ7に供給され、このラジエータ7から冷却水還流路9を経て内燃機関1に戻される。ラジエータ7は、ウォータポンプ10によって循環される冷却水を外気との熱交換により冷却するものである。
そして、サーモスタット11によってラジエータ7を流通する冷却水量とバイパス路12を流通する冷却水量とが調節されるようになっている。例えば暖機時においてはバイパス路12側の冷却水量が増加されて暖機が促進され、ラジエータ7による冷却水の過冷却が防止される。
このような構成の内燃機関1の排気系には、排熱回収装置20が付設されている。
この排熱回収装置20は、内燃機関1から排出される排気ガスの熱を回収して例えば内燃機関1の冷却水の昇温促進に利用する形態としたもので、主として、受熱部21、放熱部22、移送路23、還流路24を含んだループ式ヒートパイプ構造になっている。
なお、ループ式ヒートパイプ構造の排熱回収装置20とは、受熱部21と放熱部22との間で流体を相転移させながら循環させることによって、排気熱の回収と放熱とを繰り返すようなもののことである。
図示例の排熱回収装置20は、受熱部21と放熱部22とを離隔して配置したセパレートタイプとされている。
この排熱回収装置20の内部は、真空状態とされていて、そこに適量の流体が封入されている。流体は、例えば純水等とされる。水の沸点は、1気圧で100℃であるが、排気熱回収装置1内を減圧(例えば0.01気圧)しているため、沸点は、例えば5〜10℃となる。なお、流体は、純水の他に、例えばアルコール、フロロカーボン、フロン等とすることが可能である。また、排熱回収装置20の主要構成要素は、例えば高耐食性を備えるステンレス材で形成されている。
受熱部21は、排気管4において下流側触媒6より下流側に設置されており、内部に密封される液相状の流体が排気熱を受けて蒸発することにより気化熱として熱を取り込むように構成されている。
具体的に、受熱部21は、排気管4に対してその排気ガス通過方向と直交する方向に設置されるものであって、例えば図2に示すように、上部タンク21aと下部タンク21bとを複数の流体通路21c・・・で連通させて、隣り合う各流体通路21cの対向間の排気通路21dに、例えばコルゲートタイプのフィン21e・・・を設けた構成になっている。
なお、上部タンク21aは、主に蒸発された気相状の流体が集められるので、高温側タンクとなる。下部タンク21bは、主に凝縮された液相状の流体が集められるので、低温側タンクとなる。
放熱部22は、内燃機関1寄りに付設されており、受熱部21で蒸気とされた流体を受け取って、この流体の熱を加熱対象(例えば内燃機関1の冷却水)に伝達させるものであり、流体は熱伝達後に凝縮されて受熱部21に戻される。
具体的に、放熱部22は、内部が密閉されたケース22aに移送路23の下流端および還流路24の上流端がそれぞれ接続された構成になっており、このケース22aの内部空間には、外部流路13の一部領域が挿入されている。
この外部流路13は、内燃機関1の冷却水を一旦取り出してから戻すためのものであり、冷却水取り出し路8の上流側と、冷却水還流路9においてウォータポンプ10の上流側とに接続されている。
この外部流路13において放熱部22のケース22a内に挿入された領域を熱交換領域13aと言う。この熱交換領域13aの外周には、熱交換面積を拡大するためのフィン13bが設けられている。
この外部流路13には、バイパス路14と、バイパス制御弁15とが設けられている。バイパス路14は、外部流路13において熱交換領域13aをバイパスするものである。バイパス制御弁15は、外部流路13に対するバイパス路14の上流側接続部分に設置されており、必要に応じて、冷却水を外部流路の熱交換領域のみに流通させる経路(図1中の矢印X参照、以下、熱交換経路と言う)と、バイパス路14のみに流通させる経路(図1中の矢印Y参照、以下、バイパス経路と言う)とに切り換えられる。このバイパス制御弁15は、例えば電磁式三方弁とされ、その弁体の駆動源としてのアクチュエータを制御装置30で制御するような構成になっている。
さらに、外部流路13においてバイパス路14の下流側には、ヒータユニット16が設けられている。このヒータユニット16は、詳細に図示していないが、冷却水の熱を利用して車室内の暖房を行うための熱源としてのヒータコアと、このヒータコアによって暖められた空気を車室内に導入するためのブロアファンとを含んだ構成である。
なお、放熱部22は、上流側触媒5に支持部材としてのブラケット27を介して支持されている。このブラケット27は、熱伝導性の高い材料(例えばステンレス鋼等)とされており、それによって放熱部22と上流側触媒5との間で熱交換が可能になっている。
移送路23は、受熱部21の上部タンク21aと放熱部22の内部空間とを連通連結するための配管で、受熱部21で蒸発された気相状の流体を放熱部22へ移送するものである。
還流路24は、放熱部22の内部空間と受熱部21の下部タンク21bとを連通連結するための配管で、放熱部22で凝縮された液相状の流体を受熱部21へ戻すものである。この還流路24は、放熱部22で凝縮された液相状の流体を受熱部21へ戻しやすくするために適宜の下り勾配がつけられている。
この還流路24において放熱部22寄りには、循環制御弁25が設けられている。この循環制御弁25は、必要に応じて、放熱部22から受熱部21への流体の流通を、許容する開放状態と禁止する閉塞状態とに切り換えられる。この循環制御弁25は、詳細に図示していないが、例えば電磁弁等のように、弁体を駆動するための駆動源をアクチュエータとして、このアクチュエータを制御装置30で制御する構成とされている。
なお、制御装置30により循環制御弁25の開度を無段階に制御することにより、放熱部22から受熱部21に流体を戻す量、つまり排熱回収装置20の閉ループ内の流体循環量を調節するように設定することも可能である。
制御装置30は、一般的に公知のECU(Electronic Control Unit)とされ、双方向性バスによって相互に接続した中央処理装置(CPU)、プログラムメモリ(ROM)、データメモリ(RAM)、バックアップメモリ(不揮発性RAM)等を含んだ構成になっている。
次に、排熱回収装置20の基本的な動作について説明する。
内燃機関1からエキゾーストマニホールド2を経て排気管4に排出された排気ガスが受熱部21に到達すると、この受熱部21内の液相状の流体が排気ガスの熱により加熱されて、蒸発されることになる。
この蒸発された気相状の流体は、移送路23を経て放熱部22に移送される。この放熱部22に送り込まれた気相状の流体の熱は、外部流路13の熱交換領域13a内の冷却水に伝達されて、当該冷却水を加熱する。この放熱部22内の気相状の流体と外部流路13内の冷却水との間の熱交換により、放熱部22内の気相状の流体が凝縮される。
この凝縮されてなる液相状の流体は、還流路24から受熱部21に戻される。以降、受熱部21と放熱部22との間を流体が相転移しながら循環されることによって、内燃機関1の冷却水が加熱される。
次に、図3のフローチャートを参照して、内燃機関1の動作に応じた制御装置30の処理について説明する。図3のフローチャートは、内燃機関1の始動に伴いエントリーされる。
一般的に、内燃機関1を冷間始動すると、内燃機関1からエキゾーストマニホールド2を経て排気管4に例えば300〜400℃の排気ガスが排出されることになり、2つの触媒5,6が内部から排気ガスで昇温されることになる一方、冷却水がラジエータ7を通らずにバイパス路12を経て内燃機関1へ戻されることによって、暖機運転されることになる。この暖機運転中に排熱回収装置20でさらに内燃機関1の冷却水を加熱することにより暖気運転を促進させるようにする。
その一方で、ステップS1において、内燃機関1の冷却水温度TLが第1閾値TLX以上であるか否かを判定する。ここでは、内燃機関1が冷間始動であるか否か、つまり内燃機関1の冷却水を排熱回収装置20で加熱する必要があるか否かを調べている。
第1閾値TLXは、内燃機関1の温間運転時の冷却水温度に設定される。なお、内燃機関1の冷却水温度TLの計測は、外部流路13の最下流付近に設置される水温センサ31により行うようになっている。
例えば冷却水温度TLが第1閾値TLX未満である場合には、内燃機関1を暖機運転する必要があるので、前記ステップS1で否定判定して、ステップS2において、バイパス制御弁15で熱交換経路(図1の矢印X参照)を確保した後、循環制御弁25を開放する。
これにより、内燃機関1から外部流路13に取り出された冷却水が熱交換領域13aのみに流れるとともに、排熱回収装置20の熱循環が行われる。このとき、排熱回収装置20の受熱部21で回収した排気熱が放熱部22から熱交換領域13aを流通する冷却水に伝達されて、当該冷却水が加熱されるので、内燃機関1の暖機運転が促進されることになる。
このステップS2の後は、前記ステップS1に戻り、冷却水温度TLが第1閾値TLX以上になるまでステップS1,S2を繰り返す。
一方、例えば冷却水温度TLが第1閾値TLX以上である場合、例えば内燃機関1の暖機運転が終了した場合には、これ以上、冷却水を加熱する必要がないので、前記ステップS1で肯定判定して、ステップS3において、バイパス制御弁15でバイパス経路(図1の矢印Y参照)を確保した後、循環制御弁25を開放する。
これにより、内燃機関1から外部流路13に取り出された冷却水がバイパス路14のみに流れるとともに、排熱回収装置20の熱循環が継続される。このとき、冷却水に放熱部22の熱を伝達できない状態になるので、冷却水を必要以上に加熱することが避けられるようになり、しかも、排熱回収装置20の各構成要素21〜24内に高温の気相状流体が充満された状態、つまり熱が蓄えられた状態になる。
このような蓄熱状態にしておけば、後で、排熱回収装置20で外部流路13内の冷却水を再加熱する必要が生じた場合に、放熱部22内に蓄えている熱を直ぐに使えるようになり、排熱回収装置20の熱回収動作の立ち上がりロスを少なくできる等、応答性が良好となり、好ましい。
但し、前記のように蓄熱状態にしていると、外部流路13の熱交換領域13a内に残留している冷却水が過剰に加熱されて沸騰するおそれがあるとともに、排熱回収装置20の内圧が徐々に上昇することになる。
そこで、前記ステップS3の後は、続くステップS4において、受熱部21内の流体温度TCが第2閾値TCX1以上であるか否かを判定する。ここでは、前記ステップS3で蓄熱状態とされた排熱回収装置20の蓄熱が不要になったか否かを調べている。
第2閾値TCX1は、排熱回収装置20による内燃機関1の冷却水の再加熱時に前記冷却水との熱交換に必要となる熱を十分に蓄えたときの温度に設定される。この温度は、予めいろいろな実験を行うことにより設定される。なお、受熱部21内の流体温度TCの計測は、受熱部21の上部タンク21aに設置される温度センサ32により行うようになっている。
例えば流体温度TCが第2閾値TCX1未満である場合には、排熱回収装置20の蓄熱が不十分であるので、前記ステップS4で否定判定して、前記ステップS1に戻る。
一方、流体温度TCが第2閾値TCX1以上である場合には、排熱回収装置20の蓄熱が十分であるので、前記ステップS4で肯定判定して、続くステップS5に移行する。
このステップS5では、バイパス制御弁15でバイパス経路Yを確保した後、循環制御弁25を閉塞する。
これにより、外部流路13の熱交換領域13a内に冷却水が流通せずにバイパス路14のみに流れるようになる。その一方で、排熱回収装置20の放熱部22で凝縮した液相状の流体が受熱部21に戻されなくなるので、受熱部21が空焚き状態になって放熱部22に蒸気を送れなくなる。そのため、外部流路13の熱交換経路13aに残留している冷却水に、放熱部22内に残留する熱が伝達されるものの、所定時間の経過に伴い残留熱が無くなるので、熱交換経路13aに残留している冷却水が沸騰せずに済むようになる。
このステップS5の後は、続くステップS6において、受熱部21内の流体温度TCが第3閾値TCX2以上であるか否かを判定する。ここでは、前記ステップS3で蓄熱状態とされた排熱回収装置20の構成要素が、内圧上昇により破損する可能性があるか否かを調べている。
第3閾値TCX2は、排熱回収装置20の構成要素の許容限界圧と相関関係を持つ温度値に設定される。この第3閾値TCX2は、予め排熱回収装置20の構成要素の破損限界圧力をいろいろな実験を行うことにより把握したうえで適宜のマージンを持つように設定される。この第3閾値TCX2と第2閾値TCX1との関係は、TCX2>TCX1となる。なお、受熱部21内の流体温度TCの計測は、受熱部21の上部タンク21aに設置される温度センサ32により行うようになっている。
例えば流体温度TCが第2閾値TCX2未満である場合には、排熱回収装置20の流体循環経路の内圧が過上昇していないので、前記ステップS6で否定判定して、前記ステップS1に戻る。この場合、蓄熱が継続されることになる。
一方、流体温度TCが第2閾値TCX2以上である場合には、排熱回収装置20の流体循環路の内圧が過上昇しているので、前記ステップS6で肯定判定して、続くステップS7に移行する。
このステップS7では、バイパス制御弁15で熱交換経路Xを確保した後、循環制御弁25を閉塞する。
これにより、外部流路13の熱交換領域13a内に冷却水が残留せずに流通するようになる。その一方で、排熱回収装置20の放熱部22で凝縮した液相状の流体が受熱部21に戻されなくなるので、受熱部21が空焚き状態になって放熱部22に蒸気を送れなくなる。そのため、外部流路13の熱交換経路13aを流れる冷却水が、所定期間にわたって放熱部22内に残留する熱を奪うことになるので、放熱部22が冷却されることになる。これに伴い排熱回収装置20の内圧が低下することになって、排熱回収装置20の構成要素が熱により破損せずに済むようになる。しかも、外部流路13の熱交換領域13aを流れる冷却水は放熱部22内の残留熱を奪うものの、この残留熱が無くなった後では冷却水が加熱されなくなるので、内燃機関1に付設されるラジエータ7の負荷が必要以上に増大することも避けられるようになる。
このステップS7の後は、前記ステップS1に戻って、必要に応じてステップS1〜S7を繰り返す。
ところで、この実施形態では、放熱部22を熱伝導性に優れたブラケット27を介して上流側触媒5に支持させているので、上流側触媒5が活性化温度に到達していない状況では、放熱部22の熱がブラケット27を介して上流側触媒5に伝導されて当該上流側触媒5の昇温を促進させることが可能になる。一方、上流側触媒5が活性化温度以上でかつ排熱回収装置20が蓄熱状態になっている場合には、前記とは逆に、上流側触媒5の熱がブラケット27を介して放熱部22へと伝導されるので、放熱部22内の気相状流体が凝縮することを防止するうえで有利となる。
以上説明したように、本発明を適用した実施形態では、循環制御弁25とバイパス制御弁15とを連係して制御することにより、例えば排熱回収装置20で外部流路13内の冷却水を積極的に加熱するための処理と、外部流路13内の冷却水を非加熱としながら排熱回収装置20内に熱を蓄えるための処理と、排熱回収装置20内の蓄熱を休止するための処理と、排熱回収装置20の流体循環経路の内圧の過上昇による排熱回収装置20の構成要素の万一の破損を防止するための処理とのうち、いずれかを必要に応じて実行することが可能になる。
これらの処理を適宜に実行することにより、まず、内燃機関1の暖機運転を促進することができる。また、内燃機関1の暖機後には冷却水の不必要な加熱を停止してラジエータ7の負担を軽減できるようになる。さらに、内燃機関1の冷却水の再加熱が必要なときには素早く排熱回収装置20の熱を利用することが可能になる。この他、排熱回収装置20の構成要素の熱による万一の破損を回避することが可能になる。
この他、この実施形態では、排熱回収装置20の受熱部21と放熱部22とを離隔して設置する構成としたうえで、この放熱部22を内燃機関1寄りに設置しているから、外部流路13を長く引き延ばすように施工する必要がなくなる。したがって、受熱部21と放熱部22とを接近設置している場合のように冷却水取り出し流路や還流流路などの配管の取り回しが煩雑になるとともに、冷却水の使用量を多くする必要が生じる等といった不具合を回避できる。
また、上記実施形態では、放熱部22を球面継手3より下流側に設置することで、放熱部22と受熱部21とを共に排気管4に取り付けるようにしているから、排気管4に車両本体と無関係の振動が発生したときでも、前記放熱部22と受熱部21とが相対的に変位せずに、同期して変位することになるので、それらに連通連結される移送路23や還流路24の付け根に、曲げ応力が作用せずに済む結果となる。したがって、排熱回収装置20が経時的な疲労破損を起こしにくくなる等、長寿命化を達成することが可能になる他、移送路23や還流路24の板厚や外径サイズを大きくして剛性アップを図ったり、あるいは移送路23や還流路24をフレキシブルパイプで形成したりするといった対策が不要となる。
なお、本発明は、上記実施形態のみに限定されるものではなく、特許請求の範囲内および当該範囲と均等の範囲で包含されるすべての変形や応用が可能である。以下で例を挙げる。
(1)上記実施形態では、バイパス制御弁15を三方弁とした例を挙げているが、本発明はこれに限定されるものではない。例えばバイパス路14、ならびに外部流路13においてバイパス路14の上流側接続部と熱交換領域13aとの間の計2箇所に、開閉弁を設置することができる。
この場合、バイパス路14の開閉弁を閉塞して熱交換流路側の開閉弁を開放すれば、熱交換経路Xを確保することができる。一方、バイパス路14の開閉弁を開放して熱交換流路側の開閉弁を閉塞すれば、バイパス経路Yを確保することができる。
(2)上記実施形態では、流量制御弁25について、例えば電磁弁等のように弁体を駆動するための駆動源をアクチュエータとして、このアクチュエータを制御装置30で制御する構成とした例を挙げている。しかしながら、本発明は、これに限定されるものではなく、流量制御弁25については、自己作動式の弁装置に置き換えることができる。この自己作動式の弁装置は、弁体の駆動源として例えばサーモスタットやダイアフラムスプリング等を用いるものが知られており、この駆動源は予め設定される条件に従い自動的に作動して弁体を開閉動作させる。
例えばサーモスタットを駆動源とする感熱タイプの弁装置では、排熱回収装置20の還流路24内の温度が適宜の設定温度未満であることを感知した場合に弁体を自動的に開いて、前記温度が設定温度以上であることを感知した場合に弁体を自動的に閉じるような構成になっている。
ダイアフラムスプリングを駆動源とする感圧タイプの弁装置では、排熱回収装置20の還流路24内の温度が適宜の設定温度未満である状態と相関関係が成立する内圧を感知した場合に、ダイアフラムスプリングが自然状態になって弁体を自動的に開いた状態とする一方で、前記温度が設定温度以上である状態と相関関係が成立する内圧を感知した場合に、ダイアフラムスプリングが弾性変形して弁体を自動的に閉じる状態とするような構成になっている。
このような自己作動式の弁装置を流量制御弁25として用いる場合、弁体を駆動するための駆動源としてのアクチュエータ(不図示)や制御装置(30)、ならびに感知対象となる情報の検出手段(温度センサ等)が不要になるので、設備コストを安く抑えるうえで有利となる。また、流量制御弁25は、全開と全閉とに切り換わる開閉弁の他、弁開度つまり放熱部22から受熱部21への液相状の流体の還流量を任意に調整可能とする流量調整弁とすることも可能である。
(3)上記実施形態では、内燃機関1のみを搭載する一般車両に本発明を適用した例を挙げているが、本発明はこれに限定されるものではない。例えば内燃機関1と電動機とを搭載するハイブリッド車両に本発明を適用することができる。
ハイブリッド車両では、例えば停車時等に、燃費向上のために、内燃機関1を停止するアイドルストップ処理を行うようにしている。このようなアイドルストップ処理中においては、内燃機関1の冷却水温度が適宜の閾値未満になると、内燃機関1を始動させるようになっている。その場合、アイドルストップ処理中に内燃機関1の冷却水の温度低下に伴い内燃機関1を始動した場合、その分、燃費の悪化につながる。
しかしながら、このようなハイブリッド車両に本発明を適用すると、上記実施形態で説明したように、図3のフローチャートのループ中において、制御装置30がステップS1で冷却水温度TLが第1閾値TLX未満になったと判定したときに、排熱回収装置20を利用して冷却水を加熱して昇温させるようになる。そのため、アイドルストップ処理中において、冷却水温度が低下しても内燃機関1を始動せずに済むようになって、無駄な燃料消費を防止することが可能になる。そのため、ハイブリッド車両に本発明を適用すれば、燃費低下を可及的に防止することが可能になる。
(4)上記実施形態では、2つの触媒5,6を備える場合の例を挙げているが、触媒の数は限定されるものではなく、例えば1個、あるいは3個以上であってもよい。
(5)上記実施形態において、内燃機関1はガソリンエンジンやディーゼルエンジン、その他のエンジンに限定されるものではない。ディーゼルエンジンとする場合には、触媒5,6を例えばDPF(Diesel Particulate Filter)やDPNR(Diesel Particulate -NOx Reduction system)等とすることができる。
なお、ディーゼルエンジンの場合において、上流側触媒5をNOx吸蔵還元触媒(NSR:NOx storage reduction)として、下流側触媒6をNOx選択還元触媒(SCR:Selective Catalytic Reduction)とすることも可能である。
1 内燃機関
2 エキゾーストマニホールド
4 排気管
5 上流側触媒
6 下流側触媒
7 ラジエータ
8 冷却水取り出し路
9 冷却水還流路
13 外部流路
13a 外部流路の熱交換領域
14 バイパス路
15 バイパス制御弁
20 排熱回収装置
21 受熱部
22 放熱部
23 移送路
24 還流路
25 循環制御弁
27 ブラケット(支持部材)
30 制御装置

Claims (7)

  1. 内燃機関の冷却水を外部へ一旦取り出して戻す外部流路と、内燃機関の排気熱を回収して前記外部流路の熱交換領域で冷却水に伝達するための排熱回収装置とを備え、
    前記外部流路には、その熱交換領域をバイパスするためのバイパス路と、当該バイパス路への冷却水流入量を制御するためのバイパス制御弁とが設けられ、
    前記排熱回収装置は、内燃機関の排気通路に設けられかつ内部の流体を排気熱で蒸発させるための受熱部と、この受熱部と離隔した前記外部流路の熱交換領域に付設されかつ前記受熱部で蒸発された流体を受け入れて当該流体と前記熱交換領域を流通する冷却水との間で熱交換させるための放熱部と、前記受熱部で蒸発される気相状の流体を前記放熱部へ移送するための移送経路と、前記放熱部での熱交換に伴い凝縮される液相状の流体を前記受熱部へ戻すための還流経路とを含むループ式ヒートパイプ構造とされ、前記還流経路に前記放熱部から前記受熱部に流体を戻す量を制御するための循環制御弁が設けられており、
    前記バイパス制御弁は、前記外部流路に対する前記バイパス路の上流側接続部分に設けられ、かつ冷却水を前記外部流路の熱交換領域のみに流通させる熱交換経路と、前記バイパス路のみに流通させるバイパス経路とを選択的に確保するための三方弁とされている、ことを特徴とする内燃機関の暖機装置。
  2. 請求項1に記載の内燃機関の暖機装置において、
    前記放熱部は、前記排気通路に設けられる触媒に、熱伝導性に優れた支持部材を介して支持される、ことを特徴とする内燃機関の暖機装置。
  3. 請求項1または2に記載の内燃機関の暖機装置において、
    前記内燃機関を冷間始動した場合には、前記バイパス制御弁で冷却水をバイパス路に流さずに前記熱交換領域のみに流通させる熱交換経路を確保するとともに、前記循環制御弁を開放する処理が行われる、ことを特徴とする内燃機関の暖機装置。
  4. 請求項1から3のいずれか1つに記載の内燃機関の暖機装置において、
    前記内燃機関の暖機運転が終了した場合には、前記バイパス制御弁で冷却水をバイパス路のみに流して熱交換経路に流通させないバイパス経路を確保するとともに、前記循環制御弁を開放する処理が行われる、ことを特徴とする内燃機関の暖機装置。
  5. 請求項1から4のいずれか1つに記載の内燃機関の暖機装置において、
    前記内燃機関の温間運転中において排熱回収装置の蓄熱が目標に到達した場合には、前記バイパス制御弁で冷却水をバイパス路のみに流して熱交換経路に流通させないバイパス経路を確保するとともに、前記循環制御弁を閉塞する処理が行われる、ことを特徴とする内燃機関の暖機装置。
  6. 請求項1から5のいずれか1つに記載の内燃機関の暖機装置において、
    前記内燃機関の温間運転中において排熱回収装置の蓄熱が過剰になった場合には、前記バイパス制御弁で冷却水をバイパス路に流さずに前記熱交換領域のみに流通させる熱交換経路を確保するとともに、前記循環制御弁を閉塞する処理が行われる、ことを特徴とする内燃機関の暖機装置。
  7. 請求項1から6のいずれか1つに記載の内燃機関の暖機装置において、
    前記バイパス制御弁および循環制御弁は、それぞれ、弁体の駆動源としてアクチュエータを有するアクチュエータ駆動式とされ、
    予め設定される条件に従い前記アクチュエータを制御するための制御装置をさらに備える、ことを特徴とする内燃機関の暖機装置。
JP2009133830A 2009-06-03 2009-06-03 内燃機関の暖機装置 Expired - Fee Related JP5304450B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133830A JP5304450B2 (ja) 2009-06-03 2009-06-03 内燃機関の暖機装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133830A JP5304450B2 (ja) 2009-06-03 2009-06-03 内燃機関の暖機装置

Publications (2)

Publication Number Publication Date
JP2010281236A JP2010281236A (ja) 2010-12-16
JP5304450B2 true JP5304450B2 (ja) 2013-10-02

Family

ID=43538182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133830A Expired - Fee Related JP5304450B2 (ja) 2009-06-03 2009-06-03 内燃機関の暖機装置

Country Status (1)

Country Link
JP (1) JP5304450B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2735716B1 (en) * 2011-07-20 2016-07-20 Toyota Jidosha Kabushiki Kaisha Engine cooling device
EP2843222B1 (en) 2012-04-23 2020-07-29 Toyota Jidosha Kabushiki Kaisha Heat transport device
JP6079582B2 (ja) * 2013-11-22 2017-02-15 トヨタ自動車株式会社 排気処理装置
JP6726059B2 (ja) * 2016-08-12 2020-07-22 株式会社Subaru エンジンの冷却システム
JP7106214B2 (ja) * 2018-05-29 2022-07-26 マレリ株式会社 車両用空調装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046469A (ja) * 2005-08-05 2007-02-22 Denso Corp 排熱回収装置
JP4882699B2 (ja) * 2005-12-20 2012-02-22 株式会社デンソー 排熱回収装置
JP2008231980A (ja) * 2007-03-19 2008-10-02 Sanden Corp 内燃機関の廃熱利用装置
JP4245063B2 (ja) * 2007-05-09 2009-03-25 株式会社デンソー 排熱回収装置

Also Published As

Publication number Publication date
JP2010281236A (ja) 2010-12-16

Similar Documents

Publication Publication Date Title
EP2318676B1 (en) Exhaust heat recovery system
US8413434B2 (en) Exhaust heat recovery for transmission warm-up
JP5195381B2 (ja) 排気熱回収装置
JP4432979B2 (ja) 排気熱回収システム
CN203146080U (zh) 用于发动机的排气***和加热***
US20090000577A1 (en) Waste heat collecting apparatus
JP5304450B2 (ja) 内燃機関の暖機装置
JP2018127915A (ja) エンジン冷却システム
JP2008280894A (ja) 排熱回収装置
JP4923832B2 (ja) 車両冷却システム
JP2010053830A (ja) 車両用暖機システム
JP2018119423A (ja) エンジン冷却システム
US20090194602A1 (en) Additional heating device for a motor vehicle
JP2010059862A (ja) 排気熱回収装置
JP2010275999A (ja) 内燃機関の排気構造
JP5801593B2 (ja) 車両用蓄熱式加温装置
JP5381323B2 (ja) 排熱回収装置
JP5316452B2 (ja) 排気熱回収装置
JP5018715B2 (ja) 廃熱回収装置
JP2008175125A (ja) 内燃機関の排気熱回収装置
JP6435734B2 (ja) 排気ガス浄化装置
JP7206604B2 (ja) 熱制御装置
JP2010133349A (ja) 排気熱回収装置
JP2005016477A (ja) 内燃機関の排気熱回収装置
JP4941445B2 (ja) 排気熱回収装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R151 Written notification of patent or utility model registration

Ref document number: 5304450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees