JP5274000B2 - 低温焼結性銀微粉および銀塗料ならびにそれらの製造法 - Google Patents

低温焼結性銀微粉および銀塗料ならびにそれらの製造法 Download PDF

Info

Publication number
JP5274000B2
JP5274000B2 JP2007317740A JP2007317740A JP5274000B2 JP 5274000 B2 JP5274000 B2 JP 5274000B2 JP 2007317740 A JP2007317740 A JP 2007317740A JP 2007317740 A JP2007317740 A JP 2007317740A JP 5274000 B2 JP5274000 B2 JP 5274000B2
Authority
JP
Japan
Prior art keywords
silver
amine
particles
protective material
tem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007317740A
Other languages
English (en)
Other versions
JP2009138242A (ja
Inventor
王高 佐藤
太郎 中野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2007317740A priority Critical patent/JP5274000B2/ja
Publication of JP2009138242A publication Critical patent/JP2009138242A/ja
Application granted granted Critical
Publication of JP5274000B2 publication Critical patent/JP5274000B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、有機物質に被覆された銀ナノ粒子からなる銀微粉およびそれを用いた銀塗料であって、特に低温焼結性に優れたもの、ならびにそれらの製造法に関する。なお、本明細書において「ナノ粒子」とは粒子径が40nm程度以下の粒子を意味し、「微粉」とはナノ粒子で構成される粉体を意味する。
金属微粉は活性が高く、低温でも焼結が進むため、耐熱性の低い素材に対するパターニング材料として着目されて久しい。特に昨今ではナノテクノロジーの進歩により、シングルナノクラスの粒子の製造も比較的簡便に実施できるようになってきた。
特許文献1には酸化銀を出発材料として、アミン化合物を用いて銀ナノ粒子を大量に合成する方法が開示されている。また、特許文献2にはアミンと銀化合物原料を混合し、溶融させることにより銀ナノ粒子を合成する方法が開示されている。非特許文献1には銀ナノ粒子を用いたペーストを作成することが記載されている。特許文献4には液中での分散性が極めて良好な銀ナノ粒子を製造する技術が開示されている。一方、特許文献3には有機保護材Aで保護した金属ナノ粒子が存在する非極性溶媒に、金属粒子との親和性の良いメルカプト基等の官能基を持つ有機保護材Bが溶解した極性溶媒を加えて、撹拌混合することにより、金属ナノ粒子の保護材をAからBに交換する手法が開示されている。
特開2006−219693号公報 国際公開第04/012884号パンフレット 特開2006−89786号公報 特開2007−39718号公報 中許昌美ほか、「銀ナノ粒子の導電ペーストへの応用」、化学工業、化学工業社、2005年10月号、p.749−754
金属微粉の表面は一般的に有機保護材により被覆されているのが通常である。この保護材は銀粒子合成反応時に粒子同士を隔離する役割を有する。したがって、ある程度分子量の大きいものを選択することが有利である。分子量が小さいと粒子間距離が狭くなり、湿式の合成反応では反応中に焼結が進んでしまう場合がある。そうなると粒子が粗大化し微粉の製造が困難になる。
一方、有機保護材で保護された金属微粉を用いて基板上に微細配線を形成するときには、配線を描画した後、金属微粒子同士を焼結させることが必要である。焼結の際には、粒子間に存在する有機保護材が揮発等により除去されなければならない。若干の炭素分が焼結体(配線)の中に残存することが許容される場合もあるが、電気抵抗の上昇を招くので、完全に除去されることが望ましい。
ところが、分子量の大きい有機保護材は一般的には加熱しても揮発除去されにくいので、例えば銀微粉の場合250℃以上といった高温に曝さなければ導電性の高い焼結体(配線)を構築することが難しい。このため、適用可能な基板の種類は、例えばポリイミド、ガラス、アラミドなど、耐熱温度の高い一部の素材に限られる。
本出願人は、オレイルアミンなどの不飽和結合を有する1級アミン存在下で、銀塩をアルコールによって還元することにより、極めて分散性の良い銀ナノ粒子を合成することが可能であることを見出し、特許文献4などに開示した。この手法で合成された銀粒子は還元反応時に存在させた1級アミンからなる有機保護材に被覆されている。この有機保護材は分子量が200以上と比較的大きいために、金属銀の周囲に付着して、いわゆる「浮き輪(あるいは浮き袋)」の役割を果たし、液状有機媒体中での優れた分散性を担う。また、この有機保護材は分子量が比較的大きいにもかかわらず、当該銀粒子を含有するインクで描画された薄膜において、金属銀粒子同士の焼結を容易にする作用を呈する。これは、有機保護材の分子中に不飽和結合を持つことにより焼成時に有機保護材自体が酸化・分解を起こしやすく、金属銀粒子からの脱離が比較的容易に起こるためであると考えられ、オレイルアミンの例では180℃程度の低温焼成でも導電膜を形成させることが可能である。
しかし、180℃程度まで焼成温度を下げることができたとしても、基板に対する制約は依然として大きい。もし、100〜180℃、好ましくは100〜150℃程度の低い温度で焼結させることのできる金属微粉が簡便な手法で生産可能になれば、その用途は著しく拡大することが必至である。例えば、透明性のポリカーボネートを基板に使用すると、CD、DVD等のメディアや、レンズの表面に直接微細配線を描画することが可能になり、各種機能が付与できる。PET(ポリエチレンテレフタレート)基板上に微細配線を描画した安価なアンテナや、紙を素材にしたICタグなども実現可能と考えられる。さらに、導電性高分子へ直接金属配線を描画することも可能になると考えられ、各種電極材等の用途が広がることが期待される。金属微粉として銀を使用すれば、その抗菌作用を活かすこともできる。その他にも数限りない用途が考えられる。
特許文献3には、金属粒子の表面を覆う保護材を、別の保護材に交換する技術が開示されている。しかしながら、この技術では金属ナノ粒子を合成する段階で、金属供給物質と保護材が溶解した溶媒中に後から還元剤を滴下することによって保護材に覆われた金属粒子を得るという手段を採用するものである。このように溶媒中に還元剤を滴下する反応の場合、還元剤自体が溶媒で稀釈されるために強い還元性を有する還元剤を使用する必要があり、液を撹拌するにしても完全に均一な還元力で金属ナノ粒子を析出させることは容易でない。また、還元剤の成分が粒子に混入しやすい。このため、粒径分布を均一化したり、金属粒子中の不純物を少なくしたりする品質管理面のコントロールが難しい。また、特許文献3の発明には粒子合成段階で形成させる保護材として、ナフテン酸やオクチルアミンなど、分子量が100前後と小さい有機化合物を使用した例が示されており、それより大きい有機化合物で保護された金属ナノ粒子を合成する具体的手法は示されていない。保護材の分子量が上記のように小さい金属ナノ粒子は、液状媒体中で凝集して沈降しやすい。現に特許文献3の発明では、合成段階で金属ナノ粒子集合体を沈降させて回収する工程が必須とされている。このような凝集・沈降しやすい粒子は液状媒体中での分散状態を保つことが難しく、洗浄を含めた中間工程での取扱いに手間が掛かり、また保護材を交換する工程では均一な品質を維持する上で強い撹拌混合が不可欠であると考えられる。このように、特許文献3の技術は、均一な還元反応のコントロールが難しい点、粒子が凝集・沈降しやすい(分散性があまり良くない)点などにおいて、工業的に実施化するには更なる改善が望まれる。
本発明は、簡便な手法により、従来よりも焼結温度を大幅に低減しうる保護材で被覆された銀微粉およびそれを用いた銀塗料を提供しようというものである。
上記目的を達成するために本発明では、炭素数6〜12の1級アミンBで構成される有機保護材に被覆された平均粒子径DTEM:3〜20nmまたはX線結晶粒径DX:1〜20nmの銀粒子からなる銀微粉を有機媒体と混合してなる銀塗料が提供される。ここで、前記アミンBとしてオクチルアミンを採用する。この銀塗料は、これを塗布した塗膜を大気中120℃で焼成したときに比抵抗25μΩ・cm以下の導電膜となる性質を備えている。
上記の低温焼結性に優れた銀微粉の製造法として、不飽和結合を持つ分子量200〜400の1級アミンAに被覆された平均粒子径DTEM:3〜20nmまたはX線結晶粒径DX:1〜20nmの銀粒子が有機媒体中に単分散した銀粒子分散液と、炭素数6〜12の1級アミンBとを混合する工程(混合工程)、この混合液を撹拌状態で50〜80℃に保持することにより沈降粒子を生成させる工程(沈降工程)、固液分離操作により前記沈降粒子を固形分として回収する工程(固液分離工程)を有する製造法が提供される。回収されたこの固形分は低温焼結性の銀微粉で構成されるものである。ここで、「沈降粒子」は液の撹拌を止めたときに沈降する粒子であり、沈降工程を実施しているときは液を撹拌しているので多くの沈降粒子は液中を漂っている。前記1級アミンAとしてはオレイルアミン(C918=C917−NH2、分子量約267)が好適な対象として挙げられる。
また本発明の低温焼結性銀塗料は、前記のようにして回収された固形分(銀微粉)を洗浄する工程(洗浄工程)、洗浄後の固形分と有機媒体を混合して塗布可能な性状とする工程(塗料化工程)を有する手法により製造することができる。
ところで、銀塗料を塗布した塗膜を大気中120℃で焼成し、その焼成膜の比抵抗を測定する方法については特に限定されないが、従来一般的な手法を採用することが望ましい。ここでは、被測定試料を大気中200℃で焼成したときに焼成膜の比抵抗が20μΩ・cm以下と評価される条件を120℃焼成に適用して、120℃焼成膜の導電性を評価する。つまり、塗料の調製、塗布、焼成および測定の条件を、200℃焼成で比抵抗が20μΩ・cm以下となる場合の条件と同じにして(ただし焼成温度のみ120℃に変える)、120℃焼成膜の比抵抗を測定する。200℃焼成で焼結が生じていることが確認できる手法(公知の一般的な手法)であれば、120℃焼成に適用しても焼結の有無を判定できる。なお、もともと大気中200℃焼成で比抵抗20μΩ・cm以下の焼成膜が形成される条件が見出せないような銀微粉または銀塗料は、本発明の対象外である。
本明細書において「保護材に被覆された」とは、個々の粒子の金属銀どうしが結合せずに、独立して存在しうるに足る量の保護材物質が、金属銀の表面に付着している状態をいう。
本発明によれば、120℃という低い温度で焼結が可能な銀微粉およびそれを用いた銀塗料が実現された。その銀微粉および銀塗料は、本出願人が特許文献4などに開示した方法で合成される銀ナノ粒子を原料として、比較的簡便に製造することができ、工業的な実施化が十分可能であると考えられる。
本発明の低温焼結性に優れた銀微粉は、その構成要素である銀粒子が、炭素数6〜12の1級アミンBで構成される有機保護材に被覆されていることに特徴がある。ここではアミンBとしてオクチルアミンを採用する。
一般に界面活性剤としての機能を有する有機化合物は疎水基Rと親水基Xを有するR−Xの構造をもつ。疎水基Rとしては炭素骨格に水素が結合したアルキル基が代表的であり、親水基Xとしては種々のものがあるが、脂肪酸では「−COOH」、アミンでは「−NH2」である。このような界面活性剤は、金属銀粒子の活性な最表面を保護する有機保護材としても利用できる。この場合、親水基Xが金属銀の表面と結合し、疎水基Rがこの有機保護材に覆われた粒子の外側に向いて配向していると考えられる。金属ナノ粒子は極めて活性が高いので、通常、粒子の表面は保護材で覆われていなければ安定に存在できない。ただし、銀ナノ粒子の塗料で描画した薄膜に導電性を付与するには、できるだけ低温で銀粒子の金属銀どうしが焼結を起こすことが必要であり、そのためには金属銀の粒子サイズが例えばDTEM20nm以下というように極めて微細であることに加え、粒子表面の保護材が低温焼成時に容易に粒子表面から脱離して揮発除去されなければならない。
低温焼成時において粒子からの脱離と揮発を生じやすくするためには、親水基が同じなら、できるだけ分子量の小さい有機化合物を保護材として使用することが有利となる。一方、分子量が概ね同等なら、親水基Xの構造によって脱離と揮発の起こりやすさが変わってくる。発明者らの検討によれば、脂肪酸とアミンを比較すると、アミンの方が低温焼結性には有利であることがわかってきた。金属銀の表面を分子量の小さいアミンで被覆した金属ナノ粒子を得ることができれば、低温焼結性に優れた塗料(インクやペーストなど)が作成できると考えられる。
ところが、気相からの合成に比べ大量生産に有利な「湿式工程」によって銀ナノ粒子を合成する場合、合成時に直接低分子量のアミンに被覆された銀粒子を製造しようとすると、凝集等により分散性の良好な銀微粉を得ることが難しく、合成反応後に洗浄等の工程を経て塗料を調製する操作に支障をきたしやすい。そこで本発明では、分子量200〜400のアミンAで被覆された分散性の良い銀ナノ粒子を予め得ておき、その後、アミンAを低分子量のアミンBに置き換えることにより、アミンBの有機保護材に被覆された銀ナノ粒子を得る。この銀ナノ粒子からなる銀微粉は、保護材が低分子量のアミンBにより構成されているため、120℃前後の低温での焼成においても保護材の脱離が容易に起こり、結果的に比抵抗の小さい導電膜を形成することができる。
また、保護材をアミンBに付け替えたことにより、オレイルアミン等のアミンAでは分散させることが困難であった芳香族有機化合物を分散媒に用いてインクやペーストを作成することが可能になる。芳香族有機化合物に対する分散性が良好であるということは、トルエン等の工業的に広く使用されている安価な溶媒が利用できることを意味し、低温焼結性銀ナノ粒子の新たな用途展開が期待される。ここで、保護材中には不純物としてアミンAが僅かに残存していても構わない。例えばアミンAとアミンBの合計に占めるアミンAのモル比;A/(A+B)が0.01未満であるような場合は、少なくともアミンAによる分散性への悪影響は認められない。
アミンAには不飽和結合を持つ分子量が200〜400の1級アミンを採用する。不飽和結合を持つ1級アミンは、分子量が多少大きくても、焼成時の加熱によって金属銀からの脱離および揮発除去が起こりやすいことが発明者らの研究により判っている。種々検討の結果、分子量200以上のアミンを選択することが有効である。分子量が過剰に大きいと塗膜を低温焼成したときに脱離・揮発しにくくなるので、分子量400以下のものがよい。これまでの調査では、オレイルアミンが、後述の銀粒子合成の容易性とも相俟って非常に好適である。
アミンBとしては炭素数が6〜12の1級アミンが適用できる。少なくともこの範囲において焼結温度の顕著な低減効果が認められる。ここではアミンBとしてオクチルアミンを採用する。
有機保護材に被覆された銀粒子の粒径は、TEM(透過型電子顕微鏡)の画像から測定される平均粒子径DTEMあるいはX線結晶粒径DXによって表すことができる。本願発明ではDTEMが3〜20nmである銀粒子、あるいはX線結晶粒径DXが1〜20nmである銀粒子が好ましい対象となる。このような粒径範囲の銀微粉は良好な特性を有する塗料を作る上で有利である。このうち、DTEMが6〜20nm、DXが4〜20nm程度の粒子径の銀粒子は、特許文献4などに開示の技術によって合成しやすい。また、DTEMが3〜7nm、DXが1〜5nm程度の極めて微細な銀粒子は、例えばオレイルアミンを溶媒として直接銀化合物を還元する手法などによって合成することができる。なお、合成された金属銀の結晶粒界には不純物が混入しやすく、不純物の量が多くなると、微細配線を焼成する際にポアが生じて良好な導電性が確保できなくなったり、耐マイグレーション性に劣ったりする不都合を生じやすい。種々検討の結果、DTEM/DXで表される単結晶化度が2.5以下である銀粒子であることが望ましく、2.0以下であることが一層好ましい。
このような有機保護材で被覆された銀粒子は、分子量が大きい有機保護材に被覆されたものと比べ液状媒体中では沈降しやすいので、ペースト状の塗料に適している。ただし、平均粒子径が比較的小さいものでは媒体を適切に選択すれば液状のインクを作成することも可能であると考えられる。
この低温焼結性に優れた銀微粉は以下のようにして得ることができる。
〔銀粒子の合成〕
本発明で使用する銀ナノ粒子原料は、粒度分布等の粒子性状が安定しており、かつ液状媒体中で凝集・沈降しにくい性質を有していることが重要である。そのような銀粒子の合成法として、ここでは特許文献4に開示した合成法を簡単に説明する。すなわち、この合成法は、アルコール中またはポリオール中で、アルコールまたはポリオールを還元剤として、銀化合物を還元処理することにより銀粒子を析出させるものである。この場合、アルコールまたはポリオールは溶媒であるとともに還元剤でもある。還元反応は溶媒液を昇温して、好ましくは還流状態とすることによって進行させることができる。こうした手法をとることにより、不純物の混入を防ぎ、例えば配線材料として使用とした時には抵抗値を小さくすることが可能になる。
その還元反応を進行させる際には、溶媒中に保護材として機能する有機化合物を共存させておくことが肝要である。その有機化合物として、ここでは不飽和結合を持つ1級アミンAを使用する。不飽和結合を持たないものでは、表面がそのアミンで保護された銀ナノ粒子を合成することは困難である。発明者らの知見では、このときの不飽和結合の数はアミンAの1分子中に少なくとも1個あれば足りる。ただし、アミンAとしては分子量200〜400のものを使用する。分子量が小さいものでは還元時の液状媒体中において凝集・沈降が生じやすく、均一な還元反応の妨げになる場合がある。そうなると粒径分布を均一化するなどの品質管理面のコントロールが難しくなる。また液状有機媒体中に銀粒子が単分散した状況を作ることが難しくなる。逆に分子量が過剰に大きい有機化合物を用いると、後の工程においてアミンBに置き換える操作が難しくなることが懸念される。アミンAの具体的な例としては、オレイルアミンが挙げられる。
還元反応時に溶媒中に共存させる1級アミンAの量は、銀に対し0.1〜20当量とすることができ、1.0〜15当量とすることがより好ましく、2.0〜10当量が一層好ましい。ここで、1級アミンでは銀1モルに対しアミン1モルが1当量に相当する。1級アミンの使用量が少なすぎると銀粒子表面の保護材の量が不足して、液中での単分散が実現できなくなる。多すぎると後の工程でアミンAをアミンBに置き換える反応が効率的に行えない恐れがある。
還元剤としては、溶媒であるアルコールまたはポリオールを使用する。反応に際しては還流操作を行うことが効率的である。このため、アルコールまたはポリオールの沸点は低い方が好ましく、具体的には80〜300℃、好ましくは80〜200℃、より好ましくは80〜150℃であるのがよい。特許文献4などに開示される種々のものが使用できるが、中でもイソブタノール、n−ブタノールが好適である。
還元反応を促進させるためには還元補助剤を添加しても構わない。還元補助剤の具体例は特許文献4に開示されているものから1種以上を選択すれば良いが、これらのうちジエタノールアミン、トリエタノールアミンを用いるのが特に好ましい。
銀の供給源である銀化合物としては、上記溶媒に溶解し得るものであれば種々のものが適用でき、塩化銀、硝酸銀、酸化銀、炭酸銀などが挙げられるが、工業的観点から硝酸銀が好ましい。還元反応時の液中のAgイオン濃度は0.05モル/L以上、好ましくは0.05〜5.0モル/Lとすることができる。アミンA/Agのモル比については0.05〜5.0の範囲とすることができる。還元補助剤/Agのモル比については0.1〜20の範囲とすることができる。
還元反応の温度は、50〜200℃の範囲内とすることが望ましい。50〜150℃とすることがより好ましく、60〜140℃の範囲が一層好ましい。アミンAに覆われた銀粒子(上記還元により合成されたもの)は、銀粒子とアミンAの合計に対するアミンAの存在割合(以下、単に「アミンA割合」という)が0.05〜25質量%に調整されていることが望ましい。アミンA割合が低すぎると粒子の凝集が生じやすい。逆にアミンA割合が高くなると、後の工程でアミンAをアミンBに置き換える反応が効率的に行えない恐れがある。
〔銀粒子分散液の作成〕
アミンAに覆われた銀粒子は、例えば上記のような湿式プロセスでの還元反応で合成されたのち、固液分離および洗浄に供される。その後、液状有機媒体と混合して分散液を作る。液状有機媒体としては、アミンAに覆われた銀粒子が良好に分散する物質を選ぶ。例えば、炭化水素系が好適に使用できる。例えば、イソオクタン、n−デカン、イソドデカン、イソヘキサン、n−ウンデカン、n−テトラデカン、n−ドデカン、トリデカン、ヘキサン、ヘプタン等の脂肪族炭化水素が使用できる。ケロシンなどの石油系溶媒を使用しても構わない。これらの物質を1種以上使用して液状有機媒体とすれば良い。
ただし、本発明では、アミンAに被覆された銀粒子が単分散している銀粒子分散液を用意することが重要である。ここで、「単分散」とは、液状媒体中に個々の銀粒子が互いに凝集することなく、独立して動ける状態で存在していることをいう。具体的には、銀粒子を含む液を遠心分離による固液分離操作に供したとき、粒子が分散したまま残っている状態の液(上澄み)を、ここでは銀粒子分散液として採用することができる。
〔保護材の付け替え〕
アミンAにより被覆されている銀粒子が単分散している液状有機媒体と、炭素数6〜12の1級アミンBを混合すると、個々の粒子の周囲にアミンBが存在する状態、すなわち粒子が液中でアミンBに包囲されている状態(以下「アミンBによる包囲状態」という)を実現することができる。発明者らは、この状態をしばらく維持すると、アミンAが銀粒子からはずれて、アミンBに置き換えられる現象(以下「置き換え反応」ということがある)が生じることを発見した。
この置き換え反応が生じるメカニズムについては現時点で未解明の部分が多いが、アミンAとアミンBの疎水基のサイズが相違することに起因する金属銀とアミンとの親和力の差が、この反応の進行の主たる要因になっているのではないかと考えられる。また、アミンAとして不飽和結合を有するものを採用していることも、アミンAの金属銀からの脱離を容易にし、アミンBとの置き換え反応の進行に寄与していると思われる。
置き換え反応は常温でも進行するが、発明者らの詳細な検討によれば、液の温度が50℃未満では、アミンAの一部が吸着したまま残存して、「アミンAとアミンBで構成される複合有機保護材」に覆われた粒子が形成されやすい。この場合、芳香族有機化合物への分散性が低下し、芳香族有機化合物を分散媒とする安価な液状インクを作成する際には不利となる。そこで本明細書ではアミンBへの付け替えを50℃以上の温度で行う。ただし、あまり温度を高めると不用意な焼結が生じる恐れがあるので、80℃以下の温度で行うのが良く、70℃以下とすることがより好ましい。
銀粒子の表面を覆っている保護材が低分子量のアミンBに置き換わる反応が進行していくと、分子量の大きいアミンAによる「浮き輪」の効果が徐々に低減し、アミンAがまだ残存している状態でも粒子は沈降するようになる。沈降粒子が反応容器の底に堆積すると、それらの粒子は「アミンBによる包囲状態」が得られなくなり、置き換え反応がそれ以上進行しにくくなる。したがって、本発明では置き換え反応に際し、液を撹拌する。ただし、あまり強く撹拌する必要はない。アミンAがまだ付着している粒子を「アミンBによる包囲状態」に曝すことができれば十分である。したがって、反応容器の底に沈降粒子が堆積しない程度の撹拌力を与えることが望ましい。
「アミンBによる包囲状態」を作ると、時間とともにアミンBによる置換量が増えていくが、1時間以上の置き換え反応時間を確保することが望ましい。ただし、24時間を超えても、それ以上の置き換え反応はあまり進行しないので、24時間以内で置き換え反応を終了させるのが実用的である。現実的には1〜7時間の範囲で調整すればよい。
混合するアミンBの量は、「アミンBによる包囲状態」が実現できるに足る量を確保する。混合前に保護材として存在するアミンAの量に対しては、モル比にしてかなり多い量を添加することが望ましい。具体的には混合前に保護材として存在するアミンAに対し、少なくとも2倍以上のモル比でアミンBを混合することが望ましい。混合前に銀粒子として存在するAgに対する当量比(アミンB/Ag)では、液量にもよるが、5当量以上のアミンBを混合することが望ましい。これまでの実験では5〜20当量程度のアミンB/Ag当量比で良好な結果が得られている。なお、Ag;1モルに対し、1級アミンB;1モルが1当量に相当する。
置換反応を進行させる液中にアミンAが溶解しやすいアルコールを配合させると、より効率良くアミンBへの置き換えが進行する。アミンAがオレイルアミンの場合、例えばイソプロパノールを好適に添加することができる。
〔固液分離〕
上述のように、置き換え反応が終了した粒子は沈降するので、反応終了後の液を固液分離することによって、置き換え反応(沈降工程)を終了した進行した粒子を固形分として回収することができる。固液分離としては遠心分離が望ましい。得られた固形分は、アミンBで構成される有機保護膜で被覆された銀ナノ粒子を主体とするものである。このようにして本発明の銀微粉が得られる。
〔洗浄〕
上記の固形分は、アルコールなどの溶媒を用いて洗浄することが望ましい。1回以上の洗浄操作を経て最終的に固液分離されて得られた固形分を塗料に使用する。
〔塗料の調製〕
上記洗浄後の固形分(保護材をアミンBに付け替えた銀微粉)と、適当な有機媒体とを混合して塗布可能な性状とすることにより、本発明の銀塗料が得られる。ここで混合する有機媒体は、120℃程度の温度で揮発除去しやすいものを選択することが肝要である。なお、この銀微粉が液状媒体に分散したインクを作成する場合は、常温で液体の芳香族有機化合物を媒体に使用することができる。
《比較例1》
リファレンスとして、特許文献4などに開示のアルコール還元法で合成した銀微粉を用いて銀塗料を調整し、焼成温度200℃および120℃で焼成した焼成膜の比抵抗を調べた。この銀微粉は個々の粒子の表面がアミンA(ここではオレイルアミン)からなる有機保護材に覆われているものである。具体的には以下のようにして実験を行った。
〔銀粒子の合成〕
反応媒体兼還元剤としてイソブタノール(和光純薬株式会社製の特級)200mL、アミンAとしてオレイルアミン(和光純薬株式会社製、分子量=267)27mL、銀化合物としての硝酸銀結晶(関東化学株式会社製)13.7gを用意し、これらを混合してマグネットスターラーにて撹拌し、硝酸銀を溶解させた。この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液をマグネットスターラーにより撹拌しながら100℃まで昇温した。100℃の温度で3時間の還流を行なった後、還元補助剤として2級アミンのジエタノールアミン(和光純薬株式会社製、分子量=106)を対Agモル比1.0となるように8.5g添加した。その後、1時間保持した後、反応を終了した。反応終了後のスラリーを遠心分離機で固液分離し、分離された液を廃棄して固体成分を回収した。その後、「固体成分をメタノールと混合したのち遠心分離機で固液分離し、分離された液を廃棄して固体成分を回収する」という洗浄操作を2回行った。
〔銀粒子分散液の作成〕
液状有機媒体としてテトラデカンを用意した。これに前記洗浄後の固形成分を混合・分散し、遠心分離機により30分間固液分離し、分離された液を回収した。この液にはアミンAに覆われた銀粒子が単分散している。
この銀粒子分散液を透過型電子顕微鏡(TEM)により観察し、平均粒径DTEMを求めた。すなわち、TEM(日本電子株式会社製JEM−2010)により倍率60万倍で観察される粒子のうち、重なっていない独立した300個の銀粒子の粒子径を計測して、平均粒子径を算出した。その結果、DTEMは8.5nmであった。本例では後述のように、この銀粒子分散液を銀塗料に用いるので、表1にはこのDTEM値を記載してある。
なお、この銀粒子分散液中の銀粒子におけるアミンA(オレイルアミン)の被覆量は、特願2007−235015号で開示した手法による測定の結果、8.0質量%であった。
〔保護材のTG−DTA測定〕
銀粒子分散液について昇温速度10℃/分でのTG−DTA測定を行った。そのDTA曲線を図1に示す。図1において、200〜300℃の間にある大きな山および300〜330℃の間にあるピークはアミンAであるオレイルアミンに起因するものであると考えられる。
〔保護材のFT−IR測定〕
FT−IR(フーリエ変換赤外分光光度計)を用いて、試薬のオレイルアミン、および上記銀粒子分散液中の粒子について、有機化合物のスペクトルを測定した。その結果、有機保護膜はオレイルアミン単独であることが確認された。
〔X線結晶粒径DXの測定〕
X線結晶粒径DXに関しては、銀粒子分散液にする前の粒子合成後固液分離→洗浄後のウエット状態の沈殿物を、ガラス製セルに塗り、X線回折装置にセットし、Ag(111)面の回折ピークを用いて、下記(1)式に示すScherrerの式によりX線結晶粒径DXを求めた。X線にはCu−Kαを用いた。
X=K・λ/(β・cosθ) ……(1)
ただしKはScherrer定数で、0.94を採用した。λはCu−Kα線のX線波長、βは上記回折ピークの半価幅、θは回折線のブラッグ角である。
結果を表1に示す(以下の各例において同じ)。
〔銀塗料の調製〕
ここでは、アミンAからなる保護材に被覆された銀粒子を用いた銀塗料を作成した。前記の銀塗料分散液の粘度を回転式粘度計(東機産業製RE550L)により測定したところ、粘度は5.8mPa・sであった。また、前述したTG−DTA装置を用いた測定によりこの銀粒子分散液中の銀濃度は60質量%であった。この銀粒子分散液はインクとして塗布可能な特性を有していると判断されたので、これをそのまま銀塗料として使用することとした。
〔塗膜の形成〕
前記銀塗料をスピンコート法でガラス基板の上にコーティングすることにより塗膜を形成させた。
〔焼成膜の形成〕
塗膜を形成した基板を、まず大気中60℃で30分ホットプレート上で予備焼成した後、さらにそのホットプレート上で大気中200℃で1時間保持することにより「200℃焼成膜」を得た。また、同様に60℃の予備焼成後に120℃のホットプレート上で1時間保持することにより「120℃焼成膜」を得た。
〔焼成膜の比抵抗(体積抵抗)測定〕
表面抵抗測定装置(三菱化学製;Loresta HP)により測定した表面抵抗と、蛍光X線膜厚測定器(SII製;STF9200)で測定した焼成膜の膜厚から、計算により体積抵抗値を求め、これを焼成膜の比抵抗として採用した。
結果を表1に示す(以下の各例において同じ)。
表1からわかるように、保護材の構成がアミンAである本例の銀微粉によると、200℃焼成膜の比抵抗が非常に低下していることから、200℃以下の温度で銀の焼結が起こると言える。しかし、120℃焼成膜は導電性を有しているとは認められなかった。したがって、120℃×1時間の条件では導電性を付与するに足るだけの銀粒子の焼結は起こっていないと言える。
《実施例1〜4》
比較例1に記載した「銀粒子の合成」に従って銀ナノ粒子を合成した。ただし、その次工程である「銀粒子分散液の作成」において、液状有機媒体としてテトラデカンの他に、さらにデカンおよびケロシンを用意した。そして、比較例1と同様に、前記洗浄後の固形成分をテトラデカン(実施例1、4)、デカン(実施例2)およびケロシン(実施例3)にそれぞれ混合・分散し、遠心分離機により30分間固液分離し、分離された液(銀粒子分散液)を回収した。これらの液にはアミンAに覆われた銀粒子が単分散している。
〔アミンBとの混合および沈降粒子の生成〕
アミンBとして試薬のオクチルアミン(C817−NH2、和光純薬株式会社製の特級)を用意した。また、イソプロパノール(和光純薬株式会社製の特級)を用意した。実施例1〜3では上記の各銀粒子分散液に、Agに対して10当量に相当する量のオクチルアミンを添加した。実施例4ではAgに対して10当量に相当する量のオクチルアミンと、さらにAgに対して20当量に相当する量のイソプロパノールを添加した。各例とも液温を60℃に保ち、表1に示す撹拌状態で、表1に示す時間保持した。撹拌を止めると沈降粒子が生成したことが観察された。
〔固液分離および洗浄〕
上記の沈降粒子が生成した液を5分間の遠心分離により固液分離した。得られた固形分を回収し、この固形分にさらにメタノールを添加して超音波分散を30分間行い、その後、5分間の遠心分離により固液分離して固形分を回収する洗浄操作を1回行った。
〔保護材のTG−DTA測定〕
洗浄後の固形分について、比較例1と同様の通常の昇温によるTG−DTA測定を行った。そのDTA曲線を図2(実施例1)、図3(実施例2)、図4(実施例3)および図5(実施例4)に示す。置換前(図1)と置換後(図2〜5)の対比から、置換後には図1に見られたピークは消失し、新たなピークが観測された。このことから、実施例1〜4において、保護材は、アミンAであるオレイルアミンから、アミンBであるオクチルアミンに付け替えられたと考えられる。
〔平均粒子径DTEMの測定〕
試料粉末(アミンBの保護材で被覆された洗浄後のウエット状態の固形分)について、TEM(日本電子株式会社製JEM−2010)により観察される銀粒子のうち、重なっていない独立した300個の銀粒子を無作為に選択して、粒子径(画像上での長径)を計測した。個々の粒子についての粒子径を算術平均することにより平均粒子径DTEMを求めた。
参考のため、図6〜図9にそれぞれ実施例1〜4において得られた銀粒子(アミンBの保護材で被覆されたもの)のTEM写真を例示する。
〔X線結晶粒径DXの測定〕
試料粉末(アミンBの保護材で被覆された洗浄後のウエット状態の固形分)をガラス製セルに塗り、X線回折装置にセットし、比較例1と同様の条件でX線結晶粒径DXを求めた。
〔銀塗料の調製〕
上記の洗浄後の固形分に、実施例1〜3ではテトラデカン、実施例4ではデカリンを少量加えたのち、混練脱泡器にかけ、ペースト状の銀塗料を得た。
〔塗膜の形成〕
銀塗料をアプリケーターを用いて比較例1と同様の基板上に塗布することにより塗膜を形成した。
〔焼成膜の形成〕
比較例1と同様の方法により行った。
〔焼成膜の比抵抗(体積抵抗)測定〕
比較例1と同様の方法により行った。
表1からわかるように、これらの実施例では低分子量のアミンB(オクチルアミン)からなる複合有機保護材で被覆された銀ナノ粒子を得たことにより、120℃という低温での焼結が可能であった。
比較例1で銀塗料に使用した粒子の保護材についてのDTA曲線。 実施例2で銀塗料に使用した粒子の保護材についてのDTA曲線。 実施例3で銀塗料に使用した粒子の保護材についてのDTA曲線。 実施例4で銀塗料に使用した粒子の保護材についてのDTA曲線。 実施例5で銀塗料に使用した粒子の保護材についてのDTA曲線。 実施例1においてテトラデカン中での置き換え反応により得られた銀粒子のTEM写真。 実施例2においてデカン中での置き換え反応により得られた銀粒子のTEM写真。 実施例3においてケロシン中での置き換え反応により得られた銀粒子のTEM写真。 実施例4においてテトラデカンとイソプロパノールの共存下での置き換え反応により得られた銀粒子のTEM写真。

Claims (4)

  1. オクチルアミンで構成される有機保護材に被覆された平均粒子径DTEM:3〜20nm、かつ、単結晶化度(DTEM/DX)2.5以下の銀粒子を成分とする銀塗料であって、この銀塗料を塗布した塗膜を大気中120℃で焼成したときに比抵抗25μΩ・cm以下の導電膜となる性質を備えた銀塗料。
  2. オクチルアミンで構成される有機保護材に被覆されたX線結晶粒径DX:1〜20nm、かつ、単結晶化度(DTEM/DX)2.5以下の銀粒子を成分とする銀塗料であって、この銀塗料を塗布した塗膜を大気中120℃で焼成したときに比抵抗25μΩ・cm以下の導電膜となる性質を備えた銀塗料。
  3. 不飽和結合を持つ分子量200〜400の1級アミンAに被覆された平均粒子径DTEM:3〜20nm、かつ、単結晶化度(DTEM/DX)2.5以下、またはX線結晶粒径DX:1〜20nm、かつ、単結晶化度(DTEM/DX)2.5以下の銀粒子が有機媒体中に単分散した銀粒子分散液と、オクチルアミンとを混合する工程、この混合液を撹拌状態で50〜80℃に保持することにより沈降粒子を生成させる工程、固液分離操作により前記沈降粒子を固形分として回収する工程、得られた固形分を洗浄する工程、洗浄後の固形分と有機媒体を混合して塗布可能な性状とする工程を有する請求項またはに記載の銀塗料の製造法。
  4. 1級アミンAはオレイルアミンである請求項に記載の銀塗料の製造法。
JP2007317740A 2007-12-07 2007-12-07 低温焼結性銀微粉および銀塗料ならびにそれらの製造法 Active JP5274000B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007317740A JP5274000B2 (ja) 2007-12-07 2007-12-07 低温焼結性銀微粉および銀塗料ならびにそれらの製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007317740A JP5274000B2 (ja) 2007-12-07 2007-12-07 低温焼結性銀微粉および銀塗料ならびにそれらの製造法

Publications (2)

Publication Number Publication Date
JP2009138242A JP2009138242A (ja) 2009-06-25
JP5274000B2 true JP5274000B2 (ja) 2013-08-28

Family

ID=40869146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007317740A Active JP5274000B2 (ja) 2007-12-07 2007-12-07 低温焼結性銀微粉および銀塗料ならびにそれらの製造法

Country Status (1)

Country Link
JP (1) JP5274000B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897624B2 (ja) * 2007-09-11 2012-03-14 Dowaエレクトロニクス株式会社 低温焼結性銀微粉および銀塗料ならびにそれらの製造法
JPWO2011007442A1 (ja) * 2009-07-16 2012-12-20 株式会社応用ナノ粒子研究所 2種金属成分型複合ナノ金属ペースト、接合方法及び電子部品
JP5736244B2 (ja) * 2011-06-16 2015-06-17 株式会社アルバック 金属微粒子の製造方法
WO2014068299A1 (en) * 2012-10-29 2014-05-08 Alpha Metals, Inc. Sintering powder
JP5738464B1 (ja) 2013-12-10 2015-06-24 Dowaエレクトロニクス株式会社 銀微粒子分散液
KR20180012765A (ko) * 2015-05-27 2018-02-06 나가세케무텍쿠스가부시키가이샤 금속 나노 잉크 및 그것을 이용한 금속막의 제조 방법
JP6948764B2 (ja) 2015-06-05 2021-10-13 Dowaエレクトロニクス株式会社 銀微粒子分散液

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4298704B2 (ja) * 2003-10-20 2009-07-22 ハリマ化成株式会社 乾燥粉末状の金属微粒子ならびに金属酸化物微粒子とその用途
JP4284283B2 (ja) * 2005-02-02 2009-06-24 Dowaエレクトロニクス株式会社 銀の粒子粉末の製造法
JP4660780B2 (ja) * 2005-03-01 2011-03-30 Dowaエレクトロニクス株式会社 銀粒子粉末の製造方法
JP5176060B2 (ja) * 2005-07-05 2013-04-03 Dowaエレクトロニクス株式会社 銀粒子分散液の製造法
JP4674375B2 (ja) * 2005-08-01 2011-04-20 Dowaエレクトロニクス株式会社 銀粒子粉末の製造法
JP4674376B2 (ja) * 2005-08-05 2011-04-20 Dowaエレクトロニクス株式会社 銀粒子粉末の製造法
JP4756163B2 (ja) * 2005-09-16 2011-08-24 Dowaエレクトロニクス株式会社 複合粒子粉の分散液及びペースト並びにこれに用いる銀粒子粉の製造法
JP2007095502A (ja) * 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd 導電性ペースト

Also Published As

Publication number Publication date
JP2009138242A (ja) 2009-06-25

Similar Documents

Publication Publication Date Title
JP5371247B2 (ja) 銀塗料およびその製造法
JP4294705B2 (ja) 有機物質で被覆された銀微粉の製法および銀微粉
JP5274000B2 (ja) 低温焼結性銀微粉および銀塗料ならびにそれらの製造法
JP4674375B2 (ja) 銀粒子粉末の製造法
KR101371269B1 (ko) 은 입자 분말의 제조방법
JP4897624B2 (ja) 低温焼結性銀微粉および銀塗料ならびにそれらの製造法
JP5139848B2 (ja) 没食子酸の誘導体に被覆された銀ナノ粒子
JP5162383B2 (ja) 銀被覆銅微粉の製造方法
JP5176060B2 (ja) 銀粒子分散液の製造法
TWI395624B (zh) 與極性媒體之親和性優異之銀微細粉及銀印墨
JP2013151753A (ja) 極性媒体との親和性に優れた銀微粉および銀インク
WO2010137080A1 (ja) 低温焼結性金属ナノ粒子の製造方法および金属ナノ粒子およびそれを用いた分散液の製造方法
JP2009138243A (ja) 極性媒体との親和性に優れた銀微粉および銀インク並びに銀粒子の製造方法
WO2017094166A1 (ja) 導電性ペーストの製造方法
JP2009102716A (ja) 銀ナノ粒子の製造方法
JP4674376B2 (ja) 銀粒子粉末の製造法
JP5232016B2 (ja) 配線形成用材料
JP2009215502A (ja) 脂環式・芳香族炭化水素を溶媒とする銀インク
JP2009215503A (ja) 非極性炭化水素を溶媒とする分散性に優れた銀インク
JP5314451B2 (ja) 金属ニッケル粒子粉末およびその分散液並びに金属ニッケル粒子粉末製造法
JP2009091634A (ja) 銀微粉の製造方法
JP2009068053A (ja) 銀粒子の製造方法および銀粒子分散液
TWI683322B (zh) 導電性糊劑之製造方法
JP5139846B2 (ja) ケトンとの親和性に優れた銀微粉および銀インク
WO2017073364A1 (ja) 印刷用導電性ペーストおよびその調製方法、ならびに銀ナノ粒子分散液の調製方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5274000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250