JP2008111185A - Cold crucible melting method and apparatus - Google Patents

Cold crucible melting method and apparatus Download PDF

Info

Publication number
JP2008111185A
JP2008111185A JP2007156206A JP2007156206A JP2008111185A JP 2008111185 A JP2008111185 A JP 2008111185A JP 2007156206 A JP2007156206 A JP 2007156206A JP 2007156206 A JP2007156206 A JP 2007156206A JP 2008111185 A JP2008111185 A JP 2008111185A
Authority
JP
Japan
Prior art keywords
metal material
furnace body
furnace
cold crucible
frequency coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007156206A
Other languages
Japanese (ja)
Inventor
Teppei Okumura
鉄平 奥村
Yoshimi Murase
好美 村瀬
Tetsuo Akiyoshi
哲男 秋吉
Koji Anayama
幸司 穴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2007156206A priority Critical patent/JP2008111185A/en
Publication of JP2008111185A publication Critical patent/JP2008111185A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold crucible melting method capable of efficiently producing an alloy molten metal of a prescribed uniform composition and thus producing an alloy ingot of a prescribed uniform composition, by using a relatively inexpensive apparatus that can be easily upsized, and a cold crucible melting apparatus used in the cold crucible melting method. <P>SOLUTION: Above a furnace body composing the cold crucible melting apparatus, an added metal material is held in a vertically movable manner. The bottom end of the added metal material is dipped into a molten metal of a base metal material, which is levitation-melted in the furnace body, to melt a required amount of the added metal material into the molten metal of the base metal material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はコールドクルーシブル溶解方法及び装置に関する。ベース金属材と添加金属材とを用いてこれらの合金インゴットを製造する場合、例えばベース金属材としてチタニウムのような活性金属材を用い、また添加金属材としてニオブ、タンタル、タングステンのような高融点金属材を用いてこれらの合金インゴットを製造する場合、コールドクルーシブル溶解方法が利用される。この方法は、コールドクルーシブル溶解装置を用いて、前記のような複数の金属材の各所要量を誘導加熱により浮揚溶解し、設定組成の溶湯とする方法であり、更に合金インゴットとするときにはかかる溶湯を凝固させる。本発明は前記のような合金インゴットを製造する場合に利用されるコールドクルーシブル溶解方法及びこれに用いる装置の改良に関する。   The present invention relates to a cold crucible melting method and apparatus. When these alloy ingots are manufactured using a base metal material and an additive metal material, for example, an active metal material such as titanium is used as the base metal material, and a high melting point such as niobium, tantalum, or tungsten is used as the additive metal material. When these alloy ingots are manufactured using a metal material, a cold crucible melting method is used. This method is a method of using a cold crucible melting device to float and melt each required amount of a plurality of metal materials as described above by induction heating to obtain a molten metal having a set composition. To solidify. The present invention relates to a cold crucible melting method used in manufacturing the above alloy ingot and an improvement of an apparatus used therefor.

従来、前記のような合金インゴットを製造する場合のコールドクルーシブル溶解方法としては一般に、コールドクルーシブル溶解装置を用い、それを構成する炉本体内にベース金属材及び添加金属材の各所要量を入れ、炉本体の外周回りに配置された高周波コイルに通電してこれらを誘導加熱し、浮揚溶解することが行なわれている。この場合、先にベース金属材を浮揚溶解し、後で添加金属材を追加して浮揚溶解することも行なわれている。しかし、かかる従来一般の溶解方法には、主にベース金属材と添加金属材との間の融点の相違や密度の相違に起因して、設定通りの均一組成の合金溶湯とするのが難しいという問題がある。例えば、ベース金属材としてチタニウムを用い、また添加金属材としてニオブを用いて、これらの各所要量を前記のように誘導加熱し、浮揚溶解しようとしても、ニオブの融点はチタニウムの融点よりも約850℃高く、しかもニオブの密度はチタニウムの密度の約2倍あるので、ニオブの一部が溶け残ってそのまま沈降したり、また一旦は溶解しても溶湯の一部が炉底部に凝固して炉底部のスカルとなるため、結果として設定通りの均一組成の合金溶湯とすることができないのである。   Conventionally, as a cold crucible melting method in the case of producing such an alloy ingot as described above, a cold crucible melting apparatus is generally used, and each required amount of a base metal material and an additive metal material is put in a furnace body constituting the apparatus, A high-frequency coil disposed around the outer periphery of the furnace body is energized to inductively heat and float and melt. In this case, the base metal material is first floated and melted, and then the additive metal material is added and floated and melted. However, such a conventional general melting method is difficult to obtain a molten alloy having a uniform composition as set mainly due to the difference in melting point and density between the base metal material and the additive metal material. There's a problem. For example, when titanium is used as the base metal material and niobium is used as the additive metal material, each of these required amounts is induction-heated as described above, and the melting point of niobium is about the melting point of titanium. Niobium has a density of about 850 ° C, and the density of niobium is about twice that of titanium, so some of the niobium remains undissolved and settles, or even once melted, some of the molten metal solidifies at the bottom of the furnace. Since it becomes the skull of a furnace bottom part, as a result, it cannot be set as the molten alloy of the uniform composition as set.

前記のような問題を改善するため、従来一般の溶解方法と同様の溶解方法を経て1回目のいわば粗製の合金インゴットを製造し、これを複数に分割して、炉底部に相当する合金インゴットの分割塊を中央部に挟んだ状態で他の分割塊と共に再度溶解するという溶解方法が提案されている(例えば特許文献1参照)。また、炉本体の外周回りに配置する高周波コイルを上部高周波コイルと下部高周波コイルとに分け、それぞれに電源設備を接続し、これらに通電する高周波の周波数を制御して、炉本体内の溶湯を完全浮揚させたような状態にするという溶解方法も提案されている(例えば特許文献2参照)。   In order to improve the above-described problems, a first so-called crude alloy ingot is manufactured through a melting method similar to a conventional general melting method, and this is divided into a plurality of parts to obtain an alloy ingot corresponding to the furnace bottom. There has been proposed a dissolution method in which a divided lump is sandwiched between central portions and dissolved again with another divided lump (see, for example, Patent Document 1). Also, the high-frequency coil arranged around the outer periphery of the furnace body is divided into an upper high-frequency coil and a lower high-frequency coil, and power supply equipment is connected to each of them, and the frequency of the high frequency applied to these is controlled to control the molten metal in the furnace body There has also been proposed a melting method in which it is in a state of being completely levitated (for example, see Patent Document 2).

しかし、前記の特許文献1のような従来の溶解方法には、設定通りに均一組成の合金溶湯とすることができ、したがって設定通りに均一組成の合金インゴットを製造することができるという利点があるものの、途中の分割操作を介して溶解操作を2度も行なう必要があるため、手間がかかり、効率が悪いという問題がある。また前記の特許文献2のような従来の溶解方法には、同様の利点があるものの、2系統の電源設備及び高周波コイルを必要とするため、装置全体が複雑となって高価であり、実際のところは実用規模への大型化が難しいという問題がある。
特開2002−275552号公報 特開2003−65679号公報
However, the conventional melting method such as Patent Document 1 described above has an advantage that a molten alloy having a uniform composition can be obtained as set, and thus an alloy ingot having a uniform composition can be produced as set. However, since it is necessary to perform the melting operation twice through an intermediate dividing operation, there is a problem that it takes time and is inefficient. Moreover, although the conventional melting method like the said patent document 2 has the same advantage, since 2 power supply facilities and a high frequency coil are required, the whole apparatus becomes complicated and expensive, However, there is a problem that it is difficult to enlarge to a practical scale.
JP 2002-275552 A JP 2003-65679 A

本発明が解決しようとする課題は、比較的に安価で且つ大型化の容易な装置を用いて、効率的に、設定通りの均一組成の合金溶湯とすることができ、したがって設定通りの均一組成の合金インゴットを製造することができるコールドクルーシブル溶解方法及びかかる溶解方法に用いるコールドクルーシブル溶解装置を提供する処にある。   The problem to be solved by the present invention is to use an apparatus that is relatively inexpensive and easy to increase in size, and can efficiently produce a molten alloy having a uniform composition as set. Therefore, a uniform composition as set. The present invention provides a cold crucible melting method and an apparatus for cold crucible melting used in such a melting method.

前記の課題を解決する本発明は、コールドクルーシブル溶解装置を用いて複数の金属材の各所要量を浮揚溶解し、設定組成の合金溶湯とするコールドクルーシブル溶解方法において、コールドクルーシブル溶解装置を構成する炉本体の上部に添加金属材を昇降可能に支持し、その下端部を炉本体内に浮揚溶解しているベース金属材の溶湯中に浸漬して、添加金属材の所要量をベース金属材の溶湯中に溶解することを特徴とするコールドクルーシブル溶解方法に係る。   The present invention for solving the above-mentioned problems constitutes a cold-crucible melting apparatus in a cold-crucible melting method in which each required amount of a plurality of metal materials is levitated and melted using a cold-crucible melting apparatus to obtain a molten alloy having a set composition. The additive metal is supported on the upper part of the furnace body so that it can be moved up and down, and its lower end is immersed in the molten base metal material that floats and dissolves in the furnace body, so that the required amount of the additive metal material is reduced. The present invention relates to a cold crucible melting method characterized by melting in a molten metal.

また本発明は、スリットによって垂直方向に分割された水冷銅ルツボからなる炉本体と、この炉本体の底部に設けられた炉底と、この炉本体の外周回りに配置された高周波コイルと、この高周波コイルに接続された電源設備とを備え、電源設備からの通電により高周波コイルを励磁し、これにより炉本体内の金属材を誘導加熱して浮揚溶解するようにしたコールドクルーシブル溶解装置において、更に炉頂部で添加金属材を支持して炉本体に対し昇降させる昇降装置と、炉底を炉本体に対し昇降させる昇降装置及び/又は高周波コイルを炉本体に対し昇降させる昇降装置と、炉頂部で支持した添加金属材の長さ及び/又は質量を測定する測定手段と、この測定手段による測定値に応じて前記の昇降手段を作動させる信号を出す演算制御装置とを備え、炉頂部で支持した添加金属材の下端部を炉本体内に浮揚溶解しているベース金属材の溶湯中に浸漬した状態にてその所要量をかかる溶湯中に溶解するようにして成ることを特徴とするコールドクルーシブル溶解装置に係る。   The present invention also includes a furnace body composed of a water-cooled copper crucible divided vertically by a slit, a furnace bottom provided at the bottom of the furnace body, a high-frequency coil arranged around the outer periphery of the furnace body, In the cold crucible melting apparatus, comprising a power supply facility connected to the high frequency coil, exciting the high frequency coil by energization from the power supply facility, and thereby inductively heating the metal material in the furnace body to float and melt, A lifting device that supports the additive metal material at the top of the furnace and moves it up and down relative to the furnace body, a lifting device that lifts and lowers the furnace bottom relative to the furnace body, and / or a lifting device that lifts and lowers the high-frequency coil relative to the furnace body, and Measuring means for measuring the length and / or mass of the supported additive metal material, and an arithmetic control device for issuing a signal for operating the lifting means in accordance with the measurement value by the measuring means; The lower end of the additive metal material supported at the top of the furnace is soaked in the melt of the base metal material that is levitated and dissolved in the furnace body, and the required amount is dissolved in the melt. The present invention relates to a cold crucible dissolving device.

更に本発明は、スリットによって垂直方向に分割された水冷銅ルツボからなる炉本体と、この炉本体の底部に設けられた炉底と、この炉本体の外周回りに配置された高周波コイルと、この高周波コイルに接続された電源設備とを備え、電源設備からの通電により高周波コイルを励磁し、これにより炉本体内の金属材を誘導加熱して浮揚溶解するようにしたコールドクルーシブル溶解装置において、更に炉頂部で添加金属材を支持して炉本体に対し昇降させる昇降装置と、炉頂部で支持した添加金属材の長さ及び/又は質量を測定する測定手段と、この測定手段による測定値に応じて前記の昇降手段を作動させる信号を出す演算制御装置とを備え、炉頂部で支持した添加金属材の下端部を、炉本体の外周回りに配置された高周波コイルの高さ方向中心位置又はそれよりも上方にて、この炉本体内に浮揚溶解しているベース金属材の溶湯中に浸漬した状態でその所要量をかかる溶湯中に溶解するようにして成ることを特徴とするコールドクルーシブル溶解装置に係る。   Furthermore, the present invention provides a furnace body composed of a water-cooled copper crucible divided vertically by a slit, a furnace bottom provided at the bottom of the furnace body, a high-frequency coil arranged around the outer periphery of the furnace body, In the cold crucible melting apparatus, comprising a power supply facility connected to the high frequency coil, exciting the high frequency coil by energization from the power supply facility, and thereby inductively heating the metal material in the furnace body to float and melt, A lifting device that supports the additive metal material at the top of the furnace and moves it up and down relative to the furnace body, a measuring means for measuring the length and / or mass of the added metal material supported at the top of the furnace, and a measurement value by this measuring means And a calculation control device that outputs a signal for operating the lifting means, and the height of the high-frequency coil disposed around the outer periphery of the furnace body with the lower end of the additive metal material supported by the furnace top. It is characterized in that the required amount is dissolved in the molten metal in the molten state of the base metal material that is levitated and dissolved in the furnace body at or above the center position. It relates to a cold crucible dissolution apparatus.

先ず、本発明に係るコールドクルーシブル溶解方法(以下単に本発明の溶解方法という)について説明する。本発明の溶解方法ではコールドクルーシブル溶解装置を用いる。コールドクルーシブル溶解装置は一般に、スリットによって垂直方向に分割された水冷銅ルツボからなる炉本体と、この炉本体の底部に設けられた炉底と、この炉本体の外周回りに配置された高周波コイルと、この高周波コイルに接続された電源設備とを備え、電源設備からの通電により高周波コイルを励磁し、これにより炉本体内の金属材を誘導加熱により浮揚溶解するようになっている。   First, the cold crucible dissolution method according to the present invention (hereinafter simply referred to as the dissolution method of the present invention) will be described. In the dissolution method of the present invention, a cold crucible dissolution apparatus is used. A cold crucible melting apparatus generally includes a furnace body composed of a water-cooled copper crucible divided vertically by a slit, a furnace bottom provided at the bottom of the furnace body, and a high-frequency coil disposed around the outer periphery of the furnace body. And a power supply facility connected to the high-frequency coil, and the high-frequency coil is excited by energization from the power supply facility, whereby the metal material in the furnace body is levitated and melted by induction heating.

本発明の溶解方法では、コールドクルーシブル溶解装置を構成する炉本体の上部に添加金属材を昇降可能に支持し、その下端部を炉本体内に浮揚溶解しているベース金属材の溶湯中に浸漬して、添加金属材の所要量をベース金属材の溶湯中に溶解する。前記した従来一般の溶解方法のように、ベース金属材だけでなく、添加金属材をも、それらを例えば粒状の固形物のままで炉本体内に入れて、誘導加熱により浮揚溶解するのではなく、本発明の溶解方法では、予め炉本体内にベース金属材だけを入れてこれを誘導加熱により浮揚溶解しておき、かかるベース金属材の溶湯中にその上部から添加金属材の下端部を浸漬して、浸漬した添加金属材の下端部を溶解してからベース金属材の溶湯中に混ぜ込む。従来一般の溶解方法のように、添加金属をも例えば粒状の固形物のままで炉本体内へ入れ、溶解して、ベース金属材の溶湯中に混ぜ込むというのではなく、本発明の溶解方法では、添加金属を溶解してからベース金属材の溶湯中に混ぜ込むため、従来一般の溶解方法のように炉本体内に入れた添加金属材の一部が溶け残るというようなことはもともと生じない。   In the melting method of the present invention, the additive metal material is supported so as to be movable up and down on the upper part of the furnace body constituting the cold crucible melting apparatus, and the lower end part thereof is immersed in the molten metal of the base metal material that is levitated and dissolved in the furnace body. Then, the required amount of the added metal material is dissolved in the molten metal of the base metal material. Like the conventional general melting method described above, not only the base metal material but also the additive metal material is not put into the furnace body in the form of a granular solid, and is floated and melted by induction heating. In the melting method of the present invention, only the base metal material is put in the furnace body in advance, and this is levitated and melted by induction heating, and the lower end portion of the added metal material is immersed in the molten base metal material from above. Then, after the lower end portion of the immersed additive metal material is melted, it is mixed into the molten base metal material. As in the conventional general melting method, the added metal is not put into the furnace body in the form of a granular solid, for example, melted and mixed into the molten metal of the base metal material, but the melting method of the present invention. Then, since the additive metal is melted and then mixed into the base metal melt, some of the additive metal material placed in the furnace body remains undissolved as in the conventional melting method. Absent.

本発明の溶解方法において、また後述する溶解装置においても、ベース金属材というのは合金のベースとなる金属材を意味し、また添加金属材というのは合金を形成する金属材のうちでベース金属材以外の他の金属材を意味する。チタニウム合金の場合には、チタニウムがベース金属材となり、他の金属材が添加金属材となる。合金によっては、ベース金属が複数になったり、添加金属材が複数になることもある。添加金属材が複数になる場合、炉本体の上部に相当する複数の添加金属材をそれぞれ昇降可能に支持することもできる。   In the melting method of the present invention and also in the melting apparatus to be described later, the base metal material means a metal material as a base of the alloy, and the additive metal material is a base metal among the metal materials forming the alloy. It means metal materials other than materials. In the case of a titanium alloy, titanium is a base metal material, and other metal materials are additive metal materials. Depending on the alloy, there may be a plurality of base metals or a plurality of additive metal materials. When there are a plurality of additive metal materials, it is also possible to support a plurality of additive metal materials corresponding to the upper part of the furnace body so as to be movable up and down.

本発明の溶解方法では、添加金属材の下端部を炉本体内のベース金属材の溶湯中に浸漬した状態でかかる添加金属材の下端部を溶解するが、この際に添加金属材の下端部の溶解を促すため、添加金属材を連続的又は間欠的に昇降したり、更には回転するのが好ましい。   In the melting method of the present invention, the lower end portion of the additive metal material is melted in a state where the lower end portion of the additive metal material is immersed in the molten base metal material in the furnace body. In order to promote dissolution, it is preferable that the additive metal material is moved up and down continuously or intermittently or further rotated.

本発明の溶解方法では、前記したように予め炉本体内にベース金属材だけを入れて誘導加熱により浮揚溶解する。このとき、炉底部にはベース金属材の溶湯が凝固した1次スカルが生成する。この状態で、炉本体の上部に支持した添加金属材の下端部を炉本体内のベース金属材の溶湯中に浸漬して溶解すると、かかる添加金属材の融点がベース金属材の融点よりも高い場合、添加量によっては炉本体内に生成する溶湯の融点が高くなり、炉底部の1次スカル上にかかる溶湯が凝固した2次スカルが生成する。そしてこのまま添加金属材の下端部の溶解を続けると、2次スカルは次第に大きくなり、結果として、合金溶湯の歩留まりが低くなるだけでなく、そもそも設定通りの均一組成の合金溶湯とするのが難しくなる。本発明の溶解方法では、このような不都合な事態が生じるのを未然に防止するため、添加金属材の下端部を溶解する際に、炉本体の外周回りに配置された高周波コイルへの投入電力の増減、またかかる高周波コイルの昇降、更には炉底の昇降を連続的又は間欠的に行なうのが好ましい。高周波コイルへの投入電力を増加すれば、それだけ炉底部の磁束密度も増加し、これにより炉底部の1次スカルや2次スカルを再溶解することができる。高周波コイルを下降させたり、炉底を上昇させて、高周波コイルの中央部付近に炉底部を位置させる場合も同様である。以上のような操作は、添加金属材の所要量をベース金属材の溶湯中に溶解するまで、言い替えれば炉本体内に設定通りの均一組成の合金溶湯が生成するまで、適宜に繰り返して行なうのがより好ましい。   In the melting method of the present invention, as described above, only the base metal material is put in the furnace body in advance, and it is floated and melted by induction heating. At this time, a primary skull formed by solidification of the molten base metal material is generated at the bottom of the furnace. In this state, when the lower end portion of the additive metal material supported on the upper part of the furnace body is immersed and melted in the melt of the base metal material in the furnace body, the melting point of the additive metal material is higher than the melting point of the base metal material. In this case, the melting point of the molten metal generated in the furnace body is increased depending on the amount added, and a secondary skull is formed by solidifying the molten metal on the primary skull at the bottom of the furnace. If the melting of the lower end portion of the added metal material is continued as it is, the secondary skull gradually increases. As a result, not only the yield of the molten alloy is lowered, but it is difficult to obtain a molten alloy with a uniform composition as originally set. Become. In the melting method of the present invention, in order to prevent such an inconvenient situation from occurring, when melting the lower end portion of the additive metal material, the input power to the high-frequency coil arranged around the outer periphery of the furnace body It is preferable to continuously or intermittently increase / decrease the frequency, raise / lower the high frequency coil, and further raise / lower the furnace bottom. If the input power to the high-frequency coil is increased, the magnetic flux density at the bottom of the furnace is increased accordingly, whereby the primary skull and the secondary skull at the bottom of the furnace can be remelted. The same applies to the case where the furnace bottom is positioned near the center of the high frequency coil by lowering the high frequency coil or raising the furnace bottom. The operation as described above is appropriately repeated until the required amount of the added metal material is dissolved in the molten base metal material, in other words, until a molten alloy having a uniform composition as set in the furnace body is generated. Is more preferable.

本発明の溶解方法では、炉本体内に設定通りの均一組成の合金溶湯を生成させるため、炉本体の上部に支持した添加金属材の長さ、及び/又は質量を測定し、その測定値に基づいてベース金属材の溶湯中に溶解した添加金属材の質量を求めるのが好ましい。ベース金属材の溶湯中における添加金属材の浸漬実験結果から物質移動係数を算出し、この物質移動係数を用いて所要量の添加金属材を溶解するのに必要な時間を予測することもできるが、最終的には実際にベース金属材の溶湯中に溶解した添加金属材の質量を求めるのが好ましく、具体的には例えば、添加金属材の溶解中、隨時に添加金属材を上昇させて炉本体内の溶湯から引き上げ、その長さを測定し、元の長さとの差分を質量に換算して、これを添加金属材の溶解質量とする方法、また炉本体の上部に支持した添加金属材をロードセルで受け、添加金属材の溶解中、その質量を連続的に測定し、元の質量との差分を添加金属材の溶解質量とする方法等が挙げられる。   In the melting method of the present invention, in order to generate a molten alloy with a uniform composition as set in the furnace body, the length and / or mass of the additive metal material supported on the upper part of the furnace body is measured, and the measured value is obtained. Based on this, it is preferable to determine the mass of the additive metal material dissolved in the molten base metal material. It is also possible to calculate the mass transfer coefficient from the result of the immersion experiment of the additive metal material in the molten metal of the base metal material, and to predict the time required to dissolve the required amount of the additive metal material using this mass transfer coefficient. In the end, it is preferable to obtain the mass of the additive metal material actually dissolved in the molten base metal material. Specifically, for example, the melting of the additive metal material is performed while the additive metal material is raised during the furnace. Pulling up from the molten metal in the main body, measuring its length, converting the difference from the original length into mass, and using this as the dissolved mass of the additive metal material, and the additive metal material supported on the top of the furnace body Is received by a load cell, while the additive metal material is dissolved, its mass is continuously measured, and the difference from the original mass is taken as the dissolved mass of the additive metal material.

本発明の溶解方法では、前記したように添加金属材の下端部を炉本体内のベース金属材の溶湯中に浸漬した状態でかかる添加金属材の下端部を溶解するが、このとき、添加金属材の下端部が炉本体の外周回りに配置されている高周波コイルの高さ方向中心位置又はそれよりも上方となるようにするのが好ましい。炉本体内に浮揚溶解しているベース金属材の溶湯の撹拌速度は、炉本体内の部位によって異なり、炉本体の外周回りに配置されている高周波コイルの高さ方向中心位置に相当する部位にて最大となっているので、この位置よりも下方にまで添加金属材の下端部を浸漬すると、高周波コイルの高さ方向中心位置に相当する部分の溶解が他の部分の溶解よりも速く、高周波コイルの高さ方向中心位置よりも下方の部分が未溶解のままでベース金属材の溶湯中に脱落することがあるからである。   In the melting method of the present invention, as described above, the lower end portion of the added metal material is melted in a state where the lower end portion of the added metal material is immersed in the molten metal of the base metal material in the furnace body. It is preferable that the lower end portion of the material is located at or above the center position in the height direction of the high-frequency coil disposed around the outer periphery of the furnace body. The stirring speed of the molten base metal material that floats and melts in the furnace body varies depending on the part in the furnace body, and the part corresponding to the center position in the height direction of the high-frequency coil arranged around the outer periphery of the furnace body. Therefore, if the lower end of the additive metal material is immersed below this position, the portion corresponding to the center position in the height direction of the high-frequency coil dissolves faster than the other portions. This is because the portion below the center position in the height direction of the coil may remain undissolved and fall off into the molten metal base material.

本発明の溶解方法では、前記したように、スリットによって垂直方向に分割された水冷銅ルツボからなる炉本体と、この炉本体の底部に設けられた炉底と、この炉本体の外周回りに配置された高周波コイルと、この高周波コイルに接続された電源設備とを備えるコールドクルーシブル溶解装置を用いる。かかるコールドクルーシブル溶解装置では、炉本体の炉底は一般に耐火物製のもの、通常は黒鉛製のものとなっているが、本発明の溶解方法では、炉本体の炉底として、内側面の少なくとも中心部をコールドクルーシブル溶解方法で溶解する合金溶湯と同じ組成の合金で作製したものを用いるのが好ましい。添加金属材をベース金属材の溶湯中に溶解するとき、添加金属材の融点がベース金属材の融点よりも高いと、炉本体内に生成する溶湯の融点が次第に高くなり、炉底に形成されているベース金属材の凝固した一次スカルが融点上昇に伴って再溶解し、更に炉底の内側面、なかでもその中心部回りが溶損するため、ここが単に黒鉛製のものであると、溶損分がそのまま不純物となってしまうからである。   In the melting method of the present invention, as described above, a furnace body composed of a water-cooled copper crucible divided vertically by a slit, a furnace bottom provided at the bottom of the furnace body, and arranged around the outer periphery of the furnace body A cold crucible melting device including a high-frequency coil and a power supply facility connected to the high-frequency coil is used. In such a cold crucible melting apparatus, the furnace bottom of the furnace body is generally made of refractory, usually made of graphite, but in the melting method of the present invention, as the furnace bottom of the furnace body, at least the inner surface is provided. It is preferable to use an alloy having a central portion made of an alloy having the same composition as the molten alloy melted by a cold crucible melting method. When the additive metal material is melted in the base metal material, if the melting point of the additive metal material is higher than the melting point of the base metal material, the melting point of the molten metal generated in the furnace body gradually increases and forms at the furnace bottom. The solidified primary skull of the base metal material is remelted as the melting point rises, and further, the inner surface of the furnace bottom, especially around its center, melts down. This is because the loss becomes an impurity as it is.

次に本発明に係るコールドクルーシブル溶解装置(以下単に本発明の溶解装置という)について説明する。本発明の溶解装置も、従来一般のコールドクルーシブル溶解装置と同様、スリットによって垂直方向に分割された水冷銅ルツボからなる炉本体と、この炉本体の底部に設けられた炉底と、この炉本体の外周回りに配置された高周波コイルと、この高周波コイルに接続された電源設備とを備え、電源設備からの通電により高周波コイルを励磁し、これにより炉本体内の金属材を誘導加熱により浮揚溶解するようになっている。   Next, the cold crucible dissolving apparatus (hereinafter simply referred to as the dissolving apparatus of the present invention) according to the present invention will be described. The melting apparatus of the present invention also has a furnace main body composed of a water-cooled copper crucible divided vertically by a slit, a furnace bottom provided at the bottom of the furnace main body, and the furnace main body, as in the conventional cold crucible melting apparatus. A high-frequency coil arranged around the outer periphery of the metal and a power supply facility connected to the high-frequency coil are energized, and the high-frequency coil is excited by energization from the power supply facility, whereby the metal material in the furnace body is levitated and melted by induction heating. It is supposed to be.

本発明の溶解装置は、炉頂部で添加金属材を支持して炉本体に対し昇降させる昇降装置と、炉頂部で支持した添加金属材の長さ及び/又は質量を測定する測定手段と、この測定手段による測定値に応じて前記の昇降手段を作動させる信号を出す演算制御装置とを備えており、更に要すれば炉底を炉本体に対し昇降させる昇降装置及び/又は高周波コイルを炉本体に対し昇降させる昇降装置をも備えていて、炉頂部で支持した添加金属材の下端部を炉本体内に浮揚溶解しているベース金属材の溶湯中に浸漬した状態で、好ましくは炉頂部で支持した添加金属材の下端部を、炉本体の外周回りに配置された高周波コイルの高さ方向中心位置又はそれよりも上方にて、この炉本体内に浮揚溶解しているベース金属材の溶湯中に浸漬した状態で、その所要量をかかる溶湯中に溶解するようになっている。本発明の溶解装置は、前記のような状態で、炉頂部で支持した添加金属材の下端部を炉本体内に浮揚溶解しているベース金属材の溶湯中に溶解するようになっているが、かかる溶解中に、例えば添加金属材の質量を連続的に測定し、その測定値に応じて演算制御装置から出される信号により、添加金属材を適宜に昇降させたり、また要すれば炉底を適宜に昇降させて、添加金属材の所要量を溶湯中に溶解し、設定通りの均一組成の合金溶湯を生成させるようになっているのである。   The melting apparatus of the present invention includes a lifting device that supports an additive metal material at the top of the furnace and moves it up and down relative to the furnace body, a measuring means that measures the length and / or mass of the additive metal material supported at the top of the furnace, And an arithmetic and control device that outputs a signal for operating the lifting means according to the measurement value by the measuring means, and if necessary, a lifting device and / or a high frequency coil for raising and lowering the furnace bottom relative to the furnace body. In the state where the lower end portion of the additive metal material supported by the furnace top part is immersed in the molten metal of the base metal material that is levitated and dissolved in the furnace body, preferably at the furnace top part. The base metal material melt that floats and melts in the furnace body at the center position in the height direction of the high frequency coil arranged around the outer periphery of the furnace body or above the lower end of the supported additive metal material Soaked in It adapted to dissolve the principal amount during such melt. In the melting apparatus of the present invention, the lower end portion of the additive metal material supported at the top of the furnace is melted in the molten base metal material that is floated and melted in the furnace body in the state as described above. During the melting, for example, the mass of the additive metal material is continuously measured, and the additive metal material is appropriately raised or lowered according to the signal output from the arithmetic control device according to the measured value. The required amount of the added metal material is melted in the molten metal so as to generate a molten alloy having a uniform composition as set.

本発明の溶解装置において、炉本体の底部に設けられた炉底は一般に耐火物製のもの、通常は黒鉛製のものとなっているが、かかる炉底としては、本発明の溶解方法について前記したことと同様、その内側面の少なくとも中心部をコールドクルーシブル溶解装置で溶解する合金溶湯と同じ組成の合金で作製したものとするのが好ましい。例えば、外側面及び周囲の壁面を黒鉛で作製し、かかる黒鉛で囲まれる内側面を前記のような合金で作製したものとするのである。   In the melting apparatus of the present invention, the furnace bottom provided at the bottom of the furnace body is generally made of a refractory, usually made of graphite. Similarly to the above, it is preferable that at least the center part of the inner surface is made of an alloy having the same composition as the molten alloy melted by the cold crucible melting apparatus. For example, the outer side surface and the surrounding wall surface are made of graphite, and the inner side surface surrounded by the graphite is made of the alloy as described above.

本発明の溶解方法及び溶解装置によると、比較的に安価で且つ大型化の容易な装置を用いて、効率的に、設定通りの均一組成の合金溶湯とすることができ、したがって設定通りの均一組成の合金インゴットを製造することができる。   According to the melting method and the melting apparatus of the present invention, it is possible to efficiently produce a molten alloy having a uniform composition as set using a relatively inexpensive and easy-to-size apparatus, and thus uniform as set. An alloy ingot having a composition can be produced.

図1は本発明の溶解装置を一部縦断面で例示する全体図である。図1に例示した本発明の溶解装置は、スリットによって垂直方向に分割された水冷銅ルツボからなる炉本体11と、この炉本体11の底部に摺嵌された外観が円板状の炉底12と、この炉本体11の外周回りに配置された高周波コイル13と、この高周波コイル13に接続された電源設備14とを備えている。   FIG. 1 is an overall view illustrating a part of the melting apparatus of the present invention in a longitudinal section. The melting apparatus of the present invention illustrated in FIG. 1 includes a furnace main body 11 made of a water-cooled copper crucible divided in the vertical direction by slits, and a furnace bottom 12 having a disk-like appearance slidably fitted to the bottom of the furnace main body 11. And a high-frequency coil 13 disposed around the outer periphery of the furnace body 11, and a power supply facility 14 connected to the high-frequency coil 13.

図1に例示した本発明の溶解装置は更に、炉頂部で添加金属材Bを支持して炉本体11に対し昇降させる昇降装置21と、炉底12を炉本体11に対し昇降させる昇降装置31と、炉頂部で支持した添加金属材Bの質量を測定する測定手段としてのロードセル41と、このロードセル41による測定値に応じて前記の昇降手段21,31等を作動させる信号を出す演算制御装置51とを備えている。   The melting apparatus of the present invention illustrated in FIG. 1 further includes an elevating device 21 that supports the additive metal material B at the top of the furnace and elevates the furnace main body 11, and an elevating device 31 that elevates and lowers the furnace bottom 12 relative to the furnace main body 11. A load cell 41 as a measuring means for measuring the mass of the additive metal material B supported at the top of the furnace, and an arithmetic control device for outputting a signal for operating the lifting means 21, 31 and the like in accordance with the measurement value by the load cell 41 51.

昇降装置21はシリンダ駆動となっており、シリンダロッド22の中間部に支持板23が取付けられている。支持板23はリング状となっており、支持板23上にロードセル41を介してモータ24が載置されている。モータ24の回転軸25は支持板23を貫通しており、かかる回転軸25の下端部に把持具26を介して棒状の添加金属材Bの上端部が把持されている。昇降装置31もシリンダ駆動となっており、シリンダロッド32の上端部に炉底12が取付けられている。添加金属材Bはシリンダロッド22の進退と共に昇降し、モータ24の駆動によって回転するようになっており、また炉底12はシリンダロッド32の進退と共に昇降するようになっていて、これらの昇降及び回転はロードセル41からの信号を受けて演算制御装置51から出される信号により制御されている。   The lifting device 21 is driven by a cylinder, and a support plate 23 is attached to an intermediate portion of the cylinder rod 22. The support plate 23 has a ring shape, and the motor 24 is placed on the support plate 23 via a load cell 41. The rotating shaft 25 of the motor 24 passes through the support plate 23, and the upper end portion of the rod-shaped additive metal material B is held by the lower end portion of the rotating shaft 25 via the gripping tool 26. The elevating device 31 is also driven by a cylinder, and the furnace bottom 12 is attached to the upper end portion of the cylinder rod 32. The additive metal material B moves up and down as the cylinder rod 22 advances and retreats, and rotates by driving the motor 24. The furnace bottom 12 moves up and down as the cylinder rod 32 advances and retreats. The rotation is controlled by a signal output from the arithmetic and control unit 51 in response to a signal from the load cell 41.

図2〜図7は図1に例示した本発明の溶解装置の作用状態を示す部分縦断面図であり、これらは同時に本発明の溶解方法をも例示している。以下、図2〜図7に基づいて、その作用状態を順を追って説明する。炉本体11内に所要量のベース金属材Aの小塊を入れる(図2の状態)。電源設備14から高周波コイル13に通電し、ベース金属材Aの小塊を誘導加熱により浮揚溶解して、炉本体11内にベース金属材Aの溶湯aを生成させる。炉底部には溶湯aの一部が凝固した1次スカルDが生成している。その一方で、炉本体11の上部に添加金属材Bを支持し、演算制御装置51からの信号によりシリンダロッド22を後退させて添加金属材Bを下降させると共に、モータ24を駆動させて添加金属材Bを回転させる(図3の状態)。   2 to 7 are partial longitudinal sectional views showing the operation state of the melting apparatus of the present invention illustrated in FIG. 1, and these simultaneously illustrate the melting method of the present invention. Hereinafter, based on FIGS. 2-7, the action state is demonstrated in order. A small amount of the base metal material A in a required amount is placed in the furnace body 11 (state shown in FIG. 2). Electric power is supplied from the power supply facility 14 to the high-frequency coil 13, and a small lump of the base metal material A is floated and melted by induction heating to generate a molten metal a of the base metal material A in the furnace body 11. A primary skull D in which a part of the molten metal a is solidified is generated at the bottom of the furnace. On the other hand, the additive metal material B is supported on the upper portion of the furnace body 11, and the cylinder rod 22 is moved backward by a signal from the arithmetic and control unit 51 to lower the additive metal material B, and the motor 24 is driven to add the additive metal. The material B is rotated (state shown in FIG. 3).

炉頂部に支持した添加金属材Bを回転させながら更に下降させ、その下端部を溶湯a中に浸漬し、添加金属材Bの下端部を溶湯a中に溶解させる(図4の状態)。添加金属材Bの下端部を溶湯a中に溶解させると、炉本体11内には新たに中間的な溶湯bが生成する。ここで、添加金属材Bの融点がベース金属材Aの融点よりも高いと、添加量によっては溶湯bの融点も溶湯aの融点よりも高くなり、炉底部の1次スカルD上に溶湯bが凝固した2次スカルEが生成するので、演算制御装置51からの信号によりシリンダロッド32を前進させて炉底12を上昇させる(図5の状態)。   The additional metal material B supported on the top of the furnace is further lowered while rotating, its lower end is immersed in the molten metal a, and the lower end of the additional metal B is dissolved in the molten metal a (state of FIG. 4). When the lower end portion of the additive metal material B is dissolved in the molten metal a, an intermediate molten metal b is newly generated in the furnace body 11. Here, when the melting point of the added metal material B is higher than the melting point of the base metal material A, the melting point of the molten metal b becomes higher than the melting point of the molten metal a depending on the amount added, and the molten metal b is placed on the primary skull D at the bottom of the furnace. Is generated, the cylinder rod 32 is moved forward by a signal from the arithmetic and control unit 51 to raise the furnace bottom 12 (state of FIG. 5).

炉底12を高周波コイル13で囲まれる位置まで上昇させると、炉底部における磁束密度が高くなり、誘導加熱による温度が高くなって、炉底部の2次スカルE及び1次スカルDの殆どが溶湯b中に再溶解する(図6の状態)。ここで演算制御装置51からの信号によりシリンダロッド32を後退させて炉底12を元の位置まで下降させる。引き続き添加金属材Bの下端部を溶湯b中に溶解させると、再び前記した図5と同様の状態になるので、ここで再び前記した図6の状態にする。必要に応じて適宜に、図5の状態と図6の状態を繰り返すのである。   When the furnace bottom 12 is raised to a position surrounded by the high frequency coil 13, the magnetic flux density at the furnace bottom increases, the temperature due to induction heating increases, and most of the secondary skull E and primary skull D at the furnace bottom melt. Redissolved in b (state of FIG. 6). Here, the cylinder rod 32 is moved backward by a signal from the arithmetic and control unit 51 to lower the furnace bottom 12 to the original position. When the lower end portion of the additional metal material B is subsequently dissolved in the molten metal b, the state becomes the same as that shown in FIG. 5 again, so that the state shown in FIG. The state of FIG. 5 and the state of FIG. 6 are repeated as necessary.

かくして添加金属材Bの下端部を溶湯a,b中に浸漬した状態で溶解すると、炉本体11の上部にロードセル41を介して支持した添加金属材Bの質量が減少し、相当する信号がロードセル41から演算制御装置51へと遂次送信されるので、ここで添加金属材Bの元の質量との差に相当する溶解量が所要量に達したことを検知したとき、演算制御装置51から出される信号によりシリンダロッド22が前進して添加金属材Bを炉本体11の上部に引き上げ、またモータ24の駆動を停止して添加金属材Bの回転を停止させる。この段階では炉本体11内に設定通りの均一組成の合金の溶湯cが生成しているので、これを凝固させた後、炉底12を更に上昇させて凝固物を取り出し、必要があれば底部のいわば3次スカルFを切断除去して、設定通りの均一組成の合金インゴットを得る。   Thus, when the lower end portion of the additive metal material B is melted while being immersed in the melts a and b, the mass of the additive metal material B supported on the upper portion of the furnace body 11 via the load cell 41 is reduced, and the corresponding signal is transmitted to the load cell. 41 is sequentially transmitted from 41 to the calculation control device 51. When it is detected that the amount of dissolution corresponding to the difference from the original mass of the additive metal material B has reached the required amount, the calculation control device 51 The cylinder rod 22 is moved forward by the issued signal to pull up the added metal material B to the upper part of the furnace body 11, and the drive of the motor 24 is stopped to stop the rotation of the added metal material B. At this stage, the molten alloy c having a uniform composition as set is generated in the furnace body 11, and after solidifying this, the furnace bottom 12 is further raised to take out the solidified material, and if necessary, the bottom In other words, the tertiary skull F is cut and removed to obtain an alloy ingot having a uniform composition as set.

図8は本発明の他の溶解装置を一部縦断面で例示する全体図、図9は図8に例示した本発明の他の溶解装置における把持具を示す平面図である。図8に例示した本発明の溶解装置は、スリットによって垂直方向に分割された水冷銅ルツボからなる炉本体11aと、この炉本体11aの底部に嵌合された外観が円板状の炉底12aと、この炉本体11aの外周回りに配置された高周波コイル13aと、この高周波コイル13aに接続された電源設備14aとを備えている。炉底12aは、外側面及び周囲の壁面で形成された縦断面が凹状体12bと、かかる凹状体12bに嵌合された内側面12cとから成り、凹状体12bは黒鉛製のもの、また内側面12cは図8の溶解装置で浮揚溶解している合金dと同じ組成の合金製のものとなっている。   FIG. 8 is a general view partially illustrating another melting apparatus of the present invention in a longitudinal section, and FIG. 9 is a plan view showing a gripping tool in the other melting apparatus of the present invention illustrated in FIG. The melting apparatus of the present invention illustrated in FIG. 8 includes a furnace body 11a composed of a water-cooled copper crucible divided in the vertical direction by slits, and a furnace bottom 12a having an outer appearance fitted to the bottom of the furnace body 11a. And a high frequency coil 13a disposed around the outer periphery of the furnace body 11a, and a power supply facility 14a connected to the high frequency coil 13a. The furnace bottom 12a is composed of a concave body 12b and an inner surface 12c fitted to the concave body 12b. The concave body 12b is made of graphite. The side surface 12c is made of an alloy having the same composition as that of the alloy d which is levitated and melted by the melting apparatus of FIG.

図8に例示した本発明の溶解装置は更に、炉頂部で添加金属材Gを支持して炉本体11aに対し昇降させる昇降装置21aと、炉頂部で支持した添加金属材Gの質量を測定する測定手段としてのロードセル41aと、このロードセル41aによる測定値に応じて前記の昇降手段21aを作動させる信号を出す演算制御装置51aとを備えている。   The melting apparatus of the present invention illustrated in FIG. 8 further measures the mass of the additive metal material G supported at the furnace top portion and the lifting device 21a that supports the additive metal material G at the furnace top portion and moves up and down relative to the furnace body 11a. A load cell 41a as a measuring means, and an arithmetic control device 51a that outputs a signal for operating the lifting / lowering means 21a in accordance with a measured value by the load cell 41a are provided.

昇降装置21aはシリンダ駆動となっており、シリンダロッド22aの中間部に支持板23aが取付けられている。支持板23aはリング状となっており、支持板23a上にロードセル41aを介して縦断面T字形の支持部材24aが載置されている。支持部材24aの足部25aは支持板23aを貫通しており、かかる足部25aの下端部に十字形の把持具26aを介して合計4本の棒状の添加金属材Gの上端部が把持されている。合計4本の添加金属材Gはシリンダロッド22aの進退と共に昇降するようになっており、かかる昇降はロードセル41aからの信号を受けて演算制御装置51aから出される信号により制御されているが、合計4本の添加金属材Gの下端部は、常時、炉本体11aの外周回りに配置されている高周波コイル13aの高さ方向中心位置Lよりも上方に位置するようになっている。   The lifting device 21a is driven by a cylinder, and a support plate 23a is attached to an intermediate portion of the cylinder rod 22a. The support plate 23a has a ring shape, and a support member 24a having a T-shaped longitudinal section is placed on the support plate 23a via a load cell 41a. The foot portion 25a of the support member 24a penetrates the support plate 23a, and the upper end portions of the four rod-shaped additive metal materials G in total are gripped by the lower end portion of the foot portion 25a through the cross-shaped gripping tool 26a. ing. A total of four additive metal materials G move up and down as the cylinder rod 22a advances and retreats, and the up and down is controlled by a signal output from the arithmetic control device 51a in response to a signal from the load cell 41a. The lower ends of the four additive metal materials G are always positioned above the center position L in the height direction of the high-frequency coil 13a disposed around the outer periphery of the furnace body 11a.

図8の溶解装置も、その作用状態の概要は、前記した図1の溶解装置とほぼ同様になっている。但し、図8の溶解装置では、モータによる添加金属材の回転はなく、また昇降装置による炉底の昇降もないが、前記したように、添加金属材の下端部は、常時、炉本体の外周回りに配置されている高周波コイルの高さ方向中心位置よりも上方に位置しているため、添加金属材の下端部が未溶解のままでベース金属材の溶湯中に落下してしまうというようなことはなく、また炉底の内側面の中心部を含む大半の部分が同じ溶解装置で溶解する合金溶湯と同じ組成の合金で作製されているため、この部分が溶損しても、それが不純物となるようなことはない。   The outline of the action state of the melting apparatus of FIG. 8 is substantially the same as that of the melting apparatus of FIG. However, in the melting apparatus of FIG. 8, the additive metal material is not rotated by the motor, and the furnace bottom is not raised and lowered by the elevating device. However, as described above, the lower end portion of the additive metal material is always the outer periphery of the furnace body. Since it is located above the center position in the height direction of the high-frequency coil arranged around, the lower end of the additive metal material remains undissolved and falls into the base metal melt In addition, most parts including the center part of the inner surface of the furnace bottom are made of an alloy having the same composition as the molten alloy that is melted by the same melting apparatus. There is no such thing as.

試験区分1
ベース金属材としてTi(融点1668℃、密度4.5g/cm)を用い、また添加金属材としてNb(融点2520℃、密度8.6g/cm)を用いて、コールドクルーシブル溶解法により、設定組成がTi−34質量%Nbの合金インゴットを次の4例で製造した。各例の結果を表1にまとめて示した。
Test category 1
Ti (melting point 1668 ° C., density 4.5 g / cm 3) as a base metal material with, and using the Nb as additive metal material (melting point 2520 ° C., density 8.6 g / cm 3), the cold crucible melting method, An alloy ingot having a set composition of Ti-34% by mass Nb was manufactured in the following four examples. The results of each example are summarized in Table 1.

実施例1:図1〜図7について前述した本発明の溶解方法にしたがって合金溶湯を生成させ、合金インゴットを製造した。但しここでは、添加金属材の溶解中に炉底を昇降させなかった。
実施例2:図1〜図7について前述した本発明の溶解方法にしたがって合金溶湯を生成させ、合金インゴットを製造した。
比較例1:前記した従来一般の溶解方法にしたがい、炉本体内に所要量のTi粒を入れて浮揚溶解した後、更にNb粒を入れて浮揚溶解した。但しここでは、Nb粒の溶け残りも含め結果として相当量のNbが炉底部のスカル中に取り込まれるのを見込んで、設定よりも多量のNb粒を炉本体内に入れた。
比較例2:前記した特許文献1の溶解方法にしたがい、分割操作を介し溶解操作を2回行なって合金溶湯を生成させ、合金インゴットを製造した。
Example 1 A molten alloy was produced according to the melting method of the present invention described above with reference to FIGS. 1 to 7 to produce an alloy ingot. Here, however, the furnace bottom was not raised or lowered during the melting of the additive metal material.
Example 2 An alloy ingot was manufactured by producing a molten alloy according to the melting method of the present invention described above with reference to FIGS.
Comparative Example 1: In accordance with the conventional general melting method described above, a required amount of Ti grains was put into the furnace body and floated and melted, and then Nb grains were further floated and melted. However, here, a considerable amount of Nb including the undissolved residue of Nb particles was expected to be taken into the skull at the bottom of the furnace, and a larger amount of Nb particles than the set amount was put in the furnace body.
Comparative Example 2: According to the melting method of Patent Document 1 described above, the melting operation was performed twice through the splitting operation to generate a molten alloy, and an alloy ingot was manufactured.

Figure 2008111185
Figure 2008111185

表1の結果からも明らかなように、比較例1では、設定通りの均一組成の合金インゴットを得ることができず、歩留まりも悪い。また比較例2では、設定通りの均一組成の合金インゴットを得ることができ、歩留まりもよいが、分割操作を介して溶解操作を2回行なうため、手間がかかりすぎ、効率が悪い。これらに対して実施例1及び2、なかでも実施例2は、設定通りの均一組成の合金インゴットを得ることができ、歩留まりもよく、効率もよい。   As is apparent from the results in Table 1, in Comparative Example 1, an alloy ingot having a uniform composition as set cannot be obtained, and the yield is poor. Further, in Comparative Example 2, an alloy ingot having a uniform composition as set can be obtained and the yield is good, but since the melting operation is performed twice through the dividing operation, it takes too much time and is inefficient. On the other hand, in Examples 1 and 2, and in particular, Example 2, an alloy ingot having a uniform composition as set can be obtained, yield is good, and efficiency is high.

試験区分2
図8及び図9について前記した本発明の溶解装置によるコールドクルーシブル溶解法により、設定組成がTi−20質量%Nb−5質量%Cr−4質量%Zrの合金インゴットを次のような条件下で製造した。製造した2例の合金インゴットの組成を表2にまとめて示した。
条件
用いた溶解装置の炉本体の容量:15kg
投入電力/周波数:450kW/15kHz
溶解原料:Ti(融点1668℃、密度4.5g/cm)及びCr(融点1860℃、密度7.2g/cm)は粒状物、Zr(融点1850℃、密度6.5g/cm)はスポンジ状物、Nb(融点2520℃、密度8.6g/cm)は直径30mm×長さ200mmの丸棒(4本)
溶解パターン:Ti初装→溶解→Nb丸棒浸漬溶解→Cr追装→Zr追装→溶解の手順
Nb丸棒浸漬溶解の制御:図8及び図9について前記したように、合計4本のNb丸棒の下端部を高周波コイル13aの高さ方向中心位置Lよりも高い位置に常時保持しつつ、予備的な同様の浸漬実験結果から算出した物質移動係数2.19×10−5m/sを用いてNb丸棒の溶解所要時間861秒を予測した上で、最終的にはロードセル41aからの信号を受けて演算制御装置51aから出される信号により制御した。
Test category 2
8 and 9, an alloy ingot having a set composition of Ti-20 mass% Nb-5 mass% Cr-4 mass% Zr was obtained under the following conditions by the cold crucible melting method using the melting apparatus of the present invention described above. Manufactured. The compositions of the two alloy ingots produced are summarized in Table 2.
Conditions Capacity of furnace body of melting apparatus used: 15kg
Input power / frequency: 450 kW / 15 kHz
Melting raw materials: Ti (melting point 1668 ° C., density 4.5 g / cm 3 ) and Cr (melting point 1860 ° C., density 7.2 g / cm 3 ) are granular, Zr (melting point 1850 ° C., density 6.5 g / cm 3 ) Is sponge-like material, Nb (melting point 2520 ° C., density 8.6 g / cm 3 ) is a round bar (4 bars) 30 mm in diameter and 200 mm in length
Melting pattern: Ti initial wear → melting → Nb round bar immersion melting → Cr additional loading → Zr additional melting → dissolution procedure Nb round bar immersion melting control: As described above with reference to FIGS. 8 and 9, a total of four Nb A mass transfer coefficient of 2.19 × 10 −5 m / s calculated from preliminary similar immersion experiment results while always holding the lower end of the round bar at a position higher than the center position L in the height direction of the high-frequency coil 13a. Was used to predict the melting time of 861 seconds for the Nb round bar, and finally, the signal from the load cell 41a was received and controlled by the signal output from the arithmetic control unit 51a.

実施例3:ここでは、炉底として、全体が黒鉛製のものを用いた。
実施例4:ここでは、炉底として、図8に例示したもの、すなわち外側面及び周囲の壁面が黒鉛製の凹状体で、かかる凹状体にTi−20質量%Nb−5質量%Cr−4質量%Zr製の内側面が嵌合されたものを用いた。
Example 3: Here, a furnace bottom made entirely of graphite was used.
Example 4: Here, as the furnace bottom, the one illustrated in FIG. 8, that is, the outer side surface and the surrounding wall surface are graphite-made concave bodies, and Ti-20 mass% Nb-5 mass% Cr-4 is formed in the concave body. A material in which an inner surface made of mass% Zr was fitted was used.

Figure 2008111185
Figure 2008111185

表2の結果からも明らかなように、実施例3では製造した合金インゴットが炉底の黒鉛により少し汚染されているが、実施例4ではかかる汚染も殆ど無視できる程度になっている。   As apparent from the results in Table 2, in Example 3, the manufactured alloy ingot was slightly contaminated by graphite at the furnace bottom, but in Example 4, such contamination is almost negligible.

本発明の溶解装置を一部縦断面で例示する全体図。BRIEF DESCRIPTION OF THE DRAWINGS The whole figure which illustrates the melting | dissolving apparatus of this invention in part longitudinal cross-section. 図1の溶解装置の作用状態を示す部分縦断面図。The fragmentary longitudinal cross-section which shows the action state of the melting | dissolving apparatus of FIG. 図1の溶解装置の他の作用状態を示す部分縦断面図。The fragmentary longitudinal cross-section which shows the other action state of the melt | dissolution apparatus of FIG. 図1の溶解装置の更に他の作用状態を示す部分縦断面図。The fragmentary longitudinal cross-section which shows the other action state of the melt | dissolution apparatus of FIG. 図1の溶解装置の更に他の作用状態を示す部分縦断面図。The fragmentary longitudinal cross-section which shows the other action state of the melt | dissolution apparatus of FIG. 図1の溶解装置の更に他の作用状態を示す部分縦断面図。The fragmentary longitudinal cross-section which shows the other action state of the melt | dissolution apparatus of FIG. 図1の溶解装置の更に他の作用状態を示す部分縦断面図。The fragmentary longitudinal cross-section which shows the other action state of the melt | dissolution apparatus of FIG. 本発明の他の溶解装置を一部縦断面で例示する全体図。The whole figure which illustrates other melt | dissolution apparatuses of this invention in a longitudinal cross-section partially. 図8の溶解装置の把持具を示す平面図。The top view which shows the holding tool of the melt | dissolution apparatus of FIG.

符号の説明Explanation of symbols

11,11a 炉本体
12,12a 炉底
12c 内側面
13,13a 高周波コイル
14,14a 電源設備
21,21a,31 昇降装置
22,22a,32 シリンダロッド
23,23a 支持板
24 モータ
24a 支持部材
26,26a 把持具
41,41a ロードセル
51,51a 演算制御装置
A ベース金属材
B,G 添加金属材
a,b,c 溶湯
D 1次スカル
E 2次スカル
F 3次スカル
11, 11a Furnace body 12, 12a Furnace bottom 12c Inner side surface 13, 13a High frequency coil 14, 14a Power supply equipment 21, 21a, 31 Lifting device 22, 22a, 32 Cylinder rod 23, 23a Support plate 24 Motor 24a Support member 26, 26a Grasping tool 41, 41a Load cell 51, 51a Arithmetic control device A Base metal material B, G Addition metal material a, b, c Molten metal D Primary skull E Secondary skull F Tertiary skull

Claims (9)

コールドクルーシブル溶解装置を用いて複数の金属材の各所要量を浮揚溶解し、設定組成の合金溶湯とするコールドクルーシブル溶解方法において、コールドクルーシブル溶解装置を構成する炉本体の上部に添加金属材を昇降可能に支持し、その下端部を炉本体内に浮揚溶解しているベース金属材の溶湯中に浸漬して、添加金属材の所要量をベース金属材の溶湯中に溶解することを特徴とするコールドクルーシブル溶解方法。   In a cold crucible melting method that floats and melts each required amount of a plurality of metal materials using a cold crucible melting device to make a molten alloy of a set composition, the added metal material is raised and lowered above the furnace body constituting the cold crucible melting device It is characterized by immersing the lower end of the base metal material in the molten metal of the base metal material that floats and melts in the furnace body, and dissolves the required amount of the added metal material in the molten metal of the base metal material. Cold crucible dissolution method. 炉本体の上部に支持した添加金属材を連続的又は間欠的に昇降及び/又は回転させながらその下端部を炉本体内に浮揚溶解しているベース金属材の溶湯中に浸漬する請求項1記載のコールドクルーシブル溶解方法。   The lower end of the additive metal material supported on the upper portion of the furnace body is immersed in a molten base metal material that is floated and dissolved in the furnace body while being lifted and / or rotated continuously or intermittently. The cold crucible dissolution method. 炉本体の外周回りに配置された高周波コイルへの投入電力の増減、かかる高周波コイルの昇降及び/又は炉底の昇降を連続的に又は間欠的に行ないながら添加金属材の所要量をベース金属材の溶湯中に溶解する請求項1又は2記載のコールドクルーシブル溶解方法。   Increase or decrease the power input to the high-frequency coil placed around the outer periphery of the furnace body, raise or lower the high-frequency coil, and / or raise or lower the furnace bottom continuously or intermittently while the required amount of added metal material is the base metal material The cold crucible melting method according to claim 1, wherein the melting method is performed in a molten metal. 炉本体の上部に支持した添加金属材の長さ及び/又は質量を測定し、その測定値に基づいてベース金属材の溶湯中に溶解した添加金属材の質量を求める請求項1〜3のいずれか一つの項記載のコールドクルーシブル溶解方法。   The length and / or mass of the additive metal material supported on the upper part of the furnace body is measured, and the mass of the additive metal material dissolved in the molten base metal material is obtained based on the measured value. The cold crucible dissolution method according to any one of the above items. 添加金属材の下端部を、炉本体の外周回りに配置されている高周波コイルの高さ方向中心位置又はそれよりも上方にて、この炉本体内に浮揚溶解しているベース金属材の溶湯中に浸漬する請求項1〜4のいずれか一つの項記載のコールドクルーシブル溶解方法。   In the molten base metal material, the lower end portion of the additive metal material is levitated and melted in the furnace body at or above the center in the height direction of the high-frequency coil arranged around the outer periphery of the furnace body. The cold crucible dissolution method according to any one of claims 1 to 4, wherein the method is immersed in a cold crucible. コールドクルーシブル溶解装置として、炉本体の底部に、内側面の少なくとも中心部をコールドクルーシブル溶解装置で溶解する合金溶湯と同じ組成の合金で作製した炉底を備えるものを用いる請求項1〜5のいずれか一つの項記載のコールドクルーシブル溶解方法。   6. The cold crucible melting device is one having a furnace bottom made of an alloy having the same composition as the molten alloy melted by the cold crucible melting device at the center of the inner surface at the bottom of the furnace body. The cold crucible dissolution method according to any one of the above items. スリットによって垂直方向に分割された水冷銅ルツボからなる炉本体と、この炉本体の底部に設けられた炉底と、この炉本体の外周回りに配置された高周波コイルと、この高周波コイルに接続された電源設備とを備え、電源設備からの通電により高周波コイルを励磁し、これにより炉本体内の金属材を誘導加熱して浮揚溶解するようにしたコールドクルーシブル溶解装置において、更に炉頂部で添加金属材を支持して炉本体に対し昇降させる昇降装置と、炉底を炉本体に対し昇降させる昇降装置及び/又は高周波コイルを炉本体に対し昇降させる昇降装置と、炉頂部で支持した添加金属材の長さ及び/又は質量を測定する測定手段と、この測定手段による測定値に応じて前記の昇降手段を作動させる信号を出す演算制御装置とを備え、炉頂部で支持した添加金属材の下端部を炉本体内に浮揚溶解しているベース金属材の溶湯中に浸漬した状態にてその所要量をかかる溶湯中に溶解するようにして成ることを特徴とするコールドクルーシブル溶解装置。   A furnace body composed of a water-cooled copper crucible divided vertically by a slit, a furnace bottom provided at the bottom of the furnace body, a high-frequency coil arranged around the outer periphery of the furnace body, and connected to the high-frequency coil In the cold crucible melting device, the high-frequency coil is excited by energization from the power supply facility, and the metal material in the furnace body is induction-heated to float and melt. Elevating device that supports the material and elevates the furnace body, elevating device that elevates and lowers the furnace bottom relative to the furnace body, and / or elevating device that elevates and lowers the high-frequency coil relative to the furnace body, and additive metal material supported at the top of the furnace A measuring means for measuring the length and / or mass of the apparatus, and an arithmetic control device for outputting a signal for operating the lifting means in accordance with a value measured by the measuring means. The cold is characterized in that the lower end of the supported additive metal material is immersed in the melt of the base metal material floated and melted in the furnace body, and the required amount is dissolved in the melt. Crucible dissolver. スリットによって垂直方向に分割された水冷銅ルツボからなる炉本体と、この炉本体の底部に設けられた炉底と、この炉本体の外周回りに配置された高周波コイルと、この高周波コイルに接続された電源設備とを備え、電源設備からの通電により高周波コイルを励磁し、これにより炉本体内の金属材を誘導加熱して浮揚溶解するようにしたコールドクルーシブル溶解装置において、更に炉頂部で添加金属材を支持して炉本体に対し昇降させる昇降装置と、炉頂部で支持した添加金属材の長さ及び/又は質量を測定する測定手段と、この測定手段による測定値に応じて前記の昇降手段を作動させる信号を出す演算制御装置とを備え、炉頂部で支持した添加金属材の下端部を、炉本体の外周回りに配置された高周波コイルの高さ方向中心位置又はそれよりも上方にて、この炉本体内に浮揚溶解しているベース金属材の溶湯中に浸漬した状態でその所要量をかかる溶湯中に溶解するようにして成ることを特徴とするコールドクルーシブル溶解装置。   A furnace body composed of a water-cooled copper crucible divided vertically by a slit, a furnace bottom provided at the bottom of the furnace body, a high-frequency coil arranged around the outer periphery of the furnace body, and connected to the high-frequency coil In the cold crucible melting device, the high-frequency coil is excited by energization from the power supply facility, and the metal material in the furnace body is induction-heated to float and melt. A lifting device that supports the material and moves it up and down relative to the furnace body, a measuring means for measuring the length and / or mass of the additive metal material supported at the top of the furnace, and the lifting means according to the measurement value by the measuring means And a calculation control device that outputs a signal to operate the lower end portion of the additive metal material supported at the top of the furnace, the center position in the height direction of the high-frequency coil disposed around the outer periphery of the furnace body or Above this, cold crucible melting characterized in that the required amount is melted in the molten metal of the base metal material that is floated and melted in the furnace body. apparatus. 炉底が、内側面の少なくとも中心部をコールドクルーシブル溶解装置で溶解する合金溶湯と同じ組成の合金で作製したものである請求項7又は8記載のコールドクルーシブル溶解装置。   The cold-crucible melting apparatus according to claim 7 or 8, wherein the furnace bottom is made of an alloy having the same composition as the molten alloy that melts at least the central portion of the inner side surface with the cold-crucible melting apparatus.
JP2007156206A 2006-10-04 2007-06-13 Cold crucible melting method and apparatus Pending JP2008111185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156206A JP2008111185A (en) 2006-10-04 2007-06-13 Cold crucible melting method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006272436 2006-10-04
JP2007156206A JP2008111185A (en) 2006-10-04 2007-06-13 Cold crucible melting method and apparatus

Publications (1)

Publication Number Publication Date
JP2008111185A true JP2008111185A (en) 2008-05-15

Family

ID=39443861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156206A Pending JP2008111185A (en) 2006-10-04 2007-06-13 Cold crucible melting method and apparatus

Country Status (1)

Country Link
JP (1) JP2008111185A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001502A (en) * 2008-06-18 2010-01-07 Daido Steel Co Ltd beta TYPE TITANIUM ALLOY
CN105755293A (en) * 2014-12-18 2016-07-13 北京有色金属研究总院 Vertical feeding system of vacuum electron-beam melting furnace
CN110793317A (en) * 2018-08-03 2020-02-14 富士电机株式会社 Melting device
CN113012830A (en) * 2019-12-20 2021-06-22 中核北方核燃料元件有限公司 Be applied to melting tank wholeness ability test device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001502A (en) * 2008-06-18 2010-01-07 Daido Steel Co Ltd beta TYPE TITANIUM ALLOY
CN105755293A (en) * 2014-12-18 2016-07-13 北京有色金属研究总院 Vertical feeding system of vacuum electron-beam melting furnace
CN110793317A (en) * 2018-08-03 2020-02-14 富士电机株式会社 Melting device
CN113012830A (en) * 2019-12-20 2021-06-22 中核北方核燃料元件有限公司 Be applied to melting tank wholeness ability test device

Similar Documents

Publication Publication Date Title
US10259038B2 (en) Method and system for sensing ingot position in reduced cross-sectional area molds
JP5048222B2 (en) Method for producing long ingots of active refractory metal alloys
KR101488594B1 (en) Non-monolithic crucible
JP2008111185A (en) Cold crucible melting method and apparatus
JP5027682B2 (en) Method for producing refractory metal ingot
JP2008303113A (en) Unidirectional coagulation method for silicon
KR20100022516A (en) Method of solidifying metallic silicon
JP2003522028A (en) Method and apparatus for manufacturing metal castings
JP5272247B2 (en) Method for melting polycrystalline silicon raw material in CZ method
JP2009113060A (en) METHOD FOR PRODUCING INGOT OF TiAl-BASED ALLOY
JP6396247B2 (en) Ingot manufacturing method and manufacturing apparatus made of high melting point active metal alloy
JP4414861B2 (en) Long ingot manufacturing method for active refractory metal-containing alloys
JP2011173172A (en) Method for producing long cast block of active high melting point metal alloy
JP2009113063A (en) Method for producing ingot
CN204589271U (en) Electroslag furnace
JP2006326639A (en) Method for producing maraging steel
JP5261216B2 (en) Method for melting long ingots
JP5004195B2 (en) Cold crucible dissolution method
JP2009113061A (en) METHOD FOR PRODUCING INGOT OF TiAl-BASED ALLOY
JP5022184B2 (en) Ingot manufacturing method for TiAl-based alloy
JP6013201B2 (en) Polycrystalline silicon ingot and method for producing polycrystalline silicon ingot
JP4672203B2 (en) Method for producing ingot for gold bonding wire
JP5001790B2 (en) Ingot manufacturing method
JP2003340560A (en) Method and apparatus for manufacturing active metal ingot
JP5636316B2 (en) Ingot manufacturing method