JP5260581B2 - Porous electrode substrate and method for producing the same - Google Patents

Porous electrode substrate and method for producing the same Download PDF

Info

Publication number
JP5260581B2
JP5260581B2 JP2010047996A JP2010047996A JP5260581B2 JP 5260581 B2 JP5260581 B2 JP 5260581B2 JP 2010047996 A JP2010047996 A JP 2010047996A JP 2010047996 A JP2010047996 A JP 2010047996A JP 5260581 B2 JP5260581 B2 JP 5260581B2
Authority
JP
Japan
Prior art keywords
resin
carbon
porous electrode
base material
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010047996A
Other languages
Japanese (ja)
Other versions
JP2010182681A (en
Inventor
誠 中村
英彦 大橋
光夫 浜田
和茂 三原
和宏 隅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2010047996A priority Critical patent/JP5260581B2/en
Publication of JP2010182681A publication Critical patent/JP2010182681A/en
Application granted granted Critical
Publication of JP5260581B2 publication Critical patent/JP5260581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

An electrode base material for solid polymer fuel cell that overcomes the problems of prior art and is most suitable for use in assembling of an inexpensive compact cell stack; and a process for producing the electrode base material. There is provided a porous electrode base material of <= 150 mum thickness, comprising carbon staple fibers of 3 to 9 mum diameter dispersed in random directions within a substantially two-dimensional plane, these carbon staple fibers bound to each other by an amorphous resin carbide, further these carbon staple fibers crosslinked to each other by a filamentous resin carbide. It is also intended to provide an electrode base material for solid polymer fuel cell that overcomes the problems of prior art, realizing low cost, smooth supply and discharge of gas and water for use in reaction and exertion of cell performance. Thus, further, there is provided a porous electrode base material, comprising carbon staple fibers of 3 to 9 mum diameter dispersed in random directions within a substantially two-dimensional plane, these carbon staple fibers bound to each other by an amorphous resin carbide, further these carbon staple fibers crosslinked to each other by a network resin carbide of <= 3 mum minimum fiber diameter.

Description

本発明は、多孔質電極基材およびその製造方法に関する。   The present invention relates to a porous electrode substrate and a method for producing the same.

多孔質電極基材は、固体高分子型燃料電池中で、セパレーターと触媒層の間に位置する部材である。同材は、セパレーターと触媒層間の電気伝達体としての機能だけでなく、セパレーターから供給される水素や酸素などのガスを触媒層に分配する機能と触媒層で発生した水を吸収して外部に排出する機能を併せ持つことを求められている。現在のところ一般的に炭素質が有効とされている。
従来は、機械強度を強くするために、炭素短繊維と樹脂炭化物とを密に結着させるなどの方法がとられていたが、ガス透過度が小さくなり、燃料電池に組んだ時の性能が落ちてしまうことが多かった。一方、ガス透過度を大きく維持しようとすると機械強度が弱くなり、取り扱い方法に制限があるものとなった。
The porous electrode base material is a member located between the separator and the catalyst layer in the polymer electrolyte fuel cell. This material not only functions as an electrical conductor between the separator and the catalyst layer, but also distributes gas such as hydrogen and oxygen supplied from the separator to the catalyst layer and absorbs water generated in the catalyst layer to the outside. It is required to have the function of discharging. At present, carbon is generally considered effective.
Conventionally, in order to increase the mechanical strength, methods such as tightly bonding short carbon fibers and resin carbide were taken, but the gas permeability decreased and the performance when assembled in a fuel cell was reduced. I often fell. On the other hand, if the gas permeability is kept large, the mechanical strength becomes weak and the handling method is limited.

特許文献1には、有機繊維を用い、有機繊維が電極基材の炭素化により消失することを使って細孔を形成した多孔質電極基材が記載されている。しかし、このようにして形成される細孔は、気孔率は高いものの平均径が小さく、固体高分子型燃料電池に用いるには、ガス透過度が低すぎる。また、厚みが厚く、大型でコストが高くなってしまうという問題があった。
特許文献2には、安価な多孔質電極基材の製造方法が記載されている。この方法で得られる多孔質電極基材は、ウェブが厚み方向にも配向しているため、厚み方向の導電性やガス透過度は、満足できる値であるが、機械強度が弱く、厚み方向に配向した繊維が電解質膜を突き破ってしまう、一度プレスすると脆くなってしまうなど取り扱いの面で課題があった。
特許文献3には、多孔質炭素基材のひび割れを防止し、機械強度を上げるため、細孔直径10μm以下の細孔容積が0.05〜0.16cc/gである多孔質電極基材が記載されている。しかし、このように10μm以下の細孔が少ないものでは、保水性が小さいため水分管理が難しく、燃料電池の発電が十分に行えないと考えられる。
Patent Document 1 describes a porous electrode base material in which pores are formed by using organic fibers and using the disappearance of organic fibers due to carbonization of the electrode base material. However, although the pores formed in this way have a high porosity, the average diameter is small, and the gas permeability is too low for use in a polymer electrolyte fuel cell. In addition, there is a problem that the thickness is large, the size is large, and the cost is high.
Patent Document 2 describes an inexpensive method for producing a porous electrode substrate. Since the porous electrode substrate obtained by this method is oriented in the thickness direction, the thickness direction conductivity and gas permeability are satisfactory values, but the mechanical strength is weak and the thickness direction is low. There were problems in terms of handling, such as oriented fibers breaking through the electrolyte membrane and becoming brittle once pressed.
Patent Document 3 discloses a porous electrode substrate having a pore volume of 0.05 to 0.16 cc / g having a pore diameter of 10 μm or less in order to prevent cracking of the porous carbon substrate and increase mechanical strength. Have been described. However, it is considered that when there are few pores of 10 μm or less as described above, water management is difficult because water retention is small, and power generation of the fuel cell cannot be performed sufficiently.

特開平9−278558号公報Japanese Patent Laid-Open No. 9-278558 WO2001/04980号公報WO 2001/04980 WO2004/085728号公報WO2004 / 085728

本発明は、上記のような問題点を克服し、安価でかつ反応に使用される水やガスの供給および排出がスムーズに行なわれ、セル性能を発揮できる固体高分子型燃料電池用電極基材及びこの電極基材の製造方法を提供することを目的とする。   The present invention overcomes the problems as described above, is inexpensive, smoothly supplies and discharges water and gas used for the reaction, and can exhibit cell performance. And it aims at providing the manufacturing method of this electrode base material.

また、本発明の第一の要旨は、実質的に二次元平面においてランダムな方向に分散せしめられた繊維直径が3〜9μmで繊維長が2〜12mmの炭素短繊維、濾水度が400〜900mlのフィブリル化されたポリエチレン繊維10〜70質量%、およびポリビニルアルコールからなる炭素繊維紙に、炭素短繊維100質量部に対し70〜120質量部の樹脂を含浸したのち樹脂を炭素化する多孔質電極基材の製造方法にある。 The first aspect of the present invention, substantially two-dimensional fiber diameters which are dispersed in random directions in the plane fiber length in 3~9μm is 2~12mm short carbon fibers, filtration water level is 400 A porous material in which 900 ml of fibrillated polyethylene fiber 10 to 70% by mass and carbon fiber paper made of polyvinyl alcohol are impregnated with 70 to 120 parts by mass of resin with respect to 100 parts by mass of carbon short fibers , and then carbonized. It exists in the manufacturing method of an electrode base material.

本発明によれば、上記のような問題点を克服し、安価でかつ反応に使用される水やガスの供給および排出がスムーズに行なわれ、セル性能を発揮できる固体高分子型燃料電池用電極基材を得ることができる。また、本発明の多孔質電極基材の製造方法によれば、前記多孔質電極基材を低コストで生産することができる。   According to the present invention, an electrode for a polymer electrolyte fuel cell that overcomes the above-described problems, is inexpensive, smoothly supplies and discharges water and gas used for the reaction, and exhibits cell performance. A substrate can be obtained. Moreover, according to the manufacturing method of the porous electrode base material of this invention, the said porous electrode base material can be produced at low cost.

実施例3で得られた多孔質電極基材表面の電子顕微鏡写真である。4 is an electron micrograph of the surface of a porous electrode substrate obtained in Example 3. 実施例4で得られた多孔質電極基材表面の電子顕微鏡写真である。4 is an electron micrograph of the surface of a porous electrode substrate obtained in Example 4. 実施例5で得られた多孔質電極基材表面の電子顕微鏡写真である。6 is an electron micrograph of the surface of a porous electrode substrate obtained in Example 5. 比較例3の多孔質電極基材表面の電子顕微鏡写真である。4 is an electron micrograph of the surface of a porous electrode substrate of Comparative Example 3. 実施例3、比較例2で得られた多孔質電極基材の細孔分布を示したグラフである。5 is a graph showing the pore distribution of the porous electrode base material obtained in Example 3 and Comparative Example 2. FIG. 実施例3、比較例2で得られた多孔質電極基材の電池特性評価結果である。It is a battery characteristic evaluation result of the porous electrode base material obtained in Example 3 and Comparative Example 2.

<炭素短繊維>
炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などいずれであって良いが、ポリアクリロニトリル系炭素繊維が好ましく、特に用いる炭素繊維がポリアクリロニトリル(PAN)系炭素繊維のみからなることが多孔質炭素電極基材の機械的強度が比較的高くすることができるので好ましい。
炭素短繊維の直径は、3〜9μmであることが、炭素短繊維の生産コスト、分散性、最終多孔質炭素電極基材の平滑性の面から必要である、4μm以上、8μm以下であることが好ましい。
炭素短繊維の繊維長は、後述のバインダーとの結着性や分散性の点からは、2〜12mmが好ましい。
<Short carbon fiber>
Any of carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, and the like may be used, but polyacrylonitrile-based carbon fiber is preferable, and the porous carbon electrode is preferably composed of only polyacrylonitrile (PAN) -based carbon fiber. It is preferable because the mechanical strength of the substrate can be made relatively high.
The diameter of the short carbon fiber is 3 to 9 μm, which is necessary in terms of production cost of the carbon short fiber, dispersibility, and smoothness of the final porous carbon electrode substrate, and is 4 μm or more and 8 μm or less. Is preferred.
The fiber length of the short carbon fibers is preferably 2 to 12 mm from the viewpoint of binding properties and dispersibility with the binder described below.

<分散>
本発明において、「実質的に二次元平面内においてランダムな方向に分散」とは、炭素短繊維がおおむね一つの面を形成するように横たわっているという意味である。これにより炭素短繊維による短絡や炭素短繊維の折損を防止することができる。
<Dispersion>
In the present invention, “substantially dispersed in a random direction within a two-dimensional plane” means that the carbon short fibers lie so as to form a single plane. Thereby, the short circuit by carbon short fiber and the breakage of carbon short fiber can be prevented.

<樹脂炭化物>
本発明において、樹脂炭化物は、樹脂を炭化してできた、炭素短繊維同士を結着する物質である。樹脂としては、フェノール樹脂など炭素繊維との結着力が強く、炭化時の残存重量が大きいものが好ましいが、特に限定はされない。
この樹脂炭化物は、樹脂の種類や炭素繊維紙への含浸量により、最終的に多孔質炭素電極基材に炭化物として残る割合が異なる。
多孔質電極基材を100質量%とした時に、その中の樹脂炭化物が25〜40質量%であることが好ましく、更に好ましい下限及び上限は、それぞれ28質量%および34質量%である。
炭素短繊維同士を完全に結着し多孔質電極基材の機械的強度を十二分なものに保つためには、樹脂炭化物が25質量%以上必要である。完全に結着されなかった炭素短繊維は、多孔質電極基材から脱落し、電解質膜に刺さり短絡の原因となることがある。一方、多孔質電極基材中の炭素短繊維の比率を高く保ち、樹脂の硬化時の加圧により細孔が樹脂により埋められることがないよう、40質量%以下とすることが有利である。
<Resin carbide>
In the present invention, the resin carbide is a substance that binds short carbon fibers and is formed by carbonizing a resin. The resin is preferably a resin having a strong binding force with carbon fibers such as a phenol resin and a large residual weight during carbonization, but is not particularly limited.
Depending on the type of resin and the amount of impregnation into the carbon fiber paper, the ratio of the resin carbide remaining as a carbide on the porous carbon electrode base material varies.
When the porous electrode substrate is taken as 100% by mass, the resin carbide is preferably 25 to 40% by mass, and more preferable lower and upper limits are 28% by mass and 34% by mass, respectively.
In order to bind carbon short fibers completely and keep the mechanical strength of the porous electrode base material at a sufficient level, 25% by mass or more of resin carbide is required. The short carbon fibers that have not been completely bound may fall off the porous electrode base material and pierce the electrolyte membrane, causing a short circuit. On the other hand, it is advantageous to keep the ratio of short carbon fibers in the porous electrode base material high and to make the pores not more than 40% by mass so that the pores are not filled with the resin due to pressurization when the resin is cured.

<不定形の樹脂炭化物>
本発明では、まず、従来の多孔質電極基材と同様に、炭素短繊維同士が不定形の樹脂炭化物で結着されていることが必要である。
<Amorphous resin carbide>
In the present invention, first, it is necessary that short carbon fibers are bound together with an amorphous resin carbide, as in a conventional porous electrode substrate.

<網状の樹脂炭化物>
本発明では、不定形の樹脂炭化物とともに、機械強度と反応ガス・水分管理を両立させるという観点から、炭素短繊維と炭素短繊維とを架橋する最小繊維径3μm以下で網状の樹脂炭化物の存在が必要である。
この網状の樹脂炭化物は、炭素短繊維とは外観が異なり、さらに、網状の樹脂炭化物を構成する炭素の配向は、炭素短繊維中の炭素の配列が非常によく配向しているのに対して、上述の不定形の樹脂炭化物と同様である。
炭素短繊維と炭素短繊維が最小繊維径3μm以下で網状の樹脂炭化物で架橋されている様子を図1に示した。図1のように炭素短繊維間に網状の樹脂炭化物を架橋させることにより、直径2μm程度の小さな孔と直径50μm程度の大きな孔両方を混在させることができる。細い網状の樹脂炭化物は、炭素繊維に比して補強効果はあまり大きくないが、細孔を細分化するため、ガス透過度を小さくする傾向にある。しかし、高加湿条件下で小さな孔が発生水を吸収しても比較的大きな孔が存在しているため、ガスが流れなくなり性能が急に悪くなる(いわゆるフラッディング)ことはない。ガス透過度の高い従来の多孔質電極基材は、その上に形成される触媒層や高分子膜が乾きやすい問題があったが、網状の樹脂炭化物の架橋を有する本発明の多孔質電極基材では、網状の樹脂炭化物が多数の小さい孔を形成しているので、保水性が良く、反応ガスの供給および排出のバランスも安定なので、燃料電池に組んだときの性能を向上させることができる。
<Reticulated resin carbide>
In the present invention, from the viewpoint of achieving both mechanical strength and reaction gas / moisture management together with the amorphous resin carbide, the presence of a net-like resin carbide having a minimum fiber diameter of 3 μm or less that crosslinks the short carbon fiber and the short carbon fiber is present. is necessary.
This reticulated resin carbide has a different appearance from short carbon fibers, and the orientation of the carbon constituting the reticulated resin carbide is that the carbon alignment in the short carbon fibers is very well oriented. This is the same as the above-mentioned amorphous resin carbide.
FIG. 1 shows a state in which short carbon fibers and short carbon fibers are crosslinked with a net-like resin carbide having a minimum fiber diameter of 3 μm or less. By bridging the net-like resin carbide between the short carbon fibers as shown in FIG. 1, both small holes with a diameter of about 2 μm and large holes with a diameter of about 50 μm can be mixed. The fine net-like resin carbide does not have a great reinforcing effect as compared with the carbon fiber, but tends to reduce the gas permeability because the pores are subdivided. However, even if small holes absorb the generated water under high humidification conditions, the relatively large holes exist, so that the gas does not flow and the performance does not deteriorate suddenly (so-called flooding). The conventional porous electrode base material having a high gas permeability has a problem that the catalyst layer and the polymer film formed thereon are likely to be dried, but the porous electrode substrate of the present invention having a network-like resin carbide cross-linkage. In the material, since the net-like resin carbide forms many small holes, the water retention is good and the balance between the supply and discharge of the reaction gas is stable, so the performance when assembled in a fuel cell can be improved. .

<細孔半径の分布>
本発明の多孔質電極基材は、水銀圧入法によって細孔の半径の分布を測定したとき、細孔の半径が10μm以下にも、50μm以上にも分布のピークを有することが好ましい。これにより本発明の多孔質電極基材は、反応ガスを反応部(触媒層)に効率よく送り届ける機能だけでなく、反応ガスに含まれている水や発電により発生する水を効率よく排出す
る機能も有することとなる。反応ガスを効率よく反応部(触媒層)に送り届けるためには50μm以上の半径を有する細孔の存在が有効であり、効率よく水を排出するためには、大量に水分が発生した時に水分を一時的に取り込むための孔として10μm以下の半径を有する細孔の存在が有効である。
本発明の多孔質電極基材は、炭素短繊維と炭素短繊維とが不定形の樹脂炭化物で結着されてできる大きい細孔と、炭素短繊維と炭素短繊維とが網状の樹脂炭化物で架橋されて形成される小さい孔と、を有するため、上述の細孔半径の分布を有することが可能となる。
<Pore radius distribution>
The porous electrode substrate of the present invention preferably has a distribution peak when the pore radius distribution is measured by mercury porosimetry and the pore radius is 10 μm or less and 50 μm or more. Thereby, the porous electrode substrate of the present invention has not only a function of efficiently delivering the reaction gas to the reaction part (catalyst layer) but also a function of efficiently discharging water contained in the reaction gas and water generated by power generation. Will also have. In order to efficiently deliver the reaction gas to the reaction part (catalyst layer), the presence of pores having a radius of 50 μm or more is effective, and in order to efficiently discharge water, the moisture is removed when a large amount of moisture is generated. The presence of pores having a radius of 10 μm or less is effective as pores for temporary incorporation.
The porous electrode substrate of the present invention has large pores formed by binding carbon short fibers and carbon short fibers with amorphous resin carbide, and the carbon short fibers and carbon short fibers are cross-linked with a net-like resin carbide. Therefore, it is possible to have the aforementioned pore radius distribution.

<ガス透過度>
本発明におけるガス透過度とは、JIS規格P−8117に準拠した方法によって求められる値で、多孔質電極基材のガスの抜けやすさを表す。多孔質電極基材を3mmφの孔のあいたセルに挟み、孔から1.29kPaの圧力で200mLのガスを流し、ガスが透過するのにかかった時間を測定することで算出できる。
本発明の多孔質電極基材の好ましいガス透過度は、2000m/sec・MPa以下で、さらに好ましくは、1900m/sec・MPa以下である。本発明の多孔質電極基材では、網状の樹脂炭化物の存在により比較的ガスの透気度が小さくなっている。本発明の多孔質電極基材のガス透過度を大きくするためには、かなり目付を小さくするか嵩密度を下げる必要がある。本発明では、多孔質電極基材のガス透過度が2000m/sec・MPa以下とすることにより、目付が小さくても割づらく、また、嵩密度が小さくても炭素短繊維が厚み方向に立ってないものとすることができる。
<Gas permeability>
The gas permeability in this invention is a value calculated | required by the method based on JIS specification P-8117, and represents the ease of degassing of a porous electrode base material. It can be calculated by sandwiching a porous electrode base material in a cell with a hole of 3 mmφ, flowing 200 mL of gas from the hole at a pressure of 1.29 kPa, and measuring the time taken for the gas to permeate.
The gas permeability of the porous electrode substrate of the present invention is preferably 2000 m / sec · MPa or less, more preferably 1900 m / sec · MPa or less. In the porous electrode substrate of the present invention, the gas permeability is relatively small due to the presence of the net-like resin carbide. In order to increase the gas permeability of the porous electrode substrate of the present invention, it is necessary to considerably reduce the basis weight or lower the bulk density. In the present invention, by setting the gas permeability of the porous electrode substrate to 2000 m / sec · MPa or less, it is difficult to break even if the basis weight is small, and even if the bulk density is small, the carbon short fibers stand in the thickness direction. It can not be.

<巻形態>

本発明の多孔質電極基材は、76.2mm以下の直径を有する紙管に巻けることが、製造に用いる設備、梱包品のコンパクト化が図れるという点から好ましい。紙管サイズが小さい場合は、持ち運びが容易であるという点でも好ましい。
<Winding form>

The porous electrode base material of the present invention is preferably wound around a paper tube having a diameter of 76.2 mm or less from the viewpoint that the equipment used for production and the packaged product can be made compact. When the paper tube size is small, it is preferable also in that it is easy to carry.

<製造方法>
本発明の多孔質電極基材の製造方法は、実質的に二次元平面においてランダムな方向に分散せしめられた繊維直径が3〜9μmの炭素短繊維および濾水度が400〜900mlのフィブリル化されたポリエチレン繊維からなる炭素繊維紙に樹脂を含浸したのち樹脂を炭素化する多孔質電極基材の製造方法である。
製造コストの低下ができるという点から全工程にわたり多孔質電極基材の製造が連続的に行なわれることが好ましい。
<Manufacturing method>
Method for producing a porous electrode substrate of the present invention, substantially random fiber diameter which is dispersed in the direction short carbon fibers and filtration water level of 3~9μm in a two-dimensional plane of 400~900ml fibril This is a method for producing a porous electrode base material in which a carbon fiber paper made of polyethylene fiber is impregnated with a resin and then carbonized.
It is preferable that the production of the porous electrode substrate is continuously performed over the entire process from the viewpoint that the production cost can be reduced.

<フィブリル状物>
本発明では、上述の樹脂炭化物による、
1)炭素短繊維同士が不定形の樹脂炭化物で結着
2)最小繊維径3μm以下で網状の樹脂炭化物により架橋された構造をとるためにフィブリル状物を使用する。
フィブリル状物は、樹脂の炭素化により消失するが、フィブリル状物の周りに付着した樹脂が樹脂炭化物として残り、樹脂炭化物の網状構造形成に寄与する。
フィブリル状物としては、濾水度が400〜900ml、フィブリル化されたポリエチレン繊維であることが必要である。濾水度を400ml以上とすることにより、多孔質電極基材の表面状態を良好なものとすることができる。また、炭素繊維紙を抄紙によって製造する場合には、抄紙時の水抜けが良好なものとなる。一方、900ml以下とすることにより、フィブリル状物を形成する繊維の直径を適切なものとすることができ、多孔質電極基材の表面が粗になることがなく、燃料電池としたときに他の部材との接触を良好に保つことができる。
フィブリル状物は、炭素短繊維と一緒に分散し、炭素短繊維の再収束を防止する役割も果たす。また、樹脂によっては、樹脂の硬化に縮合水を生成するものもあるが、フィブリル状物には、その水を吸収、排出する役割も期待できる。そのため、水との親和性にも優れているものが好ましい。炭素繊維との親和性、取り扱い性、コストの点からフィブリル化されたポリエチレン繊維が好ましい
素繊維紙の製造を抄紙によって行う場合は、フィブリル状物が抄紙時の分散媒に不溶でかつ膨潤しないことが必須である。分散媒に溶解するフィブリル状物を用いた場合は、樹脂が付着する段階で形状が既に変化しているため網状の樹脂炭化物を形成することができない。
架橋構造を効率的に形成するという点からフィブリル状物を構成する繊維の表面自由エネルギーが使用する炭素短繊維の表面自由エネルギーより大きいものが好ましい。フィブリル状物を構成する繊維の表面自由エネルギーが炭素短繊維より大きいことで、含浸樹脂が繊維に優先的に付着し、炭素化後、網状の架橋構造が形成されやすくなる。
炭素繊維紙中のフィブリル状物の重量比率は、10〜70質量%であることが好ましい。フィブリル状物が10質量%以上とすることで、網状の樹脂炭化物を十分に発達させることができ、多孔質電極基材に十分な機械強度とガス透過度を付与できる。また、フィブリル状物は、樹脂を押圧下で硬化するときに生じるうねりやシワ等の外力に打ち勝つための補強材としてもはたらくすため、10質量%以上であることが好ましい。一方、フィブリル状物が70質量%以下としておけば、炭素短繊維に付着する樹脂の不足により多孔質電極基材が崩れやすくなったり、厚み制御が難しくなるのを防ぐことができる。
<Fibrils>
In the present invention, the above-described resin carbide,
1) Carbon short fibers are bound together by amorphous resin carbides 2) A fibril-like material is used to form a structure in which the minimum fiber diameter is 3 μm or less and is crosslinked by a net-like resin carbide.
The fibrillated material disappears due to the carbonization of the resin, but the resin attached around the fibrillated material remains as a resin carbide, contributing to the formation of a network structure of the resin carbide.
The fibrillated product needs to be a fibrillated polyethylene fiber having a freeness of 400 to 900 ml. By setting the freeness to 400 ml or more, the surface state of the porous electrode substrate can be made favorable. In addition, when carbon fiber paper is produced by papermaking, water drainage during papermaking is good. On the other hand, by setting it to 900 ml or less, the diameter of the fibers forming the fibrillar material can be made appropriate, and the surface of the porous electrode substrate is not roughened. Good contact with the member can be maintained.
The fibrillar material is dispersed together with the short carbon fibers, and also serves to prevent refocusing of the short carbon fibers. Some resins generate condensed water for curing the resin, but the fibrillar material can also be expected to absorb and discharge the water. Therefore, what is excellent also in the affinity with water is preferable . Affinity to-carbon fiber, handling property, polyethylene fibers are preferably fibrillated terms of cost.
When performing the papermaking production of carbon-containing fiber paper, it is essential that fibrillated material is not soluble in and swelled in a dispersion medium at the time of paper making. When a fibrillar material that dissolves in the dispersion medium is used, a net-like resin carbide cannot be formed because the shape has already changed at the stage where the resin adheres.
From the viewpoint of efficiently forming a crosslinked structure, it is preferable that the surface free energy of the fibers constituting the fibril-like material is larger than the surface free energy of the short carbon fibers used. Since the surface free energy of the fiber constituting the fibril-like material is larger than that of the short carbon fiber, the impregnating resin adheres preferentially to the fiber, and a network-like cross-linked structure is easily formed after carbonization.
The weight ratio of the fibrillated material in the carbon fiber paper is preferably 10 to 70% by mass. By setting the fibril-like material to 10% by mass or more, a net-like resin carbide can be sufficiently developed, and sufficient mechanical strength and gas permeability can be imparted to the porous electrode substrate. In addition, the fibrillar material is preferably 10% by mass or more because it acts as a reinforcing material for overcoming external forces such as waviness and wrinkles generated when the resin is cured under pressure. On the other hand, when the fibril-like material is 70% by mass or less, it is possible to prevent the porous electrode base material from being easily broken due to the shortage of the resin adhering to the short carbon fibers and the thickness control from becoming difficult.

<有機高分子化合物>
本発明の多孔質電極基材の製造方法では、炭素繊維紙の構成材料として有機高分子化合物を加えることができる。有機高分子化合物は、炭素繊維紙中で各成分をつなぎとめるバインダーとしてはたらく。有機高分子化合物としては、ポリビニルアルコール(PVA)、ポリ酢酸ビニル、などを用いることができる。その中でも、ポリビニルアルコール、ポリアクリロニトリル、セルロース、ポリ酢酸ビニル等が好ましく用いられる。特にポリビニルアルコールは抄紙工程での結着力に優れるため、炭素短繊維の脱落が少なくバインダーとして好ましい。本発明では、有機高分子化合物を繊維状として用いることも可能である。
<Organic polymer compound>
In the method for producing a porous electrode substrate of the present invention, an organic polymer compound can be added as a constituent material of carbon fiber paper. The organic polymer compound serves as a binder that holds the components together in the carbon fiber paper. As the organic polymer compound, polyvinyl alcohol (PVA), polyvinyl acetate, or the like can be used. Among these, polyvinyl alcohol, polyacrylonitrile, cellulose, polyvinyl acetate and the like are preferably used. In particular, polyvinyl alcohol is preferable as a binder because it has excellent binding power in the paper making process, and the short carbon fibers are not dropped off. In the present invention, it is also possible to use an organic polymer compound as a fiber.

<炭素繊維紙の抄紙>
炭素繊維紙は抄紙によって好適に得られる。抄紙方法としては、液体の媒体中に炭素短繊維を分散させて抄造する湿式法や、空気中に炭素短繊維を分散させて降り積もらせる乾式法が適用できる。中でも湿式法が好ましい。また、前述したように炭素短繊維同士の開繊、再収束を防止する役割を果たすフィブリル状物合成繊維を適当量混ぜることが必要であり、炭素短繊維同士を結着させるバインダーとして適当量の有機高分子物質を混ぜることが好ましい。
フィブリル状物および必要に応じて有機高分子化合物を炭素短繊維に混入する方法としては、炭素短繊維とともに水中で攪拌分散させる方法と、直接混ぜ込む方法があるが、均一に分散させるためには水中で拡散分散させる方法が好ましい。このように有機高分子化合物を混ぜることにより、炭素繊維紙の強度を保持し、その製造途中で炭素繊維紙から炭素短繊維が剥離したり、炭素短繊維の配向が変化したりするのを防止することができる。
また、抄紙は連続で行なう方法やバッチ式で行なう方法があるが、本発明において行なう抄紙は、特に目付のコントロールが容易であるという点と生産性および機械的強度の観点から連続抄紙が好ましい。
<Carbon fiber paper making>
Carbon fiber paper is suitably obtained by papermaking. As a papermaking method, a wet method in which short carbon fibers are dispersed in a liquid medium for papermaking, or a dry method in which short carbon fibers are dispersed in air to be deposited can be applied. Of these, the wet method is preferred. In addition, as described above, it is necessary to mix an appropriate amount of fibril-like synthetic fibers that serve to prevent the opening and re-convergence between short carbon fibers, and an appropriate amount as a binder for binding the short carbon fibers together. It is preferable to mix organic polymer substances.
As a method of mixing the fibrillar material and, if necessary, the organic polymer compound into the carbon short fiber, there are a method of stirring and dispersing in water together with the carbon short fiber, and a method of mixing directly, but in order to uniformly disperse A method of diffusing and dispersing in water is preferred. By mixing the organic polymer compound in this way, the strength of the carbon fiber paper is maintained, and it is possible to prevent the carbon short fibers from being peeled off from the carbon fiber paper during the production and the orientation of the carbon short fibers from being changed. can do.
Further, there are a continuous paper making method and a batch paper making method. However, the paper making performed in the present invention is preferably continuous paper making from the viewpoint of easy control of the basis weight and productivity and mechanical strength.

<樹脂>
本発明で樹脂として用いる樹脂組成物は、常温において粘着性、あるいは流動性を示す物でかつ炭素化後も導電性物質として残存する物質が好ましく、フェノール樹脂、フラン樹脂、エポキシ樹脂、メラミン樹脂、イミド樹脂、ウレタン樹脂、アラミド樹脂、ピッチ等を単体もしくは混合物として用いることができる。前記フェノール樹脂としては、アルカリ触媒存在下においてフェノール類とアルデヒド類の反応によって得られるレゾールタイプフェノール樹脂を用いることができる。
又、レゾールタイプのフェノール樹脂に公知の方法によって酸性触媒下においてフェノール類とアルデヒド類の反応によって生成する、固体の熱融着性を示すノボラックタイプのフェノール樹脂を溶解混入させることもできるが、この場合は硬化剤、例えばヘキサメチレンジアミンを含有した、自己架橋タイプのものが好ましい。
フェノール類としては、例えば、フェノール、レゾルシン、クレゾール、キシロール等が用いられる。アルデヒド類としては、例えばホルマリン、パラホルムアルデヒド、フルフラール等が用いられる。また、これらを混合物として用いることができる。これらはフェノール樹脂として市販品を利用することも可能である。
<Resin>
The resin composition used as a resin in the present invention is preferably a substance that exhibits adhesiveness or fluidity at room temperature and remains as a conductive substance even after carbonization, such as a phenol resin, a furan resin, an epoxy resin, a melamine resin, An imide resin, a urethane resin, an aramid resin, pitch, or the like can be used alone or as a mixture. As the phenol resin, a resol type phenol resin obtained by reaction of phenols and aldehydes in the presence of an alkali catalyst can be used.
In addition, it is possible to dissolve and mix a novolak type phenolic resin, which is produced by the reaction of phenols and aldehydes in the presence of an acidic catalyst by a known method, and exhibits a solid heat-fusible property. In this case, a self-crosslinking type containing a curing agent such as hexamethylenediamine is preferred.
As phenols, for example, phenol, resorcin, cresol, xylol and the like are used. As aldehydes, for example, formalin, paraformaldehyde, furfural and the like are used. Moreover, these can be used as a mixture. These can also use a commercial item as a phenol resin.

<樹脂量>
炭素繊維紙に付着する樹脂の樹脂量は、炭素短繊維100質量部に対し、70〜120質量部の樹脂を付着させる。前述した、水やガスの供給および排出がスムーズに行なわれ、曲げ強度に優れた電極基材を製造するには、樹脂炭化物の比率が20〜30質量%になるように樹脂を付着しておくため、70〜120質量部の樹脂を付着させる。
<Resin amount>
The resin amount of the resin adhering to the carbon fiber paper is such that 70 to 120 parts by mass of resin is adhered to 100 parts by mass of the carbon short fibers. In order to produce an electrode base material that can smoothly supply and discharge water and gas and has excellent bending strength, the resin is adhered so that the ratio of the resin carbide is 20 to 30% by mass. Therefore, 70 to 120 parts by mass of resin is adhered.

<樹脂の含浸方法>
炭素繊維紙に樹脂を含浸する方法としては、炭素繊維紙に樹脂を含浸させることができればよく、特段の制限はないが、コーターを用いて炭素繊維紙表面に樹脂を均一にコートする方法、絞り装置を用いるdip−nip方法、もしくは炭素繊維紙と樹脂フィルムを重ねて、樹脂を炭素繊維紙に転写する方法が、連続的に行なうことができ、生産性および長尺ものも製造できるという点で好ましい。
<Resin impregnation method>
The carbon fiber paper is impregnated with the resin as long as the carbon fiber paper can be impregnated with the resin, and there is no particular limitation. However, a method of uniformly coating the resin on the surface of the carbon fiber paper using a coater, The dip-nip method using the apparatus, or the method of transferring the resin to the carbon fiber paper by stacking the carbon fiber paper and the resin film can be performed continuously, and the productivity and the length can be manufactured. preferable.

<樹脂の硬化、炭素化>
樹脂を含浸された炭素繊維紙は、そのまま炭素化することも可能である。しかし、炭素化する前に樹脂を硬化することが樹脂の炭素化時の気化を抑制し、多孔質電極基材の強度向上のために好ましい。硬化は、樹脂を含浸された炭素繊維紙を均等に加熱できる技術であれば、いかなる技術も適用できる。その例としては、樹脂を含浸された炭素繊維紙の上下両面から剛板を重ね、加熱する方法や上下両面から熱風を吹き付ける方法、また連続ベルト装置や連続熱風炉を用いる方法が挙げられる。
硬化された樹脂は、続いて炭素化される。多孔質電極基材の導電性を高めるために、不活性ガス中で炭素化する。炭素化は、炭素繊維紙の全長にわたって連続で行なうことが好ましい。電極基材が長尺であれば、電極基材の生産性が高くなるだけでなく、その後工程のMembrane Electrode Assembly(MEA)製造も連続で行なうことができ、燃料電池のコスト低減化に大きく寄与することができる。
炭素化は、不活性処理雰囲気下にて1000〜3000℃の温度範囲で、炭素繊維紙の全長にわたって連続して焼成処理することが好ましい。本発明の炭素化においては、不活性雰囲気下にて1000〜3000℃の温度範囲で焼成する炭素化処理の前に行われる、300〜800℃の程度の不活性雰囲気での焼成による前処理を行っても良い。
炭素繊維紙に樹脂を付着した後、加熱により、炭素繊維紙表面を平滑にする工程を含んでいることが好ましい。炭素繊維表面を平滑する方法としては、特に限定されないが、上下両面から平滑な剛板にて熱プレスする方法や連続ベルトプレス装置を用いて行なう方法がある。中でも連続ベルトプレス装置を用いて行なう方法が、長尺の多孔質電極基材ができるという点で好ましい。多孔質電極基材が長尺であれば、多孔質電極基材の生産性が高くなるだけでなく、その後のMEMBRANE ELECTRODE ASSEMBLY(MEA)製造も連続で行なうことができ、燃料電池のコスト低減化に大きく寄与することができる。表面を平滑にする工程がない場合も良好な強度とガス透過度とをともに有する多孔質電極基材が得られるが、その多孔質電極基材に大きな起伏があるため、セルを組んだとき多孔質電極基材と周辺基材との接触が十分でなく好ましくない。
連続ベルト装置におけるプレス方法としては、ロールプレスによりベルトに線圧で圧力を加える方法と液圧ヘッドプレスにより面圧でプレスする方法があるが、後者の方がより平滑な多孔質電極基材が得られるという点で好ましい。効果的に表面を平滑にするためには、樹脂が最も軟化する温度でプレスし、その後加熱または冷却により樹脂を固定する方法が最もよい。炭素繊維紙に含浸される樹脂の比率が多い場合は、プレス圧が低くても平滑にすることが容易である。このとき必要以上にプレス圧を高くすることは、多孔質電極基材としたときその組織が緻密になりすぎる、激しく変形するなどの問題が生じるのであまり好ましくない。プレス圧が高く緻密になりすぎた場合は、焼成時に発生するガスがうまく排出されず多孔質電極基材の組織を壊してしまうこともある。剛板に挟んで、又、連続ベルト装置で炭素繊維紙に含浸した樹脂の硬化を行う時は、剛板やベルトに樹脂が付着しないようにあらかじめ剥離剤を塗っておくか、炭素繊維紙と剛板やベルトとの間に離型紙を挟んで行なうことが好ましい。
<Curing and carbonization of resin>
The carbon fiber paper impregnated with the resin can be carbonized as it is. However, curing the resin before carbonization is preferable for suppressing the vaporization of the resin during carbonization and improving the strength of the porous electrode substrate. Any technique can be applied for the curing as long as the technique can uniformly heat the carbon fiber paper impregnated with the resin. Examples thereof include a method in which rigid plates are stacked from both the upper and lower surfaces of carbon fiber paper impregnated with resin and heated, a method in which hot air is blown from both the upper and lower surfaces, and a method using a continuous belt device and a continuous hot air furnace.
The cured resin is subsequently carbonized. In order to increase the conductivity of the porous electrode substrate, it is carbonized in an inert gas. Carbonization is preferably performed continuously over the entire length of the carbon fiber paper. If the electrode base material is long, not only the productivity of the electrode base material is increased, but also the subsequent process of manufacturing the membrane electrode assembly (MEA) can be performed continuously, which greatly contributes to the cost reduction of the fuel cell. can do.
Carbonization is preferably performed by continuous firing over the entire length of the carbon fiber paper in a temperature range of 1000 to 3000 ° C. in an inert treatment atmosphere. In the carbonization of the present invention, a pretreatment by firing in an inert atmosphere of about 300 to 800 ° C., which is performed before a carbonization treatment in a temperature range of 1000 to 3000 ° C. in an inert atmosphere, is performed. You can go.
It is preferable to include a step of smoothing the surface of the carbon fiber paper by heating after attaching the resin to the carbon fiber paper. The method of smoothing the carbon fiber surface is not particularly limited, and there are a method of performing hot pressing with smooth rigid plates from both the upper and lower surfaces and a method of using a continuous belt press apparatus. Among these, the method performed using a continuous belt press is preferable in that a long porous electrode substrate can be formed. If the porous electrode base material is long, not only the productivity of the porous electrode base material is increased, but the subsequent MEMBRANE ELECTRODE ASSEMBLY (MEA) manufacturing can also be continuously performed, thereby reducing the cost of the fuel cell. Can greatly contribute. Even if there is no step to smooth the surface, a porous electrode substrate having both good strength and gas permeability can be obtained, but since the porous electrode substrate has large undulations, it is porous when the cells are assembled. The contact between the porous electrode substrate and the peripheral substrate is not preferable because it is not sufficient.
As a pressing method in the continuous belt device, there are a method of applying pressure to the belt by a roll press by a linear pressure and a method of pressing by a surface pressure by a hydraulic head press, but the latter is a smoother porous electrode substrate. It is preferable in that it is obtained. In order to effectively smooth the surface, it is best to press at a temperature at which the resin is most softened, and then fix the resin by heating or cooling. When the ratio of the resin impregnated in the carbon fiber paper is large, it is easy to make it smooth even if the press pressure is low. In this case, it is not preferable to increase the press pressure more than necessary because problems such as excessively dense structure and severe deformation of the porous electrode substrate occur. If the press pressure is too high and too dense, the gas generated during firing may not be discharged well and the structure of the porous electrode substrate may be destroyed. When curing the resin impregnated in carbon fiber paper with a rigid belt device with a continuous belt device, either apply a release agent in advance to prevent the resin from adhering to the rigid plate or belt, It is preferable that the release paper is sandwiched between a rigid plate and a belt.

以下、本発明を実施例により、さらに具体的に説明する。
実施例中の各物性値等は以下の方法で測定した。
Hereinafter, the present invention will be described more specifically with reference to examples.
Each physical property value in the examples was measured by the following method.

1)曲げ破断荷重
多孔質電極基材中の炭素繊維紙の抄紙時の長手方向が試験片の長辺になるように、80×10mmのサイズに10枚切り取る。曲げ強度試験装置を用いて、支点間距離を2cmにし、歪み速度10mm/minで荷重をかけていき、試験片が破断したときの荷重を測定した。10枚の試験片の平均値である。
1) Bending fracture load Ten sheets are cut into a size of 80 × 10 mm so that the longitudinal direction of the carbon fiber paper in the porous electrode base material is the long side of the test piece. Using a bending strength test apparatus, the distance between supporting points was set to 2 cm, a load was applied at a strain rate of 10 mm / min, and the load when the test piece broke was measured. It is an average value of 10 test pieces.

2)ガス透過度
JIS規格P−8117に準拠した方法によって求められる。多孔質電極基材の試験片を3mmφの孔を有するセルに挟み、孔から1.29kPaの圧力で200mLのガスを流し、ガスが透過するのにかかった時間を測定するし、以下の式より算出した。
ガス透過度(m/sec・MPa)
=気体透過量(m3)/気体透過孔面積(m2)/透過時間(sec)/透過圧(MPa)
2) Gas permeability It is calculated | required by the method based on JIS specification P-8117. A porous electrode substrate test piece is sandwiched between cells having 3 mmφ holes, 200 mL of gas is flowed from the holes at a pressure of 1.29 kPa, and the time taken for the gas to permeate is measured. Calculated.
Gas permeability (m / sec · MPa)
= Gas permeation amount (m3) / gas permeation hole area (m2) / permeation time (sec) / permeation pressure (MPa)

3)電極基材の平均細孔半径・全細孔容積・半径10μm以下の細孔の容積・半径5μm以下の細孔の容積
水銀圧入法により、細孔容積と細孔半径の細孔分布を求め、その50%の細孔容積を示す時の半径を電極基材の平均細孔径とした。なお、用いた水銀ポロシメーターは、Quantachrome社製 Pore Master−60である。
3) Average pore radius of electrode substrate, total pore volume, volume of pores with a radius of 10 μm or less, volume of pores with a radius of 5 μm or less Using the mercury intrusion method, the pore distribution of pore volume and pore radius The radius at which the 50% pore volume was obtained was taken as the average pore diameter of the electrode substrate. The mercury porosimeter used was Pore Master-60 manufactured by Quantachrome.

4)厚み
多孔質電極基材の厚みは、厚み測定装置ダイヤルシックネスゲージ7321(ミツトヨ製)を使用し、測定した。このときの測定子の大きさは、直径10mmで測定圧力は1.5kPaで行った。
4) Thickness The thickness of the porous electrode base material was measured using a thickness measuring device dial thickness gauge 7321 (manufactured by Mitutoyo Corporation). The size of the probe at this time was 10 mm in diameter and the measurement pressure was 1.5 kPa.

5)面抵抗
多孔質電極基材中の炭素繊維紙の抄紙時の長手方向が試験片の長辺になるように、100×20mmのサイズに切り取る。電極基材の片面に2cmの間隔をあけて銅線をのせ、10mA/cm2の電流密度で電流を流した時の抵抗を測定した。
5) Sheet resistance Cut out to a size of 100 × 20 mm so that the longitudinal direction of the carbon fiber paper in the porous electrode substrate during papermaking becomes the long side of the test piece. A copper wire was placed on one side of the electrode substrate with an interval of 2 cm, and the resistance when a current was passed at a current density of 10 mA / cm 2 was measured.

6)貫通方向抵抗
多孔質電極基材の厚さ方向の電気抵抗(貫通方向抵抗)は、試料を銅板にはさみ、銅板の上下から1MPaで加圧し、10mA/cm2の電流密度で電流を流したときの抵抗値を測定し、次式より求めた。
貫通抵抗(Ω・cm2)=測定抵抗値(Ω)×試料面積(cm2)
6) Through-direction resistance The thickness direction electrical resistance (through-direction resistance) of the porous electrode substrate was obtained by sandwiching a sample between copper plates, pressurizing at 1 MPa from the top and bottom of the copper plate, and flowing current at a current density of 10 mA / cm 2. The resistance value was measured and obtained from the following equation.
Penetration resistance (Ω · cm2) = Measured resistance value (Ω) × Sample area (cm2)

7)樹脂炭化物の重量比
樹脂炭化物の重量比は、得られた多孔質電極基材の目付と使用した炭素短繊維の目付から次式より算出した。
樹脂炭化物重量比(質量%)
=[多孔質電極基材目付(g/m2)−炭素短繊維目付(g/m2)]×100÷多孔質電極基材目付(g/m2)
7) Weight ratio of resin carbide The weight ratio of the resin carbide was calculated from the following formula from the basis weight of the obtained porous electrode substrate and the basis weight of the carbon short fibers used.
Resin carbide weight ratio (mass%)
= [Porous electrode substrate weight per unit area (g / m2) −carbon short fiber basis weight per unit area (g / m2)] × 100 ÷ Porous electrode base material basis weight (g / m2)

(実施例1)
平均繊維径が7μm、平均繊維長が3mmのポリアクリロニトリル(PAN)系炭素繊維と平均繊維径が4μm、平均繊維長が3mmのPAN系炭素繊維を50:50(質量比)で混合した炭素短繊維を用意した。
有機高分子化合物として、ポリビニルアルコール(PVA)の短繊維(クラレ株式会社製VBP105−1 カット長3mm)を用意した。
さらにフィブリル状物として、ポリエチレンパルプ(三井化学株式会社製SWP 濾水度450ml、JIS P8121のパルプ濾水度試験法(1)カナダ標準型で測定)を用意した。
炭素短繊維を湿式短網連続抄紙装置のスラリータンクで水中に均一に分散解繊し、十分に分散したところにPVA短繊維およびポリエチレンパルプを炭素短繊維100質量部に対して、それぞれ13質量部、38質量部となるように均一に分散し、送り出した。
送り出されたウェブを短網板に通し、ドライヤー乾燥後、坪量28g/m2、長さ100mの炭素繊維紙Aを得た(各組成の坪量は表1に記載、以下同じ)。分散状態は良好であった。
次に炭素繊維紙Aをフェノール樹脂(フェノライトJ−325・大日本インキ化学株式会社製)の40質量%メタノール溶液が付着したローラーに炭素繊維紙を均一に片面ずつ接触させた後、連続的に熱風を吹きかけ乾燥した。坪量47g/m2の樹脂付着炭素繊維紙を得た。このとき炭素短繊維100質量部に対し、フェノール樹脂を100質量部付着した。
次に、この樹脂付着炭素繊維紙を2枚貼り合せて一対のエンドレスベルトを備えた連続式加熱プレス装置(ダブルベルトプレス装置:DBP)にて連続的に加熱し、表面が平滑化されたシートを得た。(シート厚み:200μm、幅:30cm、長さ100m)このときの予熱ゾーンでの予熱温度は150℃、予熱時間は5分であり、加熱加圧ゾーンでの温度は250℃、プレス圧力は線圧8.0×104N/mであった。なお、シートがベルトに貼り付かないように2枚の離型紙の間に挟んでDBPを通した。
その後、このシートを、窒素ガス雰囲気中にて500℃の連続焼成炉にて5分間フェノール樹脂の硬化処理および前炭素化したのち、窒素ガス雰囲気中にて2000℃の連続焼成炉において5分間加熱し、炭素化することで長さ100mの電極基材を連続的に得て、外径30cmの円筒型紙管に巻き取った。炭素繊維の分散は良好で、取り扱いやすい電極基材であった。評価結果を表に示した。
Example 1
Carbon short with a polyacrylonitrile (PAN) carbon fiber having an average fiber diameter of 7 μm and an average fiber length of 3 mm mixed with a PAN carbon fiber having an average fiber diameter of 4 μm and an average fiber length of 3 mm in a 50:50 (mass ratio) Fiber was prepared.
As an organic polymer compound, polyvinyl alcohol (PVA) short fibers (VBP 105-1 manufactured by Kuraray Co., Ltd., cut length: 3 mm) were prepared.
Further, polyethylene pulp (450 ml SWP drainage manufactured by Mitsui Chemicals, Inc., JIS P8121 pulp drainage test method (1) measured by Canadian standard type) was prepared as a fibrillar product.
Carbon short fibers are uniformly dispersed and defibrated in water in a slurry tank of a wet short net continuous paper making machine, and PVA short fibers and polyethylene pulp are each 13 parts by mass with respect to 100 parts by mass of carbon short fibers. , Uniformly dispersed so as to be 38 parts by mass, and sent out.
The fed web was passed through a short mesh plate, and after drying the dryer, carbon fiber paper A having a basis weight of 28 g / m 2 and a length of 100 m was obtained (the basis weight of each composition is described in Table 1, the same applies hereinafter). The dispersion state was good.
Next, the carbon fiber paper A was contacted uniformly with each side of the carbon fiber paper on a roller to which a 40 mass% methanol solution of phenol resin (Phenolite J-325, manufactured by Dainippon Ink and Chemicals, Inc.) was adhered, and then continuously. The product was dried by blowing hot air over it. A resin-attached carbon fiber paper having a basis weight of 47 g / m 2 was obtained. At this time, 100 mass parts of phenol resin was attached to 100 mass parts of short carbon fibers.
Next, two sheets of this resin-attached carbon fiber paper are bonded together and continuously heated by a continuous heating press apparatus (double belt press apparatus: DBP) provided with a pair of endless belts, and the surface is smoothened. Got. (Sheet thickness: 200 μm, width: 30 cm, length: 100 m) At this time, the preheating temperature in the preheating zone is 150 ° C., the preheating time is 5 minutes, the temperature in the heating and pressing zone is 250 ° C., and the press pressure is linear. The pressure was 8.0 × 10 4 N / m. The DBP was passed between two release sheets so that the sheet did not stick to the belt.
Thereafter, this sheet was cured in a nitrogen gas atmosphere for 5 minutes in a continuous baking furnace at 500 ° C. and pre-carbonized, and then heated in a continuous baking furnace at 2000 ° C. for 5 minutes in a nitrogen gas atmosphere. Then, an electrode base material having a length of 100 m was continuously obtained by carbonization, and wound around a cylindrical paper tube having an outer diameter of 30 cm. The carbon fiber dispersion was good and the electrode substrate was easy to handle. The evaluation results are shown in the table.

(実施例2〜5)
表1にそれぞれ記載された条件とする以外は、実施例1と同様に操作し、表面が平滑な多孔質電極基材を得た。評価結果を表2に示した。実施例3で得られた多孔質電極基材の細孔分布を図に示す。網状の樹脂炭化物の存在により2本のピークが見られ、細孔の分布範囲が広くなっている。さらに、この多孔質電極基材を用いて固体高分子型燃料電池の単セルを作成し、電池特性を評価したところ80℃の加湿条件において安定した性能が得られた。結果を図に示す。
(Examples 2 to 5)
A porous electrode substrate having a smooth surface was obtained in the same manner as in Example 1 except that the conditions described in Table 1 were used. The evaluation results are shown in Table 2. The pore distribution of the obtained porous electrode substrate in Example 3 is shown in FIG. Two peaks are observed due to the presence of the net-like resin carbide, and the distribution range of the pores is widened. Furthermore, when a single cell of a polymer electrolyte fuel cell was prepared using this porous electrode substrate and the battery characteristics were evaluated, stable performance was obtained under humidified conditions at 80 ° C. The results are shown in Figure 6.

(比較例1)
実施例2において、ポリエチレンパルプの添加量を0とするほかは、実施例2と同様にして、坪量26g/m2、長さ100mの炭素繊維紙を得た。分散状態は良好であった。次に、実施例2と同様にして坪量48g/m2の樹脂付着炭素繊維紙を得た。これ以降は、実施例2と同様の方法にて電極基材を得た。ガス透過性には優れているが、脆く、繊維の脱落が見られた。
(Comparative Example 1)
In Example 2, a carbon fiber paper having a basis weight of 26 g / m 2 and a length of 100 m was obtained in the same manner as Example 2 except that the addition amount of polyethylene pulp was 0. The dispersion state was good. Next, a resin-attached carbon fiber paper having a basis weight of 48 g / m 2 was obtained in the same manner as in Example 2. Thereafter, an electrode substrate was obtained in the same manner as in Example 2. The gas permeability was excellent, but it was brittle and the fibers were detached.

(比較例2)
バッチの抄紙装置に炭素短繊維100質量部に対してポリビニルアルコールの短繊維が15質量部になるように調整したスラリーを入れて攪拌し、漉き取り30g/m2の炭素繊維紙を得た。また、炭素繊短繊維100質量部に対し、フェノール樹脂を150質量部付着して坪量69g/m2の樹脂付着炭素繊維紙を得た。この樹脂付着炭素繊維紙を2枚張り合わせ、180℃にて10分間・0.2MPaにてプレスし、樹脂を硬化させた。これを不活性ガス中2000℃にて炭素化処理することにより電極基材を得た。抵抗が低く
、ガス透過度も高いサンプルであった。しかし、電池特性を実施例3のサンプルと比較したところ性能があまり高くなかった。細孔分布からも分かるが、この電極基材には小さい孔が少ないため電極内の水分の管理能があまり高くないためこのような結果になったと思われる。
(Comparative Example 2)
In a batch papermaking apparatus, a slurry adjusted so that the short fiber of polyvinyl alcohol was 15 parts by mass with respect to 100 parts by mass of the short carbon fiber was stirred and stirred to obtain a carbon fiber paper of 30 g / m 2 by scraping. Moreover, 150 mass parts of phenol resins were attached to 100 mass parts of carbon fiber short fibers to obtain resin-attached carbon fiber paper having a basis weight of 69 g / m2. Two pieces of this resin-attached carbon fiber paper were laminated and pressed at 180 ° C. for 10 minutes at 0.2 MPa to cure the resin. This was carbonized at 2000 ° C. in an inert gas to obtain an electrode substrate. The sample had low resistance and high gas permeability. However, when the battery characteristics were compared with the sample of Example 3, the performance was not so high. As can be seen from the pore distribution, this electrode substrate seems to have such a result because there are few small pores and the water management ability in the electrode is not so high.

(比較例3)
フィブリル状物として、木材パルプ(濾水度550ml)を使用した以外は、実施例1と同様の方法で電極基材を得た。表面が平滑な電極基材であったが、図2からも分かるが、この電極基材には小さい孔が少ないため電極内の水分の管理能があまり高くないため、電池にしたときの性能があまり高くない。評価結果を表に示した。
(Comparative Example 3)
An electrode substrate was obtained in the same manner as in Example 1 except that wood pulp (freeness 550 ml) was used as the fibrillar material. Although the surface of the electrode was smooth, as can be seen from FIG. 2, the electrode substrate has few small holes, so the water management ability in the electrode is not so high. Not very expensive. The evaluation results are shown in the table.

(比較例4)
炭素短繊維として、平均繊維径が4μm、平均繊維長が3mmのポリアクリロニトリル(PAN)系炭素繊維を使用した以外は、比較例3と同様の方法で電極基材を得た。表面が平滑な電極基材であったが、この電極基材には小さい孔が少ないため電極内の水分の管理能があまり高くないため、電池にしたときの性能があまり高くない。評価結果を表に示した。
(Comparative Example 4)
An electrode substrate was obtained in the same manner as in Comparative Example 3 except that polyacrylonitrile (PAN) carbon fiber having an average fiber diameter of 4 μm and an average fiber length of 3 mm was used as the short carbon fiber. Although the electrode substrate had a smooth surface, the electrode substrate has few small holes, so the water management ability in the electrode is not so high, so the performance when used in a battery is not so high. The evaluation results are shown in the table.

(比較例5)
フィブリル状物として、麻パルプ(濾水度350ml)を使用した以外は、比較例3と同様の方法で電極基材を得た。表面が平滑な電極基材であったが、この電極基材には小さい孔が少ないため電極内の水分の管理能があまり高くないため、電池にしたときの性能があまり高くない。評価結果を表に示した。
(Comparative Example 5)
An electrode substrate was obtained in the same manner as in Comparative Example 3 except that hemp pulp (freeness 350 ml) was used as the fibrillar material. Although the electrode substrate had a smooth surface, the electrode substrate has few small holes, so the water management ability in the electrode is not so high, so the performance when used in a battery is not so high. The evaluation results are shown in the table.

多孔質電極基材は、安価でかつ反応に使用される水やガスの供給および排出がスムーズに行なわれ、セル性能を発揮できる固体高分子型燃料電池用電極基材を得ることができる。   The porous electrode base material is inexpensive and can smoothly supply and discharge water and gas used in the reaction, thereby obtaining an electrode base material for a polymer electrolyte fuel cell that can exhibit cell performance.

Claims (1)

実質的に二次元平面においてランダムな方向に分散せしめられた繊維直径が3〜9μmで繊維長が2〜12mmの炭素短繊維、濾水度が400〜900mlのフィブリル化されたポリエチレン繊維10〜70質量%、およびポリビニルアルコールからなる炭素繊維紙に、炭素短繊維100質量部に対し70〜120質量部の樹脂を含浸したのち樹脂を炭素化する多孔質電極基材の製造方法。 Polyethylene fibers substantially fiber diameter which is dispersed in random directions in a two-dimensional plane fiber length in 3~9μm carbon short fibers of 2-12 mm, filtration water level is fibrillated 400~900Ml 10 to 70 The manufacturing method of the porous electrode base material which carbonizes resin after impregnating 70-120 mass parts resin with respect to 100 mass parts of short carbon fibers in the carbon fiber paper which consists of mass% and polyvinyl alcohol .
JP2010047996A 2004-06-21 2010-03-04 Porous electrode substrate and method for producing the same Active JP5260581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047996A JP5260581B2 (en) 2004-06-21 2010-03-04 Porous electrode substrate and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004182408 2004-06-21
JP2004182408 2004-06-21
JP2010047996A JP5260581B2 (en) 2004-06-21 2010-03-04 Porous electrode substrate and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005181151A Division JP2006040886A (en) 2004-06-21 2005-06-21 Porous electrode substrate and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013033187A Division JP5844760B2 (en) 2004-06-21 2013-02-22 Porous electrode substrate

Publications (2)

Publication Number Publication Date
JP2010182681A JP2010182681A (en) 2010-08-19
JP5260581B2 true JP5260581B2 (en) 2013-08-14

Family

ID=38693399

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010047996A Active JP5260581B2 (en) 2004-06-21 2010-03-04 Porous electrode substrate and method for producing the same
JP2013033187A Active JP5844760B2 (en) 2004-06-21 2013-02-22 Porous electrode substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013033187A Active JP5844760B2 (en) 2004-06-21 2013-02-22 Porous electrode substrate

Country Status (2)

Country Link
JP (2) JP5260581B2 (en)
CN (1) CN100527496C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170057428A (en) 2014-11-04 2017-05-24 미쯔비시 케미컬 주식회사 Porous electrode substrate, membrane/electrode assembly using same, and solid polymer fuel cell using same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301509B (en) * 2009-02-04 2015-11-25 三菱丽阳株式会社 Porous electrode base material, its manufacture method, film-electrode bond and polymer electrolyte fuel cell
CA2767204C (en) * 2009-07-08 2018-05-15 Mitsubishi Rayon Co., Ltd. Porous electrode substrate and method for producing the same
EP2506353B1 (en) * 2009-11-24 2018-01-17 Mitsubishi Chemical Corporation Porous electrode base material, process for production thereof, precursor sheet, film-electrode assembly, and solid polymer fuel cell
JP2011151009A (en) * 2009-12-22 2011-08-04 Mitsubishi Rayon Co Ltd Method of manufacturing porous electrode substrate
EP2637239B1 (en) * 2010-11-01 2015-12-16 Mitsubishi Rayon Co., Ltd. Porous electrode base material and process for production thereof, porous electrode base material precursor sheet, membrane-electrode assembly, and solid polymer fuel cell
US9871257B2 (en) * 2011-01-21 2018-01-16 Mitsubishi Chemical Corporation Porous electrode substrate, method for manufacturing same, membrane electrode assembly, polymer electrolyte fuel cell, precursor sheet, and fibrillar fibers
CA2825663C (en) * 2011-01-27 2023-03-21 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for manufacturing same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
JP5981205B2 (en) * 2012-04-19 2016-08-31 本田技研工業株式会社 Electrolyte membrane / electrode structure
JP5621949B1 (en) * 2013-02-13 2014-11-12 東レ株式会社 Gas diffusion layer for fuel cell and manufacturing method thereof
EP3276718B1 (en) 2015-03-25 2023-02-22 Toray Industries, Inc. Porous carbon electrode base material, method for manufacturing same, gas diffusion layer, and membrane-electrode assembly for fuel cell
JP2016195009A (en) * 2015-03-31 2016-11-17 ニッタ株式会社 Electrode for battery and biofuel battery
JP7294311B2 (en) * 2018-02-15 2023-06-20 三菱ケミカル株式会社 Hydrophilic porous carbon electrode, manufacturing method thereof, and redox flow battery
CN109594397A (en) * 2018-11-30 2019-04-09 浙江金昌特种纸股份有限公司 A kind of carbon fiber paper papermaking process
KR20200068178A (en) * 2018-12-05 2020-06-15 주식회사 제이앤티지 Carbon substrate for gas diffusion layer including carbon fibers with unidirectional orientation and gas diffusion layer emplying the same
EP4002531A4 (en) * 2019-07-18 2023-09-06 Sumitomo Electric Industries, Ltd. Redox flow battery cell, cell stack and redox flow battery system
JP7286063B2 (en) * 2019-07-18 2023-06-05 住友電気工業株式会社 Redox flow battery cell, cell stack, and redox flow battery system
KR102203515B1 (en) * 2020-02-28 2021-01-14 서울대학교산학협력단 Method of preparing electrodes for lithium secondary battery
JP7368283B2 (en) * 2020-03-13 2023-10-24 帝人株式会社 Manufacturing method and manufacturing device for carbon fiber electrode base material
CN112663189A (en) * 2020-12-08 2021-04-16 中国科学院山西煤炭化学研究所 Mixed yarn and manufacturing method thereof, carbon paper and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119820A (en) * 1984-07-09 1986-01-28 Oji Paper Co Ltd Production of porous carbon plate
JPH05325984A (en) * 1992-05-25 1993-12-10 Osaka Gas Co Ltd Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell
JP3547013B2 (en) * 1993-04-08 2004-07-28 松下電器産業株式会社 Electrode for polymer electrolyte fuel cell and fuel cell using the same
JP4780814B2 (en) * 1998-12-15 2011-09-28 三洋電機株式会社 Fuel cell
WO2001056103A1 (en) * 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JP2002270191A (en) * 2001-03-08 2002-09-20 Mitsubishi Rayon Co Ltd Carbon electrode material and manufacturing method thereof
JP2003183994A (en) * 2001-10-09 2003-07-03 Mitsubishi Rayon Co Ltd Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
JP2004124267A (en) * 2002-09-30 2004-04-22 Toray Ind Inc Carbon fiber woven fabric, gas diffuser, membrane-electrode assembly and fuel cell
JP2006040886A (en) * 2004-06-21 2006-02-09 Mitsubishi Rayon Co Ltd Porous electrode substrate and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170057428A (en) 2014-11-04 2017-05-24 미쯔비시 케미컬 주식회사 Porous electrode substrate, membrane/electrode assembly using same, and solid polymer fuel cell using same
US10727497B2 (en) 2014-11-04 2020-07-28 Mitsubishi Chemical Corporation Porous electrode substrate, membrane-electrode assembly using same, and polymer electrolyte fuel cell using same

Also Published As

Publication number Publication date
JP5844760B2 (en) 2016-01-20
JP2010182681A (en) 2010-08-19
CN100527496C (en) 2009-08-12
JP2013140803A (en) 2013-07-18
CN101002354A (en) 2007-07-18

Similar Documents

Publication Publication Date Title
JP5260581B2 (en) Porous electrode substrate and method for producing the same
JP2006040886A (en) Porous electrode substrate and its manufacturing method
JP3612518B2 (en) Porous carbon electrode substrate, method for producing the same, and carbon fiber paper
WO2005124907A1 (en) Porous electrode base material and process for producing the same
JP4672080B2 (en) Water transfer plate and method of use
JP5702218B2 (en) Porous electrode substrate for polymer electrolyte fuel cell
JP7136252B2 (en) Electrodes for redox flow batteries and redox flow batteries
JP4266699B2 (en) Porous electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP4730888B2 (en) Porous electrode substrate and method for producing the same
JPH076775A (en) Electrolyte holding plate and manufacture thereof
JP4187683B2 (en) Porous carbon electrode substrate for fuel cells
JP5398297B2 (en) Method for producing porous carbon electrode substrate
JP5728802B2 (en) Porous carbon electrode substrate and method for producing the same
JP4801354B2 (en) Electrode base material for polymer electrolyte fuel cell and method for producing the same
JP2015096464A (en) Porous carbon electrode base material
JP2006004858A5 (en)
JP2006004858A (en) Porous electrode base material and its manufacturing method
JP5250328B2 (en) Method for producing carbonaceous electrode substrate
JP2011040386A (en) Porous carbon electrode base material for fuel cell
JP2010182682A (en) Method for manufacturing porous electrode substrate
JP5560977B2 (en) Method for producing porous carbon electrode substrate
JP2009117325A (en) Porous electrode substrate and fuel cell using same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5260581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250