JPH05325984A - Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell - Google Patents

Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell

Info

Publication number
JPH05325984A
JPH05325984A JP4158615A JP15861592A JPH05325984A JP H05325984 A JPH05325984 A JP H05325984A JP 4158615 A JP4158615 A JP 4158615A JP 15861592 A JP15861592 A JP 15861592A JP H05325984 A JPH05325984 A JP H05325984A
Authority
JP
Japan
Prior art keywords
electrode substrate
weight
fiber
binder
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4158615A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tajiri
博幸 田尻
Shoji Doi
祥司 土肥
Kazuo Okamoto
一夫 岡本
Satoru Hamaoka
覚 浜岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4158615A priority Critical patent/JPH05325984A/en
Publication of JPH05325984A publication Critical patent/JPH05325984A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide an electrode substrate for a fuel cell wherein the substrate is excellent in gas transmission, electric conductivity, mechanical strength, flexibility and cutting workability to also control a fine hole and its distribution by compressing a uniform premolded carbon material molded thereafter baked. CONSTITUTION:Fiber changeable into carbon fiber or carbon fiber short fiber of 10 to 60wt.%, 10 to 60wt.% binder of to to 85wt.% carbonizing rate, 15 to 60wt.% organic granular substance and 10 to 30wt.% pulp and/or paper binder are used to obtain a premolded material having a paper structure. Thereafter by heating the premolded material, a uniform molded material can be obtained without segregation of an organic granular substance. By changing this molded material into carbon or graphite, an electrode substrate for a fuel cell is obtained. When a hardening object of thermosetting resin without softening by heat is used as the organic granular substance, the electrode substrate having more excellent performance is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リン酸型燃料電池など
の電極板を作成する上で有用な炭素質予備成形体とその
製造方法並びに燃料電池用電極基板の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbonaceous preform useful for preparing an electrode plate for a phosphoric acid fuel cell, a method for producing the same, and a method for producing an electrode substrate for a fuel cell.

【0002】[0002]

【従来の技術】燃料電池は、他の発電装置と異なり、S
Ox 、NOx 及び粉塵などの公害物質の発生が極めて少
なく、騒音発生源も少ないなどの特徴を有している。こ
のような燃料電池のうちリン酸型燃料電池は、電解液の
両側にポーラスな陰極と陽極を設けて単位セルを構成
し、各単位セルをセパレータを介して積層した構造を有
する。前記陰極および陽極には、電気エネルギーへの変
換効率を高めるため、細孔分布を任意にコントロールで
き、ガス透過性が高いことが要求される。さらに、電気
伝導性、機械的強度および作動温度における耐リン酸液
性などに加えて、高い熱伝導性が要求される。
2. Description of the Related Art Fuel cells, unlike other power generators,
It is characterized by extremely low emissions of pollutants such as Ox, NOx and dust, and low noise sources. Among such fuel cells, the phosphoric acid fuel cell has a structure in which a porous cathode and an anode are provided on both sides of an electrolytic solution to form a unit cell, and each unit cell is laminated via a separator. The cathode and the anode are required to be capable of controlling the pore distribution arbitrarily and have high gas permeability in order to enhance the conversion efficiency into electric energy. Furthermore, high thermal conductivity is required in addition to electrical conductivity, mechanical strength and resistance to phosphoric acid at operating temperature.

【0003】前記燃料電池電極板の製造方法として、従
来、フェノール樹脂などの結合剤と、炭素繊維と、粉粒
状の熱可塑性樹脂を特定の割合で乾式混合し、混合物を
熱ロールや熱プレスによりシート状に加圧成形し、炭化
又は黒鉛化処理する方法が採用されている(特公平1−
36670号公報)。
As a method for producing the fuel cell electrode plate, conventionally, a binder such as a phenol resin, carbon fiber, and a granular thermoplastic resin are dry-mixed in a specific ratio, and the mixture is heated by a hot roll or a hot press. A method in which a sheet is pressure-molded and carbonized or graphitized is adopted (Japanese Patent Publication No.
36670).

【0004】しかし、この方法では、炭素繊維と、気孔
形成剤としての熱可塑性樹脂とが、混合性の悪い繊維状
と粉粒状であるため、乾式混合する際、炭素繊維と熱可
塑性樹脂とが偏析し易く、均質な混合物を得るのが困難
である。また、粉末状混合物の加圧成形により、偏析し
た熱可塑性樹脂が凝集し、成形物がさらに不均質となり
易い。そのため、細孔径分布をコントロールすることが
できない。特に厚みの薄い電極板を得る場合には、均質
な細孔を形成させるのが困難である。
However, in this method, since the carbon fiber and the thermoplastic resin as the pore-forming agent are in a fibrous form and powdery granules having poor miscibility, the carbon fiber and the thermoplastic resin are mixed during dry mixing. It tends to segregate and it is difficult to obtain a homogeneous mixture. In addition, when the powder mixture is pressure-molded, the segregated thermoplastic resin is aggregated, and the molded product is likely to become more inhomogeneous. Therefore, the pore size distribution cannot be controlled. Especially when obtaining a thin electrode plate, it is difficult to form uniform pores.

【0005】より具体的には、前記の方法において厚み
が1mm以上である場合には、大きさが1000mm×
1000mm程度であっても、電極板の細孔が比較的均
質であるが、厚みが1mm未満では均質な細孔が形成さ
れない。さらに、炭素繊維の短繊維、結合剤及び粉粒状
の有機物質とを乾式混合した粉末状であるため、加圧成
形時に金型に均一に充填するのが困難であり、作業性が
極めて悪い。
More specifically, in the above method, when the thickness is 1 mm or more, the size is 1000 mm ×
Even if the thickness is about 1000 mm, the pores of the electrode plate are relatively homogeneous, but if the thickness is less than 1 mm, the homogeneous pores are not formed. Furthermore, since it is in the form of powder obtained by dry-mixing short fibers of carbon fiber, a binder, and a granular organic material, it is difficult to uniformly fill the mold during pressure molding, and the workability is extremely poor.

【0006】また、上記方法では、混合物を熱ロールや
熱プレスによりシート状に加熱加圧成形すると、偏析し
た熱可塑性樹脂が軟化し、成形板に反りや、膨れが発生
しやすく、特に脱型時にその発生が著しい。更に、この
成形板を焼成により炭化又は黒鉛化処理する際に、再び
熱可塑性樹脂が軟化、分解するため、焼成板に反り及び
膨れが発生し易く、均一性、寸法安定性が低下し、最終
的に高品質の電極板の歩留まりが悪い。
Further, in the above method, when the mixture is heated and pressure-molded into a sheet by a hot roll or a hot press, the segregated thermoplastic resin is softened, and the molded plate is apt to warp or swell. Occurrence is sometimes remarkable. Furthermore, when the molded plate is carbonized or graphitized by firing, the thermoplastic resin is softened and decomposed again, so that the fired plate is apt to warp and swell, and the uniformity and dimensional stability are deteriorated. The yield of high quality electrode plates is poor.

【0007】しかも、上記方法においては、気孔形成剤
としての熱可塑性樹脂の粒径が細孔径分布と直接関わる
ところ、加熱加圧成形時及び焼成時の二度に亘って熱可
塑性樹脂が軟化するため、熱硬化性樹脂が偏析している
ことと相まって、細孔径が大きく変化し、細孔径分布が
不均質になり易い。その結果、細孔径分布を任意に精度
よくコントロールできず、ガス透過性、電気伝導性、熱
伝導率及び機械的強度の優れた電極板を得ることができ
ない。
Moreover, in the above method, since the particle size of the thermoplastic resin as the pore-forming agent is directly related to the pore size distribution, the thermoplastic resin is softened twice during the heating / pressurizing and during the firing. Therefore, coupled with the segregation of the thermosetting resin, the pore size changes greatly, and the pore size distribution is likely to be inhomogeneous. As a result, the pore size distribution cannot be controlled arbitrarily accurately, and an electrode plate having excellent gas permeability, electrical conductivity, thermal conductivity and mechanical strength cannot be obtained.

【0008】一方、リブ付き炭素電極を得る方法とし
て、炭素繊維をバインダーと共に抄紙した炭素繊維シー
トを焼成し、得られる炭素板を機械的に溝切削加工する
方法が知られている。しかし、この方法で得られる炭素
板は、非常に堅いため、溝切削加工が容易ではなく、
又、柔軟性が小さいため、破損し易く、取扱い作業性が
悪い。
On the other hand, as a method of obtaining a ribbed carbon electrode, there is known a method of firing a carbon fiber sheet prepared by making carbon fibers together with a binder and mechanically grooving the resulting carbon plate. However, the carbon plate obtained by this method is extremely hard, so it is not easy to perform groove cutting,
In addition, since it has little flexibility, it is easily damaged and the workability is poor.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明の目的
は、細孔径が小さく細孔径分布を任意にコントロールで
き、ガス透過性、電気伝導性、機械的強度のみならず柔
軟性及び切削加工性に優れる均質な燃料電池用電極基板
を製造する上で有用な炭素質予備成形体を提供すること
にある。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to have a small pore size and to control the pore size distribution arbitrarily, and not only gas permeability, electrical conductivity, mechanical strength, but also flexibility and machinability. Another object of the present invention is to provide a carbonaceous preform which is useful in producing a highly uniform electrode substrate for a fuel cell.

【0010】本発明の他の目的は、燃料電池用電極基板
の細孔径とその分布を任意に精度よくコントロールでき
る炭素質予備成形体の製造方法を提供することにある。
Another object of the present invention is to provide a method for producing a carbonaceous preform capable of controlling the pore size and the distribution of the pores of the fuel cell electrode substrate with high accuracy.

【0011】本発明のさらに他の目的は、前記のごとき
優れた特性を有する均質な燃料電池用電極基板を効率よ
く製造する方法を提供することにある。
Still another object of the present invention is to provide a method for efficiently producing a homogeneous fuel cell electrode substrate having the above-mentioned excellent characteristics.

【0012】[0012]

【発明の構成】前記目的を達成するため、本発明者等
は、鋭意検討の結果、炭素繊維、結合剤、有機粒状物質
および繊維状バインダーを含む抄紙構造の炭素質予備成
形体を圧縮成形し、かつ炭化又は黒鉛化する場合には、
有機粒状物質の偏析を防止でき、均質で、柔軟性および
切削加工性に優れた炭素質基板が得られることを見いだ
し、本発明を完成した。
In order to achieve the above object, the inventors of the present invention have, as a result of diligent studies, compression-molded a carbonaceous preform having a papermaking structure containing carbon fibers, a binder, an organic particulate matter and a fibrous binder. When carbonizing or graphitizing,
The present invention has been completed by finding that a carbonaceous substrate that can prevent segregation of organic particulate matter, is homogeneous, and is excellent in flexibility and machinability is completed.

【0013】すなわち、本発明は、炭素繊維化可能な繊
維又は炭素繊維の短繊維、炭化収率40〜85重量%の
結合剤、炭化収率30重量%以下の有機粒状物質、およ
び繊維状バインダーを含む抄紙構造の炭素質予備成形体
を提供する。
That is, the present invention provides a carbon fiber-forming fiber or a short fiber of carbon fiber, a binder having a carbonization yield of 40 to 85% by weight, an organic particulate substance having a carbonization yield of 30% by weight or less, and a fibrous binder. There is provided a carbonaceous preform having a papermaking structure containing.

【0014】前記予備成形体において、有機粒状物質は
熱硬化性樹脂硬化物であるのが好ましく、有機粒状物質
の粒径は、50〜300μmであるのが好ましい。
In the preform, the organic particulate matter is preferably a thermosetting resin cured product, and the particle size of the organic particulate matter is preferably 50 to 300 μm.

【0015】また、本発明は、炭素繊維化可能な繊維又
は炭素繊維の短繊維、炭化収率40〜85重量%の結合
剤、炭化収率30重量%以下の有機粒状物質、および繊
維状バインダーを含むスラリーを吸引成形する抄紙構造
の炭素質予備成形体の製造方法を提供する。
The present invention also provides carbon fibers or short fibers of carbon fibers, a binder having a carbonization yield of 40 to 85% by weight, an organic particulate substance having a carbonization yield of 30% by weight or less, and a fibrous binder. Provided is a method for producing a carbonaceous preform having a papermaking structure, which comprises suction-forming a slurry containing

【0016】さらに、本発明は、上記予備成形体を圧縮
成形し、且つ炭化または黒鉛化する燃料電池用電極基板
の製造方法を提供する。
Further, the present invention provides a method for producing an electrode substrate for a fuel cell, which comprises compression-molding the preform and carbonizing or graphitizing it.

【0017】なお、本明細書において、炭化とは、炭素
化可能な成分を、例えば、450〜1500℃程度の温
度で焼成処理することを言う。黒鉛化とは、例えば、1
500〜3000℃程度の温度で焼成することを言い、
黒鉛の結晶構造を有していないときでも黒鉛化の概念に
含める。また、炭化収率とは、炭素化可能な成分を炭化
又は黒鉛化したときの残炭率を言う。
In the present specification, carbonization means that a carbonizable component is calcined at a temperature of, for example, about 450 to 1500 ° C. Graphitization means, for example, 1
It means firing at a temperature of about 500 to 3000 ° C.,
It is included in the concept of graphitization even when it does not have the crystal structure of graphite. In addition, the carbonization yield refers to the residual carbon rate when carbonizable components are carbonized or graphitized.

【0018】炭素繊維とは炭化又は黒鉛化された繊維を
言う。耐炎化処理とは、ピッチ系繊維以外の繊維を、例
えば、酸素存在下、200〜450℃程度の温度で加熱
して表面に耐熱層を形成し、焼成時の溶融を防止する処
理を言う。不融化処理とは、例えば、ピッチ系繊維を、
酸素存在下、200〜450℃程度の温度で加熱して表
面に耐熱層を形成し、焼成時の溶融を防止する処理を言
う。
Carbon fiber refers to carbonized or graphitized fiber. The flameproofing treatment is a treatment of heating fibers other than pitch-based fibers at a temperature of about 200 to 450 ° C. in the presence of oxygen to form a heat-resistant layer on the surface and preventing melting during firing. The infusibilizing treatment, for example, pitch-based fiber,
In the presence of oxygen, it is a treatment of heating at a temperature of about 200 to 450 ° C. to form a heat resistant layer on the surface and preventing melting during firing.

【0019】本発明の主たる特徴は、(a) 炭素質予備成
形体が均質性に優れ、有機粒状物質の偏析を防止する上
で有用な抄紙構造を有する点、(b) 抄紙構造の炭素質予
備成形体を用い、電極基板の均質性、ガス透過性、電気
伝導性、機械的強度を高めると共に、細孔径とその分布
をコントロールする点、(c) 繊維状バインダーを用いる
ことにより、均一で表面の平坦な且つ柔軟性の大きな電
極基板が得られる点にある。
The main features of the present invention are: (a) the carbonaceous preform has excellent homogeneity and has a papermaking structure useful for preventing segregation of organic particulate matter, and (b) carbonaceous material having a papermaking structure. Using a preform to improve the homogeneity, gas permeability, electrical conductivity, and mechanical strength of the electrode substrate, and to control the pore size and its distribution. (C) By using a fibrous binder, The point is that an electrode substrate having a flat surface and large flexibility can be obtained.

【0020】本発明において、炭素繊維化可能な繊維と
しては、炭素繊維の素材となり得る種々の繊維、例え
ば、ポリアクリロニトリル繊維、フェノール樹脂繊維、
レーヨン、セルロース系繊維、ピッチ系繊維などが挙げ
られる。炭素繊維化可能な繊維は、耐炎化処理又は不融
化処理されていてもよい。炭素繊維としては、前記炭素
繊維化可能な繊維を炭化又は黒鉛化した繊維が挙げられ
る。炭素繊維化可能な繊維や炭素繊維は一種又は二種以
上使用できる。
In the present invention, the carbon fiber-forming fibers include various fibers which can be used as a raw material for carbon fibers, for example, polyacrylonitrile fiber, phenol resin fiber,
Examples include rayon, cellulosic fibers, pitch fibers and the like. The carbon fiber-formable fiber may be subjected to a flameproofing treatment or an infusibilization treatment. Examples of the carbon fibers include fibers obtained by carbonizing or graphitizing the above-mentioned carbon fiber-forming fibers. One kind or two or more kinds of carbon fiber and carbon fiber can be used.

【0021】本発明では、炭素繊維化可能な繊維又は炭
素繊維の短繊維が用いられる。短繊維の繊維長は、例え
ば0.05mm〜10mm、好ましくは0.5mm〜3
mm程度である。炭素繊維の繊維長は、電極基板の曲げ
強度、電気伝導性や熱伝導度に大きく寄与する。繊維長
が10mmを越えると細孔径分布をコントロールしにく
くなり、0.05mm未満では強度などが低下し易い。
In the present invention, carbon fiber-forming fibers or carbon fiber short fibers are used. The fiber length of the short fibers is, for example, 0.05 mm to 10 mm, preferably 0.5 mm to 3
It is about mm. The fiber length of the carbon fiber greatly contributes to the bending strength, electric conductivity and thermal conductivity of the electrode substrate. When the fiber length exceeds 10 mm, it becomes difficult to control the pore size distribution, and when the fiber length is less than 0.05 mm, the strength and the like are likely to decrease.

【0022】炭素繊維化可能な繊維又は炭素繊維の割合
は、電極基板の強度や導電性などに応じて選択でき、例
えば、10〜60重量%、好ましくは20〜45重量%
程度である。10重量%未満では電極基板の電気伝導
度、熱伝導度及び曲げ強度が低下し、60重量%を越え
る場合には、気孔率が小さくなり易い。
The ratio of carbon fiber or carbon fiber that can be carbon fiber can be selected according to the strength and conductivity of the electrode substrate, and is, for example, 10 to 60% by weight, preferably 20 to 45% by weight.
It is a degree. When it is less than 10% by weight, the electric conductivity, thermal conductivity and bending strength of the electrode substrate are lowered, and when it exceeds 60% by weight, the porosity tends to be small.

【0023】結合剤としては、例えば、フェノール樹
脂、フラン樹脂などの熱硬化性樹脂;ポリアクリロニト
リルなどの熱可塑性樹脂;石炭又は石油ピッチなどが使
用できる。これらの結合剤のうち、熱硬化性樹脂、特に
フェノール樹脂が好ましい。結合剤の炭化収率は、電極
基板の機械的強度の低下を防止し、気孔率を調整するた
め、40〜85重量%、好ましくは50〜75重量%程
度である。なお、前記フェノール樹脂の炭化収率は、通
常65〜75重量%程度と大きい。これらの結合剤は少
なくとも一種使用できる。
As the binder, for example, thermosetting resin such as phenol resin and furan resin; thermoplastic resin such as polyacrylonitrile; coal or petroleum pitch can be used. Of these binders, thermosetting resins, especially phenolic resins, are preferred. The carbonization yield of the binder is 40 to 85% by weight, preferably 50 to 75% by weight, in order to prevent the mechanical strength of the electrode substrate from being lowered and to adjust the porosity. The carbonization yield of the phenolic resin is usually as large as about 65 to 75% by weight. At least one of these binders can be used.

【0024】結合剤の割合は、電極基板の強度などに応
じて適当に選択でき、例えば、10〜60重量%、好ま
しくは15〜40重量%程度である。10重量%未満で
は機械的強度が低下し、60重量%を越える場合には気
孔率が小さくなり易く、細孔径分布も不均質になり易
い。
The proportion of the binder can be appropriately selected depending on the strength of the electrode substrate, and is, for example, 10 to 60% by weight, preferably 15 to 40% by weight. If it is less than 10% by weight, the mechanical strength tends to be low, and if it exceeds 60% by weight, the porosity tends to be small and the pore size distribution tends to be inhomogeneous.

【0025】本発明における有機粒状物質としては、炭
化収率30重量%以下の有機粒状物質を用いる。炭化収
率が30%を越えると、微細で均一な気孔の形成や気孔
率の調整が困難である。
As the organic particulate matter in the present invention, an organic particulate matter having a carbonization yield of 30% by weight or less is used. If the carbonization yield exceeds 30%, it is difficult to form fine and uniform pores and adjust the porosity.

【0026】このような有機粒状物質としては、例え
ば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステ
ル樹脂、メラミン樹脂、ジアリルフタレート樹脂、ユリ
ア樹脂及びポリウレタンなどの熱硬化性樹脂の粉粒体
や、これらの熱硬化性樹脂の硬化物からなる粉粒体;ポ
リ酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリビ
ニルアルコール、ポリ塩化ビニル、アクリル系ポリマ
ー、ポリエステル、ナイロン、ポリスチレン、スチレン
−ブタジエン共重合体、アクリロニトリル−ブタジエン
−スチレン共重合体、スチレン−アクリル共重合体など
のスチレン系ポリマー、ポリカーボネート、ポリアセタ
ールなどの合成樹脂、ロジンなどの天然物とその誘導体
などの熱可塑性樹脂の粉粒体等が挙げられる。
Examples of such organic particulate matter include powdery particles of thermosetting resin such as phenol resin, epoxy resin, unsaturated polyester resin, melamine resin, diallyl phthalate resin, urea resin and polyurethane, and these. Granules made of a cured product of a thermosetting resin; polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, polyvinyl chloride, acrylic polymer, polyester, nylon, polystyrene, styrene-butadiene copolymer, acrylonitrile. Examples thereof include styrene-based polymers such as butadiene-styrene copolymer and styrene-acryl copolymer, synthetic resins such as polycarbonate and polyacetal, and powders of thermoplastic resin such as natural products such as rosin and derivatives thereof.

【0027】なお、前記熱硬化性樹脂のうち、フェノー
ル樹脂としては、前記結合剤と異なり、炭化収率30%
以下のものが使用される。これらの有機粒状物質は一種
又は二種以上混合して使用できる。
Among the thermosetting resins, the phenol resin is different from the binder in the carbonization yield of 30%.
The following are used: These organic particulate materials may be used alone or in combination of two or more.

【0028】これらの有機粒状物質は、炭素材に細孔を
生成させる気孔形成剤として機能する。有機粒状物質の
なかで、熱硬化性樹脂の硬化物からなる粉粒体が好まし
い。特に、エポキシ樹脂、不飽和ポリエステル樹脂など
の硬化物の粉粒体が好ましい。熱硬化性樹脂の硬化物か
らなる粉粒体を用いると、気孔率及び細孔径を精度よく
コントロールできる。すなわち、熱硬化性樹脂の硬化物
からなる粉粒体は加熱により軟化しないため、硬化物の
粒径とその量に対応する細孔径の気孔が形成される。そ
のため、細孔径とその分布を任意にコントロールされた
電極板が得られる。また、同様な理由から、均質で、ガ
ス透過性、電気伝導度及び機械強度の優れた電極板を得
ることができる。
These organic particulate materials function as a pore-forming agent that creates pores in the carbon material. Among the organic particulate materials, a powder or granular material made of a cured product of a thermosetting resin is preferable. In particular, powder particles of a cured product such as an epoxy resin and an unsaturated polyester resin are preferable. By using a powder or granular material made of a cured product of a thermosetting resin, the porosity and the pore size can be controlled with high accuracy. That is, since the powder or granular material made of the cured product of the thermosetting resin is not softened by heating, pores having pore diameters corresponding to the particle size and amount of the cured product are formed. Therefore, an electrode plate in which the pore diameter and its distribution are arbitrarily controlled can be obtained. Further, for the same reason, it is possible to obtain a homogeneous electrode plate having excellent gas permeability, electrical conductivity and mechanical strength.

【0029】さらに、前記硬化物の粉粒体が加熱加圧成
形時に軟化しないため、厚みが1mm以下と薄く、10
00mm×1000mm程度の大きな面積であっても、
脱型時などに反り及び膨れが発生せず、均一性及び寸法
安定性の優れた電極基板が得られる。また、炭化又は黒
鉛化処理時にも気孔形成剤は再軟化しないため、電極板
の反り、膨れ、割れ等が発生せず製造工程での歩留まり
が非常に高い。
Furthermore, since the powder and granules of the cured product do not soften during heat and pressure molding, the thickness is as thin as 1 mm or less and 10
Even with a large area of about 00 mm × 1000 mm,
Warping and swelling do not occur during demolding, and an electrode substrate having excellent uniformity and dimensional stability can be obtained. Moreover, since the pore-forming agent is not re-softened during the carbonization or graphitization treatment, the electrode plate does not warp, swell, or crack, and the yield in the manufacturing process is very high.

【0030】上記粒状物質の粒径は、所望する細孔径な
どに応じて選択できるが、通常、50〜300μm程度
であり、好ましくは100〜250μmである。有機粒
状物質として、全体の60重量%以上が50〜300μ
mの粒径を有しているものが好ましい。
The particle size of the above-mentioned granular material can be selected according to the desired pore size, etc., but is usually about 50 to 300 μm, preferably 100 to 250 μm. As the organic particulate matter, 60% by weight or more of the whole is 50 to 300 μ.
Those having a particle size of m are preferred.

【0031】上記有機粒状物質の割合は、所望する気孔
率などに応じて適当に選択でき、例えば、15〜60重
量%、好ましくは20〜55重量%である。この範囲を
外れると、電極板の気孔率及び曲げ強度のいずれか一方
の特性が低下する。
The proportion of the above organic particulate matter can be appropriately selected according to the desired porosity, and is, for example, 15 to 60% by weight, preferably 20 to 55% by weight. If it deviates from this range, either one of the porosity and bending strength of the electrode plate deteriorates.

【0032】本発明においては、繊維状バインダーが使
用される。
In the present invention, a fibrous binder is used.

【0033】繊維状バインダーとしては、メカニカルパ
ルプ、化学パルプ、半化学パルプ等のパルプ;ポリビニ
ルアルコール繊維、ポリアクリロニトリル繊維、レーヨ
ン、アセテート、ポリオレフィン繊維、アクリル繊維、
ポリエステル繊維、ポリアミド繊維、ポリ塩化ビニル繊
維、ポリ塩化ビニリデン繊維、モダクリル繊維、ポリフ
ルオロカーボン繊維、ポリウレタン繊維等の合成繊維な
どが挙げられる。なお、前記炭素繊維化可能な繊維を用
いる場合には、繊維状バインダーとして、炭素繊維化可
能な繊維以外のものが用いられる。
As the fibrous binder, pulp such as mechanical pulp, chemical pulp, semi-chemical pulp, etc .; polyvinyl alcohol fiber, polyacrylonitrile fiber, rayon, acetate, polyolefin fiber, acrylic fiber,
Examples thereof include polyester fibers, polyamide fibers, polyvinyl chloride fibers, polyvinylidene chloride fibers, modacrylic fibers, polyfluorocarbon fibers, synthetic fibers such as polyurethane fibers. When the carbon fiber-convertible fiber is used, a fiber-like binder other than the carbon fiber-convertible fiber is used.

【0034】これらの繊維状バインダーは単独または組
合せて用いることができる。好ましい組合せには、パル
プとポリビニルアルコール繊維などの合成繊維との組合
せなどが含まれる。
These fibrous binders can be used alone or in combination. Preferred combinations include pulp and synthetic fibers such as polyvinyl alcohol fibers.

【0035】これらの繊維状バインダーは、吸引成形法
などにより抄紙構造の予備成形体を得る際に、炭素繊維
化可能な繊維又は炭素繊維と絡み合って、これらの繊維
をランダムに配向させる繋ぎとして作用する。そのた
め、均一で表面の平坦な炭素電極を容易に得ることがで
きる。また得られる電極基板の柔軟性が大きいため、切
削加工時に、欠け、割れ等の損傷が少なく、リブ付炭素
電極を高い生産効率で製造することができる。
These fibrous binders, when obtaining a preform having a papermaking structure by a suction molding method or the like, are entangled with carbon fiber-forming fibers or carbon fibers to act as a link for randomly orienting these fibers. To do. Therefore, a uniform carbon electrode having a flat surface can be easily obtained. In addition, since the obtained electrode substrate has a large flexibility, damage such as chipping or cracking during the cutting process is small, and the ribbed carbon electrode can be manufactured with high production efficiency.

【0036】本発明の炭素質予備成形体は、炭素繊維、
結合剤、有機粒状物質および繊維状バインダーを含む抄
紙構造を有する。抄紙構造とは、和紙の如く、繊維がラ
ンダムに配向している構造を意味する。このような予備
成形体は、例えば、吸引成形法により得ることができ
る。前記吸引成形法としては、例えば、(1)前記成分
を含むスラリーを多数の吸引孔が形成された吸引成形型
により吸引し、吸引成形型の表面に前記成分を堆積させ
る方法、(2)吸引成形型内にスラリーを注入して吸引
する方法などが採用できる。吸引成形法により得られた
吸引成形体の密度は、吸引圧により容易にコントロール
できる。
The carbonaceous preform of the present invention comprises carbon fiber,
It has a papermaking structure containing a binder, organic particulate matter and a fibrous binder. The papermaking structure means a structure in which fibers are randomly oriented, like Japanese paper. Such a preform can be obtained by, for example, a suction molding method. Examples of the suction molding method include (1) a method of sucking a slurry containing the components with a suction molding die having a large number of suction holes, and depositing the components on the surface of the suction molding die, (2) suction A method of injecting the slurry into the molding die and sucking the slurry can be adopted. The density of the suction molded body obtained by the suction molding method can be easily controlled by the suction pressure.

【0037】なお、スラリーの調製に際しては、炭素繊
維を叩解し、前記短繊維としてもよい。スラリーの固形
分濃度は、吸引成形性を損わない範囲で選択でき、例え
ば、0.1〜2重量%程度である。また、スラリーに
は、前記炭素繊維、結合剤、有機粒状物質および繊維状
バインダーを均一に分散させるため、分散剤、安定剤、
粘度調整剤、沈降防止剤などを添加してもよく、増粘
剤、紙力増強剤、凝集作用を有する界面活性剤、特に高
分子凝集剤や歩留り向上剤などの種々の添加剤を添加し
てもよい。
When preparing the slurry, the carbon fibers may be beaten to form the short fibers. The solid content concentration of the slurry can be selected within a range that does not impair the suction moldability, and is, for example, about 0.1 to 2% by weight. Further, in the slurry, in order to uniformly disperse the carbon fibers, the binder, the organic particulate matter and the fibrous binder, a dispersant, a stabilizer,
Viscosity modifiers, anti-settling agents, etc. may be added, and various additives such as thickeners, paper strength enhancers, surfactants having an aggregating action, especially polymer aggregating agents and retention aids may be added. May be.

【0038】吸引成形型から脱型した炭素質予備成形体
は、通常、加熱乾燥される。湿潤状態の炭素質予備成形
体の加熱乾燥は、常圧又は減圧下50〜120℃程度の
温度で行うことができる。
The carbonaceous preform removed from the suction mold is usually heated and dried. The carbonaceous preform in a wet state can be dried by heating at atmospheric pressure or reduced pressure at a temperature of about 50 to 120 ° C.

【0039】前記のような吸引成形法によると、従来の
乾式混合法では均一に混合することが困難な繊維状物質
と粉粒状物質を用いても、繊維状物質や粉粒状物質が偏
析せず、均質な炭素質予備成形体が得られる。また、炭
素質予備成形体を圧縮成形しても、成形体の均質性は維
持される。従って、有機粒状物質として熱により軟化す
る熱可塑性樹脂を用いても、可塑性樹脂の偏析に起因し
て加熱加圧成形及び焼成時に生じる、成形体や電極板の
反りや膨れを著しく抑制でき、成形体や電極板の均一性
を高めることができる。
According to the suction molding method as described above, even if a fibrous substance and a granular substance which are difficult to be uniformly mixed by the conventional dry mixing method are used, the fibrous substance and the granular substance are not segregated. Thus, a homogeneous carbonaceous preform can be obtained. Even if the carbonaceous preform is compression-molded, the homogeneity of the compact is maintained. Therefore, even if a thermoplastic resin that is softened by heat is used as the organic particulate matter, the warpage or swelling of the molded body or the electrode plate, which occurs during the heating and pressure molding and firing due to the segregation of the plastic resin, can be significantly suppressed, The uniformity of the body and electrode plate can be improved.

【0040】また、炭素質予備成形体を圧縮成形する場
合には、厚みが1mm未満であっても組成、密度及び厚
みが均質な成形体が得られる。特に、前記結合剤として
熱硬化性樹脂を使用する場合には、炭素質予備成形体が
プリプレグとして機能し、加熱加圧成形により、硬化し
て一体化する。そのため、厚みが1mm未満であっても
均質で均一な成形体が得られる。
When the carbonaceous preform is compression-molded, a compact having a uniform composition, density and thickness can be obtained even if the thickness is less than 1 mm. In particular, when a thermosetting resin is used as the binder, the carbonaceous preform functions as a prepreg and is cured and integrated by heat and pressure molding. Therefore, even if the thickness is less than 1 mm, a homogeneous and uniform molded body can be obtained.

【0041】また、繁雑な乾式混合の工程が不要である
ため、吸引成形により予備成形体を簡易に製造できる。
さらに、予備成形体を圧縮成形する場合、粉粒状の混合
物を金型内に均一に装填する必要がなく、シート状の予
備成形体を成形金型へ装填すればよく、装填作業が容易
であり、成形サイクルを短縮でき、成形効率、ひいては
電極基板の生産効率を高めることができる。
Further, since a complicated dry mixing step is unnecessary, a preform can be easily manufactured by suction molding.
Furthermore, when compression molding the preform, it is not necessary to uniformly load the powder-granular mixture into the mold, and it is sufficient to load the sheet-form preform into the mold, which facilitates the loading operation. In addition, the molding cycle can be shortened, and the molding efficiency and hence the production efficiency of the electrode substrate can be improved.

【0042】本発明の電極基板の製造方法では、前記炭
素質予備成形体を圧縮成形、好ましくは加熱加圧成形
し、炭化又は黒鉛化する。前記圧縮成形により、成形体
の均質性をさらに高めることができる。
In the method for producing an electrode substrate of the present invention, the carbonaceous preform is compression-molded, preferably heat-pressed, and carbonized or graphitized. The compression molding can further improve the homogeneity of the molded body.

【0043】炭素質予備成形体の圧縮成形は、慣用の方
法、例えば、金型プレス又はローラーによるプレス等の
方法で行なうことができる。圧縮成形は成形体の均一性
を高めるため加熱下で行うのが好ましい。加熱温度は、
適当に選択できるが、通常、100〜250℃程度であ
る。成形圧は、所望する電極板の密度や厚みなどに応じ
て選択でき、例えば、30〜750kgf/cm2 、好
ましくは50〜500kgf/cm2 程度である。
The compression molding of the carbonaceous preform can be carried out by a conventional method such as a die press or a roller press. The compression molding is preferably performed under heating in order to improve the uniformity of the molded product. The heating temperature is
Although it can be appropriately selected, it is usually about 100 to 250 ° C. The molding pressure can be selected according to the desired density and thickness of the electrode plate, and is, for example, about 30 to 750 kgf / cm 2 , preferably about 50 to 500 kgf / cm 2 .

【0044】炭素質予備成形体は、圧縮成形された後、
炭化又は黒鉛化する焼成工程に供せられる。焼成温度
は、800℃以上、好ましくは1000〜3000℃程
度である。焼成は、真空下または不活性ガス雰囲気中で
行われる。不活性ガスとしては、窒素、ヘリウム、アル
ゴン等が使用できる。
The carbonaceous preform, after being compression molded,
It is subjected to a firing step of carbonizing or graphitizing. The firing temperature is 800 ° C. or higher, preferably about 1000 to 3000 ° C. The firing is performed under vacuum or in an inert gas atmosphere. Nitrogen, helium, argon or the like can be used as the inert gas.

【0045】このようにして得られた炭素質の電極基板
は、予備成形体が均質であるため、厚みが1mm未満で
あっても気孔径が均一であり、機械的強度も大きく、ま
た優れたガス透過性及び導電性を有する。
The carbonaceous electrode substrate thus obtained has a uniform preform, so that even if the thickness is less than 1 mm, the pore size is uniform, the mechanical strength is large, and it is excellent. Has gas permeability and conductivity.

【0046】また、前記電極基板を、例えばフライス盤
を用いて切削加工することにより、所望のリブ幅及び深
さを有するリブ付き炭素電極を得ることができる。本発
明の製造方法により得られる電極基板は柔軟性が大きい
ため、切削加工時に、欠け、割れ等の損傷が少なく、リ
ブ付き炭素電極を高い生産効率で製造することができ
る。
Further, a carbon electrode with ribs having a desired rib width and depth can be obtained by cutting the electrode substrate using, for example, a milling machine. Since the electrode substrate obtained by the production method of the present invention has large flexibility, damage such as chipping or cracking is less likely to occur during cutting and a ribbed carbon electrode can be produced with high production efficiency.

【0047】[0047]

【発明の効果】本発明の炭素質予備成形体は、炭素繊
維、結合剤、有機粒状物質および繊維状バインダーを含
む抄紙構造を有しているため、有機粒状物質の偏析がな
く、均質で、細孔径が小さく細孔径分布が任意にコント
ロールでき、ガス透過性、電気伝導性、機械的強度、均
一性のみならず柔軟性及び切削加工性に優れる炭素質の
電極基板を得る上で有用である。
Since the carbonaceous preform of the present invention has a papermaking structure containing carbon fibers, a binder, an organic particulate matter and a fibrous binder, it is homogeneous and free of segregation of the organic particulate matter. It is useful in obtaining a carbonaceous electrode substrate that has a small pore size and can control the pore size distribution arbitrarily, and is excellent not only in gas permeability, electrical conductivity, mechanical strength, and uniformity but also in flexibility and machinability. ..

【0048】特に有機粒状物質として熱硬化性樹脂の硬
化物を用いる場合には、電極基板の細孔径とその分布を
精度よくコントロールでき、任意の細孔径分布を有する
と共に、反り、膨れ、割れ等のない均一な電極基板を得
ることができる。
In particular, when a cured product of a thermosetting resin is used as the organic particulate material, the pore size and its distribution of the electrode substrate can be controlled with high accuracy, and the distribution of any pore size can be obtained, as well as warpage, swelling, cracking, etc. It is possible to obtain a uniform electrode substrate without

【0049】また、本発明の炭素質予備成形体の製造方
法によれば、均質な前記炭素質予備成形体を簡易に得る
ことができる。
Further, according to the method for producing a carbonaceous preform of the present invention, the homogeneous carbonaceous preform can be easily obtained.

【0050】さらに、本発明の燃料電池用電極基板の製
造方法によれば、均質で、細孔径が小さく細孔径分布が
任意にコントロールでき、ガス透過性、電気伝導度、機
械強度および均一性のみならず柔軟性及び切削加工性に
優れる炭素質の電極基板を得ることができる。
Further, according to the method for producing an electrode substrate for a fuel cell of the present invention, it is homogeneous, the pore size is small, and the pore size distribution can be arbitrarily controlled, and only gas permeability, electric conductivity, mechanical strength and uniformity are obtained. Therefore, a carbonaceous electrode substrate having excellent flexibility and machinability can be obtained.

【0051】[0051]

【実施例】以下に、実施例に基づいて本発明をより詳細
に説明する。
EXAMPLES The present invention will be described in more detail based on the following examples.

【0052】実施例1 太さ3デニール、長さ1mmのポリアクリロニトリル繊
維32重量部、カナディアンフリーネス500mmのパ
ルプ[NUKP社製]15重量部、ポリビニルアルコー
ル繊維[クラレ製、VPB105−2×3]3重量部、
エポキシ樹脂硬化物[油化シェル(株)製、商品名エピ
コート815、炭化収率10重量%]の粉末(粒径50
〜250μm)30重量部およびフェノール樹脂[群栄
化学工業(株)製、商品名レジトップPS−4101、
炭化収率60重量%]20重量部を水中に分散させ、均
一なスラリーを調製した。
Example 1 32 parts by weight of polyacrylonitrile fiber having a thickness of 3 denier and 1 mm in length, 15 parts by weight of pulp having a Canadian freeness of 500 mm [manufactured by NUKP], polyvinyl alcohol fiber [manufactured by Kuraray, VPB105-2 × 3] 3 Parts by weight,
Epoxy resin cured product [Yukaka Shell Co., Ltd., trade name Epicoat 815, carbonization yield 10% by weight] powder (particle size 50
.About.250 μm) 30 parts by weight and phenol resin [Gunei Chemical Industry Co., Ltd., trade name REGITOP PS-4101,
Carbonization yield 60% by weight] 20 parts by weight was dispersed in water to prepare a uniform slurry.

【0053】そして、底面に多数の吸引用小孔を形成し
た吸引成形型(1000mm×1200mm)内に、吸
引を行いながら上記のスラリーを流し込み、成形用型の
底面に堆積させた。形成された湿潤状態の平板を型から
取り外し、110℃で3時間乾燥した。こうして得られ
た抄紙構造の予備成形体の寸法は、厚み8mm×100
0mm×1200mmであり、その密度は0.2g/c
3 であった。
Then, the above slurry was poured into a suction mold (1000 mm × 1200 mm) having a large number of small holes for suction formed on the bottom face while sucking, and was deposited on the bottom face of the mold. The wet plate thus formed was removed from the mold and dried at 110 ° C. for 3 hours. The thus obtained preform having a papermaking structure has a thickness of 8 mm × 100.
0 mm x 1200 mm, the density is 0.2 g / c
It was m 3 .

【0054】次いで、この予備成形体を、平板金型に入
れ、プレス温度165℃、成形圧100kgf/cm2
で30分間加熱加圧成形して硬化させ、厚み1.6m
m、密度1.0g/cm3 の成形体を得た。この成形体
を、220℃の温度で4時間放置して後硬化させた後、
黒鉛板に挾み、30℃/時の昇温速度で2600℃まで
昇温し、同温度で5時間保持することにより、黒鉛質の
電極基板を得た。
Next, this preform is put into a flat plate mold, the press temperature is 165 ° C., and the molding pressure is 100 kgf / cm 2.
Heat and pressure molding for 30 minutes to cure and cure, thickness 1.6m
Thus, a molded product having m and a density of 1.0 g / cm 3 was obtained. This molded body is left at a temperature of 220 ° C. for 4 hours to be post-cured,
A graphite electrode substrate was obtained by sandwiching the graphite plate, raising the temperature to 2600 ° C. at a heating rate of 30 ° C./hour, and maintaining the same temperature for 5 hours.

【0055】得られた電極基板を、フライス盤を用いて
切削加工し、リブ幅2mm、リブの深さ1.2mm、リ
ブ間隔2mmのリブ付き電極基板を得た。
The obtained electrode substrate was cut using a milling machine to obtain a ribbed electrode substrate having a rib width of 2 mm, a rib depth of 1.2 mm and a rib interval of 2 mm.

【0056】実施例2 エポキシ樹脂硬化物の粉末に代えて、不飽和ポリエステ
ル樹脂硬化物[武田薬品工業(株)製、商品名ポリマー
ル9802、炭化収率10重量%]の粉末を用いる以外
は実施例1と同様の操作を行い、リブ付き電極基板を得
た。
Example 2 Carrying out except that a powder of an unsaturated polyester resin cured product [manufactured by Takeda Pharmaceutical Co., Ltd., trade name: Polymer 9802, carbonization yield 10% by weight] is used in place of the epoxy resin cured product powder. The same operation as in Example 1 was performed to obtain a ribbed electrode substrate.

【0057】実施例3 ポリアクリロニトリル繊維に代えて、平均繊維長0.7
mmのピッチ系炭素繊維[(株)ドナック、商品名ドナ
カーボS−244]32重量部を用いる以外は実施例1
と同様な操作を行い、リブ付き電極基板を得た。
Example 3 Instead of the polyacrylonitrile fiber, the average fiber length was 0.7.
Example 1 except that 32 parts by weight of mm pitch carbon fiber [DONAC CORPORATION, trade name DONACARBO S-244] was used.
The same operation as above was performed to obtain a ribbed electrode substrate.

【0058】比較例1 エポキシ樹脂硬化物の粉末を添加しないことを除いては
実施例1と同様の配合で均一なスラリーを調製し、実施
例1と同様な操作により、厚み8mm×1000mm×
1200mm、かさ密度0.2g/cm3 の予備成形体
を得た。
Comparative Example 1 A uniform slurry was prepared with the same composition as in Example 1 except that the epoxy resin cured product powder was not added, and the same operation as in Example 1 was performed to obtain a thickness of 8 mm × 1000 mm ×.
A preform having a diameter of 1200 mm and a bulk density of 0.2 g / cm 3 was obtained.

【0059】次いで、この予備成形体を、平板金型に入
れ、プレス温度165℃、成形圧60kgf/cm2
30分間加熱加圧成形して硬化させ、厚み2.0mm、
密度0.83g/cm3 の成形体を得た。この成形体
を、220℃の温度で4時間放置して後硬化させた後、
黒鉛板に挾み、30℃/時の昇温速度で2600℃まで
昇温し、同温度で5時間保持することにより、黒鉛質の
電極基板を得た。
Next, this preform is put into a flat plate mold, heated and pressed at a press temperature of 165 ° C. and a molding pressure of 60 kgf / cm 2 for 30 minutes to be cured, and a thickness of 2.0 mm,
A molded body having a density of 0.83 g / cm 3 was obtained. This molded body is left at a temperature of 220 ° C. for 4 hours to be post-cured,
A graphite electrode substrate was obtained by sandwiching the graphite plate, raising the temperature to 2600 ° C. at a heating rate of 30 ° C./hour, and maintaining the same temperature for 5 hours.

【0060】得られた電極基板を、フライス盤を用いて
切削加工し、リブ幅2mm、リブの深さ1.2mm、リ
ブ間隔2mmのリブ付き電極基板を得た。
The obtained electrode substrate was cut using a milling machine to obtain a ribbed electrode substrate having a rib width of 2 mm, a rib depth of 1.2 mm and a rib interval of 2 mm.

【0061】比較例2 ピッチ系炭素繊維不織布[(株)ドナック、商品名ドナ
カーボS−251]に、フェノール樹脂[群栄化学工業
(株)製、商品名レジトップPL−3820、炭化収率
60重量%]を含浸させ、不織布とフェノール樹脂との
重量比が1:1のプリプレグを製作した。このプリプリ
グを10枚積層して、平板金型に入れ、プレス温度14
0℃、成形圧20kgf/cm2 で30分間加熱加圧成
形して硬化させ、厚み1.6mm、密度0.8g/cm
3 の成形体を得た。この成形体を、180℃の温度で4
時間放置して後硬化させた後、黒鉛板に挾み、30℃/
時の昇温速度で2600℃まで昇温し、同温度で5時間
保持することにより、黒鉛質の電極基板を得た。
Comparative Example 2 Pitch-based carbon fiber non-woven fabric [Donac Co., Ltd., trade name Dona Carbo S-251] was added to a phenol resin [Gunei Chemical Industry Co., Ltd., trade name Register Top PL-3820, carbonization yield 60]. % By weight] to prepare a prepreg in which the weight ratio of the nonwoven fabric to the phenol resin is 1: 1. 10 sheets of this prepreg are laminated and placed in a flat plate mold, and the press temperature is
Heat and pressure molding at 0 ° C. and molding pressure of 20 kgf / cm 2 for 30 minutes to cure and cure, thickness 1.6 mm, density 0.8 g / cm 2.
A molded body of 3 was obtained. This molded body is heated at a temperature of 180 ° C. for 4 minutes.
After being left for a time to be post-cured, it is sandwiched between graphite plates at 30 ° C /
The temperature was raised to 2600 ° C. at that time and the temperature was maintained for 5 hours to obtain a graphite electrode substrate.

【0062】得られた電極基板を、フライス盤を用いて
切削加工し、リブ幅2mm、リブの深さ1.2mm、リ
ブ間隔2mmのリブ付き電極基板を得た。
The obtained electrode substrate was cut using a milling machine to obtain a ribbed electrode substrate having a rib width of 2 mm, a rib depth of 1.2 mm and a rib interval of 2 mm.

【0063】実施例1〜3及び比較例1〜2で得られた
電極基板の電極の厚み、リブの幅、リブの深さ、嵩密
度、気孔径、曲げ強度、ガス透過度および体積固有抵抗
を測定したところ、表1及び表2に示す結果を得た。
The electrode thickness, rib width, rib depth, bulk density, pore diameter, bending strength, gas permeability and volume specific resistance of the electrode substrates obtained in Examples 1-3 and Comparative Examples 1-2. Was measured, and the results shown in Table 1 and Table 2 were obtained.

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【表2】 表1より、実施例1〜3で得られた電極基板は気孔径が
小さく、また、曲げ強度、導電性が非常に大きく、優れ
たガス透過性を示した。また、実施例1〜3のいずれの
場合も、欠け、割れ等の損傷なくリブ付炭素電極を製造
することができた。
[Table 2] From Table 1, the electrode substrates obtained in Examples 1 to 3 had a small pore size, very high bending strength and conductivity, and showed excellent gas permeability. Further, in any of Examples 1 to 3, the ribbed carbon electrode could be manufactured without damage such as chipping and cracking.

【0066】一方、表2に示されるように、比較例1〜
2で得られた電極基板は、厚み方向の体積固有抵抗が大
きく、曲げ強度も小さく、また、ガス透過性は低かっ
た。また、比較例2では、切削加工時に、リブ部に欠け
及び剥離が一部発生した。
On the other hand, as shown in Table 2, Comparative Examples 1 to 1
The electrode substrate obtained in No. 2 had a large volume specific resistance in the thickness direction, a small bending strength, and a low gas permeability. Further, in Comparative Example 2, chipping and peeling were partially generated in the rib portion during cutting.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜岡 覚 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoru Hamaoka 4-1-2, Hiranocho, Chuo-ku, Osaka City Osaka Gas Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維化可能な繊維又は炭素繊維の短
繊維、炭化収率40〜85重量%の結合剤、炭化収率3
0重量%以下の有機粒状物質、および繊維状バインダー
を含む抄紙構造の炭素質予備成形体。
1. A carbon fiber-forming fiber or a short fiber of carbon fiber, a binder having a carbonization yield of 40 to 85% by weight, and a carbonization yield of 3.
A carbonaceous preform having a papermaking structure, containing 0% by weight or less of an organic particulate matter and a fibrous binder.
【請求項2】 炭素繊維化可能な繊維又は炭素繊維の短
繊維10〜60重量%、結合剤10〜60重量%、有機
粒状物質15〜60重量%、および繊維状バインダー1
0〜30重量%を含む請求項1記載の炭素質予備成形
体。
2. Carbon fiber-forming fibers or short fibers of carbon fibers 10 to 60% by weight, binder 10 to 60% by weight, organic particulate matter 15 to 60% by weight, and fibrous binder 1
The carbonaceous preform according to claim 1, containing 0 to 30% by weight.
【請求項3】 有機粒状物質が熱硬化性樹脂硬化物であ
る請求項1記載の炭素質予備成形体。
3. The carbonaceous preform according to claim 1, wherein the organic particulate matter is a thermosetting resin cured product.
【請求項4】 有機粒状物質の粒径が、50〜300μ
mである請求項1記載の炭素質予備成形体。
4. The particle size of the organic particulate matter is 50 to 300 μm.
The carbonaceous preform according to claim 1, which is m.
【請求項5】 炭素繊維化可能な繊維又は炭素繊維の短
繊維、炭化収率40〜85重量%の結合剤、炭化収率3
0重量%以下の有機粒状物質、および繊維状バインダー
を含むスラリーを吸引成形する抄紙構造の炭素質予備成
形体の製造方法。
5. A carbon fiber-forming fiber or a short fiber of carbon fiber, a binder having a carbonization yield of 40 to 85% by weight, and a carbonization yield of 3.
A method for producing a carbonaceous preform having a papermaking structure, which comprises suction-forming a slurry containing 0% by weight or less of an organic particulate matter and a fibrous binder.
【請求項6】 請求項1記載の予備成形体を圧縮成形
し、且つ炭化または黒鉛化する燃料電池用電極基板の製
造方法。
6. A method for producing an electrode substrate for a fuel cell, which comprises compression-molding the preform according to claim 1 and carbonizing or graphitizing.
JP4158615A 1992-05-25 1992-05-25 Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell Pending JPH05325984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4158615A JPH05325984A (en) 1992-05-25 1992-05-25 Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4158615A JPH05325984A (en) 1992-05-25 1992-05-25 Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell

Publications (1)

Publication Number Publication Date
JPH05325984A true JPH05325984A (en) 1993-12-10

Family

ID=15675584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4158615A Pending JPH05325984A (en) 1992-05-25 1992-05-25 Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell

Country Status (1)

Country Link
JP (1) JPH05325984A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040886A (en) * 2004-06-21 2006-02-09 Mitsubishi Rayon Co Ltd Porous electrode substrate and its manufacturing method
JP2007273466A (en) * 2006-03-20 2007-10-18 Gm Global Technology Operations Inc Acrylic fiber bonding carbon fiber paper as gas diffusion medium for fuel cell
JP2008081872A (en) * 2006-09-27 2008-04-10 Takayasu Co Ltd Carbon fiber nonwoven fabric and method for producing the same
JP2009004136A (en) * 2007-06-20 2009-01-08 Fuji Electric Holdings Co Ltd Porous base material for fuel cell
JP2009129634A (en) * 2007-11-21 2009-06-11 Mitsubishi Rayon Co Ltd Porous electrode base material, its manufacturing method, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2010182681A (en) * 2004-06-21 2010-08-19 Mitsubishi Rayon Co Ltd Porous electrode substrate and method for manufacturing the same
JP2014116314A (en) * 2012-12-10 2014-06-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cell for fuel cell with proton-exchange membrane, with gas diffusion layers having different rigidity in anode and cathode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040886A (en) * 2004-06-21 2006-02-09 Mitsubishi Rayon Co Ltd Porous electrode substrate and its manufacturing method
JP2010182681A (en) * 2004-06-21 2010-08-19 Mitsubishi Rayon Co Ltd Porous electrode substrate and method for manufacturing the same
JP2007273466A (en) * 2006-03-20 2007-10-18 Gm Global Technology Operations Inc Acrylic fiber bonding carbon fiber paper as gas diffusion medium for fuel cell
JP2008081872A (en) * 2006-09-27 2008-04-10 Takayasu Co Ltd Carbon fiber nonwoven fabric and method for producing the same
JP2009004136A (en) * 2007-06-20 2009-01-08 Fuji Electric Holdings Co Ltd Porous base material for fuel cell
JP2009129634A (en) * 2007-11-21 2009-06-11 Mitsubishi Rayon Co Ltd Porous electrode base material, its manufacturing method, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2014116314A (en) * 2012-12-10 2014-06-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cell for fuel cell with proton-exchange membrane, with gas diffusion layers having different rigidity in anode and cathode

Similar Documents

Publication Publication Date Title
US5648027A (en) Porous carbonaceous material and a method for producing the same
KR101294825B1 (en) Method for preparing carbon substrate for gas diffusion layer of polymer electrolyte membrane fuel cell, carbon substrate prepared thereby, and system for manufacturing the same
JPH0136670B2 (en)
US20080057303A1 (en) Method for Manufacturing Carbon Fiber Reinforced Carbon Composite Material Suitable for Semiconductor Heat Sink
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
JPH082979A (en) Porous carbon material and its production
JPH0449747B2 (en)
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
JPH05325984A (en) Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell
JPH06135770A (en) Carbonaceous preformed body, its production and production of electrode substrate
JPH09278558A (en) Carbonaceous porous body and its production
JPH03248838A (en) Heat insulation material
JPH05205750A (en) Carbonaceous preformed body and manufacture of electrode base for fuel cell
JPH0757741A (en) Manufacture of carbonaceous preformed body and electrode substrate
JPH11185771A (en) Manufacture of paper and porous carbon plate for fuel cell
JPH0644978A (en) Manufacture of fuel cell electrode plate
JPH06329469A (en) Preformed carbonaceous material and production of electrode substrate
JP3003935B2 (en) Molded heat insulating material and its manufacturing method
JPH0543320A (en) Production of carbonaceous form
JPS61236665A (en) Manufacture of porous carbon sheet
JPH0517260A (en) Production of carbonaceous porous body
JPH11263681A (en) Production of carbonaceous porous body for fuel cell
JPH0158623B2 (en)
JPH04284363A (en) Manufacture of carbon plate