JP5260026B2 - Method for manufacturing tubular quartz glass jig - Google Patents

Method for manufacturing tubular quartz glass jig Download PDF

Info

Publication number
JP5260026B2
JP5260026B2 JP2007275353A JP2007275353A JP5260026B2 JP 5260026 B2 JP5260026 B2 JP 5260026B2 JP 2007275353 A JP2007275353 A JP 2007275353A JP 2007275353 A JP2007275353 A JP 2007275353A JP 5260026 B2 JP5260026 B2 JP 5260026B2
Authority
JP
Japan
Prior art keywords
laser
quartz glass
tubular
tube
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007275353A
Other languages
Japanese (ja)
Other versions
JP2009102195A (en
Inventor
浩二 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP2007275353A priority Critical patent/JP5260026B2/en
Publication of JP2009102195A publication Critical patent/JP2009102195A/en
Application granted granted Critical
Publication of JP5260026B2 publication Critical patent/JP5260026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of a cause for the formation of new particles, in the treatment of the surface of a glass tube, and to provide a surface having fine projections and recessions with uniformity, high precision and reproducibility. <P>SOLUTION: A laser beam generated by a laser oscillation means 2 is guided to a light guide means 3 and irradiated from an irradiation means 5 at its tip. The laser beam irradiated from the irradiation means 5 is uniformly irradiated on the inner peripheral surface of a glass tube 6 to be treated since the light guide means 3 is rotated at one revolution/second by a rotation driving device 33 installed inside a horizontal arm 31. Since the rotation of the laser guide means 3 and the horizontal transfer of a transfer means 4 are synchronized and the transfer means 4 transfers the article to be treated 6 a specified distance when the irradiation means 5 rotates one turn, fine projections and recessions are formed at regular intervals on the surface of the glass tube 6 and the surface treatment by a laser beam is applied. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、管状ガラス体、特に、半導体製造用治具、半導体製造における成膜装置、プラズマ処理装置、熱処理装置等に使用される管状の石英ガラス治具の表面に微細な凹凸を形成して表面を改質する装置及び改質方法に関する。   In the present invention, fine irregularities are formed on the surface of a tubular glass body, in particular, a tubular quartz glass jig used in a semiconductor manufacturing jig, a film forming apparatus, a plasma processing apparatus, a heat treatment apparatus, etc. in semiconductor manufacturing. The present invention relates to a surface modification device and a modification method.

半導体の製造における成膜工程で、シリコンなどの半導体ウエハー面に窒化膜などを形成する際には、高純度で耐熱性に優れ、かつ、加工し易いところから反応管の内部に石英ガラス製の炉芯管(インナー管)が使用されている。これらの石英ガラス治具表面は、通常、透明で平滑面である。透明で平滑な面は、反応ガスの滞留や、反応後の副産物のトラップなどが起こらず、半導体製造に対しては良好であるが、近年の半導体素子の高集積化に伴い、反応過程で石英ガラス治具の表面に付着した窒化膜等の反応生成物の剥がれ及び石英ガラス治具自体からの発塵によるパーティクル発生が問題となってきている。   When forming a nitride film on the surface of a semiconductor wafer such as silicon in the film-forming process in the manufacture of semiconductors, quartz glass is used inside the reaction tube because it is highly pure and heat-resistant and easy to process. A furnace core tube (inner tube) is used. These quartz glass jig surfaces are usually transparent and smooth. The transparent and smooth surface is good for semiconductor manufacturing because there is no stagnation of reaction gas or trapping of by-products after the reaction. Separation of reaction products such as a nitride film attached to the surface of the glass jig and generation of particles due to dust generation from the quartz glass jig itself have become problems.

すなわち、窒化膜の成膜によりインナー管などの石英ガラス製の反応管には膜が付着し、成膜を重ねることにより付着膜が厚くなり、成膜物質と石英ガラスの熱膨張率の差により、反応管にひびがはいったり、付着膜が剥離して成膜基板を汚染するという問題がでてきた。また、反応管に付着した膜は、反応管のフッ酸処理によっても除去されにくいため、付着膜が少ない(薄い)部分では反応管の侵食が著しくなるという場合もある。また、石英ガラス管を炉芯管とした熱処理炉においては、石英ガラスが透明性に優れているところから電気炉内の熱エネルギーが熱線として外部に漏れ、熱効率が低下するという問題があった。
このため、石英ガラス治具に付着する膜の付着強度を上げ、膜の剥がれを防止してパーティクル発生を抑制するために石英ガラス表面に微細な凹凸を形成することがおこなわれている。具体的には、サンドブラスト処理等の物理的表面処理、または、フッ化水素などの薬液で表面をエッチング処理して凹凸を形成する化学的表面処理が提案されている。
That is, the film is deposited on the reaction tube made of quartz glass such as the inner tube by the film formation of the nitride film, and the deposited film becomes thick by the repeated film formation, due to the difference in thermal expansion coefficient between the film forming material and the quartz glass. However, there are problems that the reaction tube is cracked or the adhered film is peeled off to contaminate the film formation substrate. Further, since the film adhering to the reaction tube is difficult to be removed even by the hydrofluoric acid treatment of the reaction tube, the reaction tube may be significantly eroded in a portion where the adhering film is small (thin). Further, in a heat treatment furnace using a quartz glass tube as the furnace core tube, there is a problem that the thermal energy in the electric furnace leaks to the outside as a heat ray because the quartz glass is excellent in transparency, and the thermal efficiency is lowered.
For this reason, in order to raise the adhesion strength of the film | membrane adhering to a quartz glass jig | tool, to prevent peeling of a film | membrane and to suppress particle generation, forming a fine unevenness | corrugation on the quartz glass surface is performed. Specifically, a physical surface treatment such as a sand blast treatment or a chemical surface treatment for forming irregularities by etching the surface with a chemical such as hydrogen fluoride has been proposed.

特許第2502109号公報Japanese Patent No. 2502109 特開2001−89198号公報JP 2001-89198 A 特開2004−238262号公報JP 2004-238262 A

しかしながら、前記物理的表面処理法であるサンドブラスト処理によって石英ガラス表面に凹凸を形成した場合、表面積が大きくなって膜の接着性は向上するものの、同時に石英ガラス表面に微小なマイクロクラックが形成され、このマイクロクラックにサンドブラスト処理過程で削り取られた石英微粉が溜まる場合があり、これらが半導体製造プロセス中にマイクロクラックより放出されてパーティクル汚染となる可能性がある。このようにサンドブラスト処理では、マイクロクラックの発生やマイクロチッピングの存在が避けられず、また、部材の強度の低下も招くため、好ましくない。
また、半導体製造工程中においても、マイクロクラック内部に反応ガスが入り込むと、マイクロクラック内部で副生成物が生成され、パーティクル汚染を引き起こす原因ともなり、好ましくない
However, when irregularities are formed on the quartz glass surface by sandblasting, which is the physical surface treatment method, the surface area is increased and the adhesion of the film is improved, but at the same time, micro-cracks are formed on the quartz glass surface, In some cases, the microcracks may accumulate quartz fine powder that has been scraped off during the sandblasting process, and these may be released from the microcracks during the semiconductor manufacturing process and cause particle contamination. As described above, the sandblast treatment is not preferable because the occurrence of microcracks and the presence of microchipping cannot be avoided, and the strength of the member is reduced.
Further, even during the semiconductor manufacturing process, if a reaction gas enters the microcrack, a by-product is generated inside the microcrack, which may cause particle contamination, which is not preferable.

一方、フッ化水素などの薬液で表面をエッチング処理して凹凸を形成する化学的表面処理では、マイクロクラックの生成によるパーティクルの発生がない点では優れているが、表面の局所的な処理が困難であり、また、所望の表面粗さに制御することが困難であり、作業工程が煩雑である等の問題を有していた。
また、エッチングによる石英ガラス表面の凹凸の形状はディンプル状であり、ディンプルの外周部の山の部分は鋭利な形状となっている。この鋭利な山の部分はウエハーの接触などで簡単に欠け、欠けた石英粉がパーティクルとなる危険性がある。また、表面に凹凸を形成するために長時間フッ化水素水溶液に浸しておくことは、水溶液内に発生する水和物が石英ガラス表面に沈着・付着し、新たなパーティクル要因となる恐れがある。
On the other hand, chemical surface treatment that forms irregularities by etching the surface with a chemical such as hydrogen fluoride is superior in that there is no generation of particles due to the formation of microcracks, but local treatment of the surface is difficult. In addition, it is difficult to control the surface roughness to a desired level, and the work process is complicated.
Further, the shape of the irregularities on the quartz glass surface by etching is a dimple shape, and the crest portion of the outer peripheral portion of the dimple has a sharp shape. These sharp peaks are easily chipped by contact with the wafer, and there is a risk that the chipped quartz powder becomes particles. In addition, immersing in an aqueous hydrogen fluoride solution for a long time to form irregularities on the surface may cause hydrates generated in the aqueous solution to deposit on and adhere to the quartz glass surface and cause new particles. .

サンドブラストとエッチング処理を組み合わせた表面処理においても、サンドブラスト後の洗浄が不完全であると、クラック内部から副生成物や石英微粉が発生し易く、また、エッチング中にフッ化水素水溶液内でのパーティクル再付着が発生する場合がある。
このように、従来の石英ガラス表面の粗面化方法は、新たなパーティル発生要因を副次的に生む可能性があった。また、半導体の高集積化によって、石英ガラス治具自体にも高精度が要求されており、表面凹凸面も再現性よく均一な凹凸面とすることが要求されているが、前述の従来の粗面化方法ではいずれも均一で再現性のある高精度凹凸面を得ることができなかった。更に、形成された凹凸面はいずれもディンプル状の形状であり、不連続なものであった。
表面処理の対象物が管状である場合、レーザーを管体の内表面に均一に照射する装置が存在しなかった。
本発明は、管状の石英ガラス治具の内表面処理において、処理過程でパーティクル発生原因を生成することを抑止し、かつ、均一で高精度で再現性のある微細凹凸面を形成できるようにすることを目的とするものである。
Even in surface treatment that combines sandblasting and etching treatment, if the cleaning after sandblasting is incomplete, by-products and quartz fine powder are likely to be generated from the inside of the cracks, and particles in the aqueous hydrogen fluoride solution during etching. Reattachment may occur.
As described above, the conventional method for roughening the surface of the quartz glass has a possibility that a new cause of the generation of a partile is generated as a secondary factor. In addition, due to high integration of semiconductors, high accuracy is required for the quartz glass jig itself, and the surface uneven surface is also required to be a uniform uneven surface with good reproducibility. In any of the surface forming methods, a uniform and reproducible high-precision uneven surface could not be obtained. Further, all of the formed uneven surfaces were dimple-shaped and discontinuous.
When the surface treatment target is tubular, there has been no device for uniformly irradiating the inner surface of the tube with a laser.
The present invention suppresses generation of a particle generation cause in the process of inner surface treatment of a tubular quartz glass jig, and enables formation of a fine uneven surface with uniform, high accuracy, and reproducibility. It is for the purpose.

レーザー発振手段、レーザー導光手段、レーザー照射手段、管状ガラス体の保持手段、及び管状ガラス体の送り手段を備えた管状ガラス体内表面改質装置の管状ガラス体保持手段に管状ガラス体をセットしてレーザー照射装置を管状ガラス体の内部中心に位置させ、レーザー導光手段の先端に照射方向を変更するように取り付けられたレーザー照射手段を管状石英ガラス治具の内部に挿入し、レーザー照射装置の回転と送りによって管状石英ガラス治具内表面に微細凹凸面を形成する管状石英ガラス治具の製造方法である。
レーザー照射により管状の石英ガラス治具の内表面に粗さRa0.5〜50μmの微細な凹凸層を形成するものであり、凹凸の断面形状は、V状、四角溝状、半円状のいずれか、もしくはそれらを組み合わせた形状である。
凹凸の間隔は、0.1〜1mmの範囲であり、かつ、この範囲内での任意の値で、精度が±10%以内とすることが可能である。また、凹凸の深さは、1〜100μmの範囲で、精度が±10%以内の均一な凹凸面とすることが可能である。
A tubular glass body is set in a tubular glass body holding means of a tubular glass body surface reforming device provided with laser oscillation means, laser light guiding means, laser irradiation means, tubular glass body holding means, and tubular glass body feeding means. The laser irradiation device is positioned at the center of the inside of the tubular glass body, and the laser irradiation device attached so as to change the irradiation direction at the tip of the laser light guiding device is inserted into the tubular quartz glass jig, and the laser irradiation device Is a method for manufacturing a tubular quartz glass jig in which a fine irregular surface is formed on the inner surface of the tubular quartz glass jig by rotation and feed.
A fine concavo-convex layer having a roughness Ra of 0.5 to 50 μm is formed on the inner surface of a tubular quartz glass jig by laser irradiation, and the cross-sectional shape of the concavo-convex is V-shaped, rectangular groove-shaped, or semicircular Or a combination of them.
The interval between the concaves and convexes is in the range of 0.1 to 1 mm, and the accuracy can be within ± 10% at any value within this range. Further, the depth of the unevenness can be a uniform uneven surface with an accuracy within ± 10% in the range of 1 to 100 μm.

石英ガラス治具表面の処理操作においては、石英ガラス表面に照射するレーザーとの相対走行速度と、照射後の表面粗さとの関係式を作成することによって、要求の表面粗さに対応した走行速度でレーザーを移動させることによって、表面粗さを制御することが可能である。
レーザー出力は、10W超〜2KW未満とするのが好ましく、レーザーの種類は、XeF(351nm),XeCl(308nm),KrF(248nm),ArF(193nm)等のエキシマレーザーやYAGレーザーなどの高エネルギーレーザーを利用して石英ガラス治具内部に焦点を結ばせて加工することも可能であるが、石英ガラス治具表面層を加工するには、汎用性、操作性の良い炭酸ガスレーザーが好ましい。炭酸ガスレーザーの波長は、石英ガラスを透過しないため、石英ガラス治具の表面に集光して表面から改質加工していくことになる。
In the processing operation on the surface of quartz glass jig, by creating a relational expression between the relative traveling speed of the laser irradiating the quartz glass surface and the surface roughness after irradiation, the traveling speed corresponding to the required surface roughness. It is possible to control the surface roughness by moving the laser.
The laser output is preferably more than 10 W to less than 2 KW, and the type of laser is high energy such as an excimer laser such as XeF (351 nm), XeCl (308 nm), KrF (248 nm), ArF (193 nm), or YAG laser. Although it is possible to use a laser to focus the inside of the quartz glass jig, the carbon dioxide laser with good versatility and operability is preferable for processing the surface layer of the quartz glass jig. Since the wavelength of the carbon dioxide laser does not pass through the quartz glass, it is focused on the surface of the quartz glass jig and modified from the surface.

レーザーは、各種材料の溶接、切断、穴あけ、マーキング等、いろいろな加工手段として広く用いられているが、いずれも点または線加工をおこなうものであり、表面層の全面に渡って表面性状を改質加工するのには使用されていなかった。
レーザーによる溶接、切断等では2KW以上の高出力が望ましく、また、マーキングにおいては10Wで十分とされているが、レーザーによる表面改質では、レーザー出力がその中間である10W超〜2KW未満が好ましく、30W超〜1KW未満がより好ましく、ガラス管の表面改質においては50W〜400Wがより望ましい。
レーザー出力が低いと、レーザーによる石英ガラス管の表面改質においては加工速度が遅く、実用的ではなく、高すぎると石英ガラス管の表面に形成する凹凸の形状の制御が難しくなる。
Lasers are widely used as various processing means such as welding, cutting, drilling, and marking of various materials, all of which perform point or line processing and modify the surface properties over the entire surface layer. It was not used for quality processing.
High power of 2KW or more is desirable for laser welding, cutting, etc., and 10W is sufficient for marking, but laser surface modification is preferably in the middle of more than 10W to less than 2KW. More than 30W and less than 1KW are more preferable, and 50W to 400W is more desirable in the surface modification of the glass tube.
When the laser output is low, the processing speed is low in the surface modification of the quartz glass tube by the laser, which is not practical, and when it is too high, it becomes difficult to control the shape of the irregularities formed on the surface of the quartz glass tube.

また、照射レーザーが処理対象物表面を移動する際の相対走行速度と、照射後の表面粗さが反比例するので、この関係を利用して走行速度を選択することによって所望の凹凸を精度良く形成できるのである。
所望の表面粗さからレーザーの走行速度を求めることができるので、目標の表面粗さに確実に加工することができる。表面粗さRa0.5〜50μmの微細な凹凸層を形成する際には、横軸に表面粗さを0.5〜50μm、特には1〜30μm、縦軸にレーザーの走行速度(ライン速度)を取ったグラフを作成し、所望の表面粗さに対応するレーザー走行速度を決定して石英ガラス治具の表面を加工する。
In addition, since the relative travel speed when the irradiation laser moves on the surface of the object to be processed and the surface roughness after irradiation are inversely proportional, the desired unevenness can be accurately formed by selecting the travel speed using this relationship. It can be done.
Since the traveling speed of the laser can be obtained from the desired surface roughness, the target surface roughness can be reliably processed. When forming a fine concavo-convex layer with a surface roughness Ra of 0.5 to 50 μm, the horizontal axis represents the surface roughness of 0.5 to 50 μm, especially 1 to 30 μm, and the vertical axis represents the laser traveling speed (line speed). Then, the surface of the quartz glass jig is processed by determining the laser traveling speed corresponding to the desired surface roughness.

市販のレーザーマーカーなどでは一般的には、レーザー機本体は動かさず、集光レンズ、反射鏡等の光学系を用いて表面への文字等のマーキングをおこなうものであるが、本発明ではレーザービームの照射手段を回転可能とすると共に表面処理対象の管状の石英ガラス治具自体の走行移動もしくは回転を可能とする保持手段を用い、ガラス管保持手段を走行移動もしくは回転させながらレーザービームを照射することによってプラズマエッチングで使用されるCVD用の治具である石英ガラス製反応管や、エッチャー用石英ガラス管などの半導体製造用治具の表面加工をおこなう。   In general, a commercially available laser marker or the like does not move the main body of the laser machine and marks characters on the surface using an optical system such as a condenser lens and a reflecting mirror. In the present invention, a laser beam is used. The irradiation means can be rotated and a holding means for enabling the tubular quartz glass jig itself to be surface-treated to be moved or rotated, and a laser beam is irradiated while the glass tube holding means is moved or rotated. By doing this, surface processing is performed on semiconductor manufacturing jigs such as quartz glass reaction tubes and quartz glass tubes for etchers, which are CVD jigs used in plasma etching.

レーザー加工による凹凸面は、レーザー加工条件を変えることによって表面粗さの異なった領域を複数形成することが可能であり、また、レーザーの照射ピッチや速度等を変えることによって、凹凸の断面をV状、四角溝状、半円状のいずれか、もしくはその組み合わせた形状の表面状態とした石英ガラス治具を製作することができる。レーザーによって形成することのできる凹凸の断面形状の概念図を図2に示す。
(1)は表面にV字の溝を形成したものであり、(2)は台形状の溝を間隔を空けずに形成して三角形の突起を形成したものであり、(3)は台形の溝を間隔を空けて形成したもの、(4)は、半円形の溝を間隔を空けて形成したものである。
It is possible to form a plurality of regions with different surface roughness by changing the laser processing conditions, and by changing the laser irradiation pitch, speed, etc. , A square groove, a semicircular shape, or a combination thereof can be produced. FIG. 2 shows a conceptual diagram of the cross-sectional shape of the unevenness that can be formed by a laser.
(1) is a V-shaped groove formed on the surface, (2) is a trapezoidal groove formed without a gap to form a triangular protrusion, and (3) is a trapezoidal shape. Grooves are formed with an interval, and (4) is a semicircular groove formed with an interval.

溝の断面形状は、レーザーの照射ピッチを任意の数値として広く取ることで、上部表面が任意寸法の幅を持った平面状であるV字状の溝を形成したり、照射ピッチを狭くして照射を複数回繰り返すことで、底部の溝の断面形状を任意寸法の平面状とした形状に加工することが可能である。また、被加工物内におけるレーザーの焦点位置を変えることによって半円状の溝としたり三角形の溝角度を変えるなど、溝形状を制御することができる。   The cross-sectional shape of the groove is wide by taking the laser irradiation pitch as an arbitrary numerical value, so that the upper surface forms a V-shaped groove with a width of an arbitrary dimension, or the irradiation pitch is narrowed. By repeating the irradiation a plurality of times, the cross-sectional shape of the groove at the bottom can be processed into a flat shape having an arbitrary dimension. In addition, the groove shape can be controlled by changing the focal position of the laser in the work piece to form a semicircular groove or changing the triangular groove angle.

レーザー照射によって表面粗さを制御したものは、従来のサンドブラストやエッチングによる表面処理と異なり、凹凸表面を透明な焼き仕上げ面として仕上げた石英ガラス治具とすることができるという大きな利点がある。表面層がレーザー照射により加熱され、微細凹凸が焼き仕上げ面と同等のつやを持った、透明度の高い表面層となる。   What controlled the surface roughness by laser irradiation has a great advantage that a quartz glass jig having a concavo-convex surface finished as a transparent baked finished surface can be obtained, unlike a conventional surface treatment by sandblasting or etching. The surface layer is heated by laser irradiation, and the fine irregularities become a highly transparent surface layer having the same gloss as the baked finish surface.

本発明は、レーザー発振手段、ガラス管の表面にレーザーを導くレーザー導光手段、レーザー導光手段の先端に設けたレーザー照射手段、ガラス管の保持手段、及びガラス管の送り手段を備えており、管状の石英ガラス製治具の表面に均一で微細な凹凸面を精度良く形成することができる。   The present invention comprises laser oscillation means, laser light guide means for guiding a laser to the surface of the glass tube, laser irradiation means provided at the tip of the laser light guide means, glass tube holding means, and glass tube feed means. A uniform and fine uneven surface can be formed with high accuracy on the surface of the tubular quartz glass jig.

実施例1
図1は、本発明のガラス管表面改質装置の模式図である。
レーザー発振装置2は、出力100Wの炭酸ガスレーザーを発振するための装置であり、耐震テーブル1上の一端側に固定してある。レーザー発振装置2に近接して耐震テーブル1の他端側に延びる一方向に移動可能な送り手段4が設置されている。本実施例では、送り用の単軸ロボットであるリニアアクチュエータを使用したが、これに限定されるものではない。
レーザー発振手段2から放射されたレーザーは、ガラス管からなるレーザー導光手段3に導かれ、レーザー導光手段3の先端に設けられた照射手段5から照射される。
レーザー導光手段3は、耐震テーブル1上に、レーザー発振手段2の側に設けたアーム保持台30、このアーム保持台30から水平に延びる中空アーム31が設けてある。中空アーム31内には、レーザー発振手段2のレーザー放射口に一端が回転可能に接続されたレーザーを導くレーザー導光管32がアーム保持台30を貫通して設けてあり、レーザー導光管32の他端にはレーザー照射手段5が設けてある。レーザー導光管は、レーザー光と反応せず遮光性のあるものであれば何でも構わないが、本実施例では炭酸ガスレーザーと反応することがなく、レーザー光を逸散させることのないアルミニウム製の導光管を使用した。
レーザー照射手段5は、公知の光学伝送パーツを使用してレーザー導光管であるアルミニウム管32に直角に取り付けてある。光学伝送パーツのヘッド上部に取り付けられたミラーによって、実用新案登録第2117356号(実公平7−43848)の如く、アルミニウム管32を通ってきたレーザー光を90°折曲する。こうしてアルミニウム管32に導かれたレーザーは、アルミニウム管32の先端部で直角に方向を変換されてレーザー照射手段5の先端から放射される。
Example 1
FIG. 1 is a schematic view of a glass tube surface modifying apparatus of the present invention.
The laser oscillation device 2 is a device for oscillating a carbon dioxide laser with an output of 100 W, and is fixed to one end side on the earthquake-resistant table 1. In the vicinity of the laser oscillating device 2, a feed means 4 is installed which is movable in one direction extending to the other end side of the earthquake-resistant table 1. In this embodiment, a linear actuator that is a single-axis robot for feeding is used, but the present invention is not limited to this.
The laser emitted from the laser oscillating means 2 is guided to the laser light guiding means 3 made of a glass tube and irradiated from the irradiation means 5 provided at the tip of the laser light guiding means 3.
The laser light guiding means 3 includes an arm holding base 30 provided on the laser oscillation means 2 side and a hollow arm 31 extending horizontally from the arm holding base 30 on the earthquake resistant table 1. In the hollow arm 31, a laser light guide tube 32 for guiding a laser whose one end is rotatably connected to the laser emission port of the laser oscillation means 2 is provided through the arm holding base 30. A laser irradiation means 5 is provided at the other end of the laser beam. The laser light guide tube may be anything as long as it does not react with the laser light and has a light shielding property, but in this embodiment, it does not react with the carbon dioxide laser and is made of aluminum that does not dissipate the laser light. The light guide tube was used.
The laser irradiation means 5 is attached at right angles to an aluminum tube 32 which is a laser light guide tube using a known optical transmission part. The mirror attached to the upper part of the head of the optical transmission part bends the laser beam that has passed through the aluminum tube 32 by 90 °, as in Utility Model Registration No. 2117356 (Act No. 7-43848). The laser guided to the aluminum tube 32 in this way is changed in direction at right angles at the tip of the aluminum tube 32 and is emitted from the tip of the laser irradiation means 5.

中空アーム31の先端側にはアルミニウム管32を支持すると共にアルミニウム管32に回転力を与える電気モータを備えた回転駆動装置が設けてある。本実施例の回転駆動装置は、公知の中空ロータリアクチュエータを使用した。中空ロータリアクチュエータの中空部分に導光手段のアルミニウム管32を保持させ、中空ロータリアクチュエータのモータの回転によりアルミニウム管32が回転し、同時にアルミニウム管32先端に取り付けられた照射手段である光学伝送パーツが回転する。こうしてレーザー照射手段5が回転することにより、レーザー照射手段5から照射されるレーザー光がアルミニウム管32を軸として360度回転する。
この表面改質装置に内径198mm、厚さ6mm、長さ600mmの石英ガラス管6を保持手段41にセットして固定した。レーザー導光手段のアルミニウム管32がガラス管6の中心に位置するように調整し、照射手段5の先端部が回転したときに、処理するガラス管6の内表面から常に一定な距離となるようにセットする。また、石英ガラス管6先端部がガラス管6の底または開口部のどちらかに位置するように送り手段4を微速で移動させて位置を調節する。
照射手段5がレーザーを先端から照射しながら回転駆動手段33によって石英ガラス管内を回転すると、照射手段5がガラス管内を周回しながらレーザーが被処理物のガラス管6の内表面に照射される。
On the distal end side of the hollow arm 31, there is provided a rotation driving device provided with an electric motor that supports the aluminum tube 32 and applies a rotational force to the aluminum tube 32. The rotary drive device of the present embodiment used a known hollow rotary actuator. An optical transmission part as an irradiating means attached to the tip of the aluminum tube 32 is obtained by holding the aluminum tube 32 of the light guide means in the hollow portion of the hollow rotary actuator and rotating the aluminum tube 32 by the rotation of the motor of the hollow rotary actuator. Rotate. As the laser irradiation means 5 rotates in this way, the laser light emitted from the laser irradiation means 5 rotates 360 degrees around the aluminum tube 32 as an axis.
A quartz glass tube 6 having an inner diameter of 198 mm, a thickness of 6 mm, and a length of 600 mm was set and fixed to the holding means 41 in this surface modification device. Adjustment is made so that the aluminum tube 32 of the laser light guide means is positioned at the center of the glass tube 6, and when the tip of the irradiation means 5 is rotated, the distance is always constant from the inner surface of the glass tube 6 to be processed. Set to. Further, the feed means 4 is moved at a slow speed so that the tip of the quartz glass tube 6 is located at either the bottom or the opening of the glass tube 6, and the position is adjusted.
When the irradiation means 5 rotates the inside of the quartz glass tube by the rotation driving means 33 while irradiating the laser from the tip, the laser is irradiated to the inner surface of the glass tube 6 to be processed while the irradiation means 5 circulates in the glass tube.

回転速度は1回転/secとした。そして走行台4を1回転毎に0.05mmずつ移動するように送りを回転と同期させてあり均質に表面処理がおこなわれるようにしてある。このようにして石英ガラス管6の内面に微細凹凸面を形成したところ、均一な凹凸面が得られた。
図3に石英ガラス管内面に微細凹凸面を形成した写真を示す。図3(A)は透明石英ガラス管のレーザー表面改質後の写真であり、比較のために中央部分はレーザー未照射で未改質のままの状態である。石英ガラス管の上方及び下方が管内面にレーザー改質により微細凹凸面を形成したものである。図3(B)は内面を表面改質した石英ガラス管の外面を撮影したものであり、図3(C)は石英ガラス管の内面を撮影したものである。管外面は平滑面で透明状態、管内面は微細凹凸が形成されて粗面となっていることがわかる。
The rotation speed was 1 rotation / sec. The feed is synchronized with the rotation so that the traveling table 4 is moved by 0.05 mm for each rotation so that the surface treatment is performed uniformly. Thus, when the fine uneven surface was formed in the inner surface of the quartz glass tube 6, the uniform uneven surface was obtained.
FIG. 3 shows a photograph in which a fine irregular surface is formed on the inner surface of a quartz glass tube. FIG. 3A is a photograph of the transparent quartz glass tube after the laser surface modification. For comparison, the central part is not irradiated with the laser and remains unmodified. The upper and lower sides of the quartz glass tube are formed by forming fine irregular surfaces on the inner surface of the tube by laser modification. FIG. 3B is a photograph of the outer surface of the quartz glass tube whose inner surface is modified, and FIG. 3C is a photograph of the inner surface of the quartz glass tube. It can be seen that the outer surface of the tube is smooth and transparent, and the inner surface of the tube is rough with fine irregularities.

被処理物の石英ガラス管6自体を回転させてガラス管内面に微細凹凸を形成することもできるのはいうまでもないが、ガラス管が尾管などの付属部を有していて管自体を回転させることができないものがあるので、レーザー照射部自体を回転させるもののほうが、ガラス管を固定したままで表面改質がおこなわれるので応用性が高い。
なお、石英ガラス管6自体を回転させる場合は、送り手段4となるガイドレール上を移動可能として設置された1台もしくは2台のチャックとなる回転ヘッドを用いて石英ガラス管6の一端もしくは両端面部位を保持固定するものを使用したりと、処理対象の管状石英ガラス治具の形状に応じて保持手段を選択することができる。
It goes without saying that the quartz glass tube 6 itself to be processed can be rotated to form fine irregularities on the inner surface of the glass tube. However, the glass tube has an attachment such as a tail tube, and the tube itself is Since there are some that cannot be rotated, the one that rotates the laser irradiation section itself has higher applicability because the surface modification is performed with the glass tube fixed.
When rotating the quartz glass tube 6 itself, one or both ends of the quartz glass tube 6 are used by using one or two rotating heads which are chucks installed so as to be movable on the guide rail serving as the feeding means 4. The holding means can be selected according to the shape of the tubular quartz glass jig to be processed, such as one that holds and fixes the surface portion.

以下、レーザーを使用して凹凸面を形成する際の、レーザーと被処理物の相対移動速度と得られた表面の表面粗さの関係についての試験例を示す。
試験例1
出力100Wの炭酸ガスレーザーを用いた。被処理物として光学研磨したエッチャー用の石英ガラスプレート(処理面:70mm角×2mm)を用いた。
レーザーの移動速度を100mm/secで照射し、石英ガラスプレートの表面に0.1mmピッチで格子状に直線溝を形成して微細凹凸面を形成した。石英ガラスプレート表面に格子状に形成した状態の写真を図に示す。
格子状の凹凸面のピッチの間隔は0.1mmであり、精度は±10%以内の均一な面であり、凹部の深さは50μmであり、精度は±10%以内の均一な凹凸面が得られた。
Hereinafter, a test example will be described regarding the relationship between the relative movement speed of the laser and the object to be processed and the surface roughness of the obtained surface when the uneven surface is formed using a laser.
Test example 1
A carbon dioxide laser with an output of 100 W was used. A quartz glass plate for an etcher (processed surface: 70 mm square × 2 mm) optically polished was used as an object to be processed.
Laser movement speed was irradiated at 100 mm / sec, and linear grooves were formed in a lattice pattern at a pitch of 0.1 mm on the surface of the quartz glass plate to form fine uneven surfaces. FIG. 4 shows a photograph of a state where the quartz glass plate surface is formed in a lattice shape.
The pitch interval of the grid-like uneven surface is 0.1 mm, the accuracy is a uniform surface within ± 10%, the depth of the recess is 50 μm, and the uniform uneven surface within ± 10% is accurate. Obtained.

試験例2
出力100Wの炭酸ガスレーザーを用いて、石英ガラスプレートを静置した状態でレーザーの走行速度を変化させ、微細凹凸面を形成した。走行速度の違いにより加工時間が異なり、このときの表面状態を観察した。加工時間と、Ra(μm)、Rt(μm)について表面粗さを指針式粗さ計と3次元表面粗さ計で測定した結果を表1に示す。加工時間と表面粗さは比例することがわかる。
Test example 2
Using a carbon dioxide laser with an output of 100 W, the laser traveling speed was changed in a state where the quartz glass plate was allowed to stand to form a fine uneven surface. The processing time was different depending on the running speed, and the surface condition at this time was observed. Table 1 shows the results of measuring the processing time and the surface roughness of Ra (μm) and Rt (μm) with a pointer-type roughness meter and a three-dimensional surface roughness meter. It can be seen that the processing time and the surface roughness are proportional.

試験例3
レーザー出力を30Wに変えた以外は試験例2に準じ、石英ガラスプレートの表面に微細凹凸面を形成した。このときの加工時間と、Ra(μm)、Rt(μm)について、試験を実施し、表面粗さを指針式粗さ計で測定した結果を表2に示す。試験例2の100Wのレーザーを照射したものと比較すると、同じ表面粗さの面に加工するのに約15倍の加工時間がかかることがわかる。
Test example 3
A fine uneven surface was formed on the surface of the quartz glass plate according to Test Example 2 except that the laser output was changed to 30 W. Table 2 shows the results of testing the processing time, Ra (μm), and Rt (μm), and measuring the surface roughness with a pointer-type roughness meter. Compared to the sample irradiated with 100 W laser in Test Example 2, it can be seen that it takes about 15 times longer to process the surface having the same surface roughness.

本発明の管状ガラス体表面改質装置の模式図。The schematic diagram of the tubular glass body surface modification apparatus of this invention. 微小凹凸状体の断面模式図。The cross-sectional schematic diagram of a micro uneven | corrugated shaped body. レーザー改質された石英ガラス管の表面写真。A photograph of the surface of a laser-modified quartz glass tube. レーザー加工による格子状模様の表面写真。A surface photograph of a lattice pattern by laser processing.

符号の説明Explanation of symbols

1 耐震台
2 レーザー発振装置
3 レーザー導光手段
32 レーザー導光管
33 回転駆動手段
4 送り手段
41 保持手段
5 レーザー照射手段
DESCRIPTION OF SYMBOLS 1 Seismic stand 2 Laser oscillator 3 Laser light guide means 32 Laser light guide tube 33 Rotation drive means 4 Feed means 41 Holding means 5 Laser irradiation means

Claims (1)

レーザー発振手段、レーザー導光手段、レーザー照射手段、管状ガラス体の保持手段、及び管状ガラス体の送り手段を備えた管状ガラス体内表面改質装置であって、レーザー照射手段は、管状ガラス体保持手段に管状ガラス体をセットした際に管状ガラス体の内部中心に位置するものであって、レーザー導光手段の先端に照射方向を変更するように取り付けられており、レーザー照射手段を回転させる回転駆動手段が設けてある管状ガラス体の内表面改質装置を使用する管状石英ガラス治具の製造方法であって、管状ガラス体保持手段で管状石英ガラス治具を保持し、レーザー照射手段を管状石英ガラス治具の内部に挿入して回転と送りを同期させて管状石英ガラス治具内表面に微細凹凸面を形成する管状石英ガラス治具の製造方法。 A tubular glass body surface modification device comprising a laser oscillation means, a laser light guiding means, a laser irradiation means, a tubular glass body holding means, and a tubular glass body feeding means, wherein the laser irradiation means holds the tubular glass body When the tubular glass body is set in the means, it is located at the inner center of the tubular glass body, and is attached to the tip of the laser light guide means so as to change the irradiation direction, and rotates to rotate the laser irradiation means A method for manufacturing a tubular quartz glass jig using a tubular glass body inner surface reforming device provided with a driving means, wherein the tubular quartz glass jig is held by the tubular glass body holding means, and the laser irradiation means is tubular. A method for manufacturing a tubular quartz glass jig, which is inserted into a quartz glass jig and forms a fine irregular surface on the inner surface of the tubular quartz glass jig by synchronizing rotation and feed.
JP2007275353A 2007-10-23 2007-10-23 Method for manufacturing tubular quartz glass jig Active JP5260026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007275353A JP5260026B2 (en) 2007-10-23 2007-10-23 Method for manufacturing tubular quartz glass jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275353A JP5260026B2 (en) 2007-10-23 2007-10-23 Method for manufacturing tubular quartz glass jig

Publications (2)

Publication Number Publication Date
JP2009102195A JP2009102195A (en) 2009-05-14
JP5260026B2 true JP5260026B2 (en) 2013-08-14

Family

ID=40704365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275353A Active JP5260026B2 (en) 2007-10-23 2007-10-23 Method for manufacturing tubular quartz glass jig

Country Status (1)

Country Link
JP (1) JP5260026B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2336823A1 (en) * 2009-12-18 2011-06-22 Boegli-Gravures S.A. Method and device for producing masks for a laser assembly for generating microstructures
KR101842116B1 (en) * 2015-10-26 2018-05-14 세메스 주식회사 Quartz member manufacturing method, apparatus manufacturing method and substrate treating apparatus
KR102107094B1 (en) * 2018-12-06 2020-05-06 한국생산기술연구원 Discharge tube manufactured using laser and manufacturing method thereof
KR20220111262A (en) * 2019-12-04 2022-08-09 신에쯔 세끼에이 가부시키가이샤 How to make quartz glass

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157874A (en) * 1986-12-18 1988-06-30 Agency Of Ind Science & Technol Method and device for coating thin film to inside surface of straight tube type tubular material
JPH07246485A (en) * 1994-03-08 1995-09-26 Toshiba Corp Heat treatment device for tube inner face
JPH07303978A (en) * 1994-05-13 1995-11-21 Ishikawajima Harima Heavy Ind Co Ltd Device for laser beam cladding of atomic plant piping
JP3737322B2 (en) * 1999-09-09 2006-01-18 東洋ガラス株式会社 Glass container pattern formation method

Also Published As

Publication number Publication date
JP2009102195A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP5154814B2 (en) Method for producing quartz glass material
AU698923B2 (en) Selective removal of material by irradiation
JP6526396B2 (en) Method and apparatus for performing laser filamentation inside a transparent material
JP5039939B2 (en) Surface processing method and apparatus
JP2010147028A (en) Apparatus and method for atmospheric pressure reactive atom plasma processing for surface modification
WO2022095748A1 (en) Nano-diamond cutter, preparation method therefor and application thereof
CN1758983A (en) Mold for optical components
JP5080233B2 (en) Surface modification method for quartz glass
JP2004518527A (en) Atmospheric pressure reactive atomic plasma processing apparatus and method for surface modification
KR20160117531A (en) Method and system for scribing brittle material followed by chemical etching
JP5260026B2 (en) Method for manufacturing tubular quartz glass jig
WO1996041370A1 (en) Removal of material by polarized radiation and back side application of radiation
JP3096943B2 (en) Laser polishing method and apparatus for diamond and diamond product using the same
CN115716164A (en) Method and device for filamentizing workpieces of non-plane-parallel shape and workpiece produced by filamentization
CN110625401A (en) Processing device and method under laser-induced material coupling reaction
JP5652381B2 (en) Surface processing method and apparatus
JP5026816B2 (en) Quartz glass jig and manufacturing method thereof
JP5397768B2 (en) Laser processing apparatus and laser processing method
JP2011031388A (en) Processing method for workpiece
JP2004299969A (en) Method for slicing silica glass
TW404871B (en) Device and method for machining transparent medium by laser
JP6999101B2 (en) Etching method
JP5495048B2 (en) Laser processing method
WO2011046052A1 (en) Method for forming ventilation holes in an electrode plate
JP2007181007A (en) Method of pinning step structure formed on surface of single crystal substrate and single crystal substrate having pinned step structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150