JP5080233B2 - Surface modification method for quartz glass - Google Patents

Surface modification method for quartz glass Download PDF

Info

Publication number
JP5080233B2
JP5080233B2 JP2007324034A JP2007324034A JP5080233B2 JP 5080233 B2 JP5080233 B2 JP 5080233B2 JP 2007324034 A JP2007324034 A JP 2007324034A JP 2007324034 A JP2007324034 A JP 2007324034A JP 5080233 B2 JP5080233 B2 JP 5080233B2
Authority
JP
Japan
Prior art keywords
film
quartz glass
uneven
stress
uneven surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007324034A
Other languages
Japanese (ja)
Other versions
JP2009143775A (en
Inventor
浩二 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP2007324034A priority Critical patent/JP5080233B2/en
Publication of JP2009143775A publication Critical patent/JP2009143775A/en
Application granted granted Critical
Publication of JP5080233B2 publication Critical patent/JP5080233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、石英ガラス治具、特に、半導体製造用治具、半導体製造における成膜装置、プラズマ処理装置、熱処理装置等に使用される石英ガラス治具の表面改質方法に関する。更に詳しくは、石英ガラス治具に付着した皮膜の剥離がなく、パーティクルの発生が少なく耐久性に優れた石英ガラス製のCVD用のインナー管やボート、及びエッチャー用等の石英ガラス治具の表面改質方法に関する。   The present invention relates to a method for modifying a surface of a quartz glass jig used in a quartz glass jig, in particular, a semiconductor manufacturing jig, a film forming apparatus, a plasma processing apparatus, a heat treatment apparatus and the like in semiconductor manufacturing. More specifically, the surface of quartz glass jigs for CVD inner tubes and boats and etchers made of quartz glass with excellent durability and no peeling of coatings attached to quartz glass jigs. The present invention relates to a reforming method.

半導体の製造における成膜工程で、シリコンなどの半導体ウエハー面に窒化膜などを形成する際には、高純度で耐熱性に優れ、かつ、加工し易いところから反応管の内部に石英ガラス製の炉芯管(インナー管)や、ウエハーを載せる容器(ボート)が使用されている。これらの石英ガラス治具表面は、通常、透明で平滑面である。透明で平滑な面は、反応ガスの滞留や、反応後の副産物のトラップなどが起こらず、半導体製造に対しては良好な面であったが、近年の半導体素子の高集積化に伴い、反応過程で石英ガラス治具の表面に付着した窒化膜等の反応生成物の剥がれ及び石英ガラス治具自体からの発塵によるパーティクル発生が問題となってきている。   When forming a nitride film on the surface of a semiconductor wafer such as silicon in the film-forming process in the manufacture of semiconductors, quartz glass is used inside the reaction tube because it is highly pure and heat-resistant and easy to process. A furnace core tube (inner tube) and a container (boat) on which a wafer is placed are used. These quartz glass jig surfaces are usually transparent and smooth. The transparent and smooth surface did not cause reaction gas retention or trapped by-products after the reaction, and was a good surface for semiconductor manufacturing. In the process, peeling of reaction products such as a nitride film attached to the surface of the quartz glass jig and generation of particles due to dust generation from the quartz glass jig itself have become problems.

窒化膜の成膜によりインナー管などの石英ガラス製の反応管には膜が付着し、成膜を重ねることにより付着膜が厚くなり、成膜物質と石英ガラスの熱膨張率の差が窒化膜の場合約10倍と大きいため、反応管にひびがはいったり、付着膜が剥離して成膜基板を汚染するという問題がでてきた。また、反応管に付着した膜は、反応管のフッ酸処理によっても除去されにくいため、付着膜が少ない(薄い)部分では反応管の侵食が著しくなるという場合もある。
このため、石英ガラス治具に付着する膜の付着強度を上げ、膜の剥がれを防止してパーティクル発生を抑制するために石英ガラス表面に微小な凹凸面を形成することがおこなわれている。具体的には、サンドブラスト処理等の物理的表面処理、または、フッ化水素などの薬液で表面をエッチング処理する化学的表面処理である。
The film is deposited on the reaction tube made of quartz glass such as the inner tube by forming the nitride film, and the deposited film becomes thick by repeating the film formation, and the difference in thermal expansion coefficient between the film forming material and quartz glass is the nitride film. In such a case, the reaction tube is cracked or the adhered film is peeled off to contaminate the film formation substrate. Further, since the film adhering to the reaction tube is difficult to be removed even by the hydrofluoric acid treatment of the reaction tube, the reaction tube may be significantly eroded in a portion where the adhering film is small (thin).
For this reason, in order to raise the adhesion strength of the film | membrane adhering to a quartz glass jig | tool, to prevent peeling of a film | membrane and to suppress generation | occurrence | production of a particle, forming a fine uneven surface on the quartz glass surface is performed. Specifically, physical surface treatment such as sand blast treatment or chemical surface treatment in which the surface is etched with a chemical such as hydrogen fluoride.

しかしながら、前記サンドブラスト処理によって石英ガラス表面に凹凸が形成され、表面積が大きくなって膜の接着力は向上するものの、同時に石英ガラス表面に微小なマイクロクラックが形成される。このマイクロクラックにサンドブラスト中に削り取られた石英微粉が溜まる場合があり、これらが半導体製造プロセス中にクラックより放出されてパーティクル汚染となる可能性がある。このようにサンドブラスト処理では、マイクロクラックの発生やマイクロチッピングの存在が避けられず、また、部材の強度の低下も招くため、好ましくない。
また、半導体製造工程中においても、マイクロクラック内部に反応ガスが入り込むと、マイクロクラック内部で副生成物が生成され、パーティクル汚染を引き起こす原因ともなり、好ましくない。
However, the sandblasting process forms irregularities on the quartz glass surface, increasing the surface area and improving the adhesion of the film, but at the same time, minute microcracks are formed on the quartz glass surface. In some cases, the microcracks may accumulate quartz fine powder scraped in the sand blast, and these may be released from the cracks during the semiconductor manufacturing process and cause particle contamination. As described above, the sandblast treatment is not preferable because the occurrence of microcracks and the presence of microchipping cannot be avoided, and the strength of the member is reduced.
Further, even during the semiconductor manufacturing process, if a reaction gas enters the microcrack, a by-product is generated inside the microcrack, which may cause particle contamination, which is not preferable.

一方、フッ化水素などの薬液で表面をエッチング処理して凹凸を形成する化学的表面処理では、マイクロクラックの生成によるパーティクルの発生がない点では優れているが、表面の局所的な処理が困難であり、また、所望の表面粗さに制御することが困難であり、作業工程が煩雑である等の問題を有していた。
また、エッチングによる石英ガラス表面の凹凸の形状はディンプル状であり、ディンプルの外周部の山の部分は鋭利な形状となっている。この鋭利な山の部分はウエハーの接触などで簡単に欠け、欠けた石英粉がパーティクルとなる危険性がある。また、表面に凹凸を形成するために長時間フッ化水素水溶液に浸しておくことは、水溶液内に発生する水和物が石英ガラス表面に沈着・付着し、新たなパーティクル生成の要因となる恐れがある。
On the other hand, chemical surface treatment that forms irregularities by etching the surface with a chemical such as hydrogen fluoride is superior in that there is no generation of particles due to the formation of microcracks, but local treatment of the surface is difficult. In addition, it is difficult to control the surface roughness to a desired level, and the work process is complicated.
Further, the shape of the irregularities on the quartz glass surface by etching is a dimple shape, and the crest portion of the outer peripheral portion of the dimple has a sharp shape. These sharp peaks are easily chipped by contact with the wafer, and there is a risk that the chipped quartz powder becomes particles. In addition, soaking in a hydrogen fluoride aqueous solution for a long time to form irregularities on the surface may cause hydrates generated in the aqueous solution to deposit and adhere to the quartz glass surface and cause new particle generation. There is.

サンドブラストとエッチング処理を組み合わせた表面処理においても、サンドブラスト後の洗浄が不完全であると、クラック内部から副生成物や石英微粉が発生し易く、また、エッチング中にフッ化水素水溶液内でのパーティクル再付着が発生する場合がある。
このように、従来の石英ガラス表面の粗面化方法は、新たなパーティル発生要因を副次的に生む可能性があった。また、半導体の高集積化は、石英ガラス治具自体を高精度化することが要求されており、表面凹凸面も再現性よく均一な凹凸面が要求されているが、これらの粗面化方法ではいずれも均一で再現性のある高精度凹凸面を得ることができなかった。更に、形成された凹凸面はいずれもディンプル状の形状であり、不連続なものしかできなかった。
そこで、本出願人は、石英ガラス表面にレーザーを照射して表面に規則的に制御された凹部を形成し、表面粗さRa0.5〜50μmの微細な凹凸層を形成することを提案した。(特願2007−046279号)
Even in surface treatment that combines sandblasting and etching treatment, if the cleaning after sandblasting is incomplete, by-products and quartz fine powder are likely to be generated from the inside of the cracks, and particles in the aqueous hydrogen fluoride solution during etching. Reattachment may occur.
As described above, the conventional method for roughening the surface of the quartz glass has a possibility that a new cause of the generation of a partile is generated as a secondary factor. In addition, high integration of semiconductors requires that the quartz glass jig itself be highly accurate, and the surface uneven surface is also required to have a uniform uneven surface with good reproducibility. In either case, it was impossible to obtain a uniform and reproducible highly accurate uneven surface. Furthermore, all the uneven surfaces formed were dimple-shaped and could only be discontinuous.
Therefore, the present applicant has proposed that the quartz glass surface is irradiated with a laser to form regularly controlled recesses on the surface to form a fine uneven layer having a surface roughness Ra of 0.5 to 50 μm. (Japanese Patent Application No. 2007-046279)

特許第2502109号公報Japanese Patent No. 2502109 特開2001−89198号公報JP 2001-89198 A 特開2004−238262号公報JP 2004-238262 A

レーザー照射による石英ガラス表面への凹凸の形成は、適宜な移動制御手段を採用することによって高精度とすることが可能であり、照射装置の移動速度やレーザー強度を制御することによって凹凸の凹部断面形状や凹部の間隔(ピッチ)等の凹凸面の物理的性状を変更することができる。
凹部の断面形状としてV字状の溝を形成したり、照射ピッチを狭くして照射を複数回繰り返すことで、底部の溝の断面形状を任意寸法の平面状とすることが可能である。また、被加工物とレーザーとの焦点位置を変えることによって半円状の溝としたり三角形の溝角度を変えるなど、溝形状を高精度で制御することができ、凹部の形状の再現性は高いものである。更に、レンズの種類を変えることによって、レーザービームのスポット径を任意に変更したり、アパーチャーやコリメーターレンズを使用することによって、更に任意形状の凹凸面を形成することが可能になる。
本発明は、この性質を利用し、形成される膜の性質や予想される膜に作用する応力に応じて最適な凹凸面の物理的性状(断面形状や配列)を求めることができるようにするものである。
The formation of irregularities on the quartz glass surface by laser irradiation can be made highly accurate by adopting an appropriate movement control means, and the concave and convex concave section by controlling the moving speed and laser intensity of the irradiation device. The physical properties of the concavo-convex surface such as the shape and the interval (pitch) between the concave portions can be changed.
By forming a V-shaped groove as the cross-sectional shape of the recess, or by repeating the irradiation a plurality of times with a narrow irradiation pitch, the cross-sectional shape of the groove at the bottom can be made a flat surface of an arbitrary dimension. In addition, the groove shape can be controlled with high accuracy by changing the focal position of the workpiece and the laser to make a semicircular groove or changing the groove angle of the triangle, and the reproducibility of the concave shape is high. Is. Furthermore, by changing the type of the lens, the spot diameter of the laser beam can be arbitrarily changed, or by using an aperture or a collimator lens, it is possible to form an irregular surface having an arbitrary shape.
The present invention makes use of this property to determine the optimum physical properties (cross-sectional shape and arrangement) of the uneven surface according to the properties of the formed film and the stress acting on the expected film. Is.

石英ガラス表面に形成する凹凸面の物理的性状と石英ガラス面に生成される膜の種類に基づき、石英ガラスと膜の熱膨張率の違いによって膜に作用する応力を計算し、膜の許容応力内となる凹凸面の物理的性状を決定し、レーザー照射により表面に凹凸面を形成する石英ガラスの表面改質方法である。   Based on the physical properties of the uneven surface formed on the quartz glass surface and the type of film generated on the quartz glass surface, the stress acting on the film is calculated by the difference in thermal expansion coefficient between the quartz glass and the film, and the allowable stress of the film This is a method for modifying the surface of quartz glass, in which the physical properties of the concave / convex surface to be inside are determined and the concave / convex surface is formed on the surface by laser irradiation.

本発明は、生成される膜の特性や、予め想定した条件に応じて最適な凹凸面形状を求めることができ、レーザー照射により条件に従って凹部を石英ガラス表面に精度高く加工することができ、表面処理層からの新たなパーティクルの発生を防止することができる。   The present invention can determine the optimal uneven surface shape according to the characteristics of the film to be generated and the conditions assumed in advance, and can process the recesses on the quartz glass surface with high accuracy according to the conditions by laser irradiation. Generation of new particles from the treatment layer can be prevented.

実施例
石英ガラスの表面に形成する凹部断面形状を図1に示すように種々変更したものについて表面に膜が形成された場合を想定し、溶接施工時の構造物の温度や変形、ひずみなどを熱弾塑性有限要素法を用いて追跡するコンピュータプログラムであるQuick Welder(商品名)を使用して膜に作用する応力を2次元的に解析して求めた。石英基板上に形成された凹凸面の断面形状等の諸条件は以下である。
Example Assuming the case where a film is formed on the surface of various changes in the cross-sectional shape of the recess formed on the surface of quartz glass as shown in FIG. 1, the temperature, deformation, strain, etc. of the structure during welding are The stress acting on the film was obtained by two-dimensional analysis using a Quick Welder (trade name) which is a computer program to be tracked using a thermoelastic-plastic finite element method. Various conditions such as the cross-sectional shape of the uneven surface formed on the quartz substrate are as follows.

(1)厚さ200μmの石英ガラス基板2の鏡面研磨された表面に厚さ2μmの窒化珪素(Si34)膜21が生成されている。
(2)厚さ200μmの石英ガラス基板2の表面に半径25μm半円形の凸部が連続して形成され、その凹凸面に厚さ2μmの窒化珪素(Si34)膜21が生成されている。
(3)厚さ200μmの石英ガラス基板2の表面に50μm四角の溝が50μmおきに形成され、その凹凸面に厚さ2μmの窒化珪素(Si34)膜21が生成されている。
(4)厚さ200μmの石英ガラス基板2の表面に頂部間隔が50μm、深さ50μmのV字溝が連続して形成された鋸歯状凹凸面に厚さ2μmの窒化珪素(Si34)膜21が生成されている。
以上の条件の対象物を、700℃の状態から室温の20℃に温度を下げて680℃の温度差を与え、石英ガラスと窒化珪素の膨張率の差異に基づく膜応力をQuick Welderを使用して求めた。結果は、応力範囲毎に膜部分を色分け表示またはプリントアウトすることができるので、膜のどの部分に最大応力が発生するかを判読することができる。凹凸面の物理的性状の異なるサンプル(1)〜(4)について、求めた最大膜応力を表1に示す。(最大応力発生位置は省略する。)
(1) A silicon nitride (Si 3 N 4 ) film 21 having a thickness of 2 μm is formed on the mirror-polished surface of a quartz glass substrate 2 having a thickness of 200 μm.
(2) A semicircular convex portion having a radius of 25 μm is continuously formed on the surface of the quartz glass substrate 2 having a thickness of 200 μm, and a silicon nitride (Si 3 N 4 ) film 21 having a thickness of 2 μm is formed on the concave and convex surface. Yes.
(3) A 50 μm square groove is formed every 50 μm on the surface of the quartz glass substrate 2 having a thickness of 200 μm, and a silicon nitride (Si 3 N 4 ) film 21 having a thickness of 2 μm is formed on the uneven surface.
(4) Silicon nitride (Si 3 N 4 ) having a thickness of 2 μm on a serrated uneven surface in which V-grooves having a top interval of 50 μm and a depth of 50 μm are continuously formed on the surface of a quartz glass substrate 2 having a thickness of 200 μm. A membrane 21 is produced.
The object under the above conditions is lowered from the temperature of 700 ° C. to 20 ° C. to give a temperature difference of 680 ° C., and the film stress based on the difference in expansion coefficient between quartz glass and silicon nitride is measured using Quick Welder. Asked. As a result, the film portion can be displayed in different colors or printed out for each stress range, so that it is possible to determine which portion of the film has the maximum stress. Table 1 shows the maximum film stress obtained for the samples (1) to (4) having different physical properties on the uneven surface. (The maximum stress generation position is omitted.)

次に四角溝凹凸面について、上述した50μm四角の溝が100μmピッチで形成されたものの他に、図3のように四角の溝を25μmとして50μmピッチで形成されたものと、四角の溝を10μmとして20μmピッチで形成されたものとを、凹凸面に厚さ2μmの窒化珪素(Si34)膜21が生成したときの応力について、Quick Welderで求めた評価結果を表2に示す。
表2の如く100μm、50μm、20μmと、ピッチを小さくするに従って膜応力が小さくなる傾向が示されている。
Next, with respect to the concave and convex surface of the square groove, in addition to the above-mentioned 50 μm square groove formed at a pitch of 100 μm, the square groove as shown in FIG. Table 2 shows the evaluation results obtained by Quick Welder for the stress when the silicon nitride (Si 3 N 4 ) film 21 having a thickness of 2 μm is formed on the uneven surface.
As shown in Table 2, the film stress tends to decrease as the pitch is reduced, such as 100 μm, 50 μm, and 20 μm.

この結果に基づき石英ガラス基板表面を研磨面としたもの、レーザー加工装置を使用して表面を半円状、四角溝状、鋸歯状の各凹凸面に形成したものに、厚さ2μmの窒化珪素膜を形成し、石英ガラス基板を700℃に加熱し、放置して20℃に冷却して各基板表面を観察した。
サンプル4の鋸歯状の窒化膜は剥がれることがなかったが、他の3つのサンプルの窒化膜は熱収縮による応力で剥がれてしまった。
Quick Welderで求めた解析結果と同じく、鋸歯状の凹凸面に設けた窒化珪素膜が剥がれなかった。これは平面応力を表面立体構造化で応力緩和が生じたものと考えられ、窒化珪素(Si34)膜の破壊限界応力から最大膜応力を300MPa以下とすることが必要であると言える。
Based on this result, the surface of the quartz glass substrate is a polished surface, and the surface is formed into a semicircular, square groove or sawtooth concavo-convex surface using a laser processing apparatus. A film was formed, the quartz glass substrate was heated to 700 ° C., left to cool to 20 ° C., and the surface of each substrate was observed.
The sawtooth nitride film of sample 4 was not peeled off, but the nitride films of the other three samples were peeled off by stress due to thermal contraction.
The silicon nitride film provided on the serrated irregular surface was not peeled off, similar to the analysis result obtained by Quick Welder. This is considered to be due to the relaxation of the plane stress caused by the surface steric structure, and it can be said that the maximum film stress needs to be 300 MPa or less from the fracture limit stress of the silicon nitride (Si 3 N 4 ) film.

次に、ピッチ間隔を半分とした鋸歯状の凹凸面を形成した石英ガラス基板を用いて、窒化膜生成後の表面状態について観察したところ、膜応力は小さく、膜応力を緩和する形状としては、ピッチ間隔が小さい鋸歯状が良好であり、熱応力解析の結果と同じである。   Next, using a quartz glass substrate with a serrated uneven surface with a pitch interval of half, and observing the surface state after nitride film generation, the film stress is small, A sawtooth shape with a small pitch interval is good, which is the same as the result of thermal stress analysis.

また、レーザー加工装置を用いて、レーザー光を石英ガラス基板表面にランダムに照射して、サンドブラスト処理面と類似の凹凸面とし、この擬似サンドブラスト処理面と、鋸歯状の凹凸面、研磨面の各石英ガラス基板サンプルに窒化珪素(Si34)膜を成膜し、加熱・冷却による熱応力が作用したときの形成した膜圧の違いによる変化を観察した。
膜厚は300nm、900nm、2000nmの3条件とし、成膜条件は、温度700℃、圧力1.0Torr、ガス流量はSiH4(モノシラン20%希釈ガス)50cc/min、NH3(アンモニア)200cc/min、N2(窒素)50cc/min、成膜速度8.3mm/min(300nm:36分、2μm:240分)とした。
成膜前の(1)鋸歯状の凹凸面、(2)擬似サンドブラスト面の表面状態の拡大図(100倍と500倍)を図4に示す。なお、成膜前の研磨面は、透明な鏡面であり、図示を省略する。
前記の条件で石英ガラス基板面に窒化膜を成膜し、加熱・冷却後の窒化膜の状態を図5に示す。(1)研磨面では3条件とも全てクラックが入っており、(3)擬似サンドブラスト面では膜厚900nmからクラックが入っているのに比べて、(2)鋸歯状の凹凸面では3条件ともクラックは認められない。この結果を表3に示す。
In addition, using a laser processing device, the surface of the quartz glass substrate is randomly irradiated with a laser beam to form an uneven surface similar to the sandblasted surface, each of the pseudo sandblasted surface, the serrated uneven surface, and the polished surface A silicon nitride (Si 3 N 4 ) film was formed on a quartz glass substrate sample, and changes due to the difference in film pressure formed when thermal stress due to heating / cooling was observed were observed.
The film thickness is set to three conditions of 300 nm, 900 nm, and 2000 nm. The film formation conditions are a temperature of 700 ° C., a pressure of 1.0 Torr, a gas flow rate of SiH 4 (monosilane 20% dilution gas) 50 cc / min, NH 3 (ammonia) 200 cc / min, N 2 (nitrogen) 50 cc / min, film forming speed 8.3 mm / min (300 nm: 36 minutes, 2 μm: 240 minutes).
FIG. 4 shows enlarged views (100 times and 500 times) of the surface state of (1) sawtooth-shaped uneven surface and (2) pseudo sandblast surface before film formation. The polished surface before film formation is a transparent mirror surface and is not shown.
A nitride film is formed on the surface of the quartz glass substrate under the above conditions, and the state of the nitride film after heating and cooling is shown in FIG. (1) All three conditions are cracked on the polished surface, (3) Compared to the cracks on the pseudo-sandblasted surface from the film thickness of 900 nm, (2) All three conditions are cracked on the serrated uneven surface It is not allowed. The results are shown in Table 3.

図2に示すレーザー加工装置1は、多関節アームロボット3を利用しており、レーザー光源11で発生したレーザー光を処理対象の石英ガラス2の表面に照射するようになっている。照射されるレーザー光は、水平方向及び垂直方向に移動可能であり、表面改質をおこなう石英ガラス2の形状や大きさに応じて、石英ガラス2表面との距離を適宜調整することができる。また、図示しないが集光レンズ及び反射ミラーによって、傾斜角度を水平面に対して0〜90゜の範囲で調整可能であり、レーザー光の照射位置を任意の位置に設定できる。   The laser processing apparatus 1 shown in FIG. 2 uses an articulated arm robot 3 and irradiates the surface of quartz glass 2 to be processed with laser light generated by a laser light source 11. The irradiated laser light can move in the horizontal direction and the vertical direction, and the distance from the surface of the quartz glass 2 can be appropriately adjusted in accordance with the shape and size of the quartz glass 2 to be surface-modified. Although not shown, the inclination angle can be adjusted in the range of 0 to 90 ° with respect to the horizontal plane by the condenser lens and the reflection mirror, and the irradiation position of the laser beam can be set to an arbitrary position.

処理対象の石英ガラス2は加工テーブル(図示しない)の上に支持体を介して載せてある。支持体としては、XY軸方向に移動可能であると共に傾斜可能なターンテーブルを用いて治具を固定するものを使用する。石英ガラスがパイプの場合は、ガイドレール上を移動可能とした間隔をおいて設置された2台の回転ヘッドを用いて固定するものを使用するか、または、改質対象の石英ガラスの形状に応じて支持体を選択する。レーザー光の集点を石英ガラス2の表面の任意の点に設定し、レーザー光を石英ガラス2の表面に照射し、レーザー光のビーム径は集光レンズで調整する。   The quartz glass 2 to be processed is placed on a processing table (not shown) via a support. As the support, a support that uses a turntable that can move in the XY axis direction and can be tilted is used. If the quartz glass is a pipe, use one that is fixed using two rotating heads that are installed on the guide rail so that they can move, or the shape of the quartz glass to be modified The support is selected accordingly. The collection point of the laser beam is set to an arbitrary point on the surface of the quartz glass 2, the laser beam is irradiated on the surface of the quartz glass 2, and the beam diameter of the laser beam is adjusted by a condenser lens.

膜に作用する応力をQuick Welderを使用して解析した例で説明したが、他の同様な機能のプログラムで解析した例を以下に示す。
図6、図7に示す例は、有限要素法用いた汎用構造解析プログラムであるNX Nastran(商品名)で3次元解析をおこなったものである。
図6は、200μm角の平面に半径25μmの半球体突起をピッチ100μmで形成し、膜厚2μmの窒化珪素膜を形成した場合の底面XYZ軸拘束時と、底面Z軸拘束、側4面XY軸拘束時における熱応力解析図である。また、図7、図8は、54μm角の平面に一辺12μmの四角体突起を間隔6μmおきに形成したものと、24μm間隔で形成したものに、膜厚2μmの窒化珪素膜を形成した場合の底面XYZ軸拘束時と、底面Z軸拘束、側4面XY軸拘束時における熱応力解析図である。
このように各種条件下における膜の許容応力内となる凹凸面の物理性状を決定し、レーザー加工装置を用いて石英ガラス基板表面にレーザー照射により最適な凹凸面を形成して、石英ガラスの表面改質をおこなうことができる。
Although the example which analyzed the stress which acts on a film | membrane using Quick Welder was demonstrated, the example analyzed with the program of the other similar function is shown below.
The example shown in FIGS. 6 and 7 is obtained by performing a three-dimensional analysis with NX Nastran (trade name), which is a general-purpose structural analysis program using a finite element method.
FIG. 6 shows a case where a bottom surface XYZ axis is constrained, a bottom surface Z axis constrained, and a side four surface XY when a hemispherical projection having a radius of 25 μm is formed on a 200 μm square plane with a pitch of 100 μm and a 2 μm thick silicon nitride film is formed. It is a thermal-stress analysis figure at the time of axial restraint. FIGS. 7 and 8 show a case where a silicon nitride film having a thickness of 2 μm is formed on a 54 μm square plane formed with tetragonal protrusions of 12 μm on a side every 6 μm and 24 μm apart. It is a thermal-stress analysis figure at the time of bottom face XYZ-axis restraint, bottom face Z-axis restraint, and side 4 surface XY-axis restraint.
In this way, the physical properties of the concavo-convex surface within the allowable stress of the film under various conditions are determined, and the optimal concavo-convex surface is formed on the surface of the quartz glass substrate by laser irradiation using a laser processing apparatus, thereby Modification can be performed.

サンプル断面の概念図。The conceptual diagram of a sample cross section. レーザー加工装置の概念図。The conceptual diagram of a laser processing apparatus. ピッチの異なる四角突起凹凸面の断面図。Sectional drawing of the square protrusion uneven | corrugated surface from which pitch differs. 成膜前の鋸歯状の凹凸面、擬似サンドブラスト面の表面状態図。The surface state figure of the serrated uneven surface before film-forming, and a pseudo-sandblast surface. 成膜後の鋸歯状の凹凸面、擬似サンドブラスト面の表面状態図。The surface state figure of the serrated uneven surface after film-forming, and a pseudo-sandblast surface. 半球状突起凹凸面についての応力解析図。The stress analysis figure about a hemispherical projection uneven surface. 四角突起の凹凸面についての応力解析図。The stress analysis figure about the uneven | corrugated surface of a square protrusion. 四角突起の凹凸面についての応力解析図。The stress analysis figure about the uneven | corrugated surface of a square protrusion.

符号の説明Explanation of symbols

1 レーザー加工装置
2 石英ガラス基板
21 膜(窒化膜)
DESCRIPTION OF SYMBOLS 1 Laser processing apparatus 2 Quartz glass substrate 21 Film (nitride film)

Claims (2)

石英ガラス表面に形成する凹凸面の断面形状と配列の物理的性状と、石英ガラス面に生成される膜の種類に基づき、石英ガラスと膜の熱膨張率の違いによって膜に作用する応力を計算し、膜の許容応力内となる凹凸面の断面形状と配列の物理的性状を半円形の凸部が連続した凹凸面、四角断面の溝が連続的に形成された凹凸面、頂部間隔と深さを一定としたV字溝が連続して形成された鋸歯状凹凸面のいずれか、またはその組み合わせから選択し、選択した凹凸面をレーザー照射により表面に形成する石英ガラスの表面改質方法。 Calculate the stress acting on the film due to the difference in thermal expansion coefficient between quartz glass and film, based on the physical shape of the cross-sectional shape and arrangement of the irregular surface formed on the quartz glass surface and the type of film generated on the quartz glass surface. The cross-sectional shape of the concavo-convex surface within the allowable stress of the film and the physical properties of the arrangement are as follows. A method for modifying the surface of quartz glass, which is selected from any one of a serrated uneven surface formed by continuously forming a V-shaped groove having a constant thickness, or a combination thereof, and the selected uneven surface is formed on the surface by laser irradiation. 請求項1において、膜が窒化珪素膜であり、窒化珪素膜に作用する最大膜応力を300MPa以下とする凹凸面の断面形状、ピッチ間隔を選択して、レーザー照射により表面に凹凸面を形成する石英ガラスの表面改質方法。 2. The uneven surface according to claim 1, wherein the film is a silicon nitride film, and the cross-sectional shape and pitch interval of the uneven surface with a maximum film stress acting on the silicon nitride film being 300 MPa or less are selected, and the uneven surface is formed on the surface by laser irradiation. A method for surface modification of quartz glass.
JP2007324034A 2007-12-14 2007-12-14 Surface modification method for quartz glass Active JP5080233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007324034A JP5080233B2 (en) 2007-12-14 2007-12-14 Surface modification method for quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007324034A JP5080233B2 (en) 2007-12-14 2007-12-14 Surface modification method for quartz glass

Publications (2)

Publication Number Publication Date
JP2009143775A JP2009143775A (en) 2009-07-02
JP5080233B2 true JP5080233B2 (en) 2012-11-21

Family

ID=40914852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007324034A Active JP5080233B2 (en) 2007-12-14 2007-12-14 Surface modification method for quartz glass

Country Status (1)

Country Link
JP (1) JP5080233B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805131B (en) * 2010-03-18 2012-05-30 中国科学院上海硅酸盐研究所 Low-temperature preparation method and application of vanadium dioxide film
CN101805134B (en) * 2010-03-18 2013-01-02 中国科学院上海硅酸盐研究所 Film-coating liquid of vanadium dioxide thin film and preparation method and application of thin film
WO2014203817A1 (en) * 2013-06-17 2014-12-24 株式会社カネカ Solar cell module and method for producing solar cell module
US10475674B2 (en) 2015-03-25 2019-11-12 SCREEN Holdings Co., Ltd. Light irradiation type heat treatment apparatus and method for manufacturing heat treatment apparatus
JP6546063B2 (en) * 2015-03-25 2019-07-17 株式会社Screenホールディングス Heat treatment equipment
JP6666516B1 (en) * 2018-10-18 2020-03-13 東ソー・クォーツ株式会社 Quartz glass dummy wafer
JP7134902B2 (en) * 2019-03-05 2022-09-12 キオクシア株式会社 semiconductor equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2824808B2 (en) * 1990-11-16 1998-11-18 キヤノン株式会社 Apparatus for continuously forming large-area functional deposited films by microwave plasma CVD
TW300879B (en) * 1993-11-10 1997-03-21 Ibm
JP3797702B2 (en) * 1996-03-25 2006-07-19 日本板硝子株式会社 Laser processing method for glass substrate, diffraction grating obtained by this method, and microlens array
JP4132750B2 (en) * 2001-08-17 2008-08-13 独立行政法人科学技術振興機構 Fabrication method of quantum dot device by femtosecond laser irradiation
JP2009064913A (en) * 2007-09-05 2009-03-26 Hitachi Kokusai Electric Inc Substrate processing apparatus and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2009143775A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP5080233B2 (en) Surface modification method for quartz glass
JP5154814B2 (en) Method for producing quartz glass material
TWI630999B (en) Ductile mode machining methods for hard and brittle components of plasma processing apparatuses
KR20070029094A (en) Good plasma corrosion resistant spray-coated member, and production method thereof
JP5039939B2 (en) Surface processing method and apparatus
JP2019511122A (en) Complex laser processing of solids to be separated
KR101347696B1 (en) Vertical Heat Treatment Boat and Semiconductor Wafer Heat Treatment Method Using the Same
JP2009045925A (en) Mold for nanoimprint and its manufacturing method
Feoktistov et al. Expanding the scope of SiC ceramics through its surface modification by different methods
JP2009054984A (en) Component for film forming apparatus and its manufacturing method
JP5260026B2 (en) Method for manufacturing tubular quartz glass jig
JP2010042991A (en) Silica glass jig used in process for manufacturing semiconductor
TW200416294A (en) Corrosion-resistant member and method for producing same
JP5652381B2 (en) Surface processing method and apparatus
WO2006134779A1 (en) Quartz glass tool for heat treatment of silicon wafer and process for producing the same
JP5026816B2 (en) Quartz glass jig and manufacturing method thereof
JP6957252B2 (en) Cutting method
KR102230560B1 (en) Method for a diamond vapor deposition
JP4923272B2 (en) Step structure pinning method formed on the surface of a single crystal substrate, and a single crystal substrate having a pinned step structure
CN113430523A (en) Optical aluminum alloy surface multidimensional controllable reaction energy beam composite polishing method
KR100607890B1 (en) Film thickness measuring monitor wafer
JP4407143B2 (en) Quartz glass component, manufacturing method thereof, and apparatus using the same
JP4380211B2 (en) Quartz glass parts, manufacturing method thereof, and apparatus using the same
CN107251422A (en) Manufacturing method
JP2008207223A (en) Smoothing method of diamond film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5080233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250