JP5252629B2 - Flame retardant magnesium alloy filler - Google Patents

Flame retardant magnesium alloy filler Download PDF

Info

Publication number
JP5252629B2
JP5252629B2 JP2008202507A JP2008202507A JP5252629B2 JP 5252629 B2 JP5252629 B2 JP 5252629B2 JP 2008202507 A JP2008202507 A JP 2008202507A JP 2008202507 A JP2008202507 A JP 2008202507A JP 5252629 B2 JP5252629 B2 JP 5252629B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
flame
retardant magnesium
filler material
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008202507A
Other languages
Japanese (ja)
Other versions
JP2010036221A (en
Inventor
富雄 佐藤
英俊 上野
洋司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008202507A priority Critical patent/JP5252629B2/en
Publication of JP2010036221A publication Critical patent/JP2010036221A/en
Application granted granted Critical
Publication of JP5252629B2 publication Critical patent/JP5252629B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、純マグネシウムあるいはマグネシウム合金の部材を溶接するときに用いる溶加材に関する。更に詳しくは、純マグネシウムやマグネシウム合金の部材を溶接する際に用いる難燃性マグネシウム合金溶加材であり、これは溶接棒、溶接ワイヤ等の形態で提供されるものであり、溶接接合強度を高めた難燃性マグネシウム合金溶加材に関する。   The present invention relates to a filler material used when welding pure magnesium or magnesium alloy members. More specifically, it is a flame retardant magnesium alloy filler material used when welding pure magnesium or magnesium alloy members, which are provided in the form of a welding rod, a welding wire, etc. The present invention relates to an improved flame retardant magnesium alloy filler metal.

マグネシウム合金は、実用金属材料中で最も軽量であり、鉄合金や銅合金、更にアルミニウム合金その他の金属の軽量化代替材料として注目されている。又、リサイクル性に富むためにプラスチックの代替材としても注目されている。マグネシウム合金は低密度であるため、比強度、比弾性率等が高い。このため、軽量化の要求される産業分野において、将来その需要が高まることが予想される。比較的軽量であるチタン合金やアルミニウム合金は十分な機械的強度を有しているものの、マグネシウム合金に比し、軽量性や衝撃緩衝性等の特性が低いという欠点がある。   Magnesium alloy is the lightest metal among practical metal materials, and is attracting attention as a light weight substitute material for iron alloys, copper alloys, aluminum alloys and other metals. In addition, since it is highly recyclable, it has attracted attention as an alternative to plastic. Since the magnesium alloy has a low density, the specific strength, the specific elastic modulus and the like are high. For this reason, it is expected that the demand will increase in the future in the industrial field where weight reduction is required. Although titanium alloys and aluminum alloys, which are relatively light, have sufficient mechanical strength, they are disadvantageous in that they have low properties such as lightness and shock buffering properties compared to magnesium alloys.

通常の純マグネシウムやマグネシウム合金は、チタン合金やアルミニウム合金に比して強度が低いとともに、化学的活性化度が高いために容易に発火・燃焼しやすい欠点があることは従来から知られている。このような発火・燃焼しやすい純マグネシウムやマグネシウム合金を安全なものとするために、これらにカルシウムを添加して発火点を高め、発火し難いものにした難燃性マグネシウム合金が開発されている。この難燃性マグネシウム合金の鋳造材に、次いで、押し出しや圧延等の塑性加工を施して高強度の難燃性マグネシウム合金とすることが、特許文献1で示すように開発されている。   Conventional pure magnesium and magnesium alloys are known to have the disadvantages that they are easy to ignite and burn because of their low strength and high chemical activation compared to titanium and aluminum alloys. . In order to make such pure magnesium and magnesium alloys that are easy to ignite and burn safely, flame retardant magnesium alloys that are made difficult to ignite by adding calcium to them to increase the ignition point are being developed. . As shown in Patent Document 1, it has been developed that the cast material of the flame retardant magnesium alloy is then subjected to plastic working such as extrusion or rolling to obtain a high strength flame retardant magnesium alloy.

マグネシウム合金は自動車、二輪車、鉄道車両、航空機、ロボット等の移動構造体や福祉機器、高齢者用機器等の構造部材への広範な応用が期待されている。そのような各種構造部材においては、各部材の接合、特に溶接技術が不可欠となる。溶接技術においても種々開発が行われており、マグネシウム合金に関してもレーザ溶接、TIG溶接、MIG溶接等々が知られている。難燃性のマグネシウム合金ではないが、例えば、マグネシウム基合金の押し出し材等の母材に、さらに伸線加工を施した後、表面にシェービング加工を施して、潤滑剤や酸化物等を除去して、表面清浄性に優れるマグネシウム溶接線が開示されている(例えば特許文献2参照)。   Magnesium alloys are expected to be widely applied to structural members such as moving structures such as automobiles, motorcycles, railway vehicles, airplanes, and robots, welfare equipment, and equipment for elderly people. In such various structural members, joining of each member, particularly welding technology is indispensable. Various developments have also been made in welding technology, and laser welding, TIG welding, MIG welding, and the like are also known for magnesium alloys. Although it is not a flame retardant magnesium alloy, for example, a base material such as a magnesium-based alloy extruded material is further drawn, and then the surface is shaved to remove lubricant, oxides, etc. In addition, a magnesium weld line having excellent surface cleanliness has been disclosed (see, for example, Patent Document 2).

又、これも難燃性のマグネシウム合金ではないが、強度と靭性に優れたマグネシウム基合金のワイヤとするために、Al、Mn、Zn、Zr、希土類元素、等の成分を含むものが知られている(例えば、特許文献3参照)。また、前述したようにマグネシウム合金に、カルシウムを含有させた難燃性マグネシウム合金は、発火点が高く、安全性が向上しているので、この特性を生かして、難燃性マグネシウム合金をヘルメットに適用した技術も開示されている(例えば特許文献4参照)。これには、分割された部材を突合せた状態で、レーザ溶接、TIG溶接、MIG溶接等の溶融溶接により接合し、一体化することが提案されている。   Also, although this is not a flame retardant magnesium alloy, it is known to contain a component such as Al, Mn, Zn, Zr, rare earth element, etc. in order to make a magnesium-based alloy wire excellent in strength and toughness. (For example, refer to Patent Document 3). In addition, as described above, a flame retardant magnesium alloy containing calcium in a magnesium alloy has a high ignition point and improved safety. Therefore, taking advantage of this property, the flame retardant magnesium alloy can be used as a helmet. An applied technique is also disclosed (for example, see Patent Document 4). For this purpose, it is proposed that the divided members are joined together by fusion welding such as laser welding, TIG welding, MIG welding, etc.

又、本出願人は、溶接の接合強度を高めるために高強度難燃性マグネシウム合金溶加材を提案している(特許文献5)。これは、マグネシウム合金に0.5〜5.0質量%のカルシウム(Ca)を添加した難燃性マグネシウム合金をベースとして、これに、モリブデン(Mo)、ニオブ(Nb)、タングステン(W)、アルミナ(Al)、珪化マグネシウム(MgSi)、及び炭化珪素(SiC)から選択される1種以上の追加添加物を添加して構成されるものである。 In addition, the present applicant has proposed a high-strength flame retardant magnesium alloy filler material in order to increase the joint strength of welding (Patent Document 5). This is based on a flame retardant magnesium alloy obtained by adding 0.5 to 5.0 mass% calcium (Ca) to a magnesium alloy, and molybdenum (Mo), niobium (Nb), tungsten (W), One or more additional additives selected from alumina (Al 2 O 3 ), magnesium silicide (Mg 2 Si), and silicon carbide (SiC) are added.

特開2000−109963号公報Japanese Unexamined Patent Publication No. 2000-109963 特開2006−263744号公報JP 2006-263744 A 特許第3592310号公報Japanese Patent No. 3592310 特開2005−350808号公報JP 2005-350808 A 特願2008−26059号公報Japanese Patent Application No. 2008-26059

前述したように、マグネシウム合金の特性を向上させる改良技術は種々提案されている。しかしながら、現状のマグネシウム合金はまだ問題点を多く抱え、満足すべきものとはなっておらず、特定の製品に適用して製品化を行うためにはまだ改良の余地があり、不十分である。特許文献1に記載された発明は、0.1〜15質量%のCaを含む難燃性マグネシウム合金を塑性加工処理するか、又は該難燃性マグネシウム合金におけるアルミニウム又は亜鉛の既存含有量に加えて、アルミニウム又は亜鉛をさらに添加して、冷却後塑性加工処理して高強度難燃性マグネシウム合金を製造する方法に関するものである。   As described above, various improved techniques for improving the characteristics of magnesium alloys have been proposed. However, the current magnesium alloys still have many problems and are not satisfactory, and there is still room for improvement to be applied to a specific product and it is insufficient. In the invention described in Patent Document 1, a flame retardant magnesium alloy containing 0.1 to 15% by mass of Ca is subjected to plastic working, or in addition to the existing content of aluminum or zinc in the flame retardant magnesium alloy. Further, the present invention relates to a method for producing a high-strength flame-retardant magnesium alloy by further adding aluminum or zinc and performing plastic working after cooling.

又、特許文献2の技術は、マグネシウム溶接線に関するものであるが、溶接線の表面清浄性及び寸法精度を高めるために、伸線加工後、あるいは伸線加工前にシェービング加工を施す技術が開示されており、溶接ワイヤや溶接棒といった、いわゆる溶加材の組成自体に関するものではない。更には、このマグネシウム溶接線は、一般汎用のマグネシウム合金であり、難燃性のマグネシウム合金ではない。   Moreover, although the technique of patent document 2 is related with a magnesium weld line, in order to improve the surface cleanliness and dimensional accuracy of a weld line, the technique of giving a shaving process after a wire drawing process or before a wire drawing process is disclosed. It is not related to the composition of the so-called filler metal such as a welding wire or a welding rod. Furthermore, this magnesium weld line is a general-purpose general-purpose magnesium alloy, not a flame-retardant magnesium alloy.

又、特許文献3は、強度と靱性に優れたマグネシウム基合金ワイヤとその製造方法、ならびにマグネシウム基合金ワイヤを用いたばねを提供する技術を開示しているが、ワイヤの強度や延性を特定するとともに、Al、Mn、Zn、Zr、希土類元素を所定量含むものであり、本発明の難燃性マグネシウム合金溶加材とはその組成を異にする。又、特許文献3では、このマグネシウム基合金ワイヤを用いたばねを提供しており、溶接線としての利用はその可能性が提案されてはいるものの、その具体的な実施例は一切記載されていない。更に、難燃性のマグネシウム合金に関するものではない。   Patent Document 3 discloses a magnesium-based alloy wire excellent in strength and toughness, a method for producing the same, and a technique for providing a spring using the magnesium-based alloy wire, and specifies the strength and ductility of the wire. , Al, Mn, Zn, Zr and a rare earth element are contained in a predetermined amount, and the composition is different from that of the flame-retardant magnesium alloy filler material of the present invention. Further, Patent Document 3 provides a spring using this magnesium-based alloy wire, and although its possibility for use as a weld line has been proposed, no specific example is described. . Furthermore, it does not relate to a flame retardant magnesium alloy.

又、特許文献4では、難燃性マグネシウム合金を各種ヘルメットへ応用し、必要に応じてこのマグネシウム合金のレーザ溶接、TIG溶接、MIG溶接などの溶融溶接を行うとして難燃性マグネシウム合金の溶接の可能性を開示している。しかし、いかなる実施例も伴なっていない。更なる明確な相違は、特許文献4に記載された難燃性マグネシウム合金は、溶接される側の材料に関するものであり、溶接する際に使用される溶加材ではない。   Further, in Patent Document 4, flame retardant magnesium alloy is applied to various helmets, and if necessary, fusion welding such as laser welding, TIG welding, MIG welding, etc. of this magnesium alloy is performed. The possibility is disclosed. However, no examples are involved. A further clear difference is that the flame retardant magnesium alloy described in Patent Document 4 relates to the material to be welded, not the filler material used when welding.

又、特許文献5で提案された高強度難燃性マグネシウム合金溶加材は、0.5〜5.0質量%のCaを添加した難燃性マグネシウム合金をベースとしている点は本件発明と同一であるが、本件発明は該合金に添加する追加添加物の組成が特許文献5とは異なり、この異なる追加添加物を添加した場合における溶加材の特性、及びそれをマグネシウムの溶接に実際に適用した場合、溶接部の機械的強度等の特性が不明である。   Further, the high strength flame retardant magnesium alloy filler material proposed in Patent Document 5 is the same as the present invention in that it is based on a flame retardant magnesium alloy to which 0.5 to 5.0 mass% of Ca is added. However, in the present invention, the composition of the additive added to the alloy is different from that of Patent Document 5, and the characteristics of the filler material when this different additive is added, and the fact that it is actually applied to magnesium welding. When applied, characteristics such as the mechanical strength of the weld are unknown.

以上詳記したように、開示されている従来技術は、溶接ワイヤの表面性状の改善や、マグネシウム基合金製のばねの提供、あるいは、開発された溶加材を用いて溶接を行った場合、溶接接合強度は必ずしも十分なものではない等の問題点を含んでいた。   As described in detail above, the disclosed prior art improves the surface properties of the welding wire, provides a spring made of a magnesium-based alloy, or when welding is performed using a developed filler material, There was a problem that the weld joint strength was not always sufficient.

本発明は、このような従来の技術背景のもとになされたものであり、次の目的を達成する。
本発明の目的は、純マグネシウム部材やマグネシウム合金部材の溶融溶接を行う際に用いる溶加材を提供することである。より具体的には、マグネシウム合金へのCaの添加に加え、汎用的な元素を追加添加することによって、高い溶接接合強度を可能とする難燃性マグネシウム合金溶加材を提供することにある。
本発明の他の目的は、切削屑等を利用することによって、低コストに構成される難燃性マグネシウム合金溶接用溶加材の提供にある。
The present invention has been made based on such a conventional technical background, and achieves the following object.
An object of the present invention is to provide a filler material used when performing fusion welding of a pure magnesium member or a magnesium alloy member. More specifically, in addition to the addition of Ca to the magnesium alloy, it is an object to provide a flame retardant magnesium alloy filler material that enables high weld joint strength by additionally adding a general-purpose element.
Another object of the present invention is to provide a flame retardant magnesium alloy welding filler material which is constructed at low cost by utilizing cutting scraps and the like.

本発明は、前記目的を達成するために次の手段を採る。
本発明1の難燃性マグネシウム合金溶加材は、 AM60系、又はAZ91系のマグネシウム合金に0.5〜5.0質量%のカルシウム(Ca)を添加した難燃性マグネシウム合金をベースとして、これに、ホウ素(B)1.0〜7.0質量%、又はチタン(Ti)0.5〜3.0質量%の追加添加物を添加して構成されることを特徴とする。難燃性マグネシウム合金溶加材の具体的な形状形態は、溶接棒、溶接ワイヤ等を含むものである。
The present invention adopts the following means in order to achieve the object.
The flame-retardant magnesium alloy filler material of the present invention 1 is based on a flame-retardant magnesium alloy obtained by adding 0.5 to 5.0 mass% calcium (Ca) to an AM60-based or AZ91-based magnesium alloy. An additional additive of boron (B) 1.0 to 7.0% by mass or titanium (Ti) 0.5 to 3.0% by mass is added thereto. The specific shape and form of the flame retardant magnesium alloy filler material includes a welding rod, a welding wire, and the like.

本発明の難燃性マグネシウム合金溶加材は、本発明1の難燃性マグネシウム合金溶加材において、前記難燃性マグネシウム合金は、該難燃性マグネシウム合金素材から得られる粉砕物からなることを特徴とする。
本発明の難燃性マグネシウム合金溶加材は、本発明1の難燃性マグネシウム合金溶加材において、前記追加添加物を添加した後、塑性加工により製造された合金であることを特徴とする。
The flame retardant magnesium alloy filler material of the present invention 2 is the flame retardant magnesium alloy filler material of the present invention 1, wherein the flame retardant magnesium alloy is made of a pulverized material obtained from the flame retardant magnesium alloy material. It is characterized by that.
The flame retardant magnesium alloy filler material of the present invention 3 is an alloy manufactured by plastic working after adding the additional additive in the flame retardant magnesium alloy filler material of the present invention 1. To do.

本発明の難燃性マグネシウム合金溶加材は、本発明の難燃性マグネシウム合金溶加材において、前記粉砕物は、切削加工で得られる切削屑又はその粉末体であることを特徴とする。
本発明の難燃性マグネシウム合金溶加材は、本発明の難燃性マグネシウム合金溶加材において、前記塑性加工は、押し出し加工、引き抜き加工、鍛造加工、及び圧延加工のいずれか1以上の加工であることを特徴とする。
The flame-retardant magnesium alloy filler material of the present invention 4 is the flame-retardant magnesium alloy filler material of the present invention 2 , wherein the pulverized product is a cutting waste obtained by cutting or a powdered body thereof. To do.
The flame-retardant magnesium alloy filler material of the present invention 5 is the flame-retardant magnesium alloy filler material of the present invention 3. The plastic processing is any one or more of extrusion processing, drawing processing, forging processing, and rolling processing. It is the process of this.

本発明の難燃性マグネシウム合金溶加材は、本発明の難燃性マグネシウム合金溶加材において、前記難燃性マグネシウム合金溶加材は、ワイヤ状又は棒状であることを特徴とする。 The flame-retardant magnesium alloy filler material of the present invention 6 is the flame-retardant magnesium alloy filler material of the present invention 1 , wherein the flame-retardant magnesium alloy filler material is wire-shaped or rod-shaped. .

本発明の難燃性マグネシウム合金溶加材は、Caの添加に加え汎用的な元素の追加添加により、さらに押し出し加工等の塑性加工を施すことによって作製され、溶接接合性能を向上させた難燃性マグネシウム合金溶加材である。   The flame-retardant magnesium alloy filler material of the present invention is produced by performing addition of a general-purpose element in addition to the addition of Ca, and further by performing plastic processing such as extrusion processing, and the flame-retardant with improved weld joint performance It is a heat-resistant magnesium alloy filler material.

また、本発明の難燃性マグネシウム合金溶加材は、Caの添加によって発火点が高く通常の環境状態での接合ができ、溶接作業時に発生するヒューム(溶接又は切断時の熱によって蒸発した物質が冷却されて固体の微粒子となったもの)の発生が、通常のマグネシウム合金を溶加材として用いた場合に比して少ない。更に、切削屑等の粉砕物を有効に利用することで、低コストの難燃性マグネシウム合金溶加材である。   Further, the flame retardant magnesium alloy filler metal of the present invention has a high ignition point due to the addition of Ca and can be joined in a normal environmental state, and fumes generated during welding work (substance evaporated by heat during welding or cutting) Is reduced to solid fine particles) as compared with the case where a normal magnesium alloy is used as a filler material. Furthermore, it is a low-cost flame-retardant magnesium alloy filler material by effectively using pulverized materials such as cutting scraps.

以下、本発明の難燃性マグネシウム合金溶加材の実施の形態について詳細に説明する。本発明は、純マグネシウムやマグネシウム合金、あるいは難燃性マグネシウム合金の部材を溶接するための溶加材であり、具体的には、溶接棒や溶接ワイヤ等の形状形態をとる。   Hereinafter, embodiments of the flame-retardant magnesium alloy filler material of the present invention will be described in detail. The present invention is a filler material for welding a member of pure magnesium, a magnesium alloy, or a flame retardant magnesium alloy, and specifically takes a shape form such as a welding rod or a welding wire.

本発明に関わる実施の形態の溶加材に適用するマグネシウム合金は、米国材料試験協会(ASTM)で規格される[AM60B合金]で表示される鋳造用マグネシウム合金である。本発明の適用合金は[AM60B合金]に当然ながら限定されるものではなく、他のマグネシウム合金であってもよい。この合金に0.5〜5.0質量%のCaを添加する。本実施の形態の合金においては、2質量%のCaを添加したものを適用する。   The magnesium alloy applied to the filler metal of the embodiment relating to the present invention is a magnesium alloy for casting represented by [AM60B alloy] standardized by the American Society for Testing and Materials (ASTM). The application alloy of the present invention is not limited to [AM60B alloy], but may be other magnesium alloys. 0.5-5.0 mass% Ca is added to this alloy. In the alloy of the present embodiment, an alloy to which 2% by mass of Ca is added is applied.

AM60Bはダイカスト用合金であり、耐食性向上のため、Fe、Ni、Cu等の不純物の含有量を少なくした高純度マグネシウム合金である。その基本化学組成は、Al:5.5〜6.5質量%、Mn:0.24〜0.6質量%、残部マグネシウム及び不可避的成分からなる。これにCaを添加し、難燃性マグネシウム合金としている。Caの添加量は、前述したように0.5〜5.0質量%が望ましい。   AM60B is an alloy for die casting, and is a high-purity magnesium alloy in which the content of impurities such as Fe, Ni, and Cu is reduced in order to improve corrosion resistance. Its basic chemical composition consists of Al: 5.5-6.5% by mass, Mn: 0.24-0.6% by mass, the remainder magnesium and unavoidable components. Ca is added to this to make a flame retardant magnesium alloy. As described above, the addition amount of Ca is preferably 0.5 to 5.0% by mass.

マグネシウムは、結晶構造が稠密六方晶であるため、室温のもとでは塑性加工性が極めて悪く、冷間加工はできないのが現状である。熱間では塑性加工性もかなり向上するが、他の金属と比較すると精緻な形状の加工はやはり困難である。従って、マグネシウム合金の製造は鋳造法が主に用いられる。又、鋳造法で得られた鋳造品や塑性加工で得られた鍛造材や展伸材等の最終形状への仕上げには、切削加工が施される場合が多い。しかしながら、切削加工で発生する切削屑の処理はコスト等が嵩む制約があり、一方、リサイクル材として、このままで再利用するには多くの問題を抱えている。   Since magnesium has a dense hexagonal crystal structure, plastic workability is extremely poor at room temperature, and cold working cannot be performed at present. Although hot plastic workability is considerably improved, it is still difficult to machine a precise shape as compared with other metals. Therefore, the casting method is mainly used for producing the magnesium alloy. In addition, cutting is often performed to finish the final shape of a cast product obtained by a casting method or a forged material or a wrought material obtained by plastic working. However, processing of cutting waste generated by cutting has a restriction that increases costs and the like, and on the other hand, it has many problems to be reused as it is as a recycled material.

近年、この切削屑の有効利用を図る研究が行われているが、実用に供せる決定的な事例はまだ開示されていない。本発表においては、難燃性マグネシウム合金の切削屑をベースとするものである。この難燃性マグネシウム合金は切削性が良好であるとともに、難燃性の付与により、汎用のマグネシウム合金で一般に行われている湿式切削ではなく乾式切削が可能となる。これにより切削屑の利用・リサイクルが大幅に容易となる利点を有する。勿論、本発明において使用する難燃性マグネシウム合金の素材は、切削屑に限定されず、切削屑に準じるものであればどのような小片状ブロックであってもよい。   In recent years, research on the effective use of this cutting waste has been carried out, but no definitive case for practical use has been disclosed yet. In this presentation, it is based on cuttings of flame retardant magnesium alloy. This flame-retardant magnesium alloy has good machinability, and by imparting flame retardancy, dry cutting is possible instead of wet cutting generally performed with general-purpose magnesium alloys. As a result, there is an advantage that the use and recycling of cutting waste is greatly facilitated. Of course, the material of the flame-retardant magnesium alloy used in the present invention is not limited to cutting waste, and may be any small block as long as it conforms to the cutting waste.

次に、本発明の素材である高強度な難燃性マグネシウム合金の製造について説明する。ベースとなるマグネシウム合金は、2質量%のCaが添加された難燃性マグネシウム合金「AM60B−2%Ca合金」である。AM60Bは本来鋳造用のマグネシウム合金であるが、熱間においては押し出し等の塑性加工を可能とするものである。この塑性加工には、押し出し加工、引き抜き加工、鍛造加工、回転鍛造加工、圧延加工等がある。   Next, production of a high-strength flame-retardant magnesium alloy that is a material of the present invention will be described. The base magnesium alloy is a flame retardant magnesium alloy “AM60B-2% Ca alloy” to which 2 mass% of Ca is added. AM60B is originally a magnesium alloy for casting, but it can perform plastic working such as extrusion while hot. This plastic processing includes extrusion processing, drawing processing, forging processing, rotary forging processing, rolling processing, and the like.

このAM60Bに2質量%のCaを添加することにより、マグネシウム合金の発火温度を200〜300℃上昇させることができる。このため、大気中での溶解作業も安全に行うことができる。この「AM60B−2%Ca合金」から、例えば粉砕に供する物として切削屑を製造する。この切削屑の粉末化をボールミル等で行う。   By adding 2% by mass of Ca to this AM60B, the ignition temperature of the magnesium alloy can be increased by 200 to 300 ° C. For this reason, the melting | dissolving operation | work in air | atmosphere can also be performed safely. From this “AM60B-2% Ca alloy”, for example, cutting waste is produced as an object to be crushed. This cutting waste is pulverized with a ball mill or the like.

本発明における難燃性マグネシウム合金の場合、Caの添加によって難燃化が図られているので、粉末の状態であっても安全である。例えば、146μmの平均粒径を有する難燃性「AM60B−2%Ca合金」の粉末の爆発下限濃度の値は、100mg/mであり、アルミニウム粉末(35mg/m)よりも大きく鉄粉末(<120mg/m)並になり、爆発の危険性は大幅に軽減され取り扱いが容易となっている。 In the case of the flame-retardant magnesium alloy in the present invention, flame retardancy is achieved by the addition of Ca, so that it is safe even in a powder state. For example, the flame retardant “AM60B-2% Ca alloy” powder having an average particle size of 146 μm has an explosion lower limit concentration value of 100 mg / m 3 , which is larger than that of aluminum powder (35 mg / m 3 ). (<120 mg / m 3 ), the risk of explosion is greatly reduced and handling is easy.

次に、切削屑等の粉末化に伴ない、本発明に関わる素材の特徴である追加添加物として、所定元素を添加する。この追加添加物は、その割合を含めて示すと、ホウ素(B)の量は、1.0〜7.0質量%であり、チタン(Ti)の量は、0.5〜3.0質量%であり、イットリウム(Y)の量は、0.4〜1.0質量%であり、ジルコニウム(Zr)の量は、0.5〜1.0質量%である各元素である。これらの追加添加物を1種以上、追加添加する。   Next, a predetermined element is added as an additional additive that is a feature of the material according to the present invention in association with pulverization of cutting waste or the like. When this additional additive is shown including its proportion, the amount of boron (B) is 1.0 to 7.0% by mass, and the amount of titanium (Ti) is 0.5 to 3.0% by mass. %, The amount of yttrium (Y) is 0.4 to 1.0% by mass, and the amount of zirconium (Zr) is 0.5 to 1.0% by mass. One or more of these additional additives are added.

これらの元素の種類と添加量を限定しているのは、マグネシウム合金部材の溶接に本溶加材を適用した場合、高い溶接接合強度が達成される範囲を示すものであり、この範囲を外れると高強度化の効果が薄れるためである。これらの1種または選択される複数種を追加添加し、粉末化と複合化を同時に行う。即ち、この追加物の添加により、例えば、切削屑状にある難燃性マグネシウム合金は、凝固組織や内在する化合物が分断・破壊され、微細均質な組織に改質する。同時に粉末内部に微細な追加添加物が均一に入り込み、組織を微細均質にするのである。   The reason why the types and amounts of these elements are limited is that the range in which high weld joint strength is achieved when this filler metal is applied to the welding of magnesium alloy members is out of this range. This is because the effect of increasing the strength is reduced. One kind or a plurality of kinds selected from these are additionally added, and powderization and compounding are simultaneously performed. That is, by the addition of this additional material, for example, the flame-retardant magnesium alloy in the form of cutting waste is reformed into a finely homogeneous structure by breaking up and destroying the solidified structure and the existing compounds. At the same time, fine additional additives uniformly enter the powder, and the structure becomes finely homogeneous.

このように、微細均質な組織になった粉末状の難燃性マグネシウム合金を予備成形する。この予備成形は冷間成形も可能であるが、熱間成形が粉末の固化と焼結を兼ねることができるので好ましい。粉末の固化と焼結を同時に行う熱間成形では、例えば、短時間で焼結工程が完了することができるパルス通電焼結法等が適する。次に、この予備成形され焼結された難燃性マグネシウム合金をビレットとして熱間押し出し加工を施す。この熱間押し出し加工やその他の塑性加工により難燃性マグネシウム合金は、その内部にミクロ欠陥等を含まない緻密な難燃性マグネシウム合金になる。   Thus, a powdery flame retardant magnesium alloy having a fine and homogeneous structure is preformed. Although this preforming can be cold-molding, it is preferable because hot-molding can serve as both solidification and sintering of the powder. In hot forming in which powder solidification and sintering are performed simultaneously, for example, a pulse current sintering method that can complete the sintering process in a short time is suitable. Next, hot extrusion processing is performed using the preformed and sintered flame-retardant magnesium alloy as a billet. By this hot extrusion processing or other plastic processing, the flame retardant magnesium alloy becomes a dense flame retardant magnesium alloy containing no micro defects or the like.

又、使用するマグネシウム合金は、前述の実施の形態以外に、0〜12質量%のアルミニウムと0〜5質量%の亜鉛と0.5質量%以下のマンガンを含むマグネシウム合金でも有効な結果が可能であり、更にマグネシウム合金は、米国材料試験協会(ASTM)規格表示のAZ31系、AZ61系、AZ80系、AZ91系、AZ92系、AM50系、AM60系、及びAM100系から選択されるいずれを使用しても有効な結果が可能である。   In addition to the above-described embodiment, a magnesium alloy containing 0 to 12% by mass of aluminum, 0 to 5% by mass of zinc, and 0.5% by mass or less of manganese can be effective. Further, the magnesium alloy used is any one selected from AZ31, AZ61, AZ80, AZ91, AZ92, AM50, AM60, and AM100 of the American Society for Testing and Materials (ASTM) standard indication. Even valid results are possible.

本発明による難燃性マグネシウム合金溶加材は、ベースとなるマグネシウムの難燃化に伴ない、溶接作業においても火花等の発生に伴う火災等の危険性が少なくなり、安全に溶接作業を行うことができる。一般に、溶接作業時には、溶接時の熱によって蒸発した物質が冷却されて固体の微粒子となったヒュームが発生することが知られているが、本発明による溶接棒、溶接ワイヤ等の難燃性マグネシウム合金溶加材を使用することによって、その発生を抑制できる。このように、実際の溶接現場においてもその溶接環境の向上に寄与できる。   The flame-retardant magnesium alloy filler material according to the present invention is less susceptible to fire caused by the occurrence of sparks and the like in the welding work due to the flame resistance of the base magnesium, and performs the welding work safely. be able to. In general, during welding operations, it is known that fumes are generated by cooling the substance evaporated by heat during welding into solid fine particles, but flame retardant magnesium such as welding rods and welding wires according to the present invention. By using the alloy filler material, the generation can be suppressed. Thus, it can contribute to the improvement of the welding environment even in an actual welding site.

溶加材が溶接棒や溶接ワイヤの形状形態をとる場合、例えば、押し出し加工や伸線用に特化したローラダイス等による伸線加工を施すことによって得られる。これらの加工を施すことにより、本発明の溶接棒、又は溶接ワイヤ等の溶加材に含まれる追加添加物は、マグネシウムマトリックス中に一層の均質分散が可能となり、その結果、溶接組織においても均質組織が達成され、機械的特性の向上ができる。   When the filler material takes the form of a welding rod or a welding wire, it can be obtained, for example, by performing wire drawing with a roller die or the like specialized for extrusion or wire drawing. By performing these processes, the additional additive contained in the filler material such as the welding rod or welding wire of the present invention can be more uniformly dispersed in the magnesium matrix, and as a result, even in the weld structure. Organization is achieved and mechanical properties can be improved.

本発明の難燃性マグネシウム合金溶加材は、マグネシウムやマグネシウム合金素材を溶接する際、溶接の種類にかかわらず全般に適用可能であるが、特にTIG溶接やMIG溶接に好適に利用することができる。以下、TIG溶接で行った例を実施例において示す。以上、実施の形態について説明したが、本発明は、本実施の形態に限定されないことはいうまでもない。   The flame-retardant magnesium alloy filler material of the present invention can be applied to any type of welding when magnesium or magnesium alloy material is welded, but can be suitably used particularly for TIG welding and MIG welding. it can. Hereinafter, examples performed by TIG welding are shown in Examples. As mentioned above, although embodiment was described, it cannot be overemphasized that this invention is not limited to this embodiment.

本実施例1における難燃性マグネシウム合金溶接用溶加材は、AM60B合金に難燃性付与のために2.0質量%のカルシウムが添加された難燃性マグネシウム合金「AM60B−2%Ca」をベースにし、これに追加添加物として、ホウ素、チタン、イットリウム及びジルコニウムの各元素を、表1に示す組成になるように添加したものである。本実施例1では、「AM60B−2%Ca」合金の小片状ブロックとして、旋削の切粉である切削屑を用い、この切削屑をボールミルにより粉砕して粉砕物を得た。この際、前記の追加添加物も同時に添加して、添加物の均質分散複合化を行った。   The flame retardant magnesium alloy welding filler in Example 1 is a flame retardant magnesium alloy “AM60B-2% Ca” in which 2.0 mass% of calcium is added to the AM60B alloy to impart flame retardancy. In addition, boron, titanium, yttrium, and zirconium are added as additives to the composition shown in Table 1. In Example 1, cutting chips which are turning chips were used as small blocks of the “AM60B-2% Ca” alloy, and the cuttings were pulverized by a ball mill to obtain a pulverized product. At this time, the additional additive was also added at the same time, and the additive was uniformly dispersed and combined.

次に、このボールミルによって調製された難燃性マグネシウム合金の粉砕物を、パルス通電焼結法により焼結温度480℃、時間は20分間、大気中で固化形成した。次に、これをビレットとして、押し出し比を110、押し出し温度を480℃で熱間押し出し加工を行った。   Next, the pulverized product of the flame retardant magnesium alloy prepared by this ball mill was solidified and formed in the atmosphere by a pulse current sintering method at a sintering temperature of 480 ° C. for 20 minutes. Next, using this as a billet, hot extrusion was performed at an extrusion ratio of 110 and an extrusion temperature of 480 ° C.

前記で得られた難燃性マグネシウム合金を、マグネシウム合金を溶接する際の溶加材として用いた。ここで、溶接に供される被溶接材には、AM60Bマグネシウム合金に難燃性を付与するために、2質量%のCaが添加された難燃性マグネシウム合金「AM60B−2%Ca合金」の押出し板材(板厚2mm)を用いた。溶接方法は、ティグ(TIG)溶接にて行った。主な溶接条件は以下のとおりである。すなわち、直径2.4mmの純タングステン電極を用い、電極と母材間の距離は2mm、交流式で電流100A、溶接速度は200mm/min、不活性ガスにはアルゴンガスを用い、その流量は12L/minとした。   The flame retardant magnesium alloy obtained above was used as a filler material when welding the magnesium alloy. Here, the material to be welded is made of a flame retardant magnesium alloy “AM60B-2% Ca alloy” to which 2% by mass of Ca is added in order to impart flame retardancy to the AM60B magnesium alloy. Extruded plate material (plate thickness 2 mm) was used. The welding method was TIG (TIG) welding. The main welding conditions are as follows. That is, a pure tungsten electrode having a diameter of 2.4 mm is used, the distance between the electrode and the base material is 2 mm, the current is 100 A, the welding speed is 200 mm / min, the inert gas is argon gas, and the flow rate is 12 L. / Min.

溶接における余盛り部を取り除いて引張試験片形状とした後、溶接部の引張強度試験を行い、接合強度を調べた。その引張強度試験の結果を図1に示す。横軸は各種添加物の種類及びその組成である。実施例1において得られた接合強度は、いずれも下記に示す比較例1の結果を大幅に上回っており、本発明の効果を明確に認めることができた。

Figure 0005252629
After removing the surplus part in welding and making it the shape of a tensile test piece, the tensile strength test of the welded part was conducted to examine the joint strength. The result of the tensile strength test is shown in FIG. The horizontal axis represents the types and compositions of various additives. The bonding strength obtained in Example 1 was significantly higher than the results of Comparative Example 1 shown below, and the effects of the present invention could be clearly recognized.
Figure 0005252629

[比較例1]
この比較例1においては、溶加材として「AM60B−2%Ca合金」の鋳造材から熱間での押し出し加工、次に熱間での引き抜き加工を経て作製された引き抜き材を用いた。これを溶加材として用いて、実施例1と全く同じ条件(被溶接材、及び各種溶接条件)の下でTIG溶接を行った。溶接における余盛り部を取り除いて引張試験片形状とした後、引張強度試験を行い接合強度を調べた。その引張強度試験の結果は図1中の比較例1として示すとおりであり、接合引張強度は173MPaに過ぎなかった。
[Comparative Example 1]
In Comparative Example 1, a drawn material produced by hot extrusion from a cast material of “AM60B-2% Ca alloy” and then hot drawing was used as a filler material. Using this as a filler material, TIG welding was performed under exactly the same conditions (material to be welded and various welding conditions) as in Example 1. After removing the surplus portion in welding to form a tensile test piece, a tensile strength test was performed to examine the joint strength. The result of the tensile strength test is as shown as Comparative Example 1 in FIG. 1, and the joint tensile strength was only 173 MPa.

本実施例2における難燃性マグネシウム合金溶加材は、AZ91D合金に難燃性付与のために2.0質量%のカルシウムが添加された難燃性マグネシウム合金「AZ91D−2%Ca」をベースにし、これに追加添加物として、ホウ素及びチタンの各元素を表2に示す組成になるように添加したものである。本実施例2では、この「AZ91D−2%Ca」合金の小片状ブロックとして、旋削加工で発生する切削屑を用い、この切削屑をボールミルにより粉砕して粉砕物を得た。この際、前記の追加添加物も同時に添加して、添加物の均質分散複合化を行った。   The flame retardant magnesium alloy filler material in Example 2 is based on a flame retardant magnesium alloy “AZ91D-2% Ca” in which 2.0 mass% of calcium is added to the AZ91D alloy to impart flame retardancy. In addition, boron and titanium elements were added to the composition shown in Table 2 as additional additives. In Example 2, as the small block of the “AZ91D-2% Ca” alloy, cutting waste generated by turning was used, and the cutting waste was pulverized by a ball mill to obtain a pulverized product. At this time, the additional additive was also added at the same time, and the additive was uniformly dispersed and combined.

次に、この調製された難燃性マグネシウム合金の粉砕物をパルス通電焼結法により、焼結温度450℃、時間は20分間、大気中で固化形成した。次に、これをビレットとして、押し出し比を110、押し出し温度を400℃で熱間押し出し加工を行った。   Next, the pulverized product of the flame-retardant magnesium alloy thus prepared was solidified and formed in the atmosphere at a sintering temperature of 450 ° C. for 20 minutes by a pulse current sintering method. Next, using this as a billet, hot extrusion was performed at an extrusion ratio of 110 and an extrusion temperature of 400 ° C.

前記で得られた難燃性マグネシウム合金を、マグネシウム合金を溶接する際の溶加材として用いた。ここで、溶接に供される被溶接材には、AM60Bマグネシウム合金に難燃性を付与するために2質量%のCaが添加された難燃性マグネシウム合金「AM60B−2%Ca合金」の押出し板材(板厚2mm)を用いた。溶接はTIG溶接で行った。主な溶接条件は以下のとおりである。すなわち、直径2.4mmの純タングステン電極を用い、電極と母材間の距離は2mm、交流式で電流75A、溶接速度は200mm/min、不活性ガスにはアルゴンガスを用い、その流量は12L/minとした。   The flame retardant magnesium alloy obtained above was used as a filler material when welding the magnesium alloy. Here, the material to be welded subjected to welding is an extrusion of a flame retardant magnesium alloy “AM60B-2% Ca alloy” in which 2% by mass of Ca is added to impart flame retardancy to the AM60B magnesium alloy. A plate material (plate thickness 2 mm) was used. Welding was performed by TIG welding. The main welding conditions are as follows. That is, a pure tungsten electrode having a diameter of 2.4 mm is used, a distance between the electrode and the base material is 2 mm, an alternating current of 75 A, a welding speed of 200 mm / min, an inert gas using argon gas, and a flow rate of 12 L / Min.

溶接における余盛り部を取り除いて引張試験片形状とした後、溶接部の引張強度試験を行い、接合強度を調べた。その引張強度試験の結果を図2に示す。横軸は、各種添加物の種類及びその組成である。実施例2において得られた接合強度は、いずれも下記に示す比較例2の結果を大幅に上回っており、本発明の効果を明確に認めることができた。

Figure 0005252629
After removing the surplus part in welding and making it the shape of a tensile test piece, the tensile strength test of the welded part was conducted to examine the joint strength. The result of the tensile strength test is shown in FIG. The horizontal axis represents the types of additives and their compositions. The joint strength obtained in Example 2 was significantly higher than the result of Comparative Example 2 shown below, and the effects of the present invention could be clearly recognized.
Figure 0005252629

[比較例2]
この比較例2においては、溶加材として「AZ91D−2%Ca合金」の鋳造材から熱間での押し出し加工を経て作製された押し出し材を用いた。実施例2と全く同じ条件(被溶接材、及び各種溶接条件)の下で、TIG溶接を行った。溶接における余盛り部を取り除いて引張試験片形状とした後、引張強度試験を行い接合強度を調べた。その引張強度試験の結果は、図2中の比較例2として示すとおりであり、接合引張強度は166MPaに過ぎなかった。
[Comparative Example 2]
In Comparative Example 2, an extruded material produced by hot extrusion from a cast material of “AZ91D-2% Ca alloy” was used as the filler material. TIG welding was performed under exactly the same conditions as in Example 2 (materials to be welded and various welding conditions). After removing the surplus portion in welding to form a tensile test piece, a tensile strength test was performed to examine the joint strength. The result of the tensile strength test is as shown as Comparative Example 2 in FIG. 2, and the joint tensile strength was only 166 MPa.

図1は、「AM60B−2%Ca合金」をベースとして、追加添加物を含む難燃性マグネシウム合金溶加材を用いて溶接した被溶接板材の引張強度試験結果を示したもので、比較例1を含むデータ図である。FIG. 1 shows a tensile strength test result of a welded plate material welded with a flame retardant magnesium alloy filler material containing an additive based on “AM60B-2% Ca alloy”. FIG. 図2は、「AZ91D−2%Ca合金」をベースとして、追加添加物を含む難燃性マグネシウム合金溶加材を用いて溶接した被溶接板材の引張強度試験結果を示したもので、比較例2を含むデータ図である。FIG. 2 shows the tensile strength test results of a welded plate material welded using a flame retardant magnesium alloy filler material containing an additive based on “AZ91D-2% Ca alloy”. FIG.

Claims (6)

AM60系、又はAZ91系のマグネシウム合金に0.5〜5.0質量%のカルシウム(Ca)を添加した難燃性マグネシウム合金をベースとして、これに、ホウ素(B)1.0〜7.0質量%、又はチタン(Ti)0.5〜3.0質量%の追加添加物を添加して構成されることを特徴とする難燃性マグネシウム合金溶加材。 Based on a flame-retardant magnesium alloy obtained by adding 0.5 to 5.0 mass% calcium (Ca) to an AM60-based or AZ91-based magnesium alloy, boron (B) 1.0 to 7.0 is added thereto. A flame retardant magnesium alloy filler material, comprising an additive of 0.5% by mass or titanium (Ti) 0.5 to 3.0% by mass . 請求項1に記載された難燃性マグネシウム合金溶加材において、
前記難燃性マグネシウム合金は、該難燃性マグネシウム合金素材から得られる粉砕物からなることを特徴とする難燃性マグネシウム合金溶加材。
In the flame-retardant magnesium alloy filler material according to claim 1,
The flame-retardant magnesium alloy filler material, wherein the flame-retardant magnesium alloy is made of a pulverized material obtained from the flame-retardant magnesium alloy material.
請求項1に記載された難燃性マグネシウム合金溶加材において、
前記難燃性マグネシウム合金は、前記追加添加物を添加した後、塑性加工により製造された合金であることを特徴とする難燃性マグネシウム合金溶加材。
In the flame-retardant magnesium alloy filler material according to claim 1,
The flame retardant magnesium alloy filler material, wherein the flame retardant magnesium alloy is an alloy manufactured by plastic working after adding the additional additive.
請求項に記載された難燃性マグネシウム合金溶加材において、
前記粉砕物は、切削加工で得られる切削屑又はその粉末体であることを特徴とする難燃性マグネシウム合金溶加材。
In the flame retardant magnesium alloy filler material according to claim 2 ,
The said pulverized material is the cutting waste obtained by cutting, or its powder body, The flame-retardant magnesium alloy filler material characterized by the above-mentioned.
請求項に記載された難燃性マグネシウム合金溶加材において、
前記塑性加工は、押し出し加工、引き抜き加工、鍛造加工、及び圧延加工のいずれか1以上の加工であることを特徴とする難燃性マグネシウム合金溶加材。
In the flame retardant magnesium alloy filler metal according to claim 3 ,
The flame-retardant magnesium alloy filler material, wherein the plastic working is at least one of extrusion, drawing, forging, and rolling.
請求項に記載された難燃性マグネシウム合金溶加材において、
前記難燃性マグネシウム合金溶加材は、ワイヤ状又は棒状であることを特徴とする難燃性マグネシウム合金溶加材。
In the flame-retardant magnesium alloy filler material according to claim 1 ,
The flame retardant magnesium alloy filler material is in the form of a wire or a rod.
JP2008202507A 2008-08-06 2008-08-06 Flame retardant magnesium alloy filler Expired - Fee Related JP5252629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008202507A JP5252629B2 (en) 2008-08-06 2008-08-06 Flame retardant magnesium alloy filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202507A JP5252629B2 (en) 2008-08-06 2008-08-06 Flame retardant magnesium alloy filler

Publications (2)

Publication Number Publication Date
JP2010036221A JP2010036221A (en) 2010-02-18
JP5252629B2 true JP5252629B2 (en) 2013-07-31

Family

ID=42009301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202507A Expired - Fee Related JP5252629B2 (en) 2008-08-06 2008-08-06 Flame retardant magnesium alloy filler

Country Status (1)

Country Link
JP (1) JP5252629B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066536B1 (en) * 2010-10-05 2011-09-21 한국기계연구원 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
KR101080164B1 (en) 2011-01-11 2011-11-07 한국기계연구원 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
US20160168666A1 (en) * 2013-04-15 2016-06-16 National University Corporation Kumamoto University Flame-retardant magnesium alloy and method of manufacturing same
CN104827187B (en) * 2015-05-26 2016-08-24 重庆大学 A kind of method reducing diecast magnesium alloy melting weld porosity
CN107299267B (en) * 2017-06-27 2019-07-16 佛山科学技术学院 One kind heat conductive magnesium alloy containing zirconium and preparation method thereof
CN109280831B (en) * 2018-10-18 2020-10-27 河南科技大学 Flame-retardant tough magnesium alloy and preparation method thereof
CN111254334B (en) * 2020-03-10 2022-03-29 东莞宜安科技股份有限公司 Flame-resistant magnesium alloy and preparation method thereof
EP3896182A1 (en) * 2020-04-16 2021-10-20 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Magnesium alloy, in particular for laser build-up welding
CN114438387B (en) * 2022-02-10 2022-10-14 重庆大学 Low-cost high-strength flame-retardant magnesium alloy and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016655A (en) * 2004-06-30 2006-01-19 Sumitomo Electric Ind Ltd Magnesium alloy wrought material
EP2168695B1 (en) * 2004-06-30 2012-11-21 Sumitomo Electric Industries, Ltd. Magnesium-alloy material

Also Published As

Publication number Publication date
JP2010036221A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5252629B2 (en) Flame retardant magnesium alloy filler
JP6361051B2 (en) Flame retardant magnesium alloy and method for producing the same
US20200199716A1 (en) Additively manufactured high-temperature aluminum alloys, and feedstocks for making the same
KR101258470B1 (en) High-Strength High-Ductility Ignition-Proof Magnesium Alloy
EP2492365B1 (en) Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof
US20170120386A1 (en) Aluminum alloy products, and methods of making the same
US20090269237A1 (en) High-strength non-combustible magnesium alloy
JP6569531B2 (en) Magnesium alloy and manufacturing method thereof
JP6432344B2 (en) Magnesium alloy and manufacturing method thereof
JP4929000B2 (en) Magnesium alloy for plastic working and magnesium alloy plastic working member
Shen The influence of cryogenic and heat treatment on the mechanical properties of laser-welded AZ91D
WO2015093483A1 (en) FILLER MATERIAL, JOINED STRUCTURE OF MAGNESIUM (Mg) ALLOY MATERIAL AND FILLER MATERIAL, METHOD FOR JOINING Mg ALLOY MATERIAL USING MELT WELDING, Mg-ALLOY-MATERIAL JOINED STRUCTURAL BODY, AND PRODUCTION METHOD FOR Mg-ALLOY-MATERIAL JOINED STRUCTURAL BODY
CN101512027A (en) High-strength flame resistant magnesium alloy
JP5201574B2 (en) High strength flame retardant magnesium alloy filler metal
JP5201570B2 (en) High strength flame retardant magnesium alloy
TWI612145B (en) Bonding structure of molten metal, magnesium alloy material and molten material, joining method by fusion welding of magnesium alloy material, magnesium alloy material joint structure, and manufacturing method of magnesium alloy material joint structure
JP6161589B2 (en) Joining material, joining structure of magnesium (Mg) alloy material and filler material, joining method by fusion welding of magnesium (Mg) alloy material, magnesium (Mg) alloy material joining structure, and magnesium (Mg) alloy material joining Manufacturing method of structure
CA3162766A1 (en) Powder aluminium material
JP5699722B2 (en) Magnesium alloy
KR20080085664A (en) Magnesium alloy for plastic process and magnesium alloy plastic processing member
Grzybowska et al. Microstructural Characterization of the As-cast AZ91 Magnesium Alloy with Rare Earth Elements
Adachi et al. Microstructure and mechanical properties of ternary intermetallic compound dispersed P/M Al-Mn-X-Zr (x= Cu, Ni) alloys
JP2008260976A (en) Magnesium alloy to be plastic-worked, and forged and molded member of magnesium alloy
JP2007167880A (en) Brazing filler metal and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

R150 Certificate of patent or registration of utility model

Ref document number: 5252629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees