JP4929000B2 - Magnesium alloy for plastic working and magnesium alloy plastic working member - Google Patents

Magnesium alloy for plastic working and magnesium alloy plastic working member Download PDF

Info

Publication number
JP4929000B2
JP4929000B2 JP2007071403A JP2007071403A JP4929000B2 JP 4929000 B2 JP4929000 B2 JP 4929000B2 JP 2007071403 A JP2007071403 A JP 2007071403A JP 2007071403 A JP2007071403 A JP 2007071403A JP 4929000 B2 JP4929000 B2 JP 4929000B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
plastic working
aluminum
magnesium
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007071403A
Other languages
Japanese (ja)
Other versions
JP2008231488A (en
Inventor
耕平 久保田
洋一 野坂
隆之 堀
範人 太利
和幸 能本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2007071403A priority Critical patent/JP4929000B2/en
Priority to KR1020070139845A priority patent/KR20080085664A/en
Priority to CN2007101800697A priority patent/CN101270429B/en
Publication of JP2008231488A publication Critical patent/JP2008231488A/en
Application granted granted Critical
Publication of JP4929000B2 publication Critical patent/JP4929000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Description

本発明はダイカスト鋳造によって容易に得ることができ、塑性変形性、機械的強度及び耐クリープ性に優れている塑性加工用マグネシウム合金及びマグネシウム合金塑性加工部材に関し、具体的には軽量化を必要とする自動車、携帯電話、ノート型パソコンなどの民生電機・情報機器、電動工具、汎用エンジンなどの産業機械等のマグネシウム合金製部材の製造に用いることができる塑性加工用マグネシウム合金及びマグネシウム合金塑性加工部材に関する。 The present invention relates to a magnesium alloy for plastic working and a magnesium alloy plastic working member, which can be easily obtained by die casting and is excellent in plastic deformability, mechanical strength and creep resistance, and specifically requires weight reduction. Magnesium alloy for plastic working and magnesium alloy plastic working member that can be used for the production of magnesium alloy parts for consumer electronics and information equipment such as automobiles, mobile phones, laptop computers, industrial tools such as electric tools and general-purpose engines About.

上記のようなマグネシウム合金製部材の製造に使用される合金の多くはマグネシウム−アルミニウム系合金であり、鋳造性及び強度を必要とする場合には、アルミニウム含有量が多い合金、例えば、マグネシウム−9質量%アルミニウム(AZ91)合金が汎用とされている。一方、鍛造など塑性変形性を必要とする場合には、アルミニウム含有量を少なくする必要があり、例えば、マグネシウム−3質量%アルミニウム(AZ31)合金が汎用とされている。また、鋳造用合金でも自動車のエンジン部品等のように423K前後で使用される耐熱マグネシウム合金もアルミニウム含有量を抑制する必要があり、例えば、マグネシウム−2質量%アルミニウム−2質量%ケイ素(AS22)合金やマグネシウム−4質量%アルミニウム−2質量%希土類金属(AE42)合金が提案されている(非特許文献1参照)。
ASTM AZ91、AZ31、AS22、AE42
Many of the alloys used for the production of the magnesium alloy member as described above are magnesium-aluminum alloys. When castability and strength are required, an alloy having a high aluminum content, for example, magnesium-9. Mass% aluminum (AZ91) alloy is widely used. On the other hand, when plastic deformation is required, such as forging, it is necessary to reduce the aluminum content. For example, a magnesium-3 mass% aluminum (AZ31) alloy is widely used. In addition, heat-resistant magnesium alloys used at around 423K, such as automobile engine parts, must also suppress the aluminum content, such as magnesium-2 mass% aluminum-2 mass% silicon (AS22). An alloy and a magnesium-4 mass% aluminum-2 mass% rare earth metal (AE42) alloy have been proposed (see Non-Patent Document 1).
ASTM AZ91, AZ31, AS22, AE42

しかしながら、アルミニウム含有量が少ないと機械的強度が低くなり、部品設計上、肉厚を大きくしたりする必要が生じ、軽量化効果が小さくなってしまう。また、耐熱マグネシウム合金においても鋳造性が悪く、機械的強度が低くなるという課題がある。   However, when the aluminum content is low, the mechanical strength is lowered, and it is necessary to increase the thickness in designing the part, so that the lightening effect is reduced. In addition, the heat-resistant magnesium alloy also has a problem that castability is poor and mechanical strength is lowered.

本発明はダイカスト鋳造によって容易に得ることができ、塑性変形性、機械的強度及び耐クリープ性に優れている塑性加工用マグネシウム合金及びマグネシウム合金塑性加工部材を提供することを目的としている。 An object of the present invention is to provide a magnesium alloy for plastic working and a magnesium alloy plastic working member which can be easily obtained by die casting and are excellent in plastic deformability, mechanical strength and creep resistance.

本発明者らは上の課題を解決するための方策を種々検討した結果、次の知見を得るに至った。すなわち、鋳造性、特にダイカスト鋳造性を考慮すると、アルミニウム含有量を5質量%以上、望ましくは6質量%以上にする必要がある。しかし、このようなアルミニウム含有量の範囲では塑性加工性及び耐クリープ性が低下する領域に入ってくる。この要因は、マグネシウム相の格子定数の変化やマグネシウム−アルミニウム相の生成から説明されることが多く、マグネシウム相中のアルミニウム濃度が4.5質量%以下、望ましくは4.3質量%以下、更に望ましくは3.5質量%以下の領域で塑性加工性、耐クリープ性が改善される。このように、鋳造性を考慮した場合と、塑性加工性及び耐クリープ性を考慮した場合とでは、アルミニウム含有量としては0.5質量%以上、望ましくは1.5質量%以上の差が生じる。   As a result of various investigations for solving the above problems, the present inventors have obtained the following knowledge. That is, in consideration of castability, particularly die castability, the aluminum content needs to be 5% by mass or more, preferably 6% by mass or more. However, in such an aluminum content range, the plastic workability and creep resistance fall into the region. This factor is often explained by the change in the lattice constant of the magnesium phase and the formation of the magnesium-aluminum phase, and the aluminum concentration in the magnesium phase is 4.5% by mass or less, preferably 4.3% by mass or less, Desirably, plastic workability and creep resistance are improved in the region of 3.5% by mass or less. As described above, there is a difference of 0.5% by mass or more, preferably 1.5% by mass or more as the aluminum content between the case of considering castability and the case of considering plastic workability and creep resistance. .

そこで、本発明者らはマグネシウム溶湯中のアルミニウムと金属間化合物を形成する金属元素を添加することを検討した。しかし、その金属元素が溶湯中でアルミニウムと金属間化合物を形成する場合には、溶湯中のアルミニウム含有量を実質的に下げてしまい、鋳造性の向上には寄与せず、また金属間化合物が粗大化するため溶湯中で沈殿して強度向上にも寄与しない。しかし、凝固過程の共晶反応でアルミニウムと金属間化合物を形成する金属元素であれば、その金属間化合物は凝固過程で生成し結晶粒周囲に微細で均一に分散するので、鋳造時には高アルミニウム含有量であるが、凝固後のマグネシウム相中のアルミニウム濃度を低くすることが可能である。また、凝固した金属組織中に微細な金属間化合物が均一に分散するため、塑性加工性、耐クリープ性に加えて合金の高強度化が可能となる。   Therefore, the present inventors examined adding a metal element that forms an intermetallic compound with aluminum in the magnesium melt. However, when the metal element forms an intermetallic compound with aluminum in the molten metal, the aluminum content in the molten metal is substantially reduced, which does not contribute to the improvement of castability. Since it becomes coarse, it precipitates in the molten metal and does not contribute to strength improvement. However, if it is a metal element that forms an intermetallic compound with aluminum by a eutectic reaction during the solidification process, the intermetallic compound is formed during the solidification process and is finely and uniformly dispersed around the crystal grains. Although it is an amount, it is possible to reduce the aluminum concentration in the magnesium phase after solidification. Further, since fine intermetallic compounds are uniformly dispersed in the solidified metal structure, the strength of the alloy can be increased in addition to plastic workability and creep resistance.

即ち、本発明の塑性加工用マグネシウム合金は、マグネシウムと、アルミニウムと、凝固過程の共晶反応でアルミニウムとの金属間化合物を形成する希土類金属、カルシウム及びストロンチウムの少なくとも一種の金属元素とからなる溶湯をダイカスト鋳造して得たマグネシウム合金であって、該マグネシウム合金中の全アルミニウム含有量が5〜10質量%であり、マグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度が4.5質量%以下であり、残りのアルミニウムが金属間化合物として存在しており、凝固過程の共晶反応でアルミニウムとの金属間化合物を形成する金属元素の量がマグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度を4.5質量%以下に低下させる量であり、面積分析法により求めた金属間化合物の面積比率が5%以上であり、マグネシウム合金の金属組織の結晶粒度が平均30μm以下であることを特徴とする。 That is, the magnesium alloy for plastic working of the present invention is a molten metal comprising magnesium, aluminum, and at least one metal element of rare earth metal, calcium, and strontium that forms an intermetallic compound with aluminum by a eutectic reaction in the solidification process. A magnesium alloy obtained by die-casting, wherein the total aluminum content in the magnesium alloy is 5 to 10% by mass, and the aluminum concentration in the magnesium phase in the metal structure of the magnesium alloy is 4.5% by mass or less , and the remaining aluminum is present as an intermetallic compound, aluminum magnesium concentration phase in the metal structure of the amount Gama magnesium alloy of a metal element which forms an intermetallic compound with aluminum eutectic reaction of the coagulation process the amount der reduced to 4.5 wt% or less is, area analysis Area ratio of more determined intermetallic compound is 5% or more, the grain size of the metallic structure of a magnesium alloy, characterized in der Rukoto following average 30 [mu] m.

本発明の塑性加工用マグネシウム合金は、塑性加工性、耐クリープ性、優れた機械的特性を併せ持つものであり、自動車、携帯電話、ノート型パソコンなどの民生電機・情報機器、電動工具、汎用エンジンなどの産業機械等の軽量化の進展が可能になる。   The magnesium alloy for plastic working of the present invention has both plastic workability, creep resistance and excellent mechanical properties, and is used in consumer electronics and information equipment such as automobiles, mobile phones and notebook computers, electric tools, and general-purpose engines. It will be possible to reduce the weight of industrial machines.

本発明の塑性加工用マグネシウム合金は、マグネシウムと、アルミニウムと、凝固過程の共晶反応でアルミニウムとの金属間化合物を形成する希土類金属、カルシウム及びストロンチウムの少なくとも一種の金属元素とからなる溶湯をダイカスト鋳造して得たマグネシウム合金であり、各合金元素を純金属として又は母合金として用い、溶解させて得た溶湯をダイカスト鋳造することにより得られる。この溶湯中のアルミニウム含有量が5〜10質量%であるので、鋳造性は良好である。 The magnesium alloy for plastic working of the present invention is a die casting of a molten metal comprising magnesium, aluminum, and a rare earth metal that forms an intermetallic compound with aluminum by a eutectic reaction during solidification, calcium, and strontium. It is a magnesium alloy obtained by casting, and can be obtained by die casting a molten metal obtained by melting each alloy element as a pure metal or a mother alloy. Since the aluminum content in the molten metal is 5 to 10% by mass, the castability is good.

鋳造後の凝固過程の共晶反応でアルミニウムと上記の金属元素が金属間化合物を形成するので、マグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度が4.5質量%以下となり、残りのアルミニウムが凝固した金属組織中に微細な金属間化合物として均一に分散するので、塑性加工性、耐クリープ性に加えて合金の高強度化が可能となる。   Since aluminum and the above metal elements form intermetallic compounds in the eutectic reaction during the solidification process after casting, the aluminum concentration in the magnesium phase in the metal structure of the magnesium alloy is 4.5% by mass or less, and the remaining aluminum is Since it is uniformly dispersed as a fine intermetallic compound in the solidified metal structure, it is possible to increase the strength of the alloy in addition to plastic workability and creep resistance.

凝固過程の共晶反応でアルミニウムとの金属間化合物を形成する金属元素としてはランタン、セリウムなどの希土類金属、あるいはその混合物であるミッシュメタル、カルシウム、ストロンチウム等があり、コスト面からミッシュメタル、カルシウム、ストロンチウムが有利である。これらの金属元素の含有量は一律に決まるものではなく、マグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度を4.5質量%以下、望ましくは4.3質量%以下、更に望ましくは3.5質量%以下に低下させる量である。マグネシウム相中のアルミニウム濃度は例えばEPMA(Electron Probe Micro-Analyzer)により分析できる。あるいは、各金属元素が形成する金属間化合物は、例えばAl2Ca、Al4Ce、あるいはMg−Al−Ca系などの複合化合物等であり、この原子比から算出することもできる。 Metal elements that form intermetallic compounds with aluminum in the eutectic reaction of the solidification process include rare earth metals such as lanthanum and cerium, or mixtures thereof such as misch metal, calcium, and strontium. Strontium is preferred. The content of these metal elements is not determined uniformly, 4.5 mass% of aluminum magnesium concentration phase in the metal structure of the magnesium alloy or less, preferably 4.3 wt% or less, more preferably 3. The amount is reduced to 5% by mass or less. The aluminum concentration in the magnesium phase can be analyzed by, for example, EPMA (Electron Probe Micro-Analyzer). Alternatively, the intermetallic compound formed by each metal element is, for example, a composite compound such as Al 2 Ca, Al 4 Ce, or Mg—Al—Ca, and can also be calculated from this atomic ratio.

また、生成する金属間化合物による強度向上を期待するのであれば、面積分析法により求めた金属組織中の金属間化合物の面積比率が5%以上、望ましくは10%以上であることが好ましい。   Moreover, if the strength improvement by the produced intermetallic compound is expected, the area ratio of the intermetallic compound in the metal structure obtained by the area analysis method is 5% or more, preferably 10% or more.

また、本発明の塑性加工用マグネシウム合金において、マグネシウム合金で一般的に用いられている銀、銅、亜鉛、マンガンの少なくとも一種をそれぞれ銀0.1〜3質量%、銅0.1〜4質量%、亜鉛0.1〜2質量%及びマンガン0.1〜1質量%の量で追加添加しても上記のメカニズムは有効である。   Further, in the magnesium alloy for plastic working of the present invention, at least one of silver, copper, zinc and manganese generally used in the magnesium alloy is 0.1 to 3% by mass of silver and 0.1 to 4% by mass of copper, respectively. %, Zinc is added in an amount of 0.1 to 2% by mass and manganese is added in an amount of 0.1 to 1% by mass.

本発明の塑性加工用マグネシウム合金は、金属組織が微細化しているので塑性変形性、機械的強度の両面から有用であり、また、鋳造、特にダイカスト鋳造の急冷凝固により結晶粒度が50μm以下、望ましくは30μm以下と微細となり塑性加工用合金素材として特に適している。また、このような微細組織のマグネシウム合金は耐食性に優れることも知られている。従って、本発明の塑性加工用マグネシウム合金は押出し、圧延、鍛造又はプレスの塑性加工が可能であり、本発明はこのような塑性加工により得られたマグネシウム合金塑性加工部材も包含する。   The magnesium alloy for plastic working according to the present invention is useful in terms of plastic deformation and mechanical strength because the metal structure is refined, and the grain size is preferably 50 μm or less by rapid solidification of casting, particularly die casting. Is as fine as 30 μm or less and is particularly suitable as an alloy material for plastic working. It is also known that such a microstructured magnesium alloy is excellent in corrosion resistance. Therefore, the magnesium alloy for plastic working of the present invention can be extruded, rolled, forged or pressed plastically, and the present invention also includes a magnesium alloy plastic working member obtained by such plastic working.

また、本発明の塑性加工により得られたマグネシウム合金塑性加工部材は耐クリープ性に優れ、473Kでの引張強さが150MPa以上であり、423K、50MPaでのクリープ速度が1×10-3%/h以下である耐クリープ性を有し、エンジンオイルの温度である423Kでの耐クリープ性が必要な自動車エンジン部品等で用いられているアルミニウム(ADC12)合金並である。 In addition, the magnesium alloy plastic working member obtained by the plastic working of the present invention has excellent creep resistance, the tensile strength at 473 K is 150 MPa or more, and the creep rate at 423 K and 50 MPa is 1 × 10 −3 % / It is comparable to an aluminum (ADC12) alloy used in automobile engine parts and the like that have creep resistance of h or less and require creep resistance at 423 K, which is the temperature of engine oil.

本発明の塑性加工用マグネシウム合金は、塑性加工の加工温度・加工比を制御することで再結晶や動的再結晶を生じさせ、マグネシウム合金塑性加工部材の金属組織を50μm以下、望ましくは30μm以下に微細化できる。微細組織の有効性は上記した通りである。このような組織制御を行う塑性加工としては加工温度・加工比の自由度から鍛造加工が有利である。このように本発明のマグネシウム合金鍛造加工部材においては、マグネシウム合金の金属組織の結晶粒度が他の製法では困難な平均50μm以下とすることができ、30μm以下であることが好ましい。また、例えば、AZ61、AZ91では困難な573K以下での鍛造成形が可能で、鍛造成形を加工温度573K以下で行って、室温での引張強さが300MPa以上であるマグネシウム合金鍛造成形部材を得ることができる。本発明はこのような鍛造成形により得られたマグネシウム合金鍛造成形部材も包含する。   The magnesium alloy for plastic working of the present invention causes recrystallization and dynamic recrystallization by controlling the processing temperature and processing ratio of plastic working, and the metal structure of the magnesium alloy plastic working member is 50 μm or less, desirably 30 μm or less. Can be miniaturized. The effectiveness of the microstructure is as described above. As plastic working for such structure control, forging is advantageous because of the freedom of the working temperature and working ratio. Thus, in the magnesium alloy forged member of the present invention, the crystal grain size of the metal structure of the magnesium alloy can be 50 μm or less on average, which is difficult by other production methods, and is preferably 30 μm or less. Also, for example, forging can be performed at 573 K or lower, which is difficult with AZ61 and AZ91, and forging is performed at a processing temperature of 573 K or lower to obtain a magnesium alloy forged molded member having a tensile strength at room temperature of 300 MPa or higher. Can do. The present invention also includes a magnesium alloy forged member obtained by such forging.

以下に実施例及び比較例に基づいて本発明を具体的に説明する。
実施例1〜8及び比較例1〜2(実施例2は参考例である)
実施例1〜8及び比較例1〜2の塑性加工用マグネシウム合金を製造するために用いた原料合金組成を第1表に示す。なお、第1表中のMmはミッシュメタルである。
The present invention will be specifically described below based on examples and comparative examples.
Examples 1-8 and Comparative Examples 1-2 (Example 2 is a reference example)
The raw material alloy compositions used for producing the magnesium alloys for plastic working of Examples 1 to 8 and Comparative Examples 1 to 2 are shown in Table 1. Note that Mm in Table 1 is Misch metal.

Figure 0004929000
Figure 0004929000

鋳鋼鋳物製の坩堝に上記の何れかのマグネシウム原料合金を装入して溶解させ、合金の耐食性を改善するためにその溶湯に0.2質量%のミッシュメタルを添加し且つArガスをバブリングさせ、また、その溶湯の表面に希釈SF6を流動させた。溶湯温度を873〜973Kに維持し、金型温度473Kで第2表に示す鋳造方法によって鋳造した。ダイカスト鋳造の場合には□100mm×100mm、厚さ4mmの板材を作製し、金型鋳造の場合には□100mm×100mm、厚さ50mmの板材を作製した。また、この金型鋳造で得た厚さ50mmの板材については、厚さ4mmにカットしたものを後記の鍛造性試験及びクリープ試験に用いた。 In order to improve the corrosion resistance of the alloy, 0.2% by mass of misch metal is added to the molten metal and Ar gas is bubbled in order to improve the corrosion resistance of the alloy. In addition, diluted SF 6 was caused to flow on the surface of the molten metal. The molten metal temperature was maintained at 873 to 973K, and casting was performed by a casting method shown in Table 2 at a mold temperature of 473K. In the case of die casting, a plate material of □ 100 mm × 100 mm and a thickness of 4 mm was produced, and in the case of mold casting, a plate material of □ 100 mm × 100 mm and a thickness of 50 mm was produced. Moreover, about the board | plate material of thickness 50mm obtained by this metal mold | die casting, what was cut into thickness 4mm was used for the forgeability test and creep test which are mentioned later.

作製した各々の板材について、金属組織の平均結晶粒度はJIS G 0551の定義による結晶粒度であり、マグネシウム相中のアルミニウム濃度はEDX版定量分析による値であり、金属間化合物の面積比率は顕微鏡組織の画像解析による値である。それらの値は第2表に示す通りであった。   About each produced board | plate material, the average crystal grain size of a metal structure is a crystal grain size by the definition of JIS G 0551, the aluminum concentration in a magnesium phase is a value by EDX plate quantitative analysis, and the area ratio of an intermetallic compound is a microscopic structure. It is a value by image analysis. Those values were as shown in Table 2.

Figure 0004929000
Figure 0004929000

上記実施例及び比較例の各々のマグネシウム合金の厚さ4mmの板材を用い、それぞれ第3表に示す鍛造温度で、底面直径20mm、高さ30mm以上、側面の抜き勾配5度のコップ形状の試作品を後方押し出しで作製した。この際、端面は処理しなかった。鍛造性を下記の基準で評価した。それらの評価結果は第3表に示す通りであった。
<鍛造性>
○:試作品にクラック等の欠陥がない、
△:試作品表面に微細なクラックがある、
×:試作品にクラックがある。
Using a magnesium alloy 4 mm thick plate of each of the above examples and comparative examples, a cup-shaped test having a bottom diameter of 20 mm, a height of 30 mm or more, and a side draft of 5 degrees at the forging temperatures shown in Table 3 respectively. The work was made by extruding backwards. At this time, the end face was not treated. Forgeability was evaluated according to the following criteria. The evaluation results were as shown in Table 3.
<Forgeability>
○: The prototype has no defects such as cracks,
Δ: There are fine cracks on the surface of the prototype,
X: There is a crack in the prototype.

また、上記実施例及び比較例の各々のマグネシウム合金の厚さ4mmの板材を据込み加工により厚さ2mmに加工してJIS13B試験片を作製し、この試験片を用いて試験温度423K、負荷50MPaでクリープ試験を実施し、クリープ速度を求めた。その試験結果は第3表に示す通りであった。
更に、一部のマグネシウム合金板材について引張強さを測定した。その結果は第3表に示す通りであった。
In addition, a JIS13B test piece was manufactured by processing a plate material of 4 mm thickness of each of the magnesium alloys of the above Examples and Comparative Examples to a thickness of 2 mm by upsetting, and using this test piece, a test temperature of 423 K and a load of 50 MPa. The creep test was conducted to obtain the creep speed. The test results were as shown in Table 3.
Furthermore, the tensile strength was measured for some magnesium alloy sheets. The results were as shown in Table 3.

Figure 0004929000
Figure 0004929000

Claims (4)

マグネシウムと、アルミニウムと、凝固過程の共晶反応でアルミニウムとの金属間化合物を形成する希土類金属、カルシウム及びストロンチウムの少なくとも一種の金属元素とからなる溶湯をダイカスト鋳造して得たマグネシウム合金であって、該マグネシウム合金中の全アルミニウム含有量が5〜10質量%であり、マグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度が4.5質量%以下であり、残りのアルミニウムが金属間化合物として存在しており、凝固過程の共晶反応でアルミニウムとの金属間化合物を形成する金属元素の量がマグネシウム合金の金属組織におけるマグネシウム相中のアルミニウム濃度を4.5質量%以下に低下させる量であり、面積分析法により求めた金属間化合物の面積比率が5%以上であり、マグネシウム合金の金属組織の結晶粒度が平均30μm以下であることを特徴とする塑性加工用マグネシウム合金。 A magnesium alloy obtained by die casting a molten metal composed of magnesium, aluminum, and a rare earth metal that forms an intermetallic compound with aluminum by a eutectic reaction in a solidification process, calcium and strontium. The total aluminum content in the magnesium alloy is 5 to 10% by mass, the aluminum concentration in the magnesium phase in the metal structure of the magnesium alloy is 4.5% by mass or less, and the remaining aluminum is present as an intermetallic compound. and have, in an amount to reduce the aluminum concentration of the magnesium phase in the metal structure of the amount Gama magnesium alloy of a metal element which forms an intermetallic compound with aluminum eutectic reaction of the coagulation process in the 4.5 wt% or less Ah it is, the area ratio of the intermetallic compound obtained by the area analysis is less than 5% There, for plastic working of magnesium alloy grain size of the metal structure of a magnesium alloy, characterized in der Rukoto average 30μm or less. 銀0.1〜3質量%、銅0.1〜4質量%、亜鉛0.1〜2質量%及びマンガン0.1〜1質量%の少なくとも一種を追加含有することを特徴とする請求項記載の塑性加工用マグネシウム合金。 Silver 0.1-3 wt%, copper 0.1 to 4 wt%, claim 1, characterized in that it contains add at least one of zinc 0.1 to 2 wt% and manganese 0.1 to 1 wt% The magnesium alloy for plastic working as described. 請求項1又は2に記載の塑性加工用マグネシウム合金を押出し、圧延、鍛造又はプレスの塑性加工により得られたものであり、473Kでの引張強さが150MPa以上であり、423K、50MPaでのクリープ速度が1×10 -3 %/h以下である耐クリープ性を有することを特徴とするマグネシウム合金塑性加工部材。 Claim 1 or 2 in extruded plastic working for the magnesium alloy according rolling state, and are not obtained by the plastic working of forging or pressing, the tensile strength at 473K is equal to or greater than 150 MPa, 423 K, at 50MPa magnesium alloy plastic working member creep speed is characterized Rukoto to have a creep resistance is 1 × 10 -3% / h or less. 請求項3記載のマグネシウム合金塑性加工部材において、塑性加工が鍛造成形であり、鍛造成形を加工温度573K以下で行って得られた、室温での引張強さが300MPa以上であることを特徴とするマグネシウム合金鍛造成形部材。 Characterized in magnesium alloy plastic working member as claimed in claim 3, plastic working Ri forged der, the forging obtained by performing the following processing temperature 573K, the Der Rukoto tensile strength more than 300MPa at room temperature and to luma magnesium alloy forging member.
JP2007071403A 2007-03-19 2007-03-19 Magnesium alloy for plastic working and magnesium alloy plastic working member Expired - Fee Related JP4929000B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007071403A JP4929000B2 (en) 2007-03-19 2007-03-19 Magnesium alloy for plastic working and magnesium alloy plastic working member
KR1020070139845A KR20080085664A (en) 2007-03-19 2007-12-28 Magnesium alloy for plastic process and magnesium alloy plastic processing member
CN2007101800697A CN101270429B (en) 2007-03-19 2007-12-30 Magnesium alloy for plastic working and magnesium alloy plastic working component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071403A JP4929000B2 (en) 2007-03-19 2007-03-19 Magnesium alloy for plastic working and magnesium alloy plastic working member

Publications (2)

Publication Number Publication Date
JP2008231488A JP2008231488A (en) 2008-10-02
JP4929000B2 true JP4929000B2 (en) 2012-05-09

Family

ID=39904651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071403A Expired - Fee Related JP4929000B2 (en) 2007-03-19 2007-03-19 Magnesium alloy for plastic working and magnesium alloy plastic working member

Country Status (2)

Country Link
JP (1) JP4929000B2 (en)
CN (1) CN101270429B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5415739B2 (en) * 2008-10-31 2014-02-12 宮本工業株式会社 Magnesium alloy for forging
CN103774017B (en) * 2014-01-18 2016-01-13 中南大学 The semicontinuous casting technique of strength heatproof magnesium alloy ingot casting in major diameter
CN107326237B (en) * 2016-03-18 2018-10-23 南阳师范学院 A kind of magnesium alloy and preparation method thereof of low temperature resistant environment
CN106244878A (en) * 2016-07-31 2016-12-21 余姚市婉珍五金厂 Alloy material that a kind of rotor is special and preparation method thereof
CN106868327B (en) * 2017-02-08 2018-11-20 泰兴市智谷科技孵化器中心 A kind of preparation method of magnesium alloy smart phone shell of the surface with antibiotic layer
CN115612953B (en) * 2022-11-17 2023-08-01 质子汽车科技有限公司 Method for reducing thermoplastic deformation stress of magnesium alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104137A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Magnesium alloy forging stock, forged member and production of the forged member
JP3603658B2 (en) * 1999-03-31 2004-12-22 マツダ株式会社 Manufacturing method of forged member
KR101085253B1 (en) * 2004-06-30 2011-11-22 스미토모덴키고교가부시키가이샤 Producing method for magnesium alloy material
JP4415098B2 (en) * 2005-03-16 2010-02-17 独立行政法人産業技術総合研究所 Method for producing flame retardant magnesium alloy extruded material and extruded material

Also Published As

Publication number Publication date
JP2008231488A (en) 2008-10-02
CN101270429A (en) 2008-09-24
CN101270429B (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP5355320B2 (en) Aluminum alloy casting member and manufacturing method thereof
JP3905115B2 (en) High strength and high toughness magnesium alloy and method for producing the same
CN111032897A (en) Method of forming cast aluminum alloy
JP4189687B2 (en) Magnesium alloy material
KR101258470B1 (en) High-Strength High-Ductility Ignition-Proof Magnesium Alloy
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
CA2721761C (en) Aluminum alloy and manufacturing method thereof
EP2369025B1 (en) Magnesium alloy and magnesium alloy casting
JP2013512338A (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
JP6860235B2 (en) Magnesium-based alloy wrought material and its manufacturing method
JP4929000B2 (en) Magnesium alloy for plastic working and magnesium alloy plastic working member
JP2009280846A (en) Magnesium alloy forged member, and producing method therefor
JP6893354B2 (en) Magnesium-based alloy extender
WO2010056130A1 (en) Magnesium based alloys and processes for preparation thereof
JP6229130B2 (en) Cast aluminum alloy and casting using the same
RU2165995C1 (en) Highly string aluminium-based alloy and product made of said alloy
JP3808264B2 (en) Aluminum alloy casting processed plastically, manufacturing method of aluminum alloy casting, and fastening method using plastic deformation
JP4433916B2 (en) Magnesium alloy and magnesium alloy member for plastic working
JP4526768B2 (en) Magnesium alloy
JP2019060026A (en) Magnesium-based alloy extension material and manufacturing method therefor
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor
JP4929019B2 (en) Magnesium alloy for plastic working and magnesium alloy forged parts
KR20080085664A (en) Magnesium alloy for plastic process and magnesium alloy plastic processing member
JP2012197490A (en) High thermal conductivity magnesium alloy
JP6649665B2 (en) Magnesium alloy manufacturing method, rolled magnesium alloy material, and magnesium alloy compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101027

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4929000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees