JP5248751B2 - Slotless permanent magnet type rotating electrical machine - Google Patents

Slotless permanent magnet type rotating electrical machine Download PDF

Info

Publication number
JP5248751B2
JP5248751B2 JP2006100553A JP2006100553A JP5248751B2 JP 5248751 B2 JP5248751 B2 JP 5248751B2 JP 2006100553 A JP2006100553 A JP 2006100553A JP 2006100553 A JP2006100553 A JP 2006100553A JP 5248751 B2 JP5248751 B2 JP 5248751B2
Authority
JP
Japan
Prior art keywords
coil
permanent magnet
pitch
inner peripheral
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006100553A
Other languages
Japanese (ja)
Other versions
JP2007274869A (en
Inventor
信一 山口
高志 宮崎
正哉 井上
剛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006100553A priority Critical patent/JP5248751B2/en
Publication of JP2007274869A publication Critical patent/JP2007274869A/en
Application granted granted Critical
Publication of JP5248751B2 publication Critical patent/JP5248751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、スロットレス永久磁石型回転電機に関するものである。   The present invention relates to a slotless permanent magnet type rotating electrical machine.

従来、固定子鉄心の薄肉化を主目的として、回転子鉄心の表面に偶数個の永久磁石を等間隔に互いに異極となるように配置した回転子と、前記回転子と対向するように空隙を介して配置された固定子鉄心と、前記固定子鉄心に配置された非重ね集中巻の複数個のコイルと、を備えた平滑電機子形3相ブラシレスモータにおいて、コイル数を6n、永久磁石極数を10n(nは自然数)とし、短節係数を向上することにより高性能化したものがある(例えば、特許文献1参照)。   Conventionally, mainly for the purpose of thinning the stator core, a rotor in which an even number of permanent magnets are arranged at equal intervals on the surface of the rotor core so as to have different polarities, and a gap so as to face the rotor In a smooth armature type three-phase brushless motor comprising a stator iron core arranged through a plurality of coils of non-overlapping concentrated winding arranged on the stator iron core, the number of coils is 6n, and a permanent magnet There are some which have a high performance by setting the number of poles to 10n (n is a natural number) and improving the short coefficient (for example, see Patent Document 1).

また、巻線と鉄心を配置した固定子と、複数の磁極を構成する永久磁石を配置した回転子を持つ永久磁石型モータにおいて、前記巻線は複数の集中巻された空心を有するコイルによって構成され、前記鉄心は前記コイルの空心に挿入されるティースを備え、前記コイルの配置角度幅をθc、前記ティースの角度幅(すなわち、コイルの内周角度幅)をβ×θcとした場合、0<β≦0.5であるとともに、前記コイルの外半径をro、前記コイルの内半径をri、前記ティースの先端半径をrtとした場合、(θc×ri×π/180)/(ro−ri)≧4 (但し、ri≦rt≦ro)とした永久磁石型モータがある(例えば、特許文献2参照)。   Further, in a permanent magnet type motor having a stator in which a winding and an iron core are arranged and a rotor in which a permanent magnet constituting a plurality of magnetic poles is arranged, the winding is constituted by a coil having a plurality of concentrated winding air cores. When the iron core includes teeth inserted into the air core of the coil, and the arrangement angle width of the coil is θc and the angle width of the teeth (that is, the inner circumferential angle width of the coil) is β × θc, 0 <Β ≦ 0.5, and when the outer radius of the coil is ro, the inner radius of the coil is ri, and the tip radius of the teeth is rt, (θc × ri × π / 180) / (ro− ri) ≧ 4 (provided that ri ≦ rt ≦ ro) (see, for example, Patent Document 2).

特開平11−234989号公報Japanese Patent Laid-Open No. 11-234989 特開2004−187344号公報JP 2004-187344 A

しかしながら、上記特許文献1に記載された従来の技術によれば、コイル数と永久磁石極数との比を6:10とするので、通常の3:4とした場合に比べ部品点数が増える。そのため、特に量産される小型モータでは、部品点数の増加により製造工数が増加し、コストアップになるという問題があった。   However, according to the conventional technique described in Patent Document 1, since the ratio of the number of coils to the number of permanent magnet poles is set to 6:10, the number of components is increased as compared with the case of normal 3: 4. For this reason, particularly in a small-sized motor that is mass-produced, there is a problem that the number of manufacturing steps increases due to an increase in the number of parts, resulting in an increase in cost.

また、上記特許文献2に記載された従来の技術によれば、定格トルクおよび最大トルクの両者を向上させるべく、微小なティースを用い、更に、ティースの角度幅(すなわち、コイルの内周角度幅)を最適化する工夫がなされている。しかしながら、微小なティースを固定子鉄心に設けると、コギングトルクやトルクリップルの増加を招くこととなる。そのため、振動騒音が発生しモータを精密機械等に用いることができないという問題があった。   In addition, according to the conventional technique described in Patent Document 2, in order to improve both the rated torque and the maximum torque, fine teeth are used, and furthermore, the angular width of the teeth (that is, the inner peripheral angular width of the coil). ) Is optimized. However, if minute teeth are provided in the stator core, cogging torque and torque ripple are increased. For this reason, there has been a problem that vibration noise is generated and the motor cannot be used in a precision machine or the like.

本発明は、上記に鑑みてなされたものであって、コギングトルク及びトルクリップルを低減するとともに、銅損を低減した小型のスロットレス永久磁石型回転電機を得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain a small slotless permanent magnet type rotating electric machine that reduces cogging torque and torque ripple and copper loss.

上述した課題を解決し、目的を達成するために、本発明は、軸方向長さLf(≒回転電機全長L)の円筒状の固定子鉄心と、前記固定子鉄心の内周面に、コイル配置角度幅120°で周方向に等間隔に配置された3個のコイルであって、軸方向長さ略Lc(≒固定子鉄心長Lf≒回転電機全長L)、コイル外周角度幅θγ、コイル内周角度幅θτのトラック形状に集中巻きされたコイルと、円柱状の回転子鉄心と、前記回転子鉄心に周方向に交互に極性が異なるように4磁極が配置され、軸方向長さLm(≒回転電機全長L)、外径Dに形成された永久磁石と、を備えたスロットレス永久磁石型回転電機において、コイル内周ピッチτ(=θτ/120°)を、0<コイル内周ピッチτ≦0.33+0.47D/L、としたことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a cylindrical stator core having an axial length Lf (≈ rotating electric machine total length L) , and a coil on an inner peripheral surface of the stator core. Three coils arranged at equal intervals in the circumferential direction with an arrangement angle width of 120 °, and having an axial length of approximately Lc (≈ stator core length Lf ≈ rotating electric machine total length L) , coil outer circumferential angle width θγ, coil A coil concentratedly wound in a track shape with an inner circumferential angle width θτ, a cylindrical rotor core, and four magnetic poles are arranged on the rotor core so that the polarities are alternately different in the circumferential direction, and the axial length Lm (≈ rotating electric machine total length L) In a slotless permanent magnet type rotating electric machine provided with a permanent magnet formed with an outer diameter D, the coil inner peripheral pitch τ (= θτ / 120 °) is set to 0 <coil inner peripheral The pitch τ ≦ 0.33 + 0.47 D / L.

この発明によれば、0<コイル内周ピッチτ≦0.33+0.47D/L、としたことにより、コギングトルク及びトルクリップルを低減するとともに、高効率化及び小型化したスロットレス永久磁石型回転電機が得られる、という効果を奏する。   According to the present invention, 0 <coil inner peripheral pitch τ ≦ 0.33 + 0.47 D / L, so that the cogging torque and the torque ripple are reduced, and the slotless permanent magnet type rotation with high efficiency and miniaturization is achieved. There is an effect that an electric machine can be obtained.

以下に、本発明にかかるスロットレス永久磁石型回転電機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a slotless permanent magnet type rotating electrical machine according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態
図1は、本発明にかかるスロットレス永久磁石型回転電機の実施の形態の横断面図であり、図2は、固定子鉄心の斜視図であり、図3は、固定子鉄心に配置されるコイルの平面図であり、図4は、コイルを貼付した固定子の斜視図であり、図5は、回転子の斜視図であり、図6は、コイル内周ピッチτとコイル外周ピッチγと銅損との関係を示すシミュレーション結果であり、図7は、コイル内周ピッチτと銅損比との関係を示すシミュレーション結果であり、図8は、スロットレス永久磁石型回転電機の回転子外径に対する全長の比(L/D)と最大許容コイル内周ピッチWとの関係を示すシミュレーション結果であり、図9は、L/Dを1.5としたときのコイル内周ピッチτと銅損比との関係を示すシミュレーション結果であり、図10は、L/Dを2.2としたときのコイル内周ピッチτと銅損比との関係を示すシミュレーション結果であり、図11は、L/Dを4.1としたときのコイル内周ピッチτと銅損比との関係を示すシミュレーション結果であり、図12は、L/Dを6.1としたときのコイル内周ピッチτと銅損比との関係を示すシミュレーション結果であり、図13は、L/Dを9.3としたときのコイル内周ピッチτと銅損比との関係を示すシミュレーション結果であり、図14は、L/Dと最適コイル内周ピッチτとの関係を示すシミュレーション結果である。
Embodiment FIG. 1 is a cross-sectional view of an embodiment of a slotless permanent magnet type rotating electrical machine according to the present invention, FIG. 2 is a perspective view of a stator core, and FIG. FIG. 4 is a perspective view of a stator to which a coil is attached, FIG. 5 is a perspective view of a rotor, and FIG. 6 is a coil inner peripheral pitch τ and a coil outer periphery. FIG. 7 is a simulation result showing the relationship between the pitch γ and the copper loss, FIG. 7 is a simulation result showing the relationship between the coil inner peripheral pitch τ and the copper loss ratio, and FIG. 8 shows the slotless permanent magnet type rotating electrical machine. FIG. 9 is a simulation result showing the relationship between the ratio of the total length to the rotor outer diameter (L / D) and the maximum allowable coil inner circumferential pitch W. FIG. 9 shows the coil inner circumferential pitch when L / D is 1.5. Simulation results showing the relationship between τ and copper loss ratio. FIG. 10 is a simulation result showing the relationship between the coil inner circumferential pitch τ and the copper loss ratio when L / D is 2.2, and FIG. 11 is a graph when L / D is 4.1. FIG. 12 is a simulation result showing the relationship between the coil inner peripheral pitch τ and the copper loss ratio, and FIG. 12 shows a simulation result showing the relationship between the coil inner peripheral pitch τ and the copper loss ratio when L / D is 6.1. FIG. 13 is a simulation result showing the relationship between the coil inner circumferential pitch τ and the copper loss ratio when L / D is 9.3, and FIG. 14 is a graph showing L / D and the optimum coil inner circumferential pitch. It is a simulation result which shows the relationship with (tau).

図1に示すように、実施の形態のスロットレス永久磁石型回転電機100は、円筒状に形成された固定子鉄心21と、非磁性ボビン(又は、空心)24に集中巻され、固定子鉄心21の内周面に周方向に等間隔に貼付されて配置された3個のコイル23と、円柱状の回転子鉄心31と、回転子鉄心31に、周方向に交互に極性が異なるように円筒状に配置したラジアル異方性リング磁石、極異方性リング磁石又はセグメント磁石等の4磁極の永久磁石32と、を備えている。固定子鉄心21及びコイル23は固定子20を構成し、回転子鉄心31及び永久磁石32は回転子30を構成している。   As shown in FIG. 1, the slotless permanent magnet type rotating electrical machine 100 of the embodiment is concentratedly wound around a cylindrical stator core 21 and a non-magnetic bobbin (or air core) 24, and the stator core. The polarities of the three coils 23, the cylindrical rotor core 31, and the rotor core 31 that are affixed at equal intervals in the circumferential direction on the inner circumferential surface of the 21 are alternately different in the circumferential direction. And a four-pole permanent magnet 32 such as a radial anisotropic ring magnet, a polar anisotropic ring magnet, or a segment magnet arranged in a cylindrical shape. The stator core 21 and the coil 23 constitute the stator 20, and the rotor core 31 and the permanent magnet 32 constitute the rotor 30.

図1に示すように、回転子30(永久磁石32)は、外径Dに形成されている。本明細書では、360°/コイル数M=コイル配置角度幅θcと定義する(本実施の形態ではθc=120°)。非磁性ボビン24に集中巻されたコイル外周の角度幅をθγ、コイル内周の角度幅をθτとして、コイル外周ピッチγ、及び、コイル内周ピッチτを、
コイル外周ピッチγ=θγ/θc=θγ×コイル数M/360°・・・・(式1)
コイル内周ピッチτ=θτ/θc=θτ×コイル数M/360°・・・・(式2)
と定義する。
As shown in FIG. 1, the rotor 30 (permanent magnet 32) is formed with an outer diameter D. In this specification, it is defined as 360 ° / the number of coils M = coil arrangement angle width θc (in this embodiment, θc = 120 °). Assuming that the angle width of the outer periphery of the coil concentratedly wound on the non-magnetic bobbin 24 is θγ, the angle width of the inner periphery of the coil is θτ, the coil outer periphery pitch γ and the coil inner periphery pitch τ are
Coil outer peripheral pitch γ = θγ / θc = θγ × number of coils M / 360 ° (Equation 1)
Coil inner pitch τ = θτ / θc = θτ × number of coils M / 360 ° (Equation 2)
It is defined as

図2に示すように、固定子鉄心21は、鉄心長(軸方向長さ)Lfの長さに形成されている。また、図3に示すように、コイル23は、コイル全長(軸方向長さ)Lc、コイル直線部長さL1、コイルエンド部長さL2のトラック形状の集中巻きのコイルに形成されていて、形状寸法は、次の(式3)の関係式で表わされる。
コイル全長Lc=L1+2×L2・・・・・・・・・・・・・・・・・・(式3)
また、コイルエンド部長さL2は、
コイルエンド部長さL2≒πD(θγ-θτ)/720°・・・・・・・・(式4)
で概算される値となっている。
As shown in FIG. 2, the stator core 21 is formed to have a length of the core length (axial length) Lf. Further, as shown in FIG. 3, the coil 23 is formed in a track-shaped concentrated winding coil having an overall coil length (axial length) Lc, a coil linear portion length L1, and a coil end portion length L2. Is expressed by the following relational expression (Expression 3).
Total coil length Lc = L1 + 2 × L2 (Equation 3)
The coil end length L2 is
Coil end length L2 ≒ πD (θγ-θτ) / 720 ° (Equation 4)
It is a value estimated by.

本実施の形態では、トルク出力を最大化するとともにモータを小型化するため、図4及び図5に示すように、固定子鉄心長Lf≒コイル全長Lc≒磁石長Lm=回転電機全長Lとなるようにそれぞれを形成している。構造上の制約等から、コイル全長Lc≒磁石長Lmとすることが出来ない場合もあるが、この場合は、概略、Lm/Lc>0.9とすれば、トルク出力の最大化を図ることができる。   In this embodiment, in order to maximize the torque output and reduce the size of the motor, as shown in FIGS. 4 and 5, the stator core length Lf≈coil total length Lc≈magnet length Lm = rotating electric machine total length L. So that each is formed. Due to structural restrictions, etc., there may be cases where the total coil length Lc≈the magnet length Lm cannot be achieved. In this case, generally, if Lm / Lc> 0.9, the torque output will be maximized. Can do.

次に、図6〜図14を参照して、シミュレーション結果について説明する。図6は、シミュレーションにより、図1に示す実施の形態のスロットレス永久磁石型回転電機100の、コイル外周ピッチγ及びコイル内周ピッチτを変化させたときの銅損の大きさを示している。なお、シミュレーション条件は、スロットレス永久磁石型回転電機100の全長L/回転子外径D=9.3としている。   Next, simulation results will be described with reference to FIGS. FIG. 6 shows the magnitude of the copper loss when the coil outer peripheral pitch γ and the coil inner peripheral pitch τ of the slotless permanent magnet type rotating electrical machine 100 of the embodiment shown in FIG. 1 are changed by simulation. . The simulation condition is set such that the total length L of the slotless permanent magnet type rotating electrical machine 100 / the outer diameter of the rotor D = 9.3.

図6に示すように、銅損低減(最適化)のために、コイル外周ピッチγは、1.0に近いほどよく、コイル内周ピッチτが0.2程度のとき銅損が最小となっている。コイル外周ピッチγを1.0とするためには、隣接コイル間の隙間をゼロとしなければならず、製作が難しく、絶縁性に問題が生じる可能性が高い。そこで、本実施の形態では、製作性を考慮し、コイル外周ピッチγを約0.9として、他のパラメータの最適値について検討を行なった。   As shown in FIG. 6, in order to reduce (optimize) the copper loss, the coil outer peripheral pitch γ is preferably closer to 1.0, and the copper loss is minimized when the coil inner peripheral pitch τ is about 0.2. ing. In order to set the coil outer peripheral pitch γ to 1.0, the gap between the adjacent coils must be zero, which is difficult to manufacture and has a high possibility of causing problems in insulation. Therefore, in the present embodiment, considering the manufacturability, the optimum value of other parameters was examined with the coil outer peripheral pitch γ being about 0.9.

図7は、コイル外周ピッチγを約0.9とし、コイル内周ピッチτをパラメータとしたときのシミュレーション結果であり、L/Dをそれぞれ1.5〜9.3としたときの銅損比を示す。   FIG. 7 is a simulation result when the coil outer peripheral pitch γ is about 0.9 and the coil inner peripheral pitch τ is a parameter, and the copper loss ratio when L / D is 1.5 to 9.3, respectively. Indicates.

一般のティース付き永久磁石モータを小型化するためには、巻線の占積率を大きくするのが有効であり、巻線を配置可能な場所全てに巻線を施すことにより、銅損低減と誘起電圧の向上が可能である。そこで、本実施の形態では、コイル内周ピッチτをゼロとしたとき(巻線を配置可能な場所全てに巻線を施したとき)の銅損を基準値とする銅損比を用いてシミュレーションを行なった。   In order to reduce the size of a general permanent magnet motor with teeth, it is effective to increase the space factor of the winding. By applying the winding to all the places where the winding can be placed, the copper loss can be reduced. The induced voltage can be improved. Therefore, in the present embodiment, simulation is performed using a copper loss ratio with a copper loss as a reference value when the coil inner circumferential pitch τ is zero (when the winding is applied to all places where the winding can be arranged). Was done.

図7に示すように、コイル内周ピッチτをゼロから大きくするに従い銅損比が低減し、あるコイル内周ピッチτ以上になると、コイル内周ピッチτがゼロのときの銅損比より大きくなることが分かる。なお、本明細書では、τ=0のときの銅損比よりも銅損比が大きくなるコイル内周ピッチτを、最大許容コイル内周ピッチWと呼ぶこととする。   As shown in FIG. 7, the copper loss ratio decreases as the coil inner peripheral pitch τ is increased from zero, and when the coil inner peripheral pitch τ is greater than a certain coil inner peripheral pitch τ, it is larger than the copper loss ratio when the coil inner peripheral pitch τ is zero. I understand that In the present specification, the coil inner peripheral pitch τ that has a copper loss ratio larger than the copper loss ratio when τ = 0 is referred to as a maximum allowable coil inner peripheral pitch W.

上記の現象は、回転電機の全長Lが一定値である場合、コイル内周ピッチτがゼロのときには、上記の(式4)に示すように、トルク発生に寄与し難いコイルエンド部長さL2が大きくなってしまうが、コイル内周ピッチτをゼロよりも大きくすると、L2が小さくなり、トルク発生に寄与するコイル直線部長さL1が大きくなって、トルク出力が向上し銅損が小さくなるためである。   When the overall length L of the rotating electrical machine is a constant value and the coil inner circumferential pitch τ is zero, the above phenomenon is caused by the fact that the coil end portion length L2 that hardly contributes to torque generation is as shown in (Equation 4) above. However, if the coil inner circumferential pitch τ is made larger than zero, L2 becomes smaller, and the coil linear portion length L1 that contributes to torque generation becomes larger, resulting in improved torque output and reduced copper loss. is there.

さらに、コイル内周ピッチτが、最大許容コイル内周ピッチWよりも大きくなると、回転電機断面にてトルクに寄与すると考えられるアンペアターンが低下し、これによりトルク出力が低下し、銅損が大きくなるものと考えられる。   Further, when the coil inner peripheral pitch τ is larger than the maximum allowable coil inner peripheral pitch W, the ampere turn that is considered to contribute to the torque in the cross section of the rotating electrical machine is reduced, thereby reducing the torque output and increasing the copper loss. It is considered to be.

図8に、L/Dと最大許容コイル内周ピッチWとの関係を示す。図8に示すように、最大許容コイル内周ピッチτは、L/Dの大きさにより異なっており、L/Dが大きくなるに従って小さくなる。これは、L/Dが小さい場合(薄型モータに相当)には、コイルエンドの影響が大きく、L/Dが大きい場合(胴長モータに相当)には、コイルエンドの影響が小さいためと考えられる。   FIG. 8 shows the relationship between L / D and the maximum permissible coil inner circumferential pitch W. As shown in FIG. 8, the maximum permissible coil inner circumferential pitch τ varies depending on the size of L / D, and decreases as L / D increases. This is because the influence of the coil end is large when L / D is small (equivalent to a thin motor), and the influence of the coil end is small when L / D is large (equivalent to a trunk length motor). It is done.

また、図8に、最大許容コイル内周ピッチWの近似式として、
最大許容コイル内周ピッチW=0.33+0.47D/L・・・・・・(式5)
を示す。スロットレス永久磁石型回転電機100は、コイル内周ピッチτを、(式5)の「W」以下とすることにより、コイル内周ピッチτをゼロとしたときよりも銅損を低減して高効率化することができ、小型化を図ることができる。
FIG. 8 shows an approximate expression of the maximum permissible coil inner circumferential pitch W.
Maximum permissible coil inner pitch W = 0.33 + 0.47D / L (Formula 5)
Indicates. The slotless permanent magnet type rotating electric machine 100 reduces the copper loss and increases the coil inner pitch τ by setting the coil inner pitch τ to be equal to or less than “W” in (Equation 5). Efficiency can be improved and downsizing can be achieved.

次に、コイル内周ピッチτと銅損比の関係について詳細に検討する。図9〜図13に、L/Dをそれぞれ1.5〜9.3としたときの、コイル内周ピッチτと銅損比との関係を示す。銅損比は、回転電機の発熱温度に影響を及ぼすが、銅損比が5%程度の差であれば、永久磁石の残留磁束密度やコイル貼付角度等と同様に、モータ個体のばらつきの許容範囲内である。   Next, the relationship between the coil inner peripheral pitch τ and the copper loss ratio will be examined in detail. 9 to 13 show the relationship between the coil inner peripheral pitch τ and the copper loss ratio when L / D is 1.5 to 9.3, respectively. The copper loss ratio affects the heat generation temperature of the rotating electrical machine, but if the copper loss ratio is a difference of about 5%, the tolerance of individual motors can be tolerated as well as the residual magnetic flux density of the permanent magnet and the coil application angle. Within range.

そこで、本実施の形態では、銅損比が、最小値〜最小値+5%の範囲内となる最適コイル内周ピッチτを求める。図9〜図13に、銅損比が最小値〜最小値+5%となるコイル内周ピッチτの範囲(最適コイル内周ピッチτ)を示す。図9〜図13に示すように、L/Dの値毎に、最適コイル内周ピッチτの範囲も異なっている。   Therefore, in the present embodiment, the optimum coil inner circumferential pitch τ in which the copper loss ratio is in the range of the minimum value to the minimum value + 5% is obtained. 9 to 13 show the range of the coil inner peripheral pitch τ (optimum coil inner peripheral pitch τ) in which the copper loss ratio becomes the minimum value to the minimum value + 5%. As shown in FIGS. 9 to 13, the range of the optimum coil inner peripheral pitch τ is different for each value of L / D.

図14に、L/Dと、銅損比が最小値〜最小値+5%となるためのコイル内周ピッチτの範囲を示す。また、図14には、コイル内周ピッチτの近似式として、
コイル内周ピッチτ=K=0.16+0.27D/L±50%・・・・(式6)
を示す。図14に示すように、銅損比が最小値〜最小値+5%となるためのコイル内周ピッチτの範囲は、上記(式6)で近似することができる。よって、スロットレス永久磁石型回転機100の銅損低減(小型化)のためには、コイル内周ピッチτを0.5K〜1.5Kとすればよい。
FIG. 14 shows the range of L / D and the coil inner peripheral pitch τ for the copper loss ratio to be the minimum value to the minimum value + 5%. Moreover, in FIG. 14, as an approximate expression of the coil inner peripheral pitch τ,
Coil inner peripheral pitch τ = K = 0.16 + 0.27 D / L ± 50% (Equation 6)
Indicates. As shown in FIG. 14, the range of the coil inner peripheral pitch τ for the copper loss ratio to be the minimum value to the minimum value + 5% can be approximated by the above (formula 6). Therefore, in order to reduce (reduce) the copper loss of the slotless permanent magnet type rotating machine 100, the coil inner circumferential pitch τ may be set to 0.5K to 1.5K.

なお、図14より、L/Dが1以上3未満のモータの場合には、コイル内周ピッチτを0.2〜0.5とし、L/Dが3以上の場合には、0.15〜0.3とすれば、スロットレス永久磁石型モータの小型化を図ることができる。   14, in the case of a motor having an L / D of 1 or more and less than 3, the coil inner peripheral pitch τ is set to 0.2 to 0.5, and when the L / D is 3 or more, 0.15. If it is set to -0.3, the slotless permanent magnet motor can be reduced in size.

本実施の形態では、4極3コイル集中巻モータの場合を説明したが、一般的な集中巻永久磁石型回転電機において、コイル(スロット)数と磁極数との比が3n:3n±1の回転電機の場合も、上記のコイル内周ピッチτとすることにより、同様に銅損低減(小型化)を行うことができる。   In the present embodiment, the case of a 4-pole 3-coil concentrated winding motor has been described. However, in a general concentrated winding permanent magnet type rotating electrical machine, the ratio of the number of coils (slots) to the number of magnetic poles is 3n: 3n ± 1. In the case of a rotating electrical machine, copper loss can be reduced (downsized) in the same manner by setting the above-mentioned coil inner circumferential pitch τ.

以上のように、本発明にかかるスロットレス永久磁石型回転電機は、コギングトルク及びトルクリップルを低減するとともに、銅損を低減した小型の永久磁石型回転電機として有用である。   As described above, the slotless permanent magnet type rotating electrical machine according to the present invention is useful as a small permanent magnet type rotating electrical machine in which cogging torque and torque ripple are reduced and copper loss is reduced.

本発明にかかるスロットレス永久磁石型回転電機の実施の形態の横断面図である。It is a cross-sectional view of an embodiment of a slotless permanent magnet type rotating electrical machine according to the present invention. 固定子鉄心の斜視図である。It is a perspective view of a stator core. 固定子鉄心に配置されるコイルの平面図である。It is a top view of the coil arrange | positioned at a stator core. コイルを貼付した固定子の斜視図である。It is a perspective view of the stator which stuck the coil. 回転子の斜視図である。It is a perspective view of a rotor. コイル内周ピッチτとコイル外周ピッチγと銅損との関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between coil inner periphery pitch (tau), coil outer periphery pitch (gamma), and copper loss. コイル内周ピッチτと銅損比との関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between coil inner peripheral pitch (tau) and copper loss ratio. スロットレス永久磁石型回転電機の回転子外径に対する全長の比(L/D)と最大許容コイル内周ピッチWとの関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between ratio (L / D) of the full length with respect to the rotor outer diameter of a slotless permanent magnet type rotary electric machine, and the maximum permissible coil inner peripheral pitch W. L/Dを1.5としたときのコイル内周ピッチτと銅損比との関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between coil inner peripheral pitch (tau) and copper loss ratio when L / D is set to 1.5. L/Dを2.2としたときのコイル内周ピッチτと銅損比との関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between coil inner peripheral pitch (tau) and copper loss ratio when L / D is set to 2.2. L/Dを4.1としたときのコイル内周ピッチτと銅損比との関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between coil inner peripheral pitch (tau) and copper loss ratio when L / D is 4.1. L/Dを6.1としたときのコイル内周ピッチτと銅損比との関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between coil inner peripheral pitch (tau) and copper loss ratio when L / D is set to 6.1. L/Dを9.3としたときのコイル内周ピッチτと銅損比との関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between coil inner peripheral pitch (tau) and copper loss ratio when L / D is set to 9.3. L/Dと最適コイル内周ピッチτとの関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between L / D and the optimal coil inner peripheral pitch (tau).

符号の説明Explanation of symbols

20 固定子
21 固定子鉄心
23 固定子コイル
30 回転子
31 回転子鉄心
32 永久磁石
100 スロットレス永久磁石型回転電機
D 回転子外径(永久磁石外径)
Lf 固定子鉄心長
Lm 磁石長
Lc コイル全長
L1 コイル直線部長さ
L2 コイルエンド部長さ
θc コイル配置角度幅
θγ コイル外周角度幅
θτ コイル内周角度幅
τ コイル内周ピッチ
γ コイル外周ピッチ
DESCRIPTION OF SYMBOLS 20 Stator 21 Stator iron core 23 Stator coil 30 Rotor 31 Rotor iron core 32 Permanent magnet 100 Slotless permanent magnet type rotary electric machine D Rotor outer diameter (permanent magnet outer diameter)
Lf Stator core length Lm Magnet length Lc Total coil length L1 Coil straight section length L2 Coil end section length θc Coil arrangement angular width θγ Coil outer peripheral angular width θτ Coil inner peripheral angular width τ Coil inner peripheral pitch γ Coil outer peripheral pitch

Claims (4)

軸方向長さLf(≒回転電機全長L)の円筒状の固定子鉄心と、
前記固定子鉄心の内周面に、コイル配置角度幅120°で周方向に等間隔に配置された3個のコイルであって、軸方向長さLc(≒固定子鉄心長Lf≒回転電機全長L)、コイル外周角度幅θγ、コイル内周角度幅θτのトラック形状に集中巻きされたコイルと、
円柱状の回転子鉄心と、
前記回転子鉄心に周方向に交互に極性が異なるように4磁極が配置され、軸方向長さLm(=回転電機全長L)、外径Dに形成された永久磁石と、
を備えたスロットレス永久磁石型回転電機において、
コイル内周ピッチτ(=θτ/120°)を、
0<コイル内周ピッチτ≦0.33+0.47D/L
としたことを特徴とするスロットレス永久磁石型回転電機。
A cylindrical stator core having an axial length Lf (≈ rotating electric machine total length L) ;
Three coils arranged at equal intervals in the circumferential direction with a coil arrangement angle width of 120 ° on the inner peripheral surface of the stator core , and having an axial length Lc (≈stator core length Lf≈rotary electric machine total length L) a coil concentratedly wound in a track shape having a coil outer peripheral angular width θγ and a coil inner peripheral angular width θτ;
A cylindrical rotor core;
Four magnetic poles are arranged on the rotor core so that the polarities are alternately different in the circumferential direction, and the permanent magnet is formed with an axial length Lm (= rotary electric machine total length L) and an outer diameter D;
In slotless permanent magnet type rotating electric machine with
Coil inner pitch τ (= θτ / 120 °)
0 <Inner coil pitch τ ≦ 0.33 + 0.47 D / L
A slotless permanent magnet type rotating electrical machine characterized by the above.
0.5×(0.16+0.27D/L)≦コイル内周ピッチτ≦1.5×(0.16+0.27D/L)としたことを特徴とする請求項1に記載のスロットレス永久磁石型回転電機。   The slotless permanent magnet according to claim 1, wherein 0.5 × (0.16 + 0.27 D / L) ≦ coil inner circumferential pitch τ ≦ 1.5 × (0.16 + 0.27 D / L). Type rotating electric machine. 1≦L/D<3、かつ、0.2≦コイル内周ピッチτ≦0.5としたことを特徴とする請求項1に記載のスロットレス永久磁石型回転電機。   2. The slotless permanent magnet type rotating electric machine according to claim 1, wherein 1 ≦ L / D <3 and 0.2 ≦ coil inner circumferential pitch τ ≦ 0.5. 3≦L/D、かつ、0.15≦コイル内周ピッチτ≦0.3としたことを特徴とする請求項1に記載のスロットレス永久磁石型回転電機。   2. The slotless permanent magnet type rotating electric machine according to claim 1, wherein 3 ≦ L / D and 0.15 ≦ coil inner peripheral pitch τ ≦ 0.3.
JP2006100553A 2006-03-31 2006-03-31 Slotless permanent magnet type rotating electrical machine Active JP5248751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100553A JP5248751B2 (en) 2006-03-31 2006-03-31 Slotless permanent magnet type rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100553A JP5248751B2 (en) 2006-03-31 2006-03-31 Slotless permanent magnet type rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2007274869A JP2007274869A (en) 2007-10-18
JP5248751B2 true JP5248751B2 (en) 2013-07-31

Family

ID=38677080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100553A Active JP5248751B2 (en) 2006-03-31 2006-03-31 Slotless permanent magnet type rotating electrical machine

Country Status (1)

Country Link
JP (1) JP5248751B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10758318B2 (en) 2014-07-31 2020-09-01 Nakanishi Inc. Electric motor and dental device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134867A (en) * 2016-02-29 2017-09-05 中石化石油工程技术服务有限公司 The downhole electric drilling tool driving few coil permasyn morot of overlength iron core
WO2018202410A1 (en) * 2017-05-03 2018-11-08 Atlas Copco Industrial Technique Ab Electric synchronous motor
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
JP6977556B2 (en) 2017-07-21 2021-12-08 株式会社デンソー Rotating machine
CN113991958A (en) 2017-07-21 2022-01-28 株式会社电装 Rotating electrical machine
CN111566904B (en) 2017-12-28 2023-04-28 株式会社电装 Rotary electric machine
JP6927186B2 (en) 2017-12-28 2021-08-25 株式会社デンソー Rotating machine
DE112018006699T5 (en) 2017-12-28 2020-09-10 Denso Corporation Rotating electric machine
WO2019131911A1 (en) * 2017-12-28 2019-07-04 株式会社デンソー Rotating electrical machine
DE112018006651T5 (en) 2017-12-28 2020-10-08 Denso Corporation Wheel drive device
JP7006541B2 (en) 2017-12-28 2022-01-24 株式会社デンソー Rotating machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743918B2 (en) * 1996-12-27 1998-04-28 株式会社日立製作所 Permanent magnet field type brushless motor
JP4363600B2 (en) * 1998-02-10 2009-11-11 株式会社安川電機 Smooth armature type 3-phase brushless motor
JP2004320954A (en) * 2003-04-18 2004-11-11 Denso Corp Starter for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10758318B2 (en) 2014-07-31 2020-09-01 Nakanishi Inc. Electric motor and dental device

Also Published As

Publication number Publication date
JP2007274869A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5248751B2 (en) Slotless permanent magnet type rotating electrical machine
JP5482423B2 (en) Electric motor
US8890387B2 (en) Stator and motor
US7595575B2 (en) Motor/generator to reduce cogging torque
DK2190103T3 (en) COREL FREE SHUTTER WITH SHIFT
JP5478136B2 (en) Permanent magnet synchronous motor
US20180102678A1 (en) Armature and rotating electric machine including armature
JPWO2004093298A1 (en) Permanent magnet motor
JP6048191B2 (en) Multi-gap rotating electric machine
US20110163641A1 (en) Permanent-magnet synchronous motor
JP2014135883A (en) Rotor, and dynamo-electric machine using the same
JP3928297B2 (en) Electric motor and manufacturing method thereof
JP2008312318A (en) Rotor of rotary electric machine, and rotary electric machine
JP2010183792A (en) Motor
US20220263356A1 (en) Motor
JP2009177907A (en) Stator of rotary electric machine, and rotary electric machine with the same
JP5441584B2 (en) Electric motor
WO2017212575A1 (en) Permanent magnet motor
JP4363132B2 (en) Permanent magnet motor
JP4704883B2 (en) Permanent magnet rotating electrical machine and cylindrical linear motor
JP2001231240A (en) Stepping motor
JP2006025486A (en) Electric electric machine
JP5468850B2 (en) Rotating electric machine
JP5183313B2 (en) Permanent magnet rotating electric machine and elevator apparatus using the same
JP2002119034A (en) Magnetically centered torque motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120827

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5248751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250