JP2008312318A - Rotor of rotary electric machine, and rotary electric machine - Google Patents

Rotor of rotary electric machine, and rotary electric machine Download PDF

Info

Publication number
JP2008312318A
JP2008312318A JP2007156397A JP2007156397A JP2008312318A JP 2008312318 A JP2008312318 A JP 2008312318A JP 2007156397 A JP2007156397 A JP 2007156397A JP 2007156397 A JP2007156397 A JP 2007156397A JP 2008312318 A JP2008312318 A JP 2008312318A
Authority
JP
Japan
Prior art keywords
rotor
stator
outer peripheral
rotor core
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007156397A
Other languages
Japanese (ja)
Other versions
JP5248048B2 (en
Inventor
Masakatsu Matsubara
正克 松原
Takao Hirano
恭男 平野
Takashi Hanai
隆 花井
Motohiko Yamada
元彦 山田
Sukeyasu Mochizuki
資康 望月
Wataru Ito
伊藤  渉
Norio Takahashi
則雄 高橋
Masanori Shin
政憲 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2007156397A priority Critical patent/JP5248048B2/en
Publication of JP2008312318A publication Critical patent/JP2008312318A/en
Application granted granted Critical
Publication of JP5248048B2 publication Critical patent/JP5248048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor of a rotary electric machine in which a torque ripple is reduced, and a rotary electric machine. <P>SOLUTION: The rotor 3 disposed in the field space of the stator 2 of the rotary electric machine 1 includes a rotor core 11 and a plurality of permanent magnets 14 which are disposed on the outer peripheral part of the rotor core 11 at regular intervals in the peripheral direction. The outer peripheral part of the magnetic pole of the rotor core 11 is configured to continuously increase the gap with the stator 2 from the center of the magnetic pole to the peripheral direction, and the ratio (gm/go) between the dimension go of the minimum gap and the dimension gm of the maximum gap is set to 1.5 to 4.0. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁極として永久磁石を備えた回転電機の回転子及び回転電機に関する。   The present invention relates to a rotor of a rotating electrical machine including a permanent magnet as a magnetic pole and the rotating electrical machine.

電気自動車やハイブリット車などの車両用モータには、埋込み型永久磁石モータや永久磁石式リラクタンスモータ等の回転電機が使用されている。これらの回転電機に使用される回転子は、磁極を構成する複数の永久磁石が回転子鉄心の磁石挿入孔部に夫々挿入されて構成されている(例えば、特許文献1参照)。
特開2002−78260号公報
Rotating electric machines such as embedded permanent magnet motors and permanent magnet reluctance motors are used for motors for vehicles such as electric vehicles and hybrid vehicles. A rotor used in these rotating electric machines is configured by inserting a plurality of permanent magnets constituting magnetic poles into magnet insertion holes of the rotor core (see, for example, Patent Document 1).
JP 2002-78260 A

一般に、電気自動車やハイブリット車などの車両用回転電機には、トルクリプルの低減が求められている。トルクリプルは、出力トルクの変動分を、平均トルクに対する百分率で示すものであり、このトルクリプルが大きいほど、回転電機の騒音、振動が大きくなることは知られている。
本発明は、上記の事情に鑑みてなされたものであり、その目的は、トルクリプルが低減された回転電機の回転子及び回転電機を提供することである。
In general, rotating electric machines for vehicles such as electric vehicles and hybrid vehicles are required to reduce torque ripple. The torque ripple indicates the fluctuation amount of the output torque as a percentage with respect to the average torque. It is known that the noise and vibration of the rotating electrical machine increase as the torque ripple increases.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a rotor of a rotating electrical machine and a rotating electrical machine with reduced torque ripple.

本発明の回転電機の回転子は、回転子鉄心と、この回転子鉄心の外周部に周方向に所定の間隔を存して配置され、磁極を構成する複数の永久磁石とを備え、前記回転子鉄心の磁極部分の外周部は、前記磁極の中心から周方向に向かうに従って固定子との間のギャップが連続して大になる形態に構成されていることを特徴としている(請求項1の発明)。
又、本発明の回転電機は、固定子と、この固定子の界磁空間に配置された請求項1又は2記載の回転子とを具備してなることを特徴としている(請求項3の発明)。
A rotor of a rotating electrical machine according to the present invention includes a rotor core, and a plurality of permanent magnets that are arranged at a predetermined interval in the circumferential direction on an outer peripheral portion of the rotor core and constitute magnetic poles. The outer peripheral portion of the magnetic pole portion of the core is characterized in that the gap between the stator and the stator continuously increases in the circumferential direction from the center of the magnetic pole (claim 1). invention).
A rotating electrical machine according to the present invention comprises a stator and the rotor according to claim 1 or 2 disposed in a field space of the stator (invention of claim 3). ).

本発明は、回転子の回転子鉄心の磁極部分の外周部が、磁極の中心から周方向に向かうに従って固定子との間のギャップが連続して大になる形態に構成されているので、磁極からの磁束の立ち上がりがなだらかになり、トルクリプルの低減ができる。   In the present invention, the outer peripheral portion of the magnetic pole portion of the rotor core of the rotor is configured so that the gap between the stator and the stator continuously increases from the center of the magnetic pole toward the circumferential direction. As a result, the rise of the magnetic flux from the coil becomes smooth, and the torque ripple can be reduced.

以下、本発明を電気自動車、ハイブリット車等の車両に搭載された車両用回転電機に適用した第1の実施形態を、図1乃至図3を参照して説明する。
図2には、本実施形態に係る回転電機1を構成する固定子2と、この固定子2の界磁空間、例えば固定子2の内周側に位置された回転子3とが概略的に示されている。
固定子2は、固定子鉄心4に、複数相、例えば三相コイルたるU相コイル5、V相コイル6、W相コイル7が着装されて構成される。
Hereinafter, a first embodiment in which the present invention is applied to a rotating electrical machine for a vehicle mounted on a vehicle such as an electric vehicle or a hybrid vehicle will be described with reference to FIGS. 1 to 3.
FIG. 2 schematically shows a stator 2 constituting the rotating electrical machine 1 according to the present embodiment, and a rotor 3 positioned on the field space of the stator 2, for example, on the inner peripheral side of the stator 2. It is shown.
The stator 2 is configured by mounting a plurality of phases, for example, a U-phase coil 5, a V-phase coil 6, and a W-phase coil 7, which are three-phase coils, on a stator core 4.

固定子鉄心4は、複数枚の鋼板が積層されて一体的に結着されて形成された円環形状をなしている。そして、固定子鉄心4の内周面には、三相のコイル5,6,7を配設させるためのスロット8が複数個所、例えば48箇所に形成され、各コイル5,6,7は6スロット毎に巻回され、全体として8極形成されている。
回転子3は、円環状の多数の珪素鋼板を積層してなる回転子鉄心11と、回転子鉄心11の内部に設けたれた回転軸12を有している。
The stator core 4 has an annular shape formed by stacking and integrally bonding a plurality of steel plates. The inner surface of the stator core 4 is formed with a plurality of slots 8 for arranging three-phase coils 5, 6, 7 at, for example, 48 locations. Each slot is wound to form eight poles as a whole.
The rotor 3 includes a rotor core 11 formed by laminating a large number of annular silicon steel plates, and a rotating shaft 12 provided inside the rotor core 11.

図1には、回転子鉄心11の外周部の一部が示されている。
回転子鉄心11の外周部には、外周に向かうに従って対向距離が順次大となる一対の磁石挿入孔部13,13が複数対、例えば八対、周方向に所定の間隔を存して設けられている(図1ではそのうちの一部を拡大して図示)。この場合、一対の磁石挿入孔部13,13は、外周側からみてハ字形になっている。
FIG. 1 shows a part of the outer periphery of the rotor core 11.
The outer periphery of the rotor core 11 is provided with a plurality of pairs, for example, eight pairs, of a pair of magnet insertion hole portions 13 and 13 having a facing distance that gradually increases toward the outer periphery, with a predetermined interval in the circumferential direction. (A part of them is shown in an enlarged manner in FIG. 1). In this case, the pair of magnet insertion hole portions 13 and 13 has a C shape when viewed from the outer peripheral side.

これらの磁石挿入孔部13には、磁極を構成する永久磁石14が夫々挿入固定され、これにより、磁石挿入孔部13の両端部に逃げ孔部15,16が形成される。ここで、逃げ孔部15は、一対の永久磁石14,14間の磁極部分、即ち、固定子鉄心4側で生じた磁束が通り難い部分に位置し、逃げ孔部16は、外周側に位置する。この場合、近接する逃げ孔部15,15間にブリッジ部17が必然的に形成され、逃げ孔部16と回転子鉄心11の外周面との間にチップ部18が必然的に形成される。チップ部18は、漏洩磁束の低減のために、回転子鉄心11の径方向の厚さ寸法は短く設定されている。   Permanent magnets 14 constituting magnetic poles are respectively inserted and fixed in these magnet insertion holes 13, thereby forming escape holes 15 and 16 at both ends of the magnet insertion hole 13. Here, the escape hole 15 is located in the magnetic pole part between the pair of permanent magnets 14, that is, the part where the magnetic flux generated on the stator core 4 side is difficult to pass, and the escape hole 16 is located on the outer peripheral side. To do. In this case, the bridge portion 17 is inevitably formed between the adjacent escape hole portions 15 and 15, and the tip portion 18 is necessarily formed between the escape hole portion 16 and the outer peripheral surface of the rotor core 11. In the tip portion 18, the thickness dimension in the radial direction of the rotor core 11 is set short in order to reduce the leakage magnetic flux.

さて、回転子鉄心11の各磁極部分の外周部には、磁極の中心から周方向に向かうに従って固定子2との間のギャップが連続して大になる形態の一対の外周溝部21,21が構成されている。
一対の外周溝部21,21の形状について図1を参照して説明する。尚、一対の外周溝部21,21は、磁極に対応して形成されており、本実施形態では、回転子鉄心11の周方向に八対形成されている。そのため、一対の外周溝部21,21についてのみ説明し、他の外周溝部21の説明は省略する。
Now, a pair of outer peripheral groove portions 21 and 21 having a configuration in which the gap between the rotor core 11 and the stator 2 continuously increases in the circumferential direction from the center of the magnetic pole to the outer peripheral portion of each magnetic pole portion. It is configured.
The shape of a pair of outer peripheral groove parts 21 and 21 is demonstrated with reference to FIG. The pair of outer peripheral groove portions 21 and 21 are formed corresponding to the magnetic poles, and in this embodiment, eight pairs are formed in the circumferential direction of the rotor core 11. Therefore, only the pair of outer peripheral groove portions 21 and 21 will be described, and description of the other outer peripheral groove portions 21 will be omitted.

同図において、回転子鉄心11の中心をC1、回転子鉄心11の半径をROで示す。又、中心C1から磁極の中心に沿って径方向へ任意の距離Dずれた位置をC2とし、回転子鉄心11の外周面の磁極の中心の位置をC3とすると、位置C2から位置C3の寸法RDは、RD=RO−Dで示される。そして、外周溝部21と固定子2との間のギャップが最小になる回転子1側の位置は、上記のように、回転子鉄心11の外周面の磁極の中心にあたる位置C3である。ここで、固定子2に対する磁極の中心におけるギャップの寸法、即ち、外周溝部21の位置C3と固定子2との間の最小ギャップの寸法をgoで示す。   In the figure, the center of the rotor core 11 is denoted by C1, and the radius of the rotor core 11 is denoted by RO. Further, assuming that a position shifted by an arbitrary distance D in the radial direction from the center C1 along the center of the magnetic pole is C2, and the position of the center of the magnetic pole on the outer peripheral surface of the rotor core 11 is C3, the dimension from the position C2 to the position C3. RD is indicated by RD = RO-D. The position on the rotor 1 side where the gap between the outer peripheral groove 21 and the stator 2 is minimized is the position C3 corresponding to the center of the magnetic pole on the outer peripheral surface of the rotor core 11 as described above. Here, the size of the gap at the center of the magnetic pole with respect to the stator 2, that is, the size of the minimum gap between the position C3 of the outer peripheral groove 21 and the stator 2 is denoted by go.

一方、一対の外周溝部21,21の外径の形状は、中心が位置C2で半径RDの円弧形状をなし、円弧部分の中心が位置C3と一致し、位置C3を中心に左右方向(周方向両側)に外周溝部21が夫々形状されている。従って、この位置C3では、回転子鉄心11の外周円(半径RO)と、位置C2を中心にした半径RDの円弧部分とが接している。   On the other hand, the outer diameter shape of the pair of outer peripheral groove portions 21 and 21 is an arc shape having a center at a position C2 and a radius RD, the center of the arc portion coincides with the position C3, and the left and right directions (circumferential directions) The outer peripheral groove portions 21 are respectively formed on both sides. Therefore, at this position C3, the outer circumference circle (radius RO) of the rotor core 11 is in contact with the circular arc portion having the radius RD centered on the position C2.

各外周溝部21の端部のうちの磁極の中心から離れる方向に位置する端部は、磁極の中心と隣の磁極の中心との中間にあたる位置C4まで延びており、この位置C4では、外周溝部21の位置C4と固定子2との間のギャップは最大になる。この最大ギャップの寸法、即ち、この外周溝部21の位置C4と固定子2との間の最大ギャップの寸法をgmで示す。   Of the end portions of each outer peripheral groove portion 21, the end portion located in the direction away from the center of the magnetic pole extends to a position C4 that is intermediate between the center of the magnetic pole and the center of the adjacent magnetic pole. The gap between the position C4 of 21 and the stator 2 is maximized. The dimension of the maximum gap, that is, the dimension of the maximum gap between the position C4 of the outer peripheral groove 21 and the stator 2 is indicated by gm.

次に、ギャップの寸法go,gmと、トルクリプルとの関係を確認するために、本発明者は、磁界解析を行なった。トルクリプルは、出力トルクの変動分を、平均トルクに対する百分率で示すものである。磁界解析は、有限要素法により、電圧等の特性を計算によって求めるものであり、一般に市販されている電磁界解析ソフトを用いた。   Next, in order to confirm the relationship between the gap dimensions go and gm and the torque ripple, the inventor conducted a magnetic field analysis. The torque ripple indicates the fluctuation amount of the output torque as a percentage with respect to the average torque. In the magnetic field analysis, characteristics such as voltage are obtained by calculation using a finite element method, and commercially available electromagnetic field analysis software is used.

磁界解析では、寸法RDの値を変化(距離Dを変化)させて、最大ギャップの寸法gmを変化させた。そして、最小ギャップの寸法goと最大ギャップの寸法gmとの比(gm/go)を異にして、トルクリプルの値を計算で算出した。その結果を図3に示す。同図中の横軸は、比(gm/go)を示し、縦軸はトルクリプルの値を示している。尚、回転電機においては、一般に、トルクリプルは低い次数(電気角)ほど大きくて、騒音、振動の問題になりやすい。本実施形態においては、回転電機1は8極48スロットであり、この場合のトルクリプルは、最も低い次数が6次(電気角)であるので、6次のトルクリプルの値を計算した。   In the magnetic field analysis, the value of the dimension RD was changed (the distance D was changed), and the dimension gm of the maximum gap was changed. The torque ripple value was calculated by changing the ratio (gm / go) between the minimum gap dimension go and the maximum gap dimension gm. The result is shown in FIG. In the figure, the horizontal axis indicates the ratio (gm / go), and the vertical axis indicates the torque ripple value. In a rotating electrical machine, the torque ripple is generally larger as the order is lower (electrical angle), which is likely to cause noise and vibration problems. In the present embodiment, the rotating electrical machine 1 has 8 poles and 48 slots, and the torque ripple in this case is the sixth order (electrical angle), so the value of the sixth order torque ripple was calculated.

従来の一般的な回転子の外周部には、外周溝部21が設けられていないため、最小ギャップの寸法goと最大ギャップの寸法gmは同じ値であり、比(gm/go)は1である。その場合のトルクリプルの値は約1.5%であった。   Since the outer peripheral groove portion 21 is not provided in the outer peripheral portion of the conventional general rotor, the minimum gap dimension go and the maximum gap dimension gm are the same value, and the ratio (gm / go) is 1. . The torque ripple value in that case was about 1.5%.

最大ギャップの寸法gmを大きくして比(gm/go)を1より大きくすると、トルクリプルの値は減少し、比(gm/go)が2のときに最小となり、その値は約0.4%であった。引き続き比(gm/go)を大きくすると、トルクリプルの値は増加した。そして、比(gm/go)が6を超えたところで、比(gm/go)が1である従来の回転子1のトルクリプルの値と同等になった。更に、比(gm/go)を大きくすると共に、トルクリプルの値も増加した。   Increasing the maximum gap dimension gm and making the ratio (gm / go) greater than 1 decreases the torque ripple value, which is minimized when the ratio (gm / go) is 2, which is about 0.4%. Met. When the ratio (gm / go) was continuously increased, the torque ripple value increased. When the ratio (gm / go) exceeded 6, the torque ripple value of the conventional rotor 1 having the ratio (gm / go) of 1 was equal. Furthermore, as the ratio (gm / go) was increased, the value of torque ripple was also increased.

これにより、比(gm/go)が1より大きく6までの範囲では、従来の回転子よりもトルクリプルを低減することができる。更に、比(gm/go)が1.5〜4.0の範囲であると、従来の回転子の比(gm/go)が1の場合に対して、トルクリプルを半減させることができる。比(gm/go)が2の場合に最もトルクリプルを低減することができる。   Thereby, torque ripple can be reduced as compared with the conventional rotor in the range where the ratio (gm / go) is larger than 1 and up to 6. Further, when the ratio (gm / go) is in the range of 1.5 to 4.0, the torque ripple can be halved compared to the case where the ratio (gm / go) of the conventional rotor is 1. When the ratio (gm / go) is 2, the torque ripple can be reduced most.

次に、回転子3の作用及び効果について説明する。
上記構成の回転子3の回転子鉄心11には、永久磁石14が設けられているので、永久磁石14と固定子2の磁極との間の磁気吸引力及び磁気反発力によってトルクは発生する。これにより、回転子3が回転するようになる。
Next, the operation and effect of the rotor 3 will be described.
Since the permanent magnet 14 is provided on the rotor core 11 of the rotor 3 configured as described above, torque is generated by the magnetic attractive force and the magnetic repulsive force between the permanent magnet 14 and the magnetic poles of the stator 2. Thereby, the rotor 3 comes to rotate.

本実施形態によれば、回転子3の回転子鉄心11の磁極部分の外周部が、磁極の中心から周方向に向かうに従って固定子2との間のギャップが連続して大になる形態に構成されているので、磁極からの磁束の立ち上がりがなだらかになり、トルクリプルの低減ができる。   According to the present embodiment, the outer peripheral portion of the magnetic pole portion of the rotor core 11 of the rotor 3 is configured so that the gap between the rotor 2 and the stator 2 continuously increases as it goes from the center of the magnetic pole to the circumferential direction. As a result, the rise of the magnetic flux from the magnetic pole becomes smooth, and the torque ripple can be reduced.

そして、最小ギャップの寸法goと最大ギャップの寸法gmとの比(gm/go)を1より大きく、比(gm/go)が6までの範囲にすると、従来の回転子よりもトルクリプルを低減することができる。更に、比(gm/go)が1.5〜4.0の範囲であると、従来の回転子の比(gm/go)が1の場合に対して、トルクリプルを半減させることができる。比(gm/go)が2の場合に、最もトルクリプルを低減できる。   When the ratio (gm / go) between the minimum gap dimension go and the maximum gap dimension gm is larger than 1 and the ratio (gm / go) is in the range up to 6, the torque ripple is reduced more than that of the conventional rotor. be able to. Further, when the ratio (gm / go) is in the range of 1.5 to 4.0, the torque ripple can be halved compared to the case where the ratio (gm / go) of the conventional rotor is 1. When the ratio (gm / go) is 2, the torque ripple can be reduced most.

次に、本発明の第2の実施形態の回転子を、図4を参照して説明する。尚、上記第1の実施形態と同様な一部分には同符号を付し、その詳細な説明は省略する。
第2の実施形態では、回転子3の磁石挿入孔部31及び永久磁石32の形状及び配置が、上記第1の実施形態と異なる。即ち、本実施形態の磁石挿入孔部31は、第1の実施形態の1対の磁石挿入孔部13に対応する箇所、本実施形態では8箇所に形成されている。磁石挿入孔部31は、回転子鉄心11の軸方向に延びて断面が矩形状をなし、矩形状の長手方向の一辺が回転子鉄心11の外周面に略対向して配置されている。この磁石挿入孔部31には、永久磁石32が挿入固定されている。
Next, a rotor according to a second embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as the said 1st Embodiment, and the detailed description is abbreviate | omitted.
In 2nd Embodiment, the shape and arrangement | positioning of the magnet insertion hole 31 and the permanent magnet 32 of the rotor 3 differ from the said 1st Embodiment. That is, the magnet insertion hole 31 of the present embodiment is formed at eight locations in the present embodiment, corresponding to the pair of magnet insertion holes 13 of the first embodiment. The magnet insertion hole 31 extends in the axial direction of the rotor core 11 and has a rectangular cross section, and one side in the longitudinal direction of the rectangle is disposed substantially opposite to the outer peripheral surface of the rotor core 11. A permanent magnet 32 is inserted and fixed in the magnet insertion hole 31.

磁石挿入孔部31に永久磁石32が挿入固定されると、永久磁石32の両端部に逃げ孔部33,33が形成され、回転子鉄心11の外周部において、逃げ孔部33,33は、位置C4に近接した位置にある。
第2の実施形態の回転子3においても、第1の実施形態の回転子3と同様の作用効果を奏する。
When the permanent magnet 32 is inserted and fixed in the magnet insertion hole 31, escape holes 33 and 33 are formed at both ends of the permanent magnet 32, and the escape holes 33 and 33 are formed on the outer periphery of the rotor core 11. It is in a position close to position C4.
Also in the rotor 3 of 2nd Embodiment, there exists an effect similar to the rotor 3 of 1st Embodiment.

次に、本発明の第3の実施形態の回転子を、図5,6を参照して説明する。尚、上記第1の実施形態と同様な一部分には同符号を付し、その詳細な説明は省略する。
第3の実施形態では、図5,6に示すように、回転子3の外周部の形状が、上記第1の実施形態と異なる。即ち、第3の実施形態の外周溝部41が第1の実施形態の外周溝部21と異なる。
Next, a rotor according to a third embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the same part as the said 1st Embodiment, and the detailed description is abbreviate | omitted.
In 3rd Embodiment, as shown to FIG.5, 6, the shape of the outer peripheral part of the rotor 3 differs from the said 1st Embodiment. That is, the outer peripheral groove portion 41 of the third embodiment is different from the outer peripheral groove portion 21 of the first embodiment.

一対の外周溝部41,41の外径の形状は、中心が位置C2で半径RDの円弧形状をなし、円弧部分の中心が位置C3と一致し、位置C3を中心に左右方向(周方向両側)に外周溝部41が夫々形状されている。   The shape of the outer diameter of the pair of outer peripheral groove portions 41, 41 is an arc shape with a center at a position C2 and a radius RD, and the center of the arc portion coincides with the position C3. Each of the outer peripheral groove portions 41 is formed into a shape.

ここで、外周溝部41の端部のうちの磁極の中心から離れる方向に位置する端部は、磁極の中心と、隣の磁極の中心との中間にあたる位置C4まで延びておらず、位置C4よりやや磁極の中心側の位置C5で、最大のギャップgmになっている。そして、位置C4では、外周溝部41と固定子2との間のギャップが最小になっており、その最小ギャップの寸法はgoである。即ち、回転子鉄心11の外周部で、一対の永久磁石14のうちの一方と、その一対の永久磁石14の隣に位置する一対の永久磁石14のうちの近接している一方との間に、固定子2側に突出する凸状の突極部42が形成された形状になる。尚、突極部42は、図5に示すように、回転子鉄心11の周方向に8箇所形成されている。   Here, the end located in the direction away from the center of the magnetic pole in the end of the outer circumferential groove 41 does not extend to a position C4 that is intermediate between the center of the magnetic pole and the center of the adjacent magnetic pole, and from the position C4. The gap gm is the maximum at a position C5 slightly on the center side of the magnetic pole. And in the position C4, the gap between the outer peripheral groove part 41 and the stator 2 is the minimum, The dimension of the minimum gap is go. That is, at the outer peripheral portion of the rotor core 11, between one of the pair of permanent magnets 14 and one of the pair of permanent magnets 14 adjacent to the pair of permanent magnets 14. In this shape, a convex salient pole portion 42 that protrudes toward the stator 2 is formed. In addition, the salient pole part 42 is formed in eight places in the circumferential direction of the rotor core 11 as shown in FIG.

上記構成の回転子3においても、第1の実施形態の場合と同様にトルクリプルの低減ができる。
又、回転子3の回転子鉄心11に永久磁石14が設けられているので、永久磁石14と固定子2の磁極との間の磁気吸引力及び磁気反発力によってトルクが発生し、更に、磁束の通り難い部分と、磁束の通り易い部分(突極部42)とが形成される(所謂磁気的凹凸が形成される)ので、固定子2に着装されたコイル5,6,7に電流を流すことにより、それらの部分で蓄えられる磁気エネルギーが異なり、この磁気エネルギーの変化によりリラクタンストルクが容易に発生できる。
In the rotor 3 having the above-described configuration, torque ripple can be reduced as in the case of the first embodiment.
Further, since the permanent magnet 14 is provided on the rotor core 11 of the rotor 3, torque is generated by the magnetic attractive force and the magnetic repulsive force between the permanent magnet 14 and the magnetic pole of the stator 2, and further, the magnetic flux Since a portion that is difficult to pass and a portion that easily passes magnetic flux (the salient pole portion 42) are formed (so-called magnetic unevenness is formed), current is applied to the coils 5, 6 and 7 attached to the stator 2. By flowing, the magnetic energy stored in those portions is different, and reluctance torque can be easily generated by the change of the magnetic energy.

次に、本発明の第4の実施形態の回転子を、図7を参照して説明する。尚、上記第3の実施形態と同様な一部分には同符号を付し、その詳細な説明は省略する。
第4の実施形態では、図7に示すように、回転子3の磁石挿入孔部51及び永久磁石52の形状及び配置が、上記第3の実施形態と異なる。即ち、本実施形態の磁石挿入孔部51は、第3の実施形態の一対の磁石挿入孔部13に対応する箇所、本実施形態では8箇所に形成されている。磁石挿入孔部51は、回転子鉄心11の軸方向に延びて断面が矩形状をなし、矩形状の長手方向の一辺が回転子鉄心11の外周面に略対向して配置されている。この磁石挿入孔部51には、永久磁石52が挿入固定されている。
Next, a rotor according to a fourth embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as the said 3rd Embodiment, and the detailed description is abbreviate | omitted.
In the fourth embodiment, as shown in FIG. 7, the shapes and arrangements of the magnet insertion hole 51 and the permanent magnet 52 of the rotor 3 are different from those of the third embodiment. That is, the magnet insertion hole 51 of the present embodiment is formed at eight locations in the present embodiment, corresponding to the pair of magnet insertion holes 13 of the third embodiment. The magnet insertion hole 51 extends in the axial direction of the rotor core 11 and has a rectangular cross section, and one side of the rectangular longitudinal direction is disposed substantially opposite to the outer peripheral surface of the rotor core 11. A permanent magnet 52 is inserted and fixed in the magnet insertion hole 51.

磁石挿入孔部51に永久磁石52が挿入固定されると、永久磁石52の両端部に逃げ孔部53,53が形成され、回転子鉄心11の外周部において、逃げ孔部53,53は、位置C5,C5に近接した位置にある。
第4の実施形態の回転子3においても、第3の実施形態の回転子3と同様の作用効果を奏する。
When the permanent magnet 52 is inserted and fixed in the magnet insertion hole 51, escape holes 53 and 53 are formed at both ends of the permanent magnet 52, and the escape holes 53 and 53 are formed on the outer periphery of the rotor core 11. It is in a position close to positions C5 and C5.
Also in the rotor 3 of 4th Embodiment, there exists an effect similar to the rotor 3 of 3rd Embodiment.

尚、本発明は上記し且つ図面に示す実施形態に限定されず、次のような変形、拡張が可能である。
第1乃至第4の実施形態の回転電機の回転子の外周溝部は、円弧形状であったが、直線状でも良い。
又、本発明の回転電機の回転子及び回転電機は、三相コイルに適用して説明したが、三相コイル以外の複数相のコイルにも適用できる。
The present invention is not limited to the embodiment described above and shown in the drawings, and the following modifications and expansions are possible.
The outer peripheral groove portion of the rotor of the rotating electrical machine according to the first to fourth embodiments has an arc shape, but may have a linear shape.
In addition, the rotor and the rotating electrical machine of the rotating electrical machine of the present invention have been described as applied to a three-phase coil, but can be applied to a plurality of coils other than the three-phase coil.

本発明の第1の実施形態を示す回転子の回転子鉄心の拡大図The enlarged view of the rotor core of the rotor which shows the 1st Embodiment of this invention 回転電機の全体構成を概略的に示す側面図Side view schematically showing the overall configuration of the rotating electrical machine 最小ギャップの寸法goと最大ギャップの寸法gmとの比(gm/go)と、トルクリプルの関係を示す図The figure which shows the relationship (gm / go) of the dimension gap dimension go and the maximum gap dimension gm, and a torque ripple. 本発明の第2の実施形態を示す図1相当図FIG. 1 equivalent diagram showing a second embodiment of the present invention 本発明の第3の実施形態を示す図2相当図FIG. 2 equivalent view showing the third embodiment of the present invention 図1相当図1 equivalent diagram 本発明の第4の実施形態を示す図1相当図FIG. 1 equivalent view showing a fourth embodiment of the present invention

符号の説明Explanation of symbols

図面中、1は回転電機、2は固定子、3は回転子、11は回転子鉄心、14,32,52は永久磁石を示す。   In the drawings, 1 is a rotating electrical machine, 2 is a stator, 3 is a rotor, 11 is a rotor core, and 14, 32 and 52 are permanent magnets.

Claims (3)

回転子鉄心と、
この回転子鉄心の外周部に周方向に所定の間隔を存して配置され、磁極を構成する複数の永久磁石とを備え、
前記回転子鉄心の磁極部分の外周部は、前記磁極の中心から周方向に向かうに従って固定子との間のギャップが連続して大になる形態に構成されていることを特徴とする回転電機の回転子。
The rotor core,
A plurality of permanent magnets that are arranged at predetermined intervals in the circumferential direction on the outer peripheral portion of the rotor core and constitute magnetic poles;
An outer peripheral portion of a magnetic pole portion of the rotor core is configured in a form in which a gap between the rotor and the stator continuously increases in the circumferential direction from the center of the magnetic pole. Rotor.
固定子に対する磁極の中心におけるギャップの寸法をgoとし、最大ギャップの寸法をgmとした場合、比gm/goが1.5〜4.0の範囲になるように設定されていることを特徴とする請求項1記載の回転電機の回転子。   When the gap size at the center of the magnetic pole with respect to the stator is set to go and the size of the maximum gap is set to gm, the ratio gm / go is set to be in the range of 1.5 to 4.0. The rotor of the rotating electrical machine according to claim 1. 固定子と、
この固定子の界磁空間に配置された請求項1又は2記載の回転子とを具備してなることを特徴とする回転電機。
A stator,
A rotating electrical machine comprising the rotor according to claim 1 or 2 disposed in a field space of the stator.
JP2007156397A 2007-06-13 2007-06-13 Rotating electric machine rotor and rotating electric machine Active JP5248048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156397A JP5248048B2 (en) 2007-06-13 2007-06-13 Rotating electric machine rotor and rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156397A JP5248048B2 (en) 2007-06-13 2007-06-13 Rotating electric machine rotor and rotating electric machine

Publications (2)

Publication Number Publication Date
JP2008312318A true JP2008312318A (en) 2008-12-25
JP5248048B2 JP5248048B2 (en) 2013-07-31

Family

ID=40239406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156397A Active JP5248048B2 (en) 2007-06-13 2007-06-13 Rotating electric machine rotor and rotating electric machine

Country Status (1)

Country Link
JP (1) JP5248048B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067089A (en) * 2009-09-18 2011-03-31 Johnson Electric Sa Traction motor for electric vehicle
CN102420475A (en) * 2010-09-27 2012-04-18 天津市松正电动科技有限公司 Permanent magnet synchronous motor
JP2012080718A (en) * 2010-10-05 2012-04-19 Honda Motor Co Ltd Skew rotor and manufacturing method therefor
EP2763285A3 (en) * 2013-01-30 2016-02-24 Kabushiki Kaisha Toyota Jidoshokki Permanent magnet embedded type rotor for rotating electrical machine and rotating electrical machine having permanent magnet embedded type rotor
JP2019176738A (en) * 2019-07-23 2019-10-10 株式会社安川電機 Rotary electric machine and method of manufacturing rotor core
CN111384791A (en) * 2019-09-26 2020-07-07 广东威灵电机制造有限公司 Motor and household appliance
JP2021002958A (en) * 2019-06-24 2021-01-07 三菱電機株式会社 Rotary electric machine
CN117040156A (en) * 2023-07-18 2023-11-10 山东理工大学 Asymmetric interior permanent magnet motor with radial magnetic barrier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197292A (en) * 1998-10-21 2000-07-14 Mitsubishi Electric Corp Permanent-magnet rotor of permanent-magnet mounted motor
JP2002027690A (en) * 2000-07-06 2002-01-25 Mitsubishi Electric Corp Permanent magnet motor
JP2003037955A (en) * 2001-07-24 2003-02-07 Mitsubishi Heavy Ind Ltd Rotor for magnetic motor
JP2003116236A (en) * 2001-10-05 2003-04-18 Hitachi Ltd Permanent magnet rotating electric machine
JP2004260972A (en) * 2003-02-27 2004-09-16 Aichi Elec Co Permanent-magnet rotary machine
JP2005261024A (en) * 2004-03-10 2005-09-22 Hitachi Ltd Permanent magnet rotating electric machine and electric vehicle using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197292A (en) * 1998-10-21 2000-07-14 Mitsubishi Electric Corp Permanent-magnet rotor of permanent-magnet mounted motor
JP2002027690A (en) * 2000-07-06 2002-01-25 Mitsubishi Electric Corp Permanent magnet motor
JP2003037955A (en) * 2001-07-24 2003-02-07 Mitsubishi Heavy Ind Ltd Rotor for magnetic motor
JP2003116236A (en) * 2001-10-05 2003-04-18 Hitachi Ltd Permanent magnet rotating electric machine
JP2004260972A (en) * 2003-02-27 2004-09-16 Aichi Elec Co Permanent-magnet rotary machine
JP2005261024A (en) * 2004-03-10 2005-09-22 Hitachi Ltd Permanent magnet rotating electric machine and electric vehicle using it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067089A (en) * 2009-09-18 2011-03-31 Johnson Electric Sa Traction motor for electric vehicle
US9178395B2 (en) 2009-09-18 2015-11-03 Johnson Electric S.A. Traction motor for electric vehicles
CN102420475A (en) * 2010-09-27 2012-04-18 天津市松正电动科技有限公司 Permanent magnet synchronous motor
JP2012080718A (en) * 2010-10-05 2012-04-19 Honda Motor Co Ltd Skew rotor and manufacturing method therefor
EP2763285A3 (en) * 2013-01-30 2016-02-24 Kabushiki Kaisha Toyota Jidoshokki Permanent magnet embedded type rotor for rotating electrical machine and rotating electrical machine having permanent magnet embedded type rotor
JP2021002958A (en) * 2019-06-24 2021-01-07 三菱電機株式会社 Rotary electric machine
JP2019176738A (en) * 2019-07-23 2019-10-10 株式会社安川電機 Rotary electric machine and method of manufacturing rotor core
CN111384791A (en) * 2019-09-26 2020-07-07 广东威灵电机制造有限公司 Motor and household appliance
CN117040156A (en) * 2023-07-18 2023-11-10 山东理工大学 Asymmetric interior permanent magnet motor with radial magnetic barrier
CN117040156B (en) * 2023-07-18 2024-05-03 山东理工大学 Asymmetric interior permanent magnet motor with radial magnetic barrier

Also Published As

Publication number Publication date
JP5248048B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP4311182B2 (en) Rotating electric machine rotor
JP5288724B2 (en) Rotating electric machine rotor and rotating electric machine
US7960886B2 (en) Rotating electric machine
EP2015425B1 (en) Permanent magnet rotating electrical machine and permanent magnet rotating electrical machine system
JP5159153B2 (en) Rotating electric machine rotor and rotating electric machine
JP5248048B2 (en) Rotating electric machine rotor and rotating electric machine
JP6161707B2 (en) Synchronous motor
JP2016214070A (en) Single-phase motor and electric apparatus having the same
JP5248751B2 (en) Slotless permanent magnet type rotating electrical machine
JP5617313B2 (en) Assembly method of rotating electrical machine
JP2012120326A (en) Interior magnet rotor, motor, and method for assembling motor
JP6048191B2 (en) Multi-gap rotating electric machine
JP2007267565A (en) Coreless motor
JP2009077525A (en) Rotor for dynamo-electric machine and dynamo-electric machine
JP2005323498A (en) Permanent magnet type dynamo-electric machine
JP2009177907A (en) Stator of rotary electric machine, and rotary electric machine with the same
JP6589721B2 (en) Rotating electric machine
JP2009106001A (en) Rotary electric machine
JP2013207857A (en) Brushless motor
JP2008067528A (en) Motor
JP2012044789A (en) Rotary electric machine and method for manufacturing the same
JP6733568B2 (en) Rotating electric machine
JP5491344B2 (en) motor
JP2010239680A (en) Armature for rotary electric machine and manufacturing method therefor
JP2016034192A (en) Stator and rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

R150 Certificate of patent or registration of utility model

Ref document number: 5248048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350