JP4363600B2 - Smooth armature type 3-phase brushless motor - Google Patents

Smooth armature type 3-phase brushless motor Download PDF

Info

Publication number
JP4363600B2
JP4363600B2 JP04445198A JP4445198A JP4363600B2 JP 4363600 B2 JP4363600 B2 JP 4363600B2 JP 04445198 A JP04445198 A JP 04445198A JP 4445198 A JP4445198 A JP 4445198A JP 4363600 B2 JP4363600 B2 JP 4363600B2
Authority
JP
Japan
Prior art keywords
coil
brushless motor
phase brushless
armature type
smooth armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04445198A
Other languages
Japanese (ja)
Other versions
JPH11234989A (en
Inventor
竜一郎 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP04445198A priority Critical patent/JP4363600B2/en
Publication of JPH11234989A publication Critical patent/JPH11234989A/en
Application granted granted Critical
Publication of JP4363600B2 publication Critical patent/JP4363600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はFA、OAに使用されるブラシレスモータにおける、特に平滑電機子形のブラシレスモータに関するものである。
【0002】
【従来の技術】
従来の3相、4極、6コイルのブラシレスモータは、図3に示すように構成されている。
図において、強磁性体薄板を積層したステータコア10の内径側には、3相分6個のコイル11U、11U’、11V、11V’11W、11W’がシリーズに結線して集中巻きして取付けてある。ロータコア12の表面には、4個の希土類永久磁石13を等円周ピッチで、隣同志が異極になるように交互に貼付しロータ磁極を形成している。14は回転軸で、図示しないフレームに固定したブラケットに軸受を介して取付けてある。
このように構成したブラシレスモータの動作について説明をする。
前記コイル11u、11u’、11v、11v’、11w、11w’に通電すると、ロータに取付けた永久磁石13との電磁作用によりロータが回転する。
【0003】
【発明が解決しようとする課題】
ところが固定子ヨークの厚さはギャップの磁束密度と極ピッチに比例する。
Dgをギャップ径、Pを極数とすると、極ピッチ=Dg/Pとなる。
ギャップ密度Bgが一定であるとすれば、極数Pが大きいほどヨークを薄くできるので、モータが小形となる。
しかしながら、極数を増加すると、コイル数も増加し、生産性の低下につながるため、非重ね集中巻きの分数スロット巻線等が用いられる。従来の4極、6コイルの例も毎極、毎相のスロット数qが、1/2の分数スロット巻線である。
q=1/5とすれば6コイルで10極を構成できるが、非重ね集中巻きとした場合、短節係数が0.5と低く効率が低下してしまう。
そこで、本発明は短節係数を向上することにより高性能の平滑電機子形ブラシレスモータを提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上記課題を解決するため、本発明は、鉄心の表面に偶数個の永久磁石を等間隔に互いに異極となるよう配置した回転子と、前記回転子と対向するように空隙を介して配置された固定子と、前記固定子鉄心に非重ね集中巻きの複数個のコイルとを備えた平滑電機子形3相ブラシレスモータにおいて、コイル数を6n、極数を10n(nは自然数)とし、前記コイルの内側幅をコイルピッチに対して0.05〜0.3としている。
【0005】
【発明の実施の形態】
以下、本発明の実施例を図に基づいて説明する。
図1は本発明の実施例を示す平滑電機子形3相ブラシレスモータの正断面図である。
図において、1はコイルで、円筒状の固定子鉄心3の内面に含浸樹脂等で固着してある。前記コイル1の数は6個で、図に示すようにU、U’、W、W’、V、V’の相順で3相のコイル1が配置されている。2は永久磁石で、鉄心4の外周に相隣合う永久磁石2が互いに異極となるように固定してある。前記永久磁石2のコイル1に対向する面を円弧状に構成しているが、正弦波状にして磁束変化を滑らかにして誘起電圧波形の高調波成分を少なくするようにしてもよく、また、永久磁石2をリング状の磁石に多極着磁して製作の工数を低減してもよい。前記永久磁石2は鉄心4の外周に10個配置している。前記電機子鉄心4の内周にはシャフト5を電機子鉄心4と一体となるよう配置している。シャフト5は図示されない軸受により回転自在に支持されている。図2は図1で示したコイル1の概略を示したものである。互いのコイル1は、所定のコイルピッチで配置されている。前記コイル1は集中巻となっておりコイル1の内側にはコイル内側幅W1が設けられている。前記コイル1は所定の内側幅W1となるような巻型に巻回し製作される。前記コイル1には丸線や平角線を用いるが、占積率を高くできる点で平角線を用いた方がモータ特性を向上できる。
つぎに、本発明の平滑電機子形3相ブラシレスモータの巻線係数について説明する。
巻線係数は、分布係数、短節係数、スキュー係数などからなり、短節係数は極ピッチに対するコイル1の飛びで決定される。
スロット巻線形モータの短節係数kpは次式で表される。
kp = sin( βπ/2) (kp≦1)
β = P/N (X#−1)
P:極数
N:スロット数
X#:コイルの飛び
βは磁極ピッチに対するコイルの飛びを示し、1に近いほど短節係数の基本波成分は高くなる。
6スロット、10極、集中巻の場合、β =10/6(2−1)=1.66‥で1よりも大きな値となる。この場合短節係数は上記式より0.5となり、最大値1の半分である。
平滑電機子のスロット巻線のコイルの飛びは、図2に示すコイル飛び等価寸法Hに置き換えられる。このコイル飛び等価寸法Hはコイル幅Wとコイル内側幅W1の和で表され、コイルピッチAに比べ小さくなり、コイル内側幅W1を適当に設定することでβを1に近づけることができる。例えばコイル内側幅を大きくすればコイル飛び等価寸法Hは大きくなり、コイル内側幅W1を小さくすればコイル飛び等価寸法Hは小さくなる。実験の結果、コイル内側幅をコイルピッチに対して0.05〜0.3とすれば良いことがわかった。
つぎに、平滑電機子形ブラシレスモータの動作について説明する。
図示されない磁極検出手段によりコイルに所定の電流を通電することで永久磁石2、鉄心4、シャフト5などで構成される回転子はコイル1、固定子鉄心3等で構成された固定子に対して回転する。前記短節係数が向上するので、回転性能が向上する。
実施例では円筒状軟磁性体の鉄心4の外周面に円弧状の永久磁石を貼付けたインナロータについて説明したが、電機子鉄心の内周面に永久磁石を貼付けたアウタロータにしてもよい。また、実施例では少ないスロット数で、効率の良いモータをうるために、3相、6コイル、10極のモータについて説明をしたが、コイル数と極数は整数倍の組み合わせても同様の特性を持つので40極モータを製作する場合でも24コイルで済む。さらに、実施例では回転形モータについて説明をしたが、リニアモータにも適用できる。
【0006】
【発明の効果】
以上述べたように、本発明によれば、短節係数が向上して、高性能の平滑電機子形3相ブラシレスモータを得ることができる。
【図面の簡単な説明】
【図1】 本発明の実施例を示す平滑電機子形3相ブラシレスモータの正断面図である。
【図2】 本発明の平滑電機子形3相ブラシレスモータのコイルの概略構成図である。
【図3】 従来技術を示す平滑電機子形3相のブラシレスモータの正断面図である。
【符号の説明】
1 コイル、 2 永久磁石、 3 固定子鉄心、 4 電機子鉄心、5 シャフト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a brushless motor used for FA and OA, particularly a smooth armature brushless motor.
[0002]
[Prior art]
A conventional three-phase, four-pole, six-coil brushless motor is configured as shown in FIG.
In the figure, six coils 11U, 11U ′, 11V, 11V′11W, and 11W ′ for three phases are connected in series and attached in a concentrated manner on the inner diameter side of the stator core 10 laminated with ferromagnetic thin plates. is there. On the surface of the rotor core 12, four rare earth permanent magnets 13 are alternately attached at equal circumferential pitches so that adjacent neighbors have different polarities, thereby forming a rotor magnetic pole. Reference numeral 14 denotes a rotating shaft, which is attached to a bracket fixed to a frame (not shown) via a bearing.
The operation of the brushless motor configured as described above will be described.
When the coils 11u, 11u ′, 11v, 11v ′, 11w, and 11w ′ are energized, the rotor rotates by electromagnetic action with the permanent magnet 13 attached to the rotor.
[0003]
[Problems to be solved by the invention]
However, the thickness of the stator yoke is proportional to the magnetic flux density of the gap and the pole pitch.
When Dg is the gap diameter and P is the number of poles, the pole pitch = Dg / P.
If the gap density Bg is constant, the larger the number of poles P, the thinner the yoke, and the smaller the motor.
However, when the number of poles is increased, the number of coils also increases, leading to a decrease in productivity. Therefore, fractional slot winding with non-overlapping concentrated winding is used. The conventional 4-pole and 6-coil examples also have a fractional slot winding in which the number of slots q per pole and phase is ½.
If q = 1/5, 6 coils can form 10 poles. However, when the non-overlapping concentrated winding is used, the short-node coefficient is as low as 0.5 and the efficiency is lowered.
Accordingly, an object of the present invention is to provide a high performance smooth armature brushless motor by improving a short-pitch coefficient.
[0004]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a rotor in which an even number of permanent magnets are arranged on the surface of an iron core so as to be different from each other at equal intervals, and a gap is provided so as to face the rotor. In the smooth armature type three-phase brushless motor provided with a stator and a plurality of non-concentrated concentrated winding coils on the stator core, the number of coils is 6n, the number of poles is 10n (n is a natural number) , The inner width of the coil is set to 0.05 to 0.3 with respect to the coil pitch .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a front sectional view of a smooth armature type three-phase brushless motor showing an embodiment of the present invention.
In the figure, reference numeral 1 denotes a coil, which is fixed to the inner surface of a cylindrical stator core 3 with an impregnating resin or the like. The number of the coils 1 is six, and three-phase coils 1 are arranged in the phase order of U, U ′, W, W ′, V, and V ′ as shown in the figure. Reference numeral 2 denotes a permanent magnet, which is fixed on the outer periphery of the iron core 4 so that adjacent permanent magnets 2 have different polarities. Although the surface of the permanent magnet 2 facing the coil 1 is formed in an arc shape, it may be sinusoidal to smooth the magnetic flux change so as to reduce the harmonic component of the induced voltage waveform. The magnet 2 may be magnetized on a ring-shaped magnet to reduce the number of manufacturing steps. Ten permanent magnets 2 are arranged on the outer periphery of the iron core 4. A shaft 5 is disposed on the inner circumference of the armature core 4 so as to be integrated with the armature core 4. The shaft 5 is rotatably supported by a bearing (not shown). FIG. 2 shows an outline of the coil 1 shown in FIG. The coils 1 are arranged at a predetermined coil pitch. The coil 1 is concentrated winding, and a coil inner width W <b> 1 is provided inside the coil 1. The coil 1 is manufactured by being wound around a winding mold having a predetermined inner width W1. A round wire or a rectangular wire is used for the coil 1, but the motor characteristics can be improved by using the rectangular wire in that the space factor can be increased.
Next, the winding coefficient of the smooth armature type three-phase brushless motor of the present invention will be described.
The winding coefficient is composed of a distribution coefficient, a short-pitch coefficient, a skew coefficient, and the like.
The short-pitch coefficient kp of the slot winding type motor is expressed by the following equation.
kp = sin (βπ / 2) (kp ≦ 1)
β = P / N (X # -1)
P: Number of poles N: Number of slots X #: Coil jump β indicates the coil jump with respect to the magnetic pole pitch, and the closer to 1, the higher the fundamental wave component of the short coefficient.
In the case of 6 slots, 10 poles and concentrated winding, β = 10/6 (2-1) = 1.66... In this case, the short coefficient is 0.5 from the above formula, which is half of the maximum value of 1.
The coil jump of the slot winding of the smooth armature is replaced with a coil jump equivalent dimension H shown in FIG. This coil jump equivalent dimension H is expressed as the sum of the coil width W and the coil inner width W1, and is smaller than the coil pitch A. By appropriately setting the coil inner width W1, β can be made close to 1. For example, if the coil inner width is increased, the coil jump equivalent dimension H is increased, and if the coil inner width W1 is decreased, the coil jump equivalent dimension H is decreased. As a result of the experiment, it was found that the coil inner width should be 0.05 to 0.3 with respect to the coil pitch.
Next, the operation of the smooth armature brushless motor will be described.
A rotor composed of a permanent magnet 2, an iron core 4, a shaft 5 and the like is applied to a coil composed of a coil 1, a stator iron core 3 and the like by applying a predetermined current to the coil by magnetic pole detection means (not shown). Rotate. Since the short section coefficient is improved, the rotation performance is improved.
In the embodiment, the inner rotor in which the arc-shaped permanent magnet is attached to the outer peripheral surface of the cylindrical soft magnetic iron core 4 has been described. However, an outer rotor in which a permanent magnet is attached to the inner peripheral surface of the armature core may be used. Further, in the embodiment, in order to obtain an efficient motor with a small number of slots, a three-phase, six-coil, and ten-pole motor has been described. Even if a 40-pole motor is manufactured, 24 coils are sufficient. Further, the rotary motor has been described in the embodiment, but the present invention can also be applied to a linear motor.
[0006]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a high-performance smooth armature type three-phase brushless motor with an improved short-pitch coefficient.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a smooth armature type three-phase brushless motor showing an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a coil of a smooth armature type three-phase brushless motor according to the present invention.
FIG. 3 is a front sectional view of a smooth armature type three-phase brushless motor showing the prior art.
[Explanation of symbols]
1 coil, 2 permanent magnet, 3 stator core, 4 armature core, 5 shaft

Claims (4)

鉄心の表面に偶数個の永久磁石を等間隔に互いに異極となるよう配置した回転子と、前記回転子と対向するように空隙を介して配置された固定子と、前記固定子鉄心に非重ね集中巻きの複数個のコイルとを備えた平滑電機子形3相ブラシレスモータにおいて、
コイル数を6n、極数を10n(nは自然数)とし、前記コイルの内側幅をコイルピッチに対して0.05〜0.3にしたことを特徴とする平滑電機子形3相ブラシレスモータ。
A rotor in which an even number of permanent magnets are arranged on the surface of the iron core so as to have different polarities from each other at equal intervals, a stator arranged through a gap so as to face the rotor, and a non- In a smooth armature type three-phase brushless motor provided with a plurality of coils of concentrated and concentrated winding,
A smooth armature type three-phase brushless motor , wherein the number of coils is 6n, the number of poles is 10n (n is a natural number), and the inner width of the coil is 0.05 to 0.3 with respect to the coil pitch .
前記永久磁石のコイル対向面を正弦波状の永久磁石にした請求項1記載の平滑電機子形3相ブラシレスモータ。  The smooth armature type three-phase brushless motor according to claim 1, wherein the coil facing surface of the permanent magnet is a sinusoidal permanent magnet. 前記永久磁石を多極着磁リング状にした請求項1記載の平滑電機子形3相ブラシレスモータ。  The smooth armature type three-phase brushless motor according to claim 1, wherein the permanent magnet is formed in a multipolar magnetized ring shape. 前記コイルを平角巻線で形成した請求項1からまでのいずれかの項に記載の平滑電機子形3相ブラシレスモータ。The smooth armature type three-phase brushless motor according to any one of claims 1 to 3, wherein the coil is formed by a rectangular winding.
JP04445198A 1998-02-10 1998-02-10 Smooth armature type 3-phase brushless motor Expired - Fee Related JP4363600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04445198A JP4363600B2 (en) 1998-02-10 1998-02-10 Smooth armature type 3-phase brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04445198A JP4363600B2 (en) 1998-02-10 1998-02-10 Smooth armature type 3-phase brushless motor

Publications (2)

Publication Number Publication Date
JPH11234989A JPH11234989A (en) 1999-08-27
JP4363600B2 true JP4363600B2 (en) 2009-11-11

Family

ID=12691864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04445198A Expired - Fee Related JP4363600B2 (en) 1998-02-10 1998-02-10 Smooth armature type 3-phase brushless motor

Country Status (1)

Country Link
JP (1) JP4363600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101541693B1 (en) 2014-02-19 2015-08-04 김기덕 Bldc motor for traction direct drive

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO311200B1 (en) * 1999-05-25 2001-10-22 Smart Motor As Electric machine
JP2001069735A (en) * 1999-08-31 2001-03-16 Toshiba Corp Permanent magnet type reluctance type rotary electric machine
JP5248751B2 (en) * 2006-03-31 2013-07-31 三菱電機株式会社 Slotless permanent magnet type rotating electrical machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101541693B1 (en) 2014-02-19 2015-08-04 김기덕 Bldc motor for traction direct drive

Also Published As

Publication number Publication date
JPH11234989A (en) 1999-08-27

Similar Documents

Publication Publication Date Title
US4280072A (en) Rotating electric machine
JP2695332B2 (en) Permanent magnet field type rotor
US7233090B2 (en) Electric machine, in particular brushless synchronous motor
JP3816727B2 (en) Permanent magnet type reluctance type rotating electrical machine
RU2321143C2 (en) Electric motor with constant magnets
US20070057589A1 (en) Interior permanent magnet rotor and interior permanent magnet motor
US6603237B1 (en) High frequency electric motor or generator including magnetic cores formed from thin film soft magnetic material
US7030534B2 (en) High frequency electric motor or generator including magnetic cores formed from thin film soft magnetic material
JP2009247046A (en) Rotary electric machine
JPH114555A (en) Permanent magnet rotating machine
JP2010029061A (en) Electric motor
JP2004096803A (en) Permanent magnet synchronous motor
JP3442636B2 (en) Permanent magnet motor
JP2011055619A (en) Permanent magnet type dynamo-electric machine
JP2002165391A (en) Synchronous motor
JPH0522916A (en) Synchronous motor of permanent magnet type
JP4363600B2 (en) Smooth armature type 3-phase brushless motor
WO2003003546A1 (en) A permanent magnet electrical machine
US20070132333A1 (en) Self magnetizing motor and method for winding coils on stator thereof
JP3350971B2 (en) PM type vernier motor
US20120025653A1 (en) Aggregate magnetization skew in a permanent magnet assembly
JP2022076731A (en) Rotary electric machine
JP6661960B2 (en) Self-starting permanent magnet motor
RU207794U1 (en) End-type synchronous electric machine
JP4607823B2 (en) AC rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140828

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees