JP5243892B2 - A method for manufacturing a flexible wiring board. - Google Patents

A method for manufacturing a flexible wiring board. Download PDF

Info

Publication number
JP5243892B2
JP5243892B2 JP2008216547A JP2008216547A JP5243892B2 JP 5243892 B2 JP5243892 B2 JP 5243892B2 JP 2008216547 A JP2008216547 A JP 2008216547A JP 2008216547 A JP2008216547 A JP 2008216547A JP 5243892 B2 JP5243892 B2 JP 5243892B2
Authority
JP
Japan
Prior art keywords
wiring board
flexible wiring
manufacturing
axis
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008216547A
Other languages
Japanese (ja)
Other versions
JP2010056128A (en
JP2010056128A5 (en
Inventor
公一 服部
尚哉 鍬崎
圭一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008216547A priority Critical patent/JP5243892B2/en
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to EP14157869.0A priority patent/EP2747527A1/en
Priority to EP09773390.1A priority patent/EP2306794B1/en
Priority to PCT/JP2009/061644 priority patent/WO2010001812A1/en
Priority to US13/001,946 priority patent/US9060432B2/en
Priority to CN2009801250016A priority patent/CN102077698B/en
Priority to KR1020117001735A priority patent/KR101580822B1/en
Priority to TW98122077A priority patent/TWI471067B/en
Publication of JP2010056128A publication Critical patent/JP2010056128A/en
Publication of JP2010056128A5 publication Critical patent/JP2010056128A5/ja
Application granted granted Critical
Publication of JP5243892B2 publication Critical patent/JP5243892B2/en
Priority to US14/282,922 priority patent/US20140254114A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、いずれかに屈曲部を有して使用される可撓性配線基板の製造方法に関し、詳しくは屈曲に対して耐久性を備え、かつ、屈曲性に優れた可撓性配線基板を与える可撓性配線基板の製造方法に関する。   The present invention relates to a method for manufacturing a flexible wiring board that is used with a bent portion in any one, and more particularly, to provide a flexible wiring board having durability against bending and having excellent bending properties. The present invention relates to a method for manufacturing a flexible wiring board.

絶縁樹脂層と金属箔からなる配線とを有してなる可撓性配線基板(フレキシブルプリント基板)は、折り曲げて使用することが可能であることから、ハードディスク内の可動部、携帯電話のヒンジ部やスライド摺動部、プリンターのヘッド部、光ピックアップ部、ノートPCの可動部などをはじめ、各種電子・電気機器で幅広く使用されている。そして、近時では、特にこれらの機器の小型化、薄型化、高機能化等に伴い、限られたスペースに可撓性配線基板を小さく折り畳んで収納したり、電子機器等の様々な動きに対応した屈曲性が求められている。そのため、屈曲部における曲率半径がより小さくなるような折り曲げや、折り曲げが頻繁に繰り返されるような動作にも対応できるように、可撓性配線基板の更なる強度の向上が必要になっている。   A flexible printed circuit board (flexible printed circuit board) having an insulating resin layer and a wiring made of metal foil can be used by being bent. Therefore, a movable part in a hard disk and a hinge part of a mobile phone It is widely used in various electronic and electrical devices such as sliding parts, slides, printer heads, optical pickups, and notebook PCs. In recent years, especially with the miniaturization, thinning, and high functionality of these devices, the flexible wiring board can be folded and stored in a limited space, or used in various movements of electronic devices. Corresponding flexibility is required. For this reason, it is necessary to further improve the strength of the flexible wiring board so as to be able to cope with the bending in which the radius of curvature at the bent portion becomes smaller and the operation in which the bending is frequently repeated.

一般に、折り曲げの繰り返しや曲率半径の小さい屈曲に対して強度が劣るのは絶縁樹脂層よりむしろ配線の方であり、これらに耐えられなくなると配線の一部に割れや破断が生じ、回路基板として利用できなくなってしまう。そこで、例えばヒンジ部における配線に対する曲げ応力を小さくするために、回動軸に対して斜めになるように配線された可撓性配線基板(特許文献1参照)や、ヒンジ部の回動方向に1巻き以上螺旋させた螺旋部を形成し、この巻き数を多くすることで開閉動作による螺旋部の直径の変化を小さくして損傷を少なくする方法(特許文献2参照)などが提案されている。しかしながら、これらの方法では、いずれも可撓性配線基板の設計が制約されてしまう。   In general, it is the wiring rather than the insulating resin layer that is inferior in strength to repeated bending and bending with a small radius of curvature, and if it can not withstand these, a part of the wiring will be cracked or broken, and as a circuit board It becomes unavailable. Therefore, for example, in order to reduce the bending stress on the wiring in the hinge portion, a flexible wiring board (see Patent Document 1) wired obliquely with respect to the rotation axis, or in the rotation direction of the hinge portion. A method has been proposed in which a spiral portion formed by spiraling one or more turns is formed and the change in the diameter of the spiral portion due to the opening / closing operation is reduced to reduce damage by increasing the number of turns (see Patent Document 2). . However, any of these methods restricts the design of the flexible wiring board.

一方では、圧延銅箔の圧延面のX線回折(銅箔の厚み方向のX線回折)で求めた(200)面の強度(I)が、微粉末銅のX線回折で求めた(200)面の強度(I0)に対してI/I0>20である場合に屈曲性に優れることが報告されている(特許文献3及び4参照)。すなわち、銅の再結晶集合組織である立方体方位が発達するほど銅箔の屈曲性が向上するため、立方体集合組織の発達度を上記パラメータ(I/I0)で規定した、可撓性配線基板の配線材料として好適な銅箔が知られている。
特開2002−171033号公報 特開2002−300247号公報 特開2001−58203号公報 特許第3009383号公報
On the other hand, the strength (I) of the (200) plane determined by X-ray diffraction (X-ray diffraction in the thickness direction of the copper foil) of the rolled copper foil was determined by X-ray diffraction of fine powder copper (200 ) It has been reported that when I / I 0 > 20 with respect to the surface strength (I 0 ), the film has excellent flexibility (see Patent Documents 3 and 4). That is, the flexibility of the copper foil improves as the cube orientation, which is the copper recrystallized texture, develops. Therefore, the flexible wiring board in which the degree of development of the cube texture is defined by the above parameter (I / I 0 ) A copper foil suitable as a wiring material is known.
JP 2002-171033 A JP 2002-300147 A JP 2001-58203 A Japanese Patent No. 3009383

本発明の目的は、携帯電話や小型電子機器等のヒンジ部又はスライド摺動部など、特に曲率半径の小さな繰り返し屈曲部における過酷な条件に対して耐久性を備え、屈曲性に優れた可撓性配線基板を提供すること、又はそのような可撓性配線基板の製造方法を提供することにある。   The object of the present invention is to provide durability and flexibility with respect to harsh conditions such as hinge portions or slide sliding portions of mobile phones, small electronic devices, etc., particularly in repeated bending portions with a small curvature radius, and excellent flexibility. An object of the present invention is to provide a conductive wiring board or to provide a method for manufacturing such a flexible wiring board.

このような状況のもと、本発明者等は、可撓性配線基板の設計に制約が生じず、かつ、折り曲げの繰り返しや曲率半径の小さな屈曲に対しても耐え得る強度を備えて、屈曲性に優れた可撓性配線基板を得るべく鋭意検討した結果、驚くべきことに、絶縁樹脂層の片面または両面に金属箔を有する金属張積層体において、金属箔の所定の方向に対して傾きを与えて配線を形成した可撓性配線基板が優れた屈曲耐久性や屈曲性を示すことを見出し、本発明を完成した。   Under such circumstances, the present inventors have no restrictions on the design of the flexible wiring board, and have sufficient strength to withstand repeated bending and bending with a small radius of curvature. As a result of intensive studies to obtain a flexible wiring board having excellent properties, surprisingly, in a metal-clad laminate having a metal foil on one or both sides of an insulating resin layer, the metal foil is inclined with respect to a predetermined direction. The present invention has been completed by finding that a flexible wiring board having a wiring formed thereon exhibits excellent bending durability and flexibility.

すなわち、本発明は、絶縁樹脂層の片面又は両面に金属箔を有する金属張積層体の金属箔を配線加工して得られて、いずれかを屈曲させて使用する可撓性配線基板の製造方法であって、金属箔が圧延銅箔からなり、該圧延銅箔の厚み方向のX線回折で求めた(200)面の強度(I)が、微粉末銅のX線回折で求めた(200)面の強度(I 0 )に対してI/I 0 ≧25であるものを用いて、金属箔の長手方向をM軸としたとき、該M軸が実質的に金属箔の<100>軸方向であり、M軸に対して3〜87°傾けた方向に所定の線幅を有する直線状の配線を形成することを特徴とする可撓性配線基板の製造方法である。 That is, the present invention is a method for manufacturing a flexible wiring board obtained by wiring a metal foil of a metal-clad laminate having a metal foil on one side or both sides of an insulating resin layer, and bending one of them for use. The strength (I) of the (200) plane determined by X-ray diffraction in the thickness direction of the rolled copper foil was determined by X-ray diffraction of fine powder copper (200). ) When the surface strength (I 0 ) is I / I 0 ≧ 25 and the longitudinal direction of the metal foil is the M axis, the M axis is substantially the <100> axis of the metal foil. A method of manufacturing a flexible wiring board, comprising: forming a linear wiring having a predetermined line width in a direction inclined by 3 to 87 ° with respect to the M axis.

以下、本発明を詳細に説明する。
本発明で製造される可撓性配線基板は、金属張積層体を加工して得ることができる。金属張積層体は、絶縁樹脂層の片面又は両面に金属箔を有するものを用いる。この金属張積層体から可撓性配線基板を得るには、後記する特定の要件を充足すればよく、その他は公知の手段で絶縁樹脂層の片面又は両面に任意の配線パターンが形成された可撓性配線基板とすることができる。
Hereinafter, the present invention will be described in detail.
The flexible wiring board manufactured by the present invention can be obtained by processing a metal-clad laminate. As the metal-clad laminate, one having a metal foil on one side or both sides of the insulating resin layer is used. In order to obtain a flexible wiring board from this metal-clad laminate, it is only necessary to satisfy the specific requirements described below. Otherwise, an arbitrary wiring pattern can be formed on one or both sides of the insulating resin layer by known means. It can be set as a flexible wiring board.

金属箔の種類としては、立方晶系の結晶構造を有する金属が好ましく、例えば面心立方晶の場合、銅、アルミニウム、ニッケル、銀、ロジウム、パラジウム、白金、金などが挙げられる。これらはいずれであってもよいが、金属箔としての利用性から銅、アルミニウム及びニッケルが好適であり、これらの中でも、可撓性配線基板の配線として主に使用される銅箔が最も好ましい。また、金属箔は圧延箔又は電解箔のいずれであってもよいが、好ましくは圧延箔である。例えば、銅箔を用いる場合、銅箔の厚さは5〜100μmであることが好ましく、5〜30μmの圧延銅箔がより好ましい。本発明で圧延銅箔という場合、立方晶系の構造を有していれば、銀、錫、ジルコニウムなど他の金属成分を含有した銅合金箔をも含む。   The metal foil is preferably a metal having a cubic crystal structure. For example, in the case of a face-centered cubic crystal, copper, aluminum, nickel, silver, rhodium, palladium, platinum, gold and the like can be mentioned. Any of these may be used, but copper, aluminum, and nickel are preferable from the viewpoint of utilization as a metal foil, and among these, a copper foil that is mainly used as wiring of a flexible wiring board is most preferable. The metal foil may be a rolled foil or an electrolytic foil, but is preferably a rolled foil. For example, when using copper foil, it is preferable that the thickness of copper foil is 5-100 micrometers, and 5-30 micrometers rolled copper foil is more preferable. In the present invention, the rolled copper foil includes a copper alloy foil containing other metal components such as silver, tin, and zirconium as long as it has a cubic structure.

金属箔に銅箔を用いる場合、圧延銅箔であって、かつ、圧延銅箔の厚み方向のX線回折で求めた(200)面の強度(I)が、微粉末銅のX線回折で求めた(200)面の強度(I0)に対してI/I0≧25であるものを用いることが好ましく、より好ましくはI/I0が33〜150の範囲、特には50〜150の範囲の銅箔を用いることがよい。 When copper foil is used as the metal foil, the strength (I) of the (200) plane obtained by X-ray diffraction in the thickness direction of the rolled copper foil is the X-ray diffraction of fine powder copper. It is preferable to use one having I / I 0 ≧ 25 with respect to the obtained (200) plane strength (I 0 ), more preferably I / I 0 is in the range of 33 to 150, particularly 50 to 150. A range of copper foil is preferably used.

I/I0は立方体集合組織の発達度を表すものであり、銅の再結晶集合組織である立方体方位が発達するほど銅箔の屈曲疲労寿命や伸度が向上する。本発明の可撓性配線基板では、I/I0が25より小さいものを用いると配線の屈曲疲労寿命の向上が十分に望めず、I/I0が33以上であれば屈曲疲労寿命の向上が顕著になる。一方で、I/I0が150を超えると、後述するように、再結晶集合組織を得るために例えば焼鈍を行った場合、結果的に熱履歴が大きくなりすぎることになり、配線以外の樹脂層や配線と樹脂層との界面状態に悪影響を及ぼすおそれがある。なお、銅箔の厚み方向のX線回折とは、銅箔の表面(圧延銅箔の場合は圧延面)における配向性を確認するものであり、(200)面の強度(I)はX線回折で求めた(200)面の強度積分値を示す。また、強度(I0)は、微粉末銅(関東化学社製銅粉末試薬I級、325メッシュ)の(200)面の強度積分値を示す。 I / I 0 represents the degree of development of the cube texture, and the bending fatigue life and elongation of the copper foil improve as the cube orientation, which is the copper recrystallization texture, develops. In the flexible wiring board of the present invention, if the I / I 0 is smaller than 25, it is not possible to sufficiently improve the bending fatigue life of the wiring. If the I / I 0 is 33 or more, the bending fatigue life is improved. Becomes prominent. On the other hand, when I / I 0 exceeds 150, as will be described later, for example, when annealing is performed in order to obtain a recrystallized texture, the thermal history becomes too large, resulting in a resin other than wiring. There is a risk of adversely affecting the interface state between the layer or wiring and the resin layer. The X-ray diffraction in the thickness direction of the copper foil confirms the orientation on the surface of the copper foil (rolled surface in the case of a rolled copper foil), and the strength (I) of the (200) plane is X-ray. The integrated intensity value of the (200) plane obtained by diffraction is shown. The intensity (I 0) shows a fine powder of copper (manufactured by Kanto Chemical Co., Inc. copper powder reagent I grade, 325 mesh) in an intensity integral value of the (200) plane.

I/I0を25以上にするためには、銅箔の再結晶集合組織が得られるようにすればよく、この手段については特に制限はないが、例えば上記特許文献4に記載されるように、最終冷間圧延の直前の焼鈍をこの焼鈍で得られる再結晶粒の平均粒径が5〜20μmとなるような条件で行い、次の最終冷間圧延での圧延加工度を90%以上とすることで、I/I0≧25の圧延銅箔を得ることができる。また、例えば樹脂層と圧延銅箔とを積層させて銅張り積層板を得た後、銅箔に300〜360℃の温度が積算時間で5分以上負荷されるような加熱条件を経ることにより、銅箔の再結晶集合組織を得るようにしてもよい。 In order to increase I / I 0 to 25 or more, a recrystallized texture of the copper foil may be obtained. There is no particular limitation on this means, but for example, as described in Patent Document 4 above The annealing immediately before the final cold rolling is performed under the condition that the average grain size of the recrystallized grains obtained by this annealing is 5 to 20 μm, and the degree of rolling in the next final cold rolling is 90% or more. By doing so, a rolled copper foil with I / I 0 ≧ 25 can be obtained. In addition, for example, after a resin layer and a rolled copper foil are laminated to obtain a copper-clad laminate, the copper foil is subjected to a heating condition such that a temperature of 300 to 360 ° C. is loaded for an integrated time of 5 minutes or more. A recrystallized texture of copper foil may be obtained.

金属張積層体を構成する絶縁樹脂層の種類は特に制限されず、通常の可撓性配線基板で使用されるものを挙げることができ、例えばポリイミド、ポリアミド、ポリエステル、液晶ポリマー、ポリフェニレンサルファイド、ポリエーテルエーテルケトン等を例示することができる。なかでも、回路基板とした場合に良好な可撓性を示し、かつ、耐熱性にも優れることから、ポリイミドや液晶ポリマーが好適である。   The type of the insulating resin layer constituting the metal-clad laminate is not particularly limited, and examples thereof include those used in ordinary flexible wiring boards. For example, polyimide, polyamide, polyester, liquid crystal polymer, polyphenylene sulfide, poly Examples thereof include ether ether ketone. Of these, polyimide and liquid crystal polymer are preferred because they exhibit good flexibility when used as a circuit board and are excellent in heat resistance.

絶縁樹脂層の厚さは、可撓性配線基板の用途、形状等に応じて適宜設定することができるが、可撓性の観点から4〜75μmの範囲が好ましく、5〜50μmの範囲がより好ましく、10〜30μmの範囲が最も好ましい。絶縁樹脂層の厚さが5μmに満たないと、絶縁信頼性が低下するおそれがあり、反対に75μmを超えると小型機器等へ搭載する場合に回路基板全体の厚みが厚くなり過ぎるおそれがあり、屈曲性の低下も考えられる。   The thickness of the insulating resin layer can be appropriately set according to the use and shape of the flexible wiring board, but is preferably in the range of 4 to 75 μm and more preferably in the range of 5 to 50 μm from the viewpoint of flexibility. The range of 10 to 30 μm is most preferable. If the thickness of the insulating resin layer is less than 5 μm, the insulation reliability may be reduced. On the other hand, if it exceeds 75 μm, the thickness of the entire circuit board may be too thick when mounted on a small device, etc. A decrease in flexibility is also conceivable.

絶縁樹脂層と金属箔とを積層させる手段としては、例えば絶縁樹脂層がポリイミドからなる場合には、ポリイミドフィルムに熱可塑性のポリイミドを塗布し又は介在させて金属箔を熱ラミネートするようにしてもよい(所謂ラミネート法)。ラミネート法で用いられるポリイミドフィルムとしては、例えば、"カプトン"(東レ・デュポン株式会社)、"アピカル"(鐘淵化学工業株式会社)、"ユーピレックス"(宇部興産株式会社)等が例示できる。ポリイミドフィルムと金属箔とを加熱圧着する際には、熱可塑性を示す熱可塑性ポリイミド樹脂を介在させるのがよい。また、絶縁樹脂層の厚みや折り曲げ特性等を制御しやすい観点から、金属箔に絶縁樹脂層となるポリイミド前駆体溶液(ポリアミド酸溶液ともいう)を塗布した後、乾燥・硬化させて積層体を得てもよい(所謂キャスト法)。   As a means for laminating the insulating resin layer and the metal foil, for example, when the insulating resin layer is made of polyimide, the metal foil is thermally laminated by applying or interposing a thermoplastic polyimide to the polyimide film. Good (so-called laminating method). Examples of the polyimide film used in the laminating method include “Kapton” (Toray DuPont Co., Ltd.), “Apical” (Kanebuchi Chemical Industry Co., Ltd.), “Upilex” (Ube Industries Co., Ltd.), and the like. When the polyimide film and the metal foil are heat-bonded, a thermoplastic polyimide resin exhibiting thermoplasticity is preferably interposed. Also, from the viewpoint of easy control of the thickness and bending characteristics of the insulating resin layer, a polyimide precursor solution (also referred to as a polyamic acid solution) that becomes the insulating resin layer is applied to the metal foil, and then dried and cured to form a laminate. It may be obtained (so-called casting method).

絶縁樹脂層は、複数の樹脂を積層させて形成してもよく、例えば線膨張係数等の異なる2種類以上のポリイミドを積層させるようにしてもよい。また、ポリイミドフィルムを金属箔と積層する場合、エポキシ樹脂などを用いた接着層を介在させて積層することもできる。但し、耐熱性や屈曲性を担保する観点から、エポキシ樹脂等を接着剤として使用することなく、絶縁樹脂層のすべてが実質的にポリイミドから形成されるようにするのが望ましい。   The insulating resin layer may be formed by laminating a plurality of resins. For example, two or more kinds of polyimides having different linear expansion coefficients may be laminated. Moreover, when laminating | stacking a polyimide film with metal foil, it can also laminate | stack by interposing the contact bonding layer using an epoxy resin etc. However, from the viewpoint of ensuring heat resistance and flexibility, it is desirable that all of the insulating resin layer is substantially made of polyimide without using an epoxy resin or the like as an adhesive.

本発明によって製造される可撓性配線基板においては、絶縁樹脂層の線膨張係数が10〜30ppm/℃の範囲となるようにするのが好ましい。絶縁樹脂層が複数の樹脂からなる場合には、絶縁樹脂層全体の線膨張係数がこの範囲になるようにすればよい。このような条件を満たすためには、例えば、線膨張係数が25ppm/℃以下、好ましくは5〜20ppm/℃の低線膨張性ポリイミド層と、線膨張係数が26ppm/℃以上、好ましくは30〜80ppm/℃の高線膨張性ポリイミド層とからなる樹脂層であって、これらの厚み比を調整することによって10〜30ppm/℃のものとすることができる。好ましい低線膨張性ポリイミド層と高線膨張性ポリイミド層の厚みの比は70:30〜95:5の範囲である。また、低線膨張性ポリイミド層は、絶縁樹脂層の主たる樹脂層となり、高線膨張性ポリイミド層は金属箔と接するように設けることが好ましい。なお、線膨張係数は、イミド化反応が十分に終了したポリイミドを試料とし、サーモメカニカルアナライザー(TMA)を用いて250℃に昇温後、10℃/分の速度で冷却し、240〜100℃の範囲における平均の線膨張係数から求めることができる。   In the flexible wiring board manufactured by the present invention, it is preferable that the linear expansion coefficient of the insulating resin layer is in the range of 10 to 30 ppm / ° C. When the insulating resin layer is composed of a plurality of resins, the linear expansion coefficient of the entire insulating resin layer may be set within this range. In order to satisfy such conditions, for example, a low linear expansion polyimide layer having a linear expansion coefficient of 25 ppm / ° C. or less, preferably 5 to 20 ppm / ° C., and a linear expansion coefficient of 26 ppm / ° C. or more, preferably 30 to It is a resin layer composed of a high linear expansion polyimide layer of 80 ppm / ° C., and can be adjusted to 10 to 30 ppm / ° C. by adjusting the thickness ratio thereof. A preferred ratio of the thickness of the low linear expansion polyimide layer to the high linear expansion polyimide layer is in the range of 70:30 to 95: 5. The low linear expansion polyimide layer is the main resin layer of the insulating resin layer, and the high linear expansion polyimide layer is preferably provided so as to be in contact with the metal foil. In addition, the linear expansion coefficient is obtained by using polyimide with the imidization reaction sufficiently completed as a sample, raising the temperature to 250 ° C. using a thermomechanical analyzer (TMA), cooling at a rate of 10 ° C./min, and 240 to 100 ° C. It can obtain | require from the average linear expansion coefficient in the range.

本発明では、金属箔の長手方向をM軸としたとき、M軸に対して3〜87°傾けた方向に所定の線幅を有する直線状の配線を形成する。言い換えれば、M軸方向に対して3〜87°傾けた方向に並行して配線が形成されるようにし、この配線を含んだ部分を屈曲させて使用する。このように屈曲させる箇所の配線は、M軸に対して3〜87°傾けた方向に対して並行に形成することが重要であり、そのことによって可撓性配線基板の屈曲特性が著しく向上する。ここで、配線をM軸に対して5〜85°傾けた方向、特には10〜80°傾けた方向、最も好ましくは15〜75°傾けた方向に対して並行に形成することでより屈曲特性の向上を図ることができる。   In the present invention, when the longitudinal direction of the metal foil is the M axis, a linear wiring having a predetermined line width is formed in a direction inclined by 3 to 87 ° with respect to the M axis. In other words, the wiring is formed in parallel with the direction inclined by 3 to 87 ° with respect to the M-axis direction, and the portion including the wiring is bent and used. It is important to form the wiring at the location to be bent in this manner in parallel with the direction inclined by 3 to 87 ° with respect to the M-axis, which significantly improves the bending characteristics of the flexible wiring board. . Here, the wiring is formed in parallel with respect to a direction inclined by 5 to 85 ° with respect to the M axis, in particular, a direction inclined by 10 to 80 °, and most preferably a direction inclined by 15 to 75 °. Can be improved.

工業向きに市販されている金属箔は、圧延箔である場合や電解箔である場合を含めて、幅方向よりも幅方向に対する垂直方向の寸法の方が長いものが大多数を占めており、垂直方向の長さが幅方向に対して数倍から数千倍の長さを有してロール状に巻き取られた、いわゆる長尺状のものが代表的である。また、圧延箔の場合には、通常、長手方向(垂直方向)が圧延方向と等しくなり、更には、圧延箔及び電解箔共に製法上の理由から、この長手方向が実質的に金属箔の<100>軸方向に相当する。ここで、実質的に<100>軸方向とは、例えばEBSP(Electron Back Scattering Pattern)法において金属箔の表面を測定した場合に結晶組織の{001}面が<100>方向に優先的に配向することが確認されることを意味する。この場合の優先的にとは、解析結果において50%以上の配向性を示すことである。そして、このような場合において、本発明者等は、M軸方向に対して3〜87°傾けた方向に直線状の配線を形成することにより屈曲特性が向上することを見出した。この理由については定かではないが、上記の方向における銅配線は通常のM軸方向の配線に比べて引張伸度が向上するためであると考えられ、特にこの角度が10〜80°であると屈曲特性がより向上する。   The metal foil marketed for industrial use, including the case of being a rolled foil or the case of an electrolytic foil, occupies the majority of the dimension in the direction perpendicular to the width direction is longer than the width direction, A typical example is a so-called long one having a length in the vertical direction several to several thousand times that in the width direction and wound in a roll shape. In the case of a rolled foil, the longitudinal direction (vertical direction) is usually the same as the rolling direction. Furthermore, both the rolled foil and the electrolytic foil have a longitudinal direction substantially smaller than that of the metal foil for manufacturing reasons. 100> corresponds to the axial direction. Here, the <100> axis direction substantially means that the {001} plane of the crystal structure is preferentially oriented in the <100> direction when the surface of the metal foil is measured by, for example, the EBSP (Electron Back Scattering Pattern) method. It means that it will be confirmed. In this case, “preferential” means that the orientation is 50% or more in the analysis result. In such a case, the present inventors have found that bending characteristics are improved by forming a linear wiring in a direction inclined by 3 to 87 ° with respect to the M-axis direction. The reason for this is not clear, but the copper wiring in the above direction is considered to be because the tensile elongation is improved as compared with the wiring in the normal M-axis direction. In particular, this angle is 10 to 80 °. Bending characteristics are further improved.

配線の形状については、配線基板の用途等によっても異なるが、例えば携帯ヒンジや光ピックアップ、スライド用途などの場合、線幅は現状100〜300μmの範囲であり、特に狭ピッチの配線が求められるような携帯電話向けのCOF等の場合には現状20〜100μmである。線幅や配線のピッチ幅は上記に限られるものでなく、所定の角度を設けて配線を形成することで金属箔の向上が確認される場合には屈曲性の向上が見られるため、特に線幅や配線ピッチ等に制限はない。なお、屈曲させて使用する箇所以外の配線形状については特に制約はなく、クランク形状を有したり、本発明で言う傾きの範囲から外れる方向に配線が形成されていてもよいことは勿論である。   Although the shape of the wiring varies depending on the use of the wiring board, etc., for example, in the case of a portable hinge, an optical pickup, a slide use, etc., the line width is currently in the range of 100 to 300 μm, and a wiring with a narrow pitch is particularly required. In the case of a COF for a mobile phone, the current state is 20 to 100 μm. The line width and the wiring pitch width are not limited to the above, and when the improvement in the metal foil is confirmed by forming the wiring at a predetermined angle, the flexibility is seen. There are no restrictions on the width, wiring pitch, and the like. There are no particular restrictions on the wiring shape other than the portion to be bent and used, and it goes without saying that the wiring may have a crank shape or may be formed in a direction deviating from the inclination range referred to in the present invention. .

金属張積層体から可撓性配線基板を製造する一例を説明すると、先ず金属張積層体を準備する。金属箔と絶縁樹脂層との積層については、上述したような一般的なラミネート法やキャスト法を用いることができるが、ラミネート法により樹脂フィルムと金属箔とを積層する際に、予め樹脂フィルムの長手方向に対して金属箔のM軸が本発明で言う所定の角度を有するようにずらして貼り合わせるようにしてもよい。また、金属箔が圧延銅箔の場合には、上記したように、圧延銅箔の厚み方向のX線回折で求めた(200)面の強度(I)が、微粉末銅のX線回折で求めた(200)面の強度(I0)に対してI/I0≧25であるものを用いることが好ましい。この金属張積層体から可撓性配線基板を製造するわけであるが、金属張積層板からの金属箔に配線を形成する際、長尺状金属箔の搬送方向(長手方向)であるM軸に対して3〜87°傾けた方向に所定の線幅を有する直線状の配線を形成すればよく、例えば、ロール・トゥ・ロール方式で連続的に形成してもよく、バッチ式に切り出した金属張積層板を用いて、M軸に対して直線状の配線が所定の角度を有するように個々に配線形成を行ってもよい。配線の幅、形状、パターン等については屈曲させる部分の配線形成方向以外は特に制限はなく、可撓性配線基板の用途、搭載される電子機器等に応じて適宜設計すればよい。また、金属箔から所定の形状の配線を得る際にはエッチング処理が一般的であるが、これ以外の方法であってもよい。なお、金属張積層板に絶縁樹脂層の両面に金属箔を有するものを用いた場合、配線は絶縁層の両面に形成されるが、この場合においても屈曲される配線は、いずれの面においてもM軸に対する配線形成は上記傾きの範囲内とすることが有利である。 An example of manufacturing a flexible wiring board from a metal-clad laminate will be described. First, a metal-clad laminate is prepared. For the lamination of the metal foil and the insulating resin layer, the general laminating method and the casting method as described above can be used. When laminating the resin film and the metal foil by the laminating method, The metal foils may be bonded to each other so that the M axis of the metal foil has a predetermined angle in the present invention with respect to the longitudinal direction. When the metal foil is a rolled copper foil, as described above, the strength (I) of the (200) plane obtained by X-ray diffraction in the thickness direction of the rolled copper foil is the X-ray diffraction of fine powder copper. It is preferable to use one having I / I 0 ≧ 25 with respect to the obtained (200) plane strength (I 0 ). A flexible wiring board is manufactured from this metal-clad laminate. When wiring is formed on a metal foil from a metal-clad laminate, the M-axis is the transport direction (longitudinal direction) of the elongated metal foil. What is necessary is just to form the linear wiring which has a predetermined | prescribed line | wire width in the direction inclined 3 to 87 degrees with respect to the surface, for example, you may form continuously by a roll-to-roll system, and it cut out in the batch type Using a metal-clad laminate, wiring may be individually formed so that the linear wiring has a predetermined angle with respect to the M axis. The width, shape, pattern, and the like of the wiring are not particularly limited except for the wiring formation direction of the portion to be bent, and may be appropriately designed according to the use of the flexible wiring board, the mounted electronic device, and the like. In addition, when a wiring having a predetermined shape is obtained from a metal foil, an etching process is generally used, but other methods may be used. In addition, when a metal-clad laminate having a metal foil on both sides of an insulating resin layer is used, the wiring is formed on both sides of the insulating layer. It is advantageous that the wiring formation with respect to the M-axis is within the above-mentioned inclination range.

本発明によって製造される可撓性配線基板は、絶縁樹脂層と金属箔から形成された配線とを備え、いずれかを屈曲させて使用されるものである。すなわち、ハードディスク内の可動部、携帯電話のヒンジ部やスライド摺動部、プリンターのヘッド部、光ピックアップ部、ノートPCの可動部などをはじめ各種電子・電気機器等で幅広く使用され、回路基板自体が折り曲げられたり、ねじ曲げられたり、或いは搭載された機器の動作に応じて変形したりして、いずれかに屈曲部が形成されるものである。特に、本発明の可撓性配線基板は屈曲耐久性に優れた屈曲部構造を有することから、摺動屈曲、折り曲げ屈曲、ヒンジ屈曲、スライド屈曲等の繰り返し動作を伴い頻繁に折り曲げられたりする場合や、或いは搭載される機器の小型化に対応すべく、曲率半径が折り曲げ挙動で0.38〜2.0mmであり、摺動屈曲で1.25〜2.0mmであり、ヒンジ屈曲で3.0〜5.0mmであり、スライド屈曲で0.5〜2.0mmであるような厳しい使用条件の場合に好適であり、0.5〜1mmの狭いギャップで屈曲性能の要求が厳しいスライド用途において特に効果を発揮する。   The flexible wiring board manufactured by the present invention includes an insulating resin layer and wiring formed from a metal foil, and is used by bending one of them. In other words, it is widely used in various electronic and electrical devices such as movable parts in hard disks, hinges and slides of mobile phones, printer heads, optical pickups, movable parts of notebook PCs, etc., and the circuit board itself Is bent, twisted, or deformed according to the operation of the mounted device, and a bent portion is formed in either of them. In particular, since the flexible wiring board of the present invention has a bent portion structure with excellent bending durability, it is frequently bent with repeated operations such as sliding bending, bending bending, hinge bending, and sliding bending. In addition, in order to cope with the downsizing of devices to be mounted, the radius of curvature is 0.38 to 2.0 mm in bending behavior, 1.25 to 2.0 mm in sliding bending, and 3. Suitable for severe use conditions such as 0 to 5.0 mm and 0.5 to 2.0 mm for slide bending, and for slide applications where bending performance is severe with a narrow gap of 0.5 to 1 mm. Especially effective.

本発明によれば、折り曲げの繰り返しや曲率半径の小さな屈曲等の過酷な折り曲げ条件に対して耐久性を備え、屈曲性に優れた可撓性配線基板を製造することができる。また、本発明によれば、可撓性配線基板の設計に制約を受けずに、屈曲耐久性や屈曲性に優れた可撓性配線基板を製造することができる。   According to the present invention, it is possible to manufacture a flexible wiring board that has durability against severe bending conditions such as repeated bending and bending with a small radius of curvature, and excellent in flexibility. Further, according to the present invention, it is possible to manufacture a flexible wiring board having excellent bending durability and flexibility without being restricted by the design of the flexible wiring board.

以下、実施例及び比較例に基づき、本発明をより具体的に説明する。なお、実施例等で用いた銅箔の種類及びポリアミド酸溶液の合成は次のとおりである。   Hereinafter, based on an Example and a comparative example, the present invention is explained more concretely. In addition, the synthesis | combination of the kind of copper foil used in the Example etc. and a polyamic-acid solution is as follows.

[銅箔A]
日鉱金属株式会社製圧延銅箔(商品名BHYA-72F-HA)、厚さ12μm
[銅箔B]
福田金属株式会社製圧延銅箔(商品名ROFD-T4X)、厚さ12μm
[Copper foil A]
Rolled copper foil (trade name BHYA-72F-HA) manufactured by Nikko Metal Co., Ltd., thickness 12μm
[Copper foil B]
Rolled copper foil (trade name ROFD-T4X) manufactured by Fukuda Metal Co., Ltd., thickness 12μm

[ポリアミド酸溶液の合成]
(合成例1)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れた。この反応容器に2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を容器中で撹拌しながら溶解させた。次に、ピロメリット酸二無水物(PMDA)を加えた。モノマーの投入総量が15wt%となるように投入した。その後、3時間撹拌を続け、ポリアミド酸aの樹脂溶液を得た。このポリアミド酸aの樹脂溶液の溶液粘度は3,000cpsであった。
[Synthesis of polyamic acid solution]
(Synthesis Example 1)
N, N-dimethylacetamide was placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen. 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) was dissolved in the reaction vessel with stirring. Next, pyromellitic dianhydride (PMDA) was added. The total amount of monomers charged was 15 wt%. Thereafter, stirring was continued for 3 hours to obtain a resin solution of polyamic acid a. The solution viscosity of this polyamic acid a resin solution was 3,000 cps.

(合成例2)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れた。この反応容器に2,2'−ジメチル−4,4'−ジアミノビフェニル(m−TB)を投入した。次に3,3',4,4'−ビフェニルテトラカルボン酸二無水物(BPDA)およびピロメリット酸二無水物(PMDA)を加えた。モノマーの投入総量が15wt%で、各酸無水物のモル比率(BPDA:PMDA)が20:80となるように投入した。その後、3時間撹拌を続け、ポリアミド酸bの樹脂溶液を得た。このポリアミド酸bの樹脂溶液の溶液粘度は20,000cpsであった。
(Synthesis Example 2)
N, N-dimethylacetamide was placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen. 2,2′-Dimethyl-4,4′-diaminobiphenyl (m-TB) was charged into the reaction vessel. Next, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA) were added. The total amount of monomers charged was 15 wt%, and the molar ratio of each acid anhydride (BPDA: PMDA) was 20:80. Thereafter, stirring was continued for 3 hours to obtain a resin solution of polyamic acid b. The solution viscosity of this polyamic acid b resin solution was 20,000 cps.

[実施例1]
長尺状の銅箔Aに上記で準備したポリアミド酸溶液aを塗布し、乾燥させ(硬化後は膜厚2μmの熱可塑性ポリイミドを形成)、そのうえにポリアミド酸bを塗布し、乾燥させ(硬化後は膜厚12μmの低熱熱膨張性ポリイミドを形成)、更にその上にポリアミド酸aを塗布し乾燥させ(硬化後は膜厚2μmの熱可塑性ポリイミドを形成)、300〜360℃の温度が積算時間で5分以上負荷されるような加熱条件を経て3層構造からなるポリイミド層を形成した。次いで、銅箔Aの長手方向(M軸方向)に沿って長さ250mm、長手方向に対して直交する方向(RD方向)に幅150mmの長方形サイズとなるように切り出し、図1に示すように、厚さ16μmのポリイミド層(絶縁樹脂層)1と厚さ12μmの銅箔2とを有した片面銅張積層板3を得た。ここで長手方向とは圧延方向と等しい方向である。また、EBSP測定(Electron Back Scattering Pattern)により確認したところ、この長手方向は銅の<100>軸方向を有していた。
[Example 1]
The polyamic acid solution a prepared above is applied to a long copper foil A and dried (after curing, a 2 μm-thick thermoplastic polyimide film is formed), and then polyamic acid b is applied and dried (after curing) Is a low thermal expansion coefficient polyimide film with a film thickness of 12μm), and further coated with polyamic acid a and dried (forms a thermoplastic polyimide film with a film thickness of 2μm after curing). A polyimide layer having a three-layer structure was formed through heating conditions such that a load of 5 minutes or more was applied. Next, the copper foil A was cut out to have a rectangular size of 250 mm in length along the longitudinal direction (M-axis direction) and 150 mm in width in the direction orthogonal to the longitudinal direction (RD direction), as shown in FIG. A single-sided copper-clad laminate 3 having a polyimide layer (insulating resin layer) 1 having a thickness of 16 μm and a copper foil 2 having a thickness of 12 μm was obtained. Here, the longitudinal direction is the same direction as the rolling direction. Moreover, when confirmed by EBSP measurement (Electron Back Scattering Pattern), this longitudinal direction had the <100> axial direction of copper.

片面銅張積層板3の銅箔2の圧延面2aのX線回折で求めた(200)面の強度積分値から強度(I)を求め、この値を予め測定しておいた純微粉末銅(関東化学社製銅粉末試薬I級、325メッシュ)の(200)面の強度積分値から求めた強度(I0)で割り、I/I0を計算したところ57であった。なお、X線回折には極点図測定装置RINT−2000型(理学電機社製)を用い、Mo−Kαターゲットを用い管電圧60kV、管電流200mAの条件でそれぞれの(200)面の強度積分値を求め、純銅粉固化体回折強度に対する倍率から強度比を求めた。 Intensity (I) was determined from the integrated intensity value of the (200) plane obtained by X-ray diffraction of the rolled surface 2a of the copper foil 2 of the single-sided copper clad laminate 3, and this value was measured in advance. It was 57 when I / I 0 was calculated by dividing by the intensity (I 0 ) obtained from the integrated intensity value of (200) plane of (Kantou Chemical Co., Ltd., copper powder reagent class I, 325 mesh). For X-ray diffraction, a pole figure measuring device RINT-2000 type (manufactured by Rigaku Corporation) is used, an Mo-Kα target is used, the tube voltage is 60 kV, and the tube current is 200 mA. The intensity ratio was determined from the magnification with respect to the pure copper powder solidified diffraction intensity.

次に、上記で得られた片面銅張積層板3の銅箔2側に所定のマスクを被せ、塩化鉄/塩化銅系溶液を用いてエッチングを行い、図2に示すように、線幅(l)150μmの直線状の配線4の配線方向H(H方向)が長手方向(M軸方向)に対して45°の角度を有するようにし、かつ、スペース幅(s)250μmで配線パターンを形成した。そして、後述する耐屈曲試験用のサンプルを兼ねるように、JIS 6471に準じて、回路基板の配線方向Hに沿って長手方向に15cm、配線方向Hに直交する方向に幅1.5cmを有する試験用可撓性配線基板5を得た。   Next, a predetermined mask is put on the copper foil 2 side of the single-sided copper clad laminate 3 obtained as described above, and etching is performed using an iron chloride / copper chloride solution. As shown in FIG. l) A wiring pattern is formed so that the wiring direction H (H direction) of the linear wiring 4 of 150 μm has an angle of 45 ° with respect to the longitudinal direction (M-axis direction) and the space width (s) is 250 μm. did. And a test having a length of 15 cm in the longitudinal direction along the wiring direction H of the circuit board and a width of 1.5 cm in the direction perpendicular to the wiring direction H according to JIS 6471 so that it also serves as a sample for a bending resistance test described later. A flexible wiring board 5 was obtained.

上記で得られた試験用可撓性配線基板5を用い、JIS C5016に準じてMIT屈曲試験を行った。装置は東洋精機製作所製(STROGRAPH-R1)を使用し、試験用可撓性配線基板5の一端を屈曲試験装置のくわえ治具に固定し、他端をおもりで固定して、くわえ部を中心として、振動速度150回/分の条件で左右に交互に135±5度ずつ回転させながら、曲率半径0.8mmとなるように屈曲させ、配線基板5の配線4の導通が遮断されるまでの回数を屈曲回数として求めた。この際、屈曲により形成される屈曲部での稜線Lが試験用可撓性配線基板5の配線4の配線方向Hに対して直交するようにして試験を行ったところ、屈曲回数2000回目に配線4が屈曲部の稜線L付近で破線したことが確認された。   Using the test flexible wiring board 5 obtained above, an MIT flex test was performed according to JIS C5016. The equipment is manufactured by Toyo Seiki Seisakusho (STROGRAPH-R1), one end of the flexible wiring board 5 for testing is fixed to the holding jig of the bending test apparatus, the other end is fixed with a weight, and the holding part is centered. Until the curvature of the wire 4 of the wiring board 5 is cut off by rotating it to the left and right alternately at 135 ± 5 degrees with a vibration speed of 150 times / min. The number of times was determined as the number of flexions. At this time, when the test was performed such that the ridge line L at the bent portion formed by the bending was orthogonal to the wiring direction H of the wiring 4 of the test flexible wiring board 5, the wiring was obtained at the 2000th bending time. 4 was confirmed to be a broken line near the ridge line L of the bent portion.

また、上記で得られた試験用可撓性配線基板5について、水酸化カリウムを主成分としたポリイミドエッチング液に浸してポリイミド層1をエッチング除去し、得られた配線を用いて引張試験を行った。試験には東洋精機製作所製(STROGRAPH-R1)を使用し、得られた配線パターンのうちの1本の配線4を、引張方向が配線方向Hと平行になるようにして、引張速度10mm/minの条件で試験した。その結果、本実施例の配線4は6%の伸度が確認された。結果を表1に示す。   Moreover, about the flexible wiring board 5 for a test obtained above, the polyimide layer 1 is etched away by being immersed in the polyimide etching liquid which has potassium hydroxide as a main component, and the tensile test is done using the obtained wiring. It was. For the test, Toyo Seiki Seisakusho (STROGRAPH-R1) was used. One of the obtained wiring patterns 4 was pulled at a pulling speed of 10 mm / min with the pulling direction parallel to the wiring direction H. The test was conducted under the following conditions. As a result, it was confirmed that the wiring 4 of this example had an elongation of 6%. The results are shown in Table 1.

[実施例2〜9]
長手方向(M軸)に対する配線方向Hの角度を表1に示すようにした以外は実施例1と同様にして試験用可撓性配線基板5を得た。得られた配線基板5について、実施例1と同様にしてMIT屈曲試験及び引張試験を行った。結果を表1に示す。
[Examples 2 to 9]
A test flexible wiring board 5 was obtained in the same manner as in Example 1 except that the angle of the wiring direction H with respect to the longitudinal direction (M-axis) was as shown in Table 1. The obtained wiring board 5 was subjected to the MIT bending test and the tensile test in the same manner as in Example 1. The results are shown in Table 1.

[実施例10〜14]
銅箔Aの表面処理面にポリイミド層を形成する際の加熱条件において、加熱積算時間を2分にした以外は実施例1と同様にして、実施例10〜14に係る片面銅張積層板3を得た。得られた各片面銅張積層板3について、実施例1と同様にしてI/I0を求めたところ41であった。
[Examples 10 to 14]
Single-sided copper-clad laminate 3 according to Examples 10 to 14 in the same manner as in Example 1 except that the heating time for forming the polyimide layer on the surface-treated surface of copper foil A was set to 2 minutes. Got. For each resulting one-sided copper-clad laminate 3 was 41 was determined the I / I 0 in the same manner as in Example 1.

そして、上記で得られた片面銅張積層板3について、長手方向(M軸)に対する配線方向Hの角度を表2に示すようにした以外は実施例1と同様にして、各試験用可撓性配線基板5を準備した。得られた配線基板5を用い、実施例1と同様にしてMIT屈曲試験及び引張試験を行った。結果を表2に示す。   And about the single-sided copper clad laminated board 3 obtained above, each test flexible is carried out similarly to Example 1 except having shown the angle of the wiring direction H with respect to a longitudinal direction (M-axis) in Table 2. Conductive wiring board 5 was prepared. Using the obtained wiring board 5, the MIT bending test and the tensile test were performed in the same manner as in Example 1. The results are shown in Table 2.

[実施例15〜18]
銅箔Bを用い、かつ、銅箔Bの表面処理面にポリイミド層を形成する際の加熱条件における加熱積算時間を2分にした以外は実施例1と同様にして、実施例15〜18に係る片面銅張積層板3を得た。得られた各片面銅張積層板3について、実施例1と同様にしてI/I0を求めたところ33であった。ここで、銅箔Bの長手方向とは圧延方向と等しい方向であり、EBSP測定により確認したところ、この長手方向は銅の<100>軸方向を有していた。
[Examples 15 to 18]
Examples 15 to 18 were performed in the same manner as in Example 1 except that the copper foil B was used and the heating integrated time in the heating condition when forming the polyimide layer on the surface-treated surface of the copper foil B was set to 2 minutes. Such a single-sided copper-clad laminate 3 was obtained. For each resulting one-sided copper-clad laminate 3 was 33 was determined the I / I 0 in the same manner as in Example 1. Here, the longitudinal direction of the copper foil B is the same direction as the rolling direction. When confirmed by EBSP measurement, the longitudinal direction had a <100> axial direction of copper.

そして、上記で得られた片面銅張積層板3について、長手方向(M軸)に対する配線方向Hの角度を表2に示すようにした以外は実施例1と同様にして、各試験用可撓性配線基板5を準備した。得られた配線基板5を用い、実施例1と同様にしてMIT屈曲試験及び引張試験を行った。結果を表2に示す。   And about the single-sided copper clad laminated board 3 obtained above, each test flexible is carried out similarly to Example 1 except having shown the angle of the wiring direction H with respect to a longitudinal direction (M-axis) in Table 2. Conductive wiring board 5 was prepared. Using the obtained wiring board 5, the MIT bending test and the tensile test were performed in the same manner as in Example 1. The results are shown in Table 2.

[比較例1、2]
実施例1と同様にして得た片面銅張積層板3について、長手方向(M軸)に対する配線方向Hの角度を表3に示すようにした以外は実施例1と同様にして、各試験用可撓性配線基板5を準備した。得られた配線基板5を用いて実施例1と同様にしてMIT屈曲試験及び引張試験を行った。結果を表3に示す。
[Comparative Examples 1 and 2]
For the single-sided copper clad laminate 3 obtained in the same manner as in Example 1, each test was conducted in the same manner as in Example 1 except that the angle of the wiring direction H with respect to the longitudinal direction (M axis) was as shown in Table 3. A flexible wiring board 5 was prepared. Using the obtained wiring board 5, the MIT bending test and the tensile test were performed in the same manner as in Example 1. The results are shown in Table 3.

[比較例3、4]
銅箔Aの表面処理面にポリイミド層を形成する際の加熱条件において、加熱積算時間を2分にした以外は実施例1と同様にして片面銅張積層板3を得た。得られた各片面銅張積層板3について、実施例1と同様にしてI/I0を求めたところ41であった。そして、得られた片面銅張積層板3について、長手方向(M軸)に対する配線方向Hの角度を表3に示すようにした以外は実施例1と同様にして、各試験用可撓性配線基板5を準備し、MIT屈曲試験及び引張試験を行った。結果を表3に示す。
[Comparative Examples 3 and 4]
A single-sided copper-clad laminate 3 was obtained in the same manner as in Example 1 except that the heating time was 2 minutes under the heating conditions for forming the polyimide layer on the surface-treated surface of the copper foil A. For each resulting one-sided copper-clad laminate 3 was 41 was determined the I / I 0 in the same manner as in Example 1. And about the obtained single-sided copper clad laminated board 3, each flexible wiring for a test is carried out similarly to Example 1 except having made the angle of the wiring direction H with respect to a longitudinal direction (M axis) into Table 3. FIG. A substrate 5 was prepared, and an MIT flex test and a tensile test were performed. The results are shown in Table 3.

[比較例5、6]
銅箔Bを用い、かつ、銅箔Bの表面処理面にポリイミド層を形成する際の加熱条件における加熱積算時間を2分にした以外は実施例1と同様にして、各片面銅張積層板3を得た。得られた各片面銅張積層板3について、実施例1と同様にしてI/I0を求めたところ33であった。そして、得られた片面銅張積層板3について、長手方向(M軸)に対する配線方向Hの角度を表3に示すようにした以外は実施例1と同様にして、各試験用可撓性配線基板5を準備し、MIT屈曲試験及び引張試験を行った。結果を表3に示す。
[Comparative Examples 5 and 6]
Each single-sided copper-clad laminate in the same manner as in Example 1 except that the copper foil B was used and the heating integrated time in the heating condition when forming the polyimide layer on the surface-treated surface of the copper foil B was 2 minutes. 3 was obtained. For each resulting one-sided copper-clad laminate 3 was 33 was determined the I / I 0 in the same manner as in Example 1. And about the obtained single-sided copper clad laminated board 3, each flexible wiring for a test is carried out similarly to Example 1 except having made the angle of the wiring direction H with respect to a longitudinal direction (M axis) into Table 3. FIG. A substrate 5 was prepared, and an MIT flex test and a tensile test were performed. The results are shown in Table 3.

Figure 0005243892
Figure 0005243892

Figure 0005243892
Figure 0005243892

Figure 0005243892
Figure 0005243892

本発明により製造される可撓性配線基板は、各種電子・電気機器で幅広く使用することができ、配線基板自体が折り曲げられたり、ねじ曲げられたり、或いは搭載された機器の動作に応じて変形したりして、いずれかに屈曲部を有して使用するのに適している。特に、本発明の可撓性配線基板は屈曲耐久性に優れた屈曲部構造を有することから、摺動屈曲、折り曲げ屈曲、ヒンジ屈曲、スライド屈曲等の繰り返し動作を伴い頻繁に折り曲げられたりする場合や、或いは搭載される機器の小型化に対応すべく、曲率半径が極めて小さくなることが求められるような屈曲部を形成するような場合に好適である。   The flexible wiring board manufactured according to the present invention can be widely used in various electronic and electrical devices, and the wiring substrate itself is bent, twisted, or deformed according to the operation of the mounted device. In other words, it is suitable for use with a bent portion in any one of them. In particular, since the flexible wiring board of the present invention has a bent portion structure with excellent bending durability, it is frequently bent with repeated operations such as sliding bending, bending bending, hinge bending, and sliding bending. Alternatively, it is suitable for the case where a bent portion is required in which the radius of curvature is required to be extremely small in order to cope with downsizing of the equipment to be mounted.

図1は、片面銅張積層板の斜視説明図である。FIG. 1 is a perspective explanatory view of a single-sided copper-clad laminate. 図2は、片面銅張積層板から試験用可撓性配線基板を得る様子を示す平面説明図である。FIG. 2 is an explanatory plan view showing a state in which a test flexible wiring board is obtained from a single-sided copper-clad laminate.

符号の説明Explanation of symbols

1:ポリイミド層(絶縁樹脂層)
2:銅箔
2a:圧延面
3:片面銅張積層板
4:配線
5:試験用可撓性配線基板
1: Polyimide layer (insulating resin layer)
2: Copper foil
2a: Rolling surface 3: Single-sided copper-clad laminate 4: Wiring 5: Flexible wiring board for testing

Claims (7)

絶縁樹脂層の片面又は両面に金属箔を有する金属張積層体の金属箔を配線加工して得られて、いずれかを屈曲させて使用する可撓性配線基板の製造方法であって、金属箔が圧延銅箔からなり、該圧延銅箔の厚み方向のX線回折で求めた(200)面の強度(I)が、微粉末銅のX線回折で求めた(200)面の強度(I 0 )に対してI/I 0 ≧25であるものを用いて、金属箔の長手方向をM軸としたとき、該M軸が実質的に金属箔の<100>軸方向であり、M軸に対して3〜87°傾けた方向に所定の線幅を有する直線状の配線を形成することを特徴とする可撓性配線基板の製造方法。 The metal foil of the metal clad laminate having a metal foil on one or both sides of the insulating resin layer obtained by wiring process, a method for manufacturing a flexible wiring board for use by bending one metal foil The strength (I) of the (200) plane determined by X-ray diffraction in the thickness direction of the rolled copper foil is the strength (I) of the (200) plane determined by X-ray diffraction of fine powder copper. 0) using what is I / I 0 ≧ 25 against, when the longitudinal direction of the metal foil is M axis, the M axis is <100> axis direction substantially metal foil, M axis A method of manufacturing a flexible wiring board, comprising forming a linear wiring having a predetermined line width in a direction inclined by 3 to 87 ° with respect to the substrate. M軸に対して5〜85°傾けた方向に所定の線幅を有する直線状の配線を形成する請求項1に記載の可撓性配線基板の製造方法。   The method for manufacturing a flexible wiring board according to claim 1, wherein a linear wiring having a predetermined line width is formed in a direction inclined by 5 to 85 ° with respect to the M axis. M軸が圧延銅箔の圧延方向と等しく、かつ、圧延銅箔の厚さが5〜30μmである請求項1又は2に記載の可撓性配線基板の製造方法。 Equal to M axis rolling direction of the rolled copper foil and method of manufacturing the flexible wiring board according to claim 1 or 2 a thickness of 5~30μm of rolled copper foil. 絶縁樹脂層が厚さ5〜50μmのポリイミド樹脂層である請求項1〜のいずれかに記載の可撓性配線基板の製造方法。 Method for manufacturing a flexible wiring board according to any one of claims 1 to third insulating resin layer is a polyimide resin layer having a thickness of 5 to 50 [mu] m. 可撓性配線基板が、摺動屈曲又はスライド屈曲から選ばれたいずれかの繰り返し動作を伴うものである請求項1〜のいずれかに記載の可撓性配線基板の製造方法。 The method for manufacturing a flexible wiring board according to any one of claims 1 to 4 , wherein the flexible wiring board is accompanied by any one of repetitive operations selected from sliding bending and sliding bending. 屈曲させた際の曲率半径rが0.5〜2mmの範囲である請求項に記載の可撓性配線基板の製造方法。 6. The method of manufacturing a flexible wiring board according to claim 5 , wherein the radius of curvature r when bent is in the range of 0.5 to 2 mm. M軸に対して15〜75°傾けた方向に所定の線幅を有する直線状の配線を形成する請求項1〜のいずれかに記載の可撓性配線基板の製造方法。 Method for manufacturing a flexible wiring board according to any one of claims 1 to 6 forming a linear wiring having a predetermined line width to 15 to 75 ° inclined orientation relative to the M axis.
JP2008216547A 2008-06-30 2008-08-26 A method for manufacturing a flexible wiring board. Expired - Fee Related JP5243892B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2008216547A JP5243892B2 (en) 2008-08-26 2008-08-26 A method for manufacturing a flexible wiring board.
EP09773390.1A EP2306794B1 (en) 2008-06-30 2009-06-25 Method for producing flexible circuit board
PCT/JP2009/061644 WO2010001812A1 (en) 2008-06-30 2009-06-25 Flexible circuit board and method for producing same and bend structure of flexible circuit board
US13/001,946 US9060432B2 (en) 2008-06-30 2009-06-25 Flexible circuit board and method for producing same and bend structure of flexible circuit board
CN2009801250016A CN102077698B (en) 2008-06-30 2009-06-25 Flexible circuit board and method for producing same and bend structure of flexible circuit board
KR1020117001735A KR101580822B1 (en) 2008-06-30 2009-06-25 Flexible circuit board and method for producing same and bend structure of flexible circuit board
EP14157869.0A EP2747527A1 (en) 2008-06-30 2009-06-25 Flexible circuit board and bend structure and device comprising the flexible circuit board
TW98122077A TWI471067B (en) 2008-06-30 2009-06-30 Flexible circuit substrate and method of manufacturing the same, and flexural structure of flexible circuit board and electronic device
US14/282,922 US20140254114A1 (en) 2008-06-30 2014-05-20 Flexible circuit board and method for producing same and bend structure of flexible circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216547A JP5243892B2 (en) 2008-08-26 2008-08-26 A method for manufacturing a flexible wiring board.

Publications (3)

Publication Number Publication Date
JP2010056128A JP2010056128A (en) 2010-03-11
JP2010056128A5 JP2010056128A5 (en) 2012-07-19
JP5243892B2 true JP5243892B2 (en) 2013-07-24

Family

ID=42071766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216547A Expired - Fee Related JP5243892B2 (en) 2008-06-30 2008-08-26 A method for manufacturing a flexible wiring board.

Country Status (1)

Country Link
JP (1) JP5243892B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101690491B1 (en) * 2009-12-25 2016-12-28 신닛테츠 수미킨 가가쿠 가부시키가이샤 Flexible circuit board and structure of bend section of flexible circuit board
JP5329491B2 (en) * 2010-08-13 2013-10-30 Jx日鉱日石金属株式会社 Copper foil for flexible printed wiring board and method for producing the same
JP6887459B2 (en) * 2019-03-28 2021-06-16 Jx金属株式会社 Metal products and their manufacturing methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate
JP2005005413A (en) * 2003-06-11 2005-01-06 Ibiden Co Ltd Flexible-rigid wiring board
JP2008038170A (en) * 2006-08-03 2008-02-21 Sumitomo Kinzoku Kozan Shindo Kk Rolled copper foil
JP4215093B2 (en) * 2006-10-26 2009-01-28 日立電線株式会社 Rolled copper foil and method for producing the same

Also Published As

Publication number Publication date
JP2010056128A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
KR101580822B1 (en) Flexible circuit board and method for producing same and bend structure of flexible circuit board
JP5732406B2 (en) Flexible circuit board and bent portion structure of flexible circuit board
JP5826160B2 (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof
JP4763068B2 (en) Flexible circuit board, manufacturing method thereof, and bent portion structure of flexible circuit board
KR101886824B1 (en) Copper foil, copper-clad laminate, flexible circuit board, and manufacturing method for copper-clad laminate
JP2006237048A (en) Copper-clad laminate having high flectural property and its manufacturing method
JP5243892B2 (en) A method for manufacturing a flexible wiring board.
JP2007262493A (en) Material for flexible printed board and method of manufacturing the same
JP6126799B2 (en) Copper foil, copper-clad laminate, flexible circuit board, and method for producing copper-clad laminate
JP5865759B2 (en) Copper foil, copper-clad laminate, flexible circuit board, and method for producing copper-clad laminate
JP6643287B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP5329491B2 (en) Copper foil for flexible printed wiring board and method for producing the same
JP2011153360A (en) Rolled copper alloy foil for double-sided copper-clad laminated plate, and method for producing double-sided copper-clad laminated plate using the same
JP2013167013A (en) Rolled copper foil for flexible printed circuit board
CN111757599B (en) Copper foil for flexible printed board
JP2008106291A (en) Plated substrate
JPWO2004049336A1 (en) Laminate for HDD suspension using thin copper foil and manufacturing method thereof
JP6712561B2 (en) Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
JP2007272935A (en) Method of manufacturing laminated plate for hdd suspension
JP2005285198A (en) Laminate for hdd suspension and method for manufacturing the same
JP2008210511A (en) Laminate for hdd suspension and method for manufacturing same
JP2005288723A (en) Substrate material for hdd suspension and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5243892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees