JP5241872B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP5241872B2
JP5241872B2 JP2011058302A JP2011058302A JP5241872B2 JP 5241872 B2 JP5241872 B2 JP 5241872B2 JP 2011058302 A JP2011058302 A JP 2011058302A JP 2011058302 A JP2011058302 A JP 2011058302A JP 5241872 B2 JP5241872 B2 JP 5241872B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
temperature
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011058302A
Other languages
Japanese (ja)
Other versions
JP2012193897A (en
Inventor
孝史 福井
信 齊藤
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011058302A priority Critical patent/JP5241872B2/en
Publication of JP2012193897A publication Critical patent/JP2012193897A/en
Application granted granted Critical
Publication of JP5241872B2 publication Critical patent/JP5241872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、過熱度制御の制御性を向上させ、運転状態の安定化を図るようにした冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus that improves the controllability of superheat degree control and stabilizes the operating state.

従来から、過熱度制御を実行するようにした冷凍サイクル装置が存在する。そのようなものとして、「圧縮機、凝縮器、高圧側絞り装置、レシーバ、低圧側絞り装置、蒸発器とを順次接続して冷媒に沸点の異なる2種以上の冷媒からなる非共沸混合冷媒を使用し、前記蒸発器の出口の冷媒の状態が湿り状態で循環する冷凍サイクルと、前記蒸発器と前記圧縮機の間に設けられ、湿り状態である前記蒸発器の出口の冷媒を過熱し目標過熱度に過熱するのに必要な熱交換量を有する再蒸発手段と、前記再蒸発手段にて過熱された後の前記圧縮機の入り口の吸入冷媒の過熱度に相当する過熱特性を検知する過熱検知手段と、前記過熱検知手段により検知された前記過熱度の情報に基づき湿り状態である前記蒸発器出口の冷媒を前記圧縮機の入り口では目標過熱度になるように前記低圧側絞り装置の開口面積を調整し制御する制御手段と、を備えた冷凍サイクル装置」が提案されている(たとえば、特許文献1参照)。   Conventionally, there is a refrigeration cycle apparatus that performs superheat degree control. As such, “a non-azeotropic refrigerant mixture composed of two or more refrigerants having different boiling points by connecting a compressor, a condenser, a high-pressure side throttle device, a receiver, a low-pressure side throttle device, and an evaporator sequentially. The refrigerant at the outlet of the evaporator is circulated in a wet state, and the refrigerant at the outlet of the evaporator that is provided between the evaporator and the compressor is superheated. Re-evaporation means having a heat exchange amount necessary for superheating to a target superheat degree and superheat characteristics corresponding to the superheat degree of the refrigerant sucked at the inlet of the compressor after being heated by the re-evaporation means are detected. The low-pressure side throttle device is configured so that the refrigerant at the outlet of the evaporator, which is in a wet state, based on the information on the degree of superheat detected by the overheat detecting means and the superheat detecting means is set to a target superheat degree at the inlet of the compressor. Adjust and control the opening area And control means, the refrigeration cycle apparatus provided with a "has been proposed (e.g., see Patent Document 1).

また、「圧縮機、凝縮器、第1の減圧装置、第2の減圧装置及び蒸発器が環状に接続された冷凍空調装置において、前記第1の減圧装置と前記第2の減圧装置の間の冷媒と、前記蒸発器と前記圧縮機との間の冷媒とを熱交換する内部熱交換器と、前記凝縮器出口の冷媒の過冷却度を検出する過冷却度検出手段と、前記過冷却度検出手段により検出された過冷却度が予め定められた値となるように前記第1の減圧装置の流量調整を行う第1の制御手段と、前記内部熱交換器での熱交換量を検出する熱交換量検出手段と、前記内部熱交換器により過熱された後の前記圧縮機入り口の冷媒の過熱度を検出する過熱度検出手段と、前記熱交換量検出手段により検出された前記内部熱交換量より前記蒸発器出口の冷媒が飽和ガス状態となる場合の圧縮機入り口の冷媒の過熱度を算出する目標過熱度算出手段と、前記過熱度算出手段により算出された過熱度を目標過熱度とし、前記過熱度検出手段が検出する圧縮機入り口の冷媒の過熱度が前記目標過熱度に近づくように前記第2の減圧装置の流量調整を行う第2の制御装置とを備えた冷凍空調装置」が提案されている(たとえば、特許文献2参照)。   In addition, “in a refrigeration air conditioner in which a compressor, a condenser, a first pressure reducing device, a second pressure reducing device, and an evaporator are connected in an annular shape, between the first pressure reducing device and the second pressure reducing device. An internal heat exchanger for exchanging heat between the refrigerant and the refrigerant between the evaporator and the compressor, a supercooling degree detecting means for detecting a supercooling degree of the refrigerant at the condenser outlet, and the supercooling degree First control means for adjusting the flow rate of the first pressure reducing device so that the degree of supercooling detected by the detection means becomes a predetermined value, and the amount of heat exchange in the internal heat exchanger is detected. Heat exchange amount detection means, superheat degree detection means for detecting the degree of superheat of the refrigerant at the compressor inlet after being heated by the internal heat exchanger, and the internal heat exchange detected by the heat exchange amount detection means Compressor when the refrigerant at the outlet of the evaporator is in a saturated gas state The target superheat degree calculating means for calculating the superheat degree of the refrigerant at the outlet, and the superheat degree calculated by the superheat degree calculating means as the target superheat degree, and the superheat degree of the refrigerant at the compressor inlet detected by the superheat degree detecting means Has been proposed that includes a second control device that adjusts the flow rate of the second decompression device so as to approach the target superheat degree (see, for example, Patent Document 2).

さらに、「圧縮機、凝縮器、膨張弁、蒸発器を主な構成部品として備え、これら構成部品を順次主配管で接続した空気調和装置において、前記膨張弁と蒸発器との間に気液分離器を接続し、該気液分離器は該気液分離器で分離された液冷媒部分を前記蒸発器に接続する一方、ガス冷媒部分をバイパス配管を介して蒸発器の出口側に接続し、前記バイパス配管に該パイパス配管を流れるガス冷媒の流量を可変制御可能な可変絞り機構を介装させ、前記蒸発器の制御すべき目標の乾き度を割り出し、該目標の乾き度になるように前記可変絞り機構の絞り量を制御するようにした空気調和方法」が提案されている(たとえば、特許文献3参照)。   Furthermore, “In an air conditioner equipped with a compressor, a condenser, an expansion valve, and an evaporator as main components, and these components are sequentially connected by main piping, gas-liquid separation is performed between the expansion valve and the evaporator. The gas-liquid separator is connected to the evaporator the liquid refrigerant portion separated by the gas-liquid separator, while the gas refrigerant portion is connected to the outlet side of the evaporator via a bypass pipe, The bypass pipe is provided with a variable throttle mechanism capable of variably controlling the flow rate of the gas refrigerant flowing through the bypass pipe, the target dryness to be controlled of the evaporator is determined, and the target dryness is set to the target dryness. There has been proposed an “air conditioning method in which the throttle amount of the variable throttle mechanism is controlled” (see, for example, Patent Document 3).

特開2001−263831号公報(第5−7頁、図1、図2等)JP 2001-263831 A (page 5-7, FIG. 1, FIG. 2 etc.) 特開2009−162388号公報(実施の形態2、図4等)JP 2009-162388 A (Embodiment 2, FIG. 4 etc.) 特開2008−175452号公報(第5−7頁、図1等)JP 2008-175452 (page 5-7, FIG. 1 etc.)

従来技術として既に開示されている冷凍サイクル装置においては、性能を最大限発揮させるために蒸発能力が最大となるように制御するのが通常である。蒸発能力を最大とするには、蒸発器出口の冷媒の状態を飽和の状態にするのがよい。そこで、従来技術としての冷凍サイクル装置においては、そのような冷媒の状態を実現するために、たとえば圧縮機入口の冷媒状態を所定の目標過熱度に近づけるように冷媒絞り手段としての膨張弁の開度を調整するようにしている。   In the refrigeration cycle apparatus already disclosed as the prior art, it is usual to perform control so that the evaporation capacity is maximized in order to maximize performance. In order to maximize the evaporation capability, the state of the refrigerant at the outlet of the evaporator should be saturated. Therefore, in the conventional refrigeration cycle apparatus, in order to realize such a refrigerant state, for example, an expansion valve as a refrigerant throttling means is opened so that the refrigerant state at the compressor inlet approaches a predetermined target superheat degree. The degree is adjusted.

特許文献1や特許文献2に記載されているような冷凍サイクル装置では、内部熱交換器を設け、複数設置された膨張弁間の中間圧冷媒と、蒸発器出口と圧縮機入口との間の低圧冷媒と、で熱交換させて、蒸発器出口と圧縮機入口との間の低圧冷媒を過熱するようにしている。これらの文献に記載された構成にすると、運転中に運転条件に変化が生じた場合(たとえば高圧が上昇した場合)は、中間圧も上昇し、中間圧の冷媒温度も上昇、低圧側の冷媒状態にも変化が生じることになる。すなわち、圧縮機入口の冷媒過熱度も変化するため、膨張弁の開度を変化させて目標過熱度になるように調整しなければならない。   In the refrigeration cycle apparatus as described in Patent Document 1 and Patent Document 2, an internal heat exchanger is provided, and an intermediate pressure refrigerant between a plurality of installed expansion valves, and between an evaporator outlet and a compressor inlet. Heat is exchanged with the low-pressure refrigerant so that the low-pressure refrigerant between the evaporator outlet and the compressor inlet is superheated. With the configurations described in these documents, when the operating conditions change during operation (for example, when the high pressure increases), the intermediate pressure also increases, the intermediate temperature of the refrigerant increases, and the low pressure side refrigerant The state will also change. That is, since the refrigerant superheat degree at the compressor inlet also changes, the opening degree of the expansion valve must be changed to adjust to the target superheat degree.

そこで、膨張弁の開度を一定の割合に変化させて調整しようとする場合、膨張弁の開度が大きく変化し過ぎてしまい、冷媒循環量が安定せず、蒸発器出口の冷媒状態が湿りすぎたり、乾きすぎたりして目標の冷媒状態にならない。このため、膨張弁の開度変化を繰り返す状態に陥ってしまい、安定した運転状態にならないといった課題があった。なお、ここでいう「安定」とは、所定時間経過後も高圧、低圧の圧力変動が小さく、凝縮温度や蒸発温度など各々の冷媒温度が所定時間前と略同一である状態のことをいうものとする。   Therefore, when adjusting the opening of the expansion valve by changing it to a certain ratio, the opening of the expansion valve changes too much, the amount of refrigerant circulation is not stable, and the refrigerant state at the evaporator outlet becomes damp. It is not too dry or too dry to reach the target refrigerant state. For this reason, it has fallen into the state which repeats the opening degree change of an expansion valve, and the subject that it did not become a stable driving | running state occurred. Here, “stable” refers to a state in which the pressure fluctuations at high pressure and low pressure are small even after a predetermined time has elapsed, and the refrigerant temperatures such as the condensation temperature and the evaporation temperature are substantially the same as before the predetermined time. And

特許文献3に記載されているような冷凍サイクル装置では、内部熱交換器を設けて、凝縮器出口の高圧冷媒と蒸発器出口の低圧冷媒とで熱交換させている。この文献に記載された構成にすると、高圧が上昇した場合は内部熱交換器の熱交換量が増大してしまう。そのため、特許文献3に記載されている冷凍サイクル装置においても、上記と同様の理由で安定した運転状態にならないといった課題があった。   In the refrigeration cycle apparatus described in Patent Document 3, an internal heat exchanger is provided to exchange heat between the high-pressure refrigerant at the condenser outlet and the low-pressure refrigerant at the evaporator outlet. If it is set as the structure described in this literature, when a high voltage | pressure rises, the heat exchange amount of an internal heat exchanger will increase. Therefore, even in the refrigeration cycle apparatus described in Patent Document 3, there is a problem that a stable operation state is not achieved for the same reason as described above.

本発明は、上記のような課題を解決するためになされたもので、運転状態変化に影響されずに過熱度制御の制御性を向上させ、安定した運転状態を維持できる冷凍サイクル装置を提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and provides a refrigeration cycle apparatus capable of improving the controllability of superheat degree control without being affected by changes in the operating state and maintaining a stable operating state. It is for the purpose.

本発明に係る冷凍サイクル装置は、冷媒を圧縮する圧縮機と、前記圧縮機から吐出された冷媒の熱を放熱させる凝縮器と、前記凝縮器から流出された冷媒の流量を調整する第1減圧装置と、前記第1減圧装置から流出された冷媒を気液分離する気液分離器と、前記気液分離器で分離された液冷媒と前記圧縮機の吸入側の冷媒とで熱交換する内部熱交換器と、前記内部熱交換器で前記圧縮機の吸入側の冷媒と熱交換した冷媒の流量を調整する第2減圧装置と、前記第2減圧装置から流出された冷媒に熱を吸熱させる蒸発器と、前記気液分離器で分離されたガス冷媒を前記内部熱交換器における低圧側の入口側にバイパスするバイパス配管と、前記バイパス配管に設置され、前記バイパス配管を流れるガス冷媒の流量を調整する第3の減圧装置と、を備えたことを特徴とする。 A refrigeration cycle apparatus according to the present invention includes a compressor that compresses a refrigerant, a condenser that dissipates heat of the refrigerant discharged from the compressor, and a first decompression that adjusts the flow rate of the refrigerant that has flowed out of the condenser. An apparatus, a gas-liquid separator that gas-liquid separates the refrigerant that has flowed out of the first pressure reducing device, and an interior that exchanges heat between the liquid refrigerant separated by the gas-liquid separator and the refrigerant on the suction side of the compressor A heat exchanger, a second decompression device that adjusts the flow rate of the refrigerant that exchanges heat with the refrigerant on the suction side of the compressor by the internal heat exchanger, and the refrigerant that has flowed out of the second decompression device absorbs heat. An evaporator, a bypass pipe for bypassing the gas refrigerant separated by the gas-liquid separator to the low pressure side inlet side in the internal heat exchanger, and a flow rate of the gas refrigerant installed in the bypass pipe and flowing through the bypass pipe A third decompressor for adjusting Characterized by comprising a.

本発明に係る冷凍サイクル装置によれば、複数の減圧装置、中間圧冷媒と低圧冷媒とで熱交換させる内部熱交換器及び気液分離器を備えたので、運転状態変化に影響されず、安定した運転状態を維持することが可能になる。つまり、本発明に係る冷凍サイクル装置によれば、冷凍サイクルの運転状態が変化、たとえば高圧が上昇するといった変化が生じたとしても、複数の減圧装置により中間圧を一定に維持することができ、中間圧と低圧の圧力差が一定にすることが可能となり、第3減圧装置の開閉動作が安定するため、冷媒循環量が安定、蒸発器出口の冷媒状態が乾きすぎたり湿りすぎたりせず、蒸発能力も安定することになる。   The refrigeration cycle apparatus according to the present invention includes a plurality of decompression devices, an internal heat exchanger that exchanges heat between the intermediate pressure refrigerant and the low pressure refrigerant, and a gas-liquid separator. It becomes possible to maintain the operating state. That is, according to the refrigeration cycle apparatus according to the present invention, even if a change occurs in the operating state of the refrigeration cycle, for example, a change in high pressure, the intermediate pressure can be maintained constant by a plurality of decompression devices, Since the pressure difference between the intermediate pressure and the low pressure can be made constant, and the opening / closing operation of the third decompression device is stable, the refrigerant circulation amount is stable, the refrigerant state at the evaporator outlet is not too dry or too wet, The evaporation capacity will also be stabilized.

本発明の実施の形態1に係る冷凍空調装置の冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerant circuit structure of the refrigeration air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍空調装置に搭載される蒸発器における冷媒と被冷熱流体との熱交換形態の一例を模式的に示した模式図である。It is the schematic diagram which showed typically an example of the heat exchange form of the refrigerant | coolant and to-be-cooled fluid in the evaporator mounted in the refrigerating air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍空調装置の冷媒の状態遷移を示すP−h線図である。It is a Ph diagram which shows the state transition of the refrigerant | coolant of the refrigerating air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍空調装置の制御動作の流れを示すフローチャートである。It is a flowchart which shows the flow of control operation | movement of the refrigerating air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍空調装置の制御動作の流れを示すフローチャートである。It is a flowchart which shows the flow of control operation | movement of the refrigerating air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍空調装置の冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerant circuit structure of the refrigeration air conditioning apparatus which concerns on Embodiment 3 of this invention. 蒸発器出口乾き度と蒸発能力との関係を示すグラフである。It is a graph which shows the relationship between an evaporator exit dryness and evaporation capability.

以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る冷凍空調装置100の冷媒回路構成を示す冷媒回路図である。図2は、蒸発器5における冷媒と被冷熱流体との熱交換形態の一例を模式的に示した模式図である。図3は、冷凍空調装置100の冷媒の状態遷移を示すP−h線図である。図4は、冷凍空調装置100の制御動作の流れを示すフローチャートである。図1〜図4に基づいて、冷凍空調装置100の構成及び動作について説明する。この冷凍空調装置100は、蒸気圧縮式の冷凍サイクル運転を行なう冷凍サイクル装置の一例を示している。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram showing a refrigerant circuit configuration of a refrigerating and air-conditioning apparatus 100 according to Embodiment 1 of the present invention. FIG. 2 is a schematic diagram schematically showing an example of a heat exchange mode between the refrigerant and the cooled fluid in the evaporator 5. FIG. 3 is a Ph diagram illustrating the state transition of the refrigerant in the refrigerating and air-conditioning apparatus 100. FIG. 4 is a flowchart showing a flow of control operation of the refrigeration air conditioner 100. Based on FIGS. 1-4, the structure and operation | movement of the refrigerating air-conditioning apparatus 100 are demonstrated. This refrigeration air conditioner 100 shows an example of a refrigeration cycle apparatus that performs vapor compression refrigeration cycle operation. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.

[装置構成]
冷凍空調装置100は、圧縮機1、凝縮器(放熱器)2、減圧装置である第1膨張弁3及び第2膨張弁4、蒸発器5、内部熱交換器6、気液分離器7を有しており、これらを冷媒配管50で接続して冷媒回路Aを構成している。また、冷凍空調装置100は、気液分離器7と、蒸発器5と内部熱交換器6を接続している冷媒配管50と、を接続するバイパス配管8が設けられており、このバイパス配管8には減圧装置である第3膨張弁9が設置されている。そして、圧縮機1、凝縮器2、第1膨張弁3、気液分離器7、第3膨張弁9を冷媒配管50及びバイパス配管8で接続してバイパス流路を構成している。
[Device configuration]
The refrigerating and air-conditioning apparatus 100 includes a compressor 1, a condenser (radiator) 2, a first expansion valve 3 and a second expansion valve 4, which are decompression apparatuses, an evaporator 5, an internal heat exchanger 6, and a gas-liquid separator 7. The refrigerant circuit A is configured by connecting them through a refrigerant pipe 50. The refrigerating and air-conditioning apparatus 100 is provided with a bypass pipe 8 that connects the gas-liquid separator 7 and the refrigerant pipe 50 that connects the evaporator 5 and the internal heat exchanger 6. Is provided with a third expansion valve 9 which is a pressure reducing device. And the compressor 1, the condenser 2, the 1st expansion valve 3, the gas-liquid separator 7, and the 3rd expansion valve 9 are connected by the refrigerant | coolant piping 50 and the bypass piping 8, and the bypass flow path is comprised.

(圧縮機1)
圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものである。圧縮機1は、運転容量を可変することが可能な圧縮機であり、たとえばインバーターにより制御されるモーター(図示せず)によって駆動される容積式圧縮機から構成されている。なお、図1においては、圧縮機1が1台のみ搭載されている状態を例に示しているが、これに限定されず、2台以上の圧縮機を並列もしくは直列に接続して搭載するようにしてもよい。
(Compressor 1)
The compressor 1 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state. The compressor 1 is a compressor whose operating capacity can be varied, and is composed of, for example, a positive displacement compressor driven by a motor (not shown) controlled by an inverter. 1 shows an example in which only one compressor 1 is mounted. However, the present invention is not limited to this, and two or more compressors may be mounted in parallel or in series. It may be.

(凝縮器2)
凝縮器2は、圧縮機1から吐出された高温高圧の冷媒と被熱交換媒体とが熱交換するものである。凝縮器2は、たとえば間隔をおいて薄板を多数並べて、周縁部をシールし、各薄板間に形成された空間を交互に冷媒流路と水流路としてなるプレート式熱交換器で構成するとよい。プレート式熱交換器を用いる場合であって、被熱交換媒体がたとえば水のような流体である場合、ポンプなどの送出手段(図示せず)を用いて被熱交換媒体を凝縮器2に供給すればよい。なお、被熱交換媒体を水に限定するものではなく、凝固点を降下させる添加物を混ぜたブライン等であってもよい。
(Condenser 2)
The condenser 2 exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 1 and the heat exchange medium. For example, the condenser 2 may be configured by a plate heat exchanger in which a large number of thin plates are arranged at intervals, the peripheral portion is sealed, and a space formed between the thin plates is alternately formed as a refrigerant flow path and a water flow path. When a plate heat exchanger is used and the heat exchange medium is a fluid such as water, the heat exchange medium is supplied to the condenser 2 using a delivery means (not shown) such as a pump. do it. The heat exchange medium is not limited to water, and may be brine mixed with an additive that lowers the freezing point.

凝縮器2は、プレート式熱交換器に限定されず、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成してもよい。フィン・アンド・チューブ型熱交換器を用いる場合であって、被熱交換媒体が空気である場合、ファン等の送出手段を用いては被熱交換媒体を凝縮器2に供給すればよい。また、図1においては、凝縮器2が1台のみ搭載されている状態を例に示しているが、これに限定されず2台以上の凝縮器を並列もしくは直列に接続して搭載するようにしてもよい。その他、凝縮器2は、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、あるいは、二重管式熱交換器等で構成してもよい。   The condenser 2 is not limited to a plate heat exchanger, and may be a cross fin type fin-and-tube heat exchanger constituted by a heat transfer tube and a large number of fins. When a fin-and-tube heat exchanger is used and the heat exchange medium is air, the heat exchange medium may be supplied to the condenser 2 by using a sending means such as a fan. In addition, FIG. 1 shows an example in which only one condenser 2 is mounted. However, the present invention is not limited to this, and two or more condensers may be connected in parallel or in series. May be. In addition, the condenser 2 may be constituted by a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, or the like.

(減圧装置)
減圧装置(第1膨張弁(第1減圧装置)3、第2膨張弁(第2減圧装置)4、第3膨張弁(第3減圧装置)9)は、冷媒を減圧して膨張させるものである。減圧装置は、冷媒回路A及びバイパス流路を流れる冷媒の流量の調節等を行なうことが可能なステッピングモーター(図示せず)により絞り開度を調整することが可能な電子膨張弁等で構成するとよい。第3膨張弁9は、バイパス配管8を流れるガス冷媒の流量を制御するためのものである。なお、第3膨張弁9には、電子膨張弁以外にも、可変制御可能な流量制御弁、キャピラリー、定差圧弁等を用いてもよい。
(Decompression device)
The decompression devices (the first expansion valve (first decompression device) 3, the second expansion valve (second decompression device) 4, and the third expansion valve (third decompression device) 9) are decompressed to expand the refrigerant. is there. When the decompression device is constituted by an electronic expansion valve or the like capable of adjusting the throttle opening by a stepping motor (not shown) capable of adjusting the flow rate of the refrigerant flowing through the refrigerant circuit A and the bypass flow path. Good. The third expansion valve 9 is for controlling the flow rate of the gas refrigerant flowing through the bypass pipe 8. In addition to the electronic expansion valve, a variable flow control valve, capillary, constant differential pressure valve, or the like may be used for the third expansion valve 9.

(蒸発器5)
蒸発器5は、第2膨張弁4で減圧された低温低圧の冷媒と被冷熱流体とが熱交換するものである。蒸発器5は、たとえば間隔をおいて薄板を多数並べて、周縁部をシールし、各薄板間に形成された空間を交互に冷媒流路と水流路としてなるプレート式熱交換器で構成するとよい。プレート式熱交換器を用いる場合であって、被冷熱流体がたとえば水のような流体である場合、ポンプなどの被冷熱流体送出手段10を用いて被冷熱流体を蒸発器5に供給すればよい。
(Evaporator 5)
The evaporator 5 exchanges heat between the low-temperature and low-pressure refrigerant decompressed by the second expansion valve 4 and the cooled heat fluid. For example, the evaporator 5 may be constituted by a plate heat exchanger in which a large number of thin plates are arranged at intervals, the peripheral portion is sealed, and the space formed between the thin plates is alternately formed as a refrigerant flow path and a water flow path. In the case where a plate heat exchanger is used, and the cooled heat fluid is a fluid such as water, the cooled heat fluid may be supplied to the evaporator 5 using the cooled heat fluid delivery means 10 such as a pump. .

蒸発器5としてプレート式熱交換器を用いる場合、図2に示すように、蒸発器5では、冷媒回路Aにて循環する冷媒と、被冷熱流体流路Bにて循環する被冷熱流体と、が熱交換する形態になる。被冷熱流体流路Bは、冷熱負荷と、被冷熱流体送出手段10と、蒸発器5の被冷熱流体と、を流体配管で接続して構成されている。冷熱負荷(たとえば、冷蔵庫や室内機等)から被冷熱流体送出手段10によって駆動された被冷熱流体は、蒸発器5において冷媒回路Aを流れる液冷媒の蒸発により冷却され、冷熱負荷へ戻るようになっている。   When using a plate heat exchanger as the evaporator 5, as shown in FIG. 2, in the evaporator 5, the refrigerant circulating in the refrigerant circuit A, the cooled thermal fluid circulating in the cooled thermal fluid flow path B, Becomes a form of heat exchange. The to-be-cooled fluid flow path B is configured by connecting the to-be-cooled heat load, the to-be-cooled fluid sending means 10, and the to-be-cooled fluid of the evaporator 5 through a fluid pipe. The cooling target fluid driven by the cooling target fluid delivery means 10 from a cooling load (for example, a refrigerator or an indoor unit) is cooled by evaporation of the liquid refrigerant flowing in the refrigerant circuit A in the evaporator 5 and returns to the cooling load. It has become.

なお、冷媒回路Aを流れる冷媒の流れ方向は実線の矢印で表した方向、つまり冷媒と被冷熱流体が対向流となる方向であってもよいし、破線の矢印で表した方向、つまり冷媒と被冷熱流体が並行流となる方向であってもよい。また、被冷熱流体は、たとえば単なる水であってもよいし、凝固点を降下させる添加物を混ぜたブライン等であってもよい。さらに、被冷熱流体送出手段10は、たとえばポンプ等のような流体を駆動させるもので構成すればよい。   Note that the flow direction of the refrigerant flowing through the refrigerant circuit A may be a direction represented by a solid line arrow, that is, a direction in which the refrigerant and the cooled fluid are opposed to each other, or a direction represented by a broken line arrow, that is, the refrigerant and The direction in which the fluid to be cooled becomes a parallel flow may be used. Further, the cooling heat fluid may be, for example, mere water, or brine mixed with an additive that lowers the freezing point. Further, the cooled thermal fluid delivery means 10 may be configured to drive a fluid such as a pump.

蒸発器5は、プレート式熱交換器に限定されず、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成してもよい。フィン・アンド・チューブ型熱交換器を用いる場合であって、被冷熱流体が空気である場合、ファン等の送出手段を用いては被冷熱流体を蒸発器5に供給すればよい。また、図1においては、蒸発器5が1台のみ搭載されている状態を例に示しているが、これに限定されず2台以上の蒸発器を並列もしくは直列に接続して搭載するようにしてもよい。その他、蒸発器5は、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、あるいは、二重管式熱交換器等で構成してもよい。   The evaporator 5 is not limited to a plate heat exchanger, but may be a cross-fin fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins. In the case where a fin-and-tube heat exchanger is used, and the cooling target fluid is air, the cooling target fluid may be supplied to the evaporator 5 using a delivery means such as a fan. FIG. 1 shows an example in which only one evaporator 5 is mounted. However, the present invention is not limited to this, and two or more evaporators are connected in parallel or in series. May be. In addition, the evaporator 5 may be configured by a microchannel heat exchanger, a shell-and-tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, or the like.

(内部熱交換器6)
内部熱交換器6は、第1膨張弁3と第2膨張弁4との間を流れる冷媒、いわゆる中間圧冷媒と、蒸発器5と圧縮機1との間を流れる冷媒、いわゆる低圧冷媒と、で熱交換するように設置される。つまり、内部熱交換器6は、圧縮機1の吸入側に設置され、蒸発器5から流出し、冷媒配管50を流れる低温低圧の冷媒と、気液分離器7から流出し、第2膨張弁4に至るまでの間における冷媒配管50を流れる冷媒と、で熱交換するようになっている。
(Internal heat exchanger 6)
The internal heat exchanger 6 includes a refrigerant that flows between the first expansion valve 3 and the second expansion valve 4, a so-called intermediate pressure refrigerant, a refrigerant that flows between the evaporator 5 and the compressor 1, a so-called low-pressure refrigerant, It is installed to exchange heat. That is, the internal heat exchanger 6 is installed on the suction side of the compressor 1, flows out of the evaporator 5, flows out of the refrigerant pipe 50, and flows out of the gas-liquid separator 7 and the second expansion valve. Heat exchange is performed with the refrigerant flowing through the refrigerant pipe 50 up to 4.

(気液分離器7)
気液分離器7は、内部熱交換器6よりも上流側(冷媒回路A及びバイパス流路の双方の上流側)に配置されている。そして、気液分離器7で分離された液冷媒が流出する液冷媒部を内部熱交換器6の高圧側入口に接続し、気液分離器7で分離されたガス冷媒が流出するガス冷媒部をバイパス配管8を介して、内部熱交換器6の低圧側入口に接続している。
(Gas-liquid separator 7)
The gas-liquid separator 7 is disposed upstream of the internal heat exchanger 6 (upstream of both the refrigerant circuit A and the bypass channel). Then, the liquid refrigerant part from which the liquid refrigerant separated by the gas-liquid separator 7 flows out is connected to the high-pressure side inlet of the internal heat exchanger 6, and the gas refrigerant part from which the gas refrigerant separated by the gas-liquid separator 7 flows out Is connected to the low pressure side inlet of the internal heat exchanger 6 through the bypass pipe 8.

(計測・制御系)
冷凍空調装置100には、各種センサー(温度センサー40(温度センサー40a、40b・・・の総称)、圧力センサー41(圧力センサー41a、41b・・・の総称))が設置されている。また、冷凍空調装置100には、その運転動作が統括制御される計測制御部30が搭載されている。計測制御部30は、各種センサーによって計測された各情報に基づいて各アクチュエーター(たとえば、圧縮機1、減圧装置、図示省略の送出手段等)の動作を制御する。
(Measurement / control system)
Various sensors (temperature sensor 40 (generic name for temperature sensors 40a, 40b...), Pressure sensor 41 (generic name for pressure sensors 41a, 41b...)) Are installed in the refrigerating and air-conditioning apparatus 100. The refrigerating and air-conditioning apparatus 100 is equipped with a measurement control unit 30 that performs overall control of its operation. The measurement control unit 30 controls the operation of each actuator (for example, the compressor 1, a pressure reducing device, a sending unit not shown) based on each information measured by various sensors.

温度センサー(媒吐出温度検出手段)40aは、圧縮機1の吐出側(出口側)に設置され、設置場所の冷媒温度(吐出温度)を計測するものである。温度センサー40bは、凝縮器2の出口側に設置され、設置場所の冷媒温度(凝縮器出口温度)を計測するものである。温度センサー40cは、圧縮機1の吸入側(入口側)に設置され、設置場所の冷媒温度(吸入温度)を計測するものである。温度センサー40dは、後述する被冷熱流体流路Bにおける蒸発器5の出口側に設置され、設置場所の被冷熱流体温度を計測するものである。   The temperature sensor (medium discharge temperature detection means) 40a is installed on the discharge side (exit side) of the compressor 1 and measures the refrigerant temperature (discharge temperature) at the installation location. The temperature sensor 40b is installed on the outlet side of the condenser 2 and measures the refrigerant temperature (condenser outlet temperature) at the installation location. The temperature sensor 40c is installed on the suction side (inlet side) of the compressor 1 and measures the refrigerant temperature (suction temperature) at the installation location. The temperature sensor 40d is installed on the outlet side of the evaporator 5 in the cooled fluid channel B to be described later, and measures the temperature of the cooled fluid at the installation location.

圧力センサー41aは、圧縮機1の吐出側(出口側)に設置され、設置場所の冷媒圧力(高圧)を計測するものである。圧力センサー(中間圧検出手段)41bは、第1膨張弁3と第2膨張弁4との間に設置され、設置場所の冷媒圧力(中間圧)を計測するものである。圧力センサー41cは、圧縮機1の吸入側(入口側)に設置され、設置場所の冷媒圧力(低圧)を計測するものである。なお、圧力センサー41bは、図1に示された箇所に限定されず、第1膨張弁3と第2膨張弁4の間、つまり中間圧状態の冷媒の圧力を計測できる場所であれば、どこに設置してもよい。   The pressure sensor 41a is installed on the discharge side (exit side) of the compressor 1 and measures the refrigerant pressure (high pressure) at the installation location. The pressure sensor (intermediate pressure detection means) 41b is installed between the first expansion valve 3 and the second expansion valve 4, and measures the refrigerant pressure (intermediate pressure) at the installation location. The pressure sensor 41c is installed on the suction side (inlet side) of the compressor 1 and measures the refrigerant pressure (low pressure) at the installation location. Note that the pressure sensor 41b is not limited to the location shown in FIG. 1, and is anywhere between the first expansion valve 3 and the second expansion valve 4, that is, a location where the pressure of the refrigerant in the intermediate pressure state can be measured. May be installed.

また、計測制御部30は、温度センサー40や圧力センサー41からの計測情報や、冷凍空調装置100の使用者からたとえばリモコン等を介して指示される運転内容に基づいて、圧縮機1の運転方法、各膨張弁の開度、被冷熱流体送出手段10の回転数、図示省略の送出手段の回転数、などを制御するものである。この計測制御部30は、たとえばマイクロコンピューター等で構成するとよい。   In addition, the measurement control unit 30 operates the compressor 1 based on measurement information from the temperature sensor 40 and the pressure sensor 41 and operation details instructed by a user of the refrigeration air conditioner 100 through, for example, a remote controller. The opening degree of each expansion valve, the number of revolutions of the cooled fluid delivery means 10, the number of revolutions of the delivery means not shown, and the like are controlled. The measurement control unit 30 may be constituted by a microcomputer, for example.

(冷媒の種類)
冷凍空調装置100に用いられる冷媒には、たとえばR410A、R407C、R404AなどのHFC(ハイドロフルオロカーボン)冷媒、R22、R134aなどのHCFC(ハイドロクロロフルオロカーボン)冷媒、もしくは炭化水素、ヘリウムのような自然冷媒などがあるが、これに限定されず同様な役割を果たすものであれば、他の冷媒であってもよい。
(Type of refrigerant)
Examples of the refrigerant used in the refrigerating and air-conditioning apparatus 100 include HFC (hydrofluorocarbon) refrigerants such as R410A, R407C, and R404A, HCFC (hydrochlorofluorocarbon) refrigerants such as R22 and R134a, or natural refrigerants such as hydrocarbon and helium. However, the present invention is not limited to this, and any other refrigerant may be used as long as it plays a similar role.

[運転動作]
図3に基づいて冷凍空調装置100の運転動作を説明する。
圧縮機1から吐出された高温高圧のガス冷媒(点1)は、凝縮器2に流入し、ここで放熱しながら凝縮液化し、高圧低温の冷媒となる(点2)。凝縮器2で凝縮液化した冷媒は、第1膨張弁3にて若干減圧されて中間圧二相冷媒となり(点3)、気液分離器7に流入する。気液分離器7に流入した二相冷媒は、液冷媒とガス冷媒に分離される。液冷媒は、飽和液冷媒(点4)であり、内部熱交換器6の高圧側に導入される。その一方で、分離されたガス冷媒は、気液分離器7を出て第3膨張弁9で流量調整され、バイパス配管8を介して内部熱交換器6の低圧側へ導入される。
[Driving operation]
The operation of the refrigeration air conditioner 100 will be described with reference to FIG.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 (point 1) flows into the condenser 2, where it condenses and liquefies while dissipating heat, and becomes a high-pressure and low-temperature refrigerant (point 2). The refrigerant condensed and liquefied by the condenser 2 is slightly decompressed by the first expansion valve 3 to become an intermediate pressure two-phase refrigerant (point 3) and flows into the gas-liquid separator 7. The two-phase refrigerant that has flowed into the gas-liquid separator 7 is separated into a liquid refrigerant and a gas refrigerant. The liquid refrigerant is a saturated liquid refrigerant (point 4) and is introduced to the high pressure side of the internal heat exchanger 6. On the other hand, the separated gas refrigerant leaves the gas-liquid separator 7, the flow rate of which is adjusted by the third expansion valve 9, and is introduced to the low pressure side of the internal heat exchanger 6 through the bypass pipe 8.

気液分離器7で分離された液冷媒は、内部熱交換器6にて低温低圧の冷媒(蒸発器5から流出した冷媒)と熱交換して冷却され、過冷却液冷媒(図3点5)となる。この過冷却冷媒は、その後、第2膨張弁4でさらに低圧まで減圧されて二相冷媒(図3点6)となって、蒸発器5に流入する。この二相冷媒は、蒸発器5で、吸熱し蒸発ガス化しながら、被冷熱流体に冷熱を供給し、低圧のガス冷媒となる(図3点7)。蒸発器5を出た低圧ガス冷媒は、バイパス配管8からのガス冷媒と合流した後で内部熱交換器6の低圧側に流入する。流入した低圧ガス冷媒は、内部熱交換器6で中間圧二相冷媒と熱交換し過熱されて(図3点8)、圧縮機1に吸入される。   The liquid refrigerant separated by the gas-liquid separator 7 is cooled by exchanging heat with a low-temperature and low-pressure refrigerant (refrigerant flowing out of the evaporator 5) in the internal heat exchanger 6 to obtain a supercooled liquid refrigerant (point 5 in FIG. 3). ) Thereafter, the supercooled refrigerant is further reduced in pressure by the second expansion valve 4 to become a two-phase refrigerant (point 6 in FIG. 3) and flows into the evaporator 5. This two-phase refrigerant absorbs heat in the evaporator 5 and is converted into evaporative gas, while supplying cold heat to the fluid to be cooled to become a low-pressure gas refrigerant (point 7 in FIG. 3). The low pressure gas refrigerant exiting the evaporator 5 joins with the gas refrigerant from the bypass pipe 8 and then flows into the low pressure side of the internal heat exchanger 6. The low-pressure gas refrigerant that has flowed in is exchanged with the intermediate-pressure two-phase refrigerant in the internal heat exchanger 6 to be superheated (point 8 in FIG. 3) and sucked into the compressor 1.

[運転制御動作]
次に、図4に基づいて冷凍空調装置100の運転制御動作を説明する。
計測制御部30は、運転開始後、まず圧縮機1の容量、第1膨張弁3の開度、第2膨張弁4の開度、第3膨張弁9の開度を初期値に設定する(ステップS1)。なお、本実施の形態1では、第3膨張弁9については固定開度(流路抵抗Cv一定)とする。そして、それから所定時間が経過すると(ステップS2)、計測制御部30は、それ以降の運転状態に応じて各アクチュエーターを以下のように制御する。
[Operation control operation]
Next, the operation control operation of the refrigerating and air-conditioning apparatus 100 will be described based on FIG.
The measurement control unit 30 first sets the capacity of the compressor 1, the opening degree of the first expansion valve 3, the opening degree of the second expansion valve 4, and the opening degree of the third expansion valve 9 to initial values after the operation is started ( Step S1). In the first embodiment, the third expansion valve 9 has a fixed opening degree (constant flow path resistance Cv). And when predetermined time passes since then (step S2), the measurement control part 30 controls each actuator as follows according to the driving | running state after that.

圧縮機1の容量は、基本的に蒸発器5出口の温度センサー40dで計測される被冷熱流体温度が、冷凍空調装置100の使用者が設定する温度になるように制御される。すなわち、計測制御部30は、被冷熱流体温度と設定温度とを比較し(ステップS3)、被冷熱流体温度が設定温度と等しいか或いは近接している場合には、圧縮機1の容量をそのまま維持し(ステップS3;YES)、次のステップに進む。被冷熱流体温度が設定温度より大きく上昇している場合は、圧縮機1の容量を増加し、被冷熱流体温度が設定温度より低下している場合には、圧縮機1の容量を低下するというように圧縮機1の容量を変更する(ステップS3;NO、ステップS4)。圧縮機1の容量を変化させた場合、第1膨張弁3の開度制御に移行する。   The capacity of the compressor 1 is basically controlled so that the temperature of the fluid to be cooled measured by the temperature sensor 40d at the outlet of the evaporator 5 becomes a temperature set by the user of the refrigeration air conditioner 100. That is, the measurement control unit 30 compares the temperature of the cooled fluid and the set temperature (step S3). If the temperature of the cooled fluid is equal to or close to the set temperature, the capacity of the compressor 1 is left as it is. Maintain (step S3; YES) and proceed to the next step. The capacity of the compressor 1 is increased when the temperature of the cooled fluid is significantly higher than the set temperature, and the capacity of the compressor 1 is decreased when the temperature of the cooled fluid is lower than the set temperature. Thus, the capacity | capacitance of the compressor 1 is changed (step S3; NO, step S4). When the capacity | capacitance of the compressor 1 is changed, it transfers to the opening degree control of the 1st expansion valve 3. FIG.

第1膨張弁3は、圧力センサー41bで検出される中間圧が予め設定された目標値、たとえば1.6MPaGになるように開度が制御される。すなわち、計測制御部30は、中間圧と目標値とを比較し(ステップS5)、中間圧が目標値と等しいか或いは近接している場合には、第1膨張弁3の開度をそのまま維持し(ステップS5;YES)、次のステップに進む。中間圧が目標値よりも大きい場合には、第1膨張弁3の開度を小さくし、中間圧が目標値よりも小さい場合には、第1膨張弁3の開度を大きくするというように第1膨張弁3の開度を変更する(ステップS5;NO、ステップS6)。第1膨張弁3の開度を変化させた後、第2膨張弁4の開度制御に移行する。   The opening degree of the first expansion valve 3 is controlled so that the intermediate pressure detected by the pressure sensor 41b becomes a preset target value, for example, 1.6 MPaG. That is, the measurement control unit 30 compares the intermediate pressure with the target value (step S5), and maintains the opening of the first expansion valve 3 as it is when the intermediate pressure is equal to or close to the target value. (Step S5; YES), the process proceeds to the next step. When the intermediate pressure is larger than the target value, the opening degree of the first expansion valve 3 is decreased, and when the intermediate pressure is smaller than the target value, the opening degree of the first expansion valve 3 is increased. The opening degree of the first expansion valve 3 is changed (step S5; NO, step S6). After changing the opening degree of the first expansion valve 3, the process proceeds to opening degree control of the second expansion valve 4.

第2膨張弁4は、温度センサー40cで検知される圧縮機1の吸入温度と圧力センサー41cで検出される圧縮機1の吸入圧力の圧力値を飽和温度に換算した低圧冷媒の飽和温度との差温で検知される圧縮機1の吸入冷媒過熱度SH(以下、単にSHと称する)が予め設定された目標値、たとえば6℃になるように制御される。温度センサー40c及び圧力センサー41cが吸入冷媒過熱度検出手段として機能する。すなわち、計測制御部30は、SHと目標値とを比較し(ステップS7)、SHと目標値が等しいか或いは近接している場合には、第2膨張弁4の開度をそのまま維持し(ステップS7;YES)、ステップS2に戻る。SHが目標値より大きい場合には、第2膨張弁4の開度を大きくし、SHが目標値より小さい場合には、第2膨張弁4の開度を小さくするというように第2膨張弁4の開度を変更する(ステップS8)。第2膨張弁4の開度を変化させた後、ステップS2に戻る。   The second expansion valve 4 has a suction temperature of the compressor 1 detected by the temperature sensor 40c and a saturation value of the low-pressure refrigerant obtained by converting the pressure value of the suction pressure of the compressor 1 detected by the pressure sensor 41c into a saturation temperature. Control is performed so that the refrigerant superheat degree SH (hereinafter simply referred to as SH) of the compressor 1 detected by the differential temperature becomes a preset target value, for example, 6 ° C. The temperature sensor 40c and the pressure sensor 41c function as suction refrigerant superheat degree detection means. That is, the measurement control unit 30 compares the SH with the target value (step S7), and maintains the opening of the second expansion valve 4 as it is when the SH and the target value are equal or close to each other (step S7). Step S7; YES), returning to Step S2. When SH is larger than the target value, the opening of the second expansion valve 4 is increased, and when SH is smaller than the target value, the opening of the second expansion valve 4 is decreased. 4 is changed (step S8). After changing the opening degree of the second expansion valve 4, the process returns to step S2.

[作用効果]
本実施の形態に係る冷凍空調装置100によって実現される作用効果について説明する。従来から、複数の膨張弁(減圧装置)と内部熱交換器を設け、内部熱交換器において中間圧冷媒と低圧冷媒とで熱交換させるようにした構成は知られている。しかしながら、本実施の形態に係る冷凍空調装置100のような回路構成を採用したものはなかった。冷凍空調装置100は、上述した回路構成を採用したことによって、以下に示すような顕著な効果が得られるようになっている。
[Function and effect]
The effects achieved by the refrigerating and air-conditioning apparatus 100 according to the present embodiment will be described. 2. Description of the Related Art Conventionally, a configuration in which a plurality of expansion valves (pressure reduction devices) and an internal heat exchanger are provided and heat is exchanged between an intermediate pressure refrigerant and a low pressure refrigerant in the internal heat exchanger is known. However, none employs a circuit configuration like the refrigerating and air-conditioning apparatus 100 according to the present embodiment. The refrigerating and air-conditioning apparatus 100 can obtain the following remarkable effects by adopting the circuit configuration described above.

冷凍空調装置100では、凝縮器2の出口側の低圧冷媒を、第1膨張弁3で減圧された中間圧二相冷媒から気液分離器7でガス冷媒を抜き出して中間圧飽和液冷媒として、内部熱交換器6の高圧側入口へ導入し、低圧冷媒と熱交換させるようにしている。   In the refrigerating and air-conditioning apparatus 100, the low-pressure refrigerant on the outlet side of the condenser 2 is extracted from the intermediate-pressure two-phase refrigerant decompressed by the first expansion valve 3 by the gas-liquid separator 7 and used as the intermediate-pressure saturated liquid refrigerant. The heat is introduced into the high-pressure side inlet of the internal heat exchanger 6 to exchange heat with the low-pressure refrigerant.

第1膨張弁3の下流に気液分離器7が備えられているので、第1膨張弁3の開度調整によって気液分離器7に導入される第1膨張弁3の出口側の二相冷媒の状態量(圧力、温度、エンタルピー)が制御可能となっている。また、状態量が制御された二相冷媒を気液分離器7で分離し、その液冷媒部を内部熱交換器6の高圧側入口へ接続するので、内部熱交換器6の高圧側へ導入する冷媒は常に液冷媒となっている。さらに、気液分離器7の下流側に内部熱交換器6が備えられているので、第1膨張弁3によって状態量が制御され、気液分離器7でガス冷媒が抜き出された中間圧飽和液冷媒を内部熱交換器6の高圧側へ導入することができる。   Since the gas-liquid separator 7 is provided downstream of the first expansion valve 3, the two phases on the outlet side of the first expansion valve 3 introduced into the gas-liquid separator 7 by adjusting the opening degree of the first expansion valve 3. The state quantity (pressure, temperature, enthalpy) of the refrigerant can be controlled. Further, the two-phase refrigerant whose state quantity is controlled is separated by the gas-liquid separator 7, and the liquid refrigerant portion is connected to the high-pressure side inlet of the internal heat exchanger 6, so that it is introduced to the high-pressure side of the internal heat exchanger 6. The refrigerant to be used is always a liquid refrigerant. Further, since the internal heat exchanger 6 is provided on the downstream side of the gas-liquid separator 7, the intermediate pressure is controlled by the first expansion valve 3 and the gas refrigerant is extracted by the gas-liquid separator 7. The saturated liquid refrigerant can be introduced to the high pressure side of the internal heat exchanger 6.

したがって、冷凍空調装置100によれば、何らかの要因で高圧が上昇する等、凝縮器2における高圧冷媒の状態量に変化が生じたとしても、内部熱交換器6の高圧側入口液冷媒の状態量は変化せず、そのままの状態量を維持することができるので、中間圧冷媒の圧力や温度を一定に制御することが可能になる。   Therefore, according to the refrigerating and air-conditioning apparatus 100, even if a change occurs in the state quantity of the high-pressure refrigerant in the condenser 2 such as an increase in high pressure due to some factor, the state quantity of the high-pressure side inlet liquid refrigerant of the internal heat exchanger 6 Since the state quantity can be maintained as it is, the pressure and temperature of the intermediate pressure refrigerant can be controlled to be constant.

また、冷凍空調装置100によれば、上記のように第1膨張弁3の開度を調整して中間圧冷媒の状態量を一定にすることで、内部熱交換器6の熱交換量を一定に維持することが可能となる。よって、冷凍空調装置100によれば、高圧が上昇しても制御対象である圧縮機1の吸入冷媒過熱度に変化はなく、第2膨張弁4の開度は大きな開閉動作の必要もなく、目標過熱度に到達することになる。また、低圧が変化しなければ中間圧一定であるから、第2膨張弁4による減圧は常に一定だけ減圧すればよいので、第2膨張弁4の開度をほぼ一定に制御できる。これにより、冷媒流量が安定し、冷凍サイクルとして安定した運転状態が実現できる。   Moreover, according to the refrigerating and air-conditioning apparatus 100, the amount of heat exchange of the internal heat exchanger 6 is made constant by adjusting the opening degree of the first expansion valve 3 and making the state quantity of the intermediate pressure refrigerant constant as described above. Can be maintained. Therefore, according to the refrigerating and air-conditioning apparatus 100, even if the high pressure rises, there is no change in the suction refrigerant superheat degree of the compressor 1 to be controlled, and the opening of the second expansion valve 4 does not need a large opening / closing operation. The target superheat will be reached. In addition, since the intermediate pressure is constant unless the low pressure changes, the depressurization by the second expansion valve 4 has only to be constantly depressurized, so that the opening degree of the second expansion valve 4 can be controlled to be substantially constant. Thereby, the refrigerant | coolant flow volume is stabilized and the stable driving | running state as a refrigerating cycle is realizable.

ここで、中間圧の制御目標値は、所定の運転条件において冷凍空調装置100を運転させたときの高圧圧力の値よりも低い値を設定する。所定の運転条件とは、たとえば冷凍空調装置100の定格条件を意味しているものとする。また、所定の運転条件とは、たとえば圧縮機運転周波数、外気温、被冷熱流体の温度や流量等が定められた運転条件を意味するしているものとする。   Here, the control target value of the intermediate pressure is set to a value lower than the value of the high pressure when the refrigeration air conditioner 100 is operated under a predetermined operating condition. The predetermined operating condition means, for example, the rated condition of the refrigeration air conditioner 100. Further, the predetermined operating condition means an operating condition in which, for example, the compressor operating frequency, the outside air temperature, the temperature and flow rate of the cooled heat fluid, and the like are defined.

上記のように、中間圧の制御目標値を設定することで、検出された高圧圧力値が所定の運転条件での目標高圧圧力値より高くなった場合においても、内部熱交換器6の熱交換量を所定の運転条件における熱交換量のまま、一定に維持することができ、安定した運転状態が実現できる。なお、ここでは、第1膨張弁3の制御対象となる冷媒状態量を中間圧(圧力値)としたが、中間圧の圧力値を検出する圧力センサー41bの代わりに、温度センサー(中間圧冷媒温度検出手段)を設置し、中間圧冷媒の冷媒温度を制御対象の冷媒状態量としても同様の効果が得られることは言うまでもない。   As described above, by setting the control target value of the intermediate pressure, the heat exchange of the internal heat exchanger 6 even when the detected high pressure value becomes higher than the target high pressure value under the predetermined operating condition. The amount can be maintained constant with the heat exchange amount under a predetermined operation condition, and a stable operation state can be realized. Here, the refrigerant state quantity to be controlled by the first expansion valve 3 is the intermediate pressure (pressure value), but instead of the pressure sensor 41b for detecting the intermediate pressure value, a temperature sensor (intermediate pressure refrigerant) is used. Needless to say, the same effect can be obtained by installing a temperature detection means) and setting the refrigerant temperature of the intermediate pressure refrigerant as the refrigerant state quantity to be controlled.

実施の形態2.
図5は、本発明の実施の形態2に係る冷凍空調装置の制御動作の流れを示すフローチャートである。図5に基づいて、実施の形態2に係る冷凍空調装置の特徴部分である制御動作について説明する。実施の形態2に係る冷凍空調装置は、実施の形態1に係る冷凍空調装置100と同様に蒸気圧縮式の冷凍サイクル運転を行なう冷凍サイクル装置の一つの例である。なお、この実施の形態2では上述した実施の形態1との相違点を中心に説明するものとし、冷媒回路構成など実施の形態1と同一の箇所については説明を割愛するものとする。
Embodiment 2. FIG.
FIG. 5 is a flowchart showing the flow of the control operation of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention. Based on FIG. 5, the control operation which is a characteristic part of the refrigerating and air-conditioning apparatus according to Embodiment 2 will be described. The refrigerating and air-conditioning apparatus according to Embodiment 2 is an example of a refrigerating cycle apparatus that performs a vapor compression refrigeration cycle operation, similarly to the refrigerating and air-conditioning apparatus 100 according to Embodiment 1. In the second embodiment, the difference from the first embodiment will be mainly described, and the description of the same parts as in the first embodiment such as the refrigerant circuit configuration will be omitted.

[運転制御動作]
図5に基づいて実施の形態2に係る冷凍空調装置の運転制御動作を説明する。実施の形態2に係る冷凍空調装置では、第3膨張弁9の開度制御を加えて点で実施の形態1に係る冷凍空調装置100と相違している。なお、ステップS11〜ステップS14(初期設定〜圧縮機容量変更)は、実施の形態1における図4のステップS1〜ステップS4とそれぞれ同様となるので、それらの説明を省略するものとする。
[Operation control operation]
The operation control operation of the refrigeration air conditioner according to Embodiment 2 will be described based on FIG. The refrigerating and air-conditioning apparatus according to Embodiment 2 is different from the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 in that opening control of the third expansion valve 9 is added. Note that steps S11 to S14 (initial setting to compressor capacity change) are the same as steps S1 to S4 in FIG. 4 in the first embodiment, respectively, and thus description thereof is omitted.

第1膨張弁3は、圧力センサー41aで検出される圧縮機1の吐出圧力の圧力値を飽和温度に換算した高圧冷媒の飽和温度と温度センサー40bで検出される凝縮器2の出口温度との差温で得られる凝縮器2の出口冷媒過冷却度SC(以下、単にSCと称する)が予め設定された目標値、たとえば3℃になるように制御される。圧力センサー41a及び温度センサー40bが過冷却度検出手段として機能する。すなわち、計測制御部30は、SCと目標値とを比較し(ステップS15)、SCが目標値と等しいか或いは近接している場合には、第1膨張弁3の開度をそのまま維持し(ステップS15;YES)、次のステップに進む。SCが目標値よりも大きい場合には、第1膨張弁3の開度を大きくし、SCが目標値よりも小さい場合には、第1膨張弁3の開度を小さくするというように第1膨張弁3の開度を変更する(ステップS15;NO、ステップS16)。第1膨張弁3の開度を変化させた後、第3膨張弁9の開度制御に移行する。   The first expansion valve 3 includes a saturation temperature of the high-pressure refrigerant obtained by converting a pressure value of the discharge pressure of the compressor 1 detected by the pressure sensor 41a into a saturation temperature, and an outlet temperature of the condenser 2 detected by the temperature sensor 40b. The outlet refrigerant supercooling degree SC (hereinafter simply referred to as SC) of the condenser 2 obtained by the differential temperature is controlled to be a preset target value, for example, 3 ° C. The pressure sensor 41a and the temperature sensor 40b function as a degree of supercooling detection. That is, the measurement control unit 30 compares the SC with the target value (step S15), and when the SC is equal to or close to the target value, the opening degree of the first expansion valve 3 is maintained as it is ( Step S15; YES), the process proceeds to the next step. When SC is larger than the target value, the opening degree of the first expansion valve 3 is increased, and when SC is smaller than the target value, the opening degree of the first expansion valve 3 is decreased. The opening degree of the expansion valve 3 is changed (step S15; NO, step S16). After changing the opening degree of the first expansion valve 3, the process proceeds to opening degree control of the third expansion valve 9.

第3膨張弁9は、圧力センサー41bで検知される中間圧と圧力センサー41cで検出される圧縮機1の吸入圧力の圧力値との差圧で検知される中低圧差ΔPmが予め設定された目標値、たとえば0.7MPaGになるように制御される。圧力センサー41b及び圧力センサー41cが中低圧差検出手段として機能する。すなわち、計測制御部30は、中低圧差ΔPmと目標値とを比較し(ステップS17)、中低圧差ΔPmと目標値が等しいか或いは近接している場合には、第3膨張弁9の開度をそのまま維持し(ステップS17;YES)、次のステップに進む。中低圧差ΔPmが目標値より大きい場合には、第3膨張弁9の開度は大きく、中低圧差ΔPmが目標値より小さい場合には、第3膨張弁9の開度は小さく制御されるというように第3膨張弁9の開度を変更する(ステップS18)。第3膨張弁9の開度を変化させた後、第2膨張弁4の開度制御に移行する。   The third expansion valve 9 is preset with a medium-low pressure difference ΔPm detected by the differential pressure between the intermediate pressure detected by the pressure sensor 41b and the suction pressure value of the compressor 1 detected by the pressure sensor 41c. The target value is controlled to be 0.7 MPaG, for example. The pressure sensor 41b and the pressure sensor 41c function as medium / low pressure difference detecting means. That is, the measurement control unit 30 compares the medium / low pressure difference ΔPm with the target value (step S17), and if the medium / low pressure difference ΔPm is equal to or close to the target value, the third expansion valve 9 is opened. The degree is maintained as it is (step S17; YES), and the process proceeds to the next step. When the intermediate / low pressure difference ΔPm is larger than the target value, the opening degree of the third expansion valve 9 is large, and when the intermediate / low pressure difference ΔPm is smaller than the target value, the opening degree of the third expansion valve 9 is controlled to be small. Thus, the opening degree of the third expansion valve 9 is changed (step S18). After changing the opening degree of the third expansion valve 9, the process proceeds to opening degree control of the second expansion valve 4.

第2膨張弁4は、温度センサー40cで検知される圧縮機1の吸入温度と圧力センサー41cで検出される圧縮機1の吸入圧力の圧力値を飽和温度に換算した低圧冷媒の飽和温度との差温で検知される圧縮機1の吸入冷媒過熱度SH(以下、単にSHと称する)が予め設定された目標値、たとえば6℃になるように制御される。すなわち、計測制御部30は、SHと目標値とを比較し(ステップS19)、SHと目標値が等しいか或いは近接している場合には、第2膨張弁4の開度をそのまま維持し(ステップS19;YES)、ステップS12に戻る。SHが目標値より大きい場合には、第2膨張弁4の開度を大きくし、SHが目標値より小さい場合には、第2膨張弁4の開度を小さくするというように第2膨張弁4の開度を変更する(ステップS20)。第2膨張弁4の開度を変化させた後、ステップS12に戻る。   The second expansion valve 4 has a suction temperature of the compressor 1 detected by the temperature sensor 40c and a saturation value of the low-pressure refrigerant obtained by converting the pressure value of the suction pressure of the compressor 1 detected by the pressure sensor 41c into a saturation temperature. Control is performed so that the refrigerant superheat degree SH (hereinafter simply referred to as SH) of the compressor 1 detected by the differential temperature becomes a preset target value, for example, 6 ° C. That is, the measurement control unit 30 compares the SH with the target value (step S19), and when the SH and the target value are equal or close to each other, maintains the opening of the second expansion valve 4 as it is ( Step S19; YES), the process returns to Step S12. When SH is larger than the target value, the opening of the second expansion valve 4 is increased, and when SH is smaller than the target value, the opening of the second expansion valve 4 is decreased. 4 is changed (step S20). After changing the opening degree of the second expansion valve 4, the process returns to step S12.

[作用効果]
実施の形態2に係る冷凍空調装置によって実現される作用効果について説明する。実施の形態2に係る冷凍空調装置は、冷媒回路構成が実施の形態1に係る冷凍空調装置100と同様であるが、各アクチュエーター、特に膨張弁の制御が実施の形態1に係る冷凍空調装置100と異なるものとしている。実施の形態2に係る冷凍空調装置は、上述した制御方法を採用したことによって、以下に示すような顕著な効果が得られるようになっている。
[Function and effect]
The effects achieved by the refrigerating and air-conditioning apparatus according to Embodiment 2 will be described. The refrigerating and air-conditioning apparatus according to Embodiment 2 has the same refrigerant circuit configuration as that of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1, but the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 controls each actuator, particularly the expansion valve. And different. The refrigerating and air-conditioning apparatus according to Embodiment 2 adopts the above-described control method, so that the following remarkable effects can be obtained.

実施の形態2に係る冷凍空調装置では、実施の形態1に係る冷凍空調装置100と異なる点として、第1膨張弁3の開度を調整して凝縮器2の出口冷媒過冷却度SCを一定に制御していることである。この場合において、第3膨張弁9の開度を調整してバイパス配管8を流れるガス冷媒の流量を調整することで、中間圧と低圧の圧力差である中低圧差ΔPmを一定に制御することができる。これにより、低圧が一定であれば、中間圧も一定となる。   The refrigerating and air-conditioning apparatus according to Embodiment 2 differs from the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 in that the opening degree of the first expansion valve 3 is adjusted and the outlet refrigerant supercooling degree SC of the condenser 2 is constant. It is to control to. In this case, by adjusting the opening of the third expansion valve 9 and adjusting the flow rate of the gas refrigerant flowing through the bypass pipe 8, the medium-low pressure difference ΔPm that is the pressure difference between the intermediate pressure and the low pressure is controlled to be constant. Can do. Thus, if the low pressure is constant, the intermediate pressure is also constant.

すなわち、実施の形態2に係る冷凍空調装置によれば、実施の形態1に係る冷凍空調装置100と同様に中間圧を一定に制御することができる。つまり、何らかの要因で高圧が上昇する等、凝縮器2における高圧冷媒の状態に変化が生じても、内部熱交換器6に導入する液冷媒の状態量(圧力、温度、エンタルピー)を一定に保つことができるため、内部熱交換器6の熱交換量を一定に維持することができる。よって、実施の形態2に係る冷凍空調装置によれば、高圧が上昇しても制御対象である圧縮機1の吸入冷媒過熱度に変化はなく、第2膨張弁4の開度を変えることなく目標過熱度に到達する。また、中間圧が一定に制御されていれば、第2膨張弁4による減圧は常に一定だけ減圧すればよいので、第2膨張弁4の開度を変化させなくてもよい。これにより、第2膨張弁4の開度が安定するので冷媒流量が安定し、冷凍サイクルとして安定した運転状態が実現できる。   That is, according to the refrigerating and air-conditioning apparatus according to Embodiment 2, the intermediate pressure can be controlled to be constant as in the refrigerating and air-conditioning apparatus 100 according to Embodiment 1. That is, even if a change occurs in the state of the high-pressure refrigerant in the condenser 2 due to an increase in high pressure for some reason, the state quantity (pressure, temperature, enthalpy) of the liquid refrigerant introduced into the internal heat exchanger 6 is kept constant. Therefore, the heat exchange amount of the internal heat exchanger 6 can be kept constant. Therefore, according to the refrigerating and air-conditioning apparatus according to Embodiment 2, there is no change in the suction refrigerant superheat degree of the compressor 1 to be controlled even if the high pressure rises, and without changing the opening of the second expansion valve 4. The target superheat is reached. Further, if the intermediate pressure is controlled to be constant, the pressure reduction by the second expansion valve 4 has only to be constantly reduced, so that the opening degree of the second expansion valve 4 need not be changed. Thereby, since the opening degree of the 2nd expansion valve 4 is stabilized, a refrigerant | coolant flow volume is stabilized and the stable driving | running state as a refrigerating cycle is realizable.

ここで、中低圧差の制御目標値は、所定の運転条件において実施の形態2に係る冷凍空調装置を運転させたときの高圧圧力の値よりも中間圧が低くなるように、中低圧差の目標値を設定する。   Here, the control target value of the intermediate / low pressure difference is set so that the intermediate pressure is lower than the value of the high pressure when the refrigeration / air-conditioning apparatus according to Embodiment 2 is operated under predetermined operating conditions. Set the target value.

上記のように、中低圧差を一定に制御することで、検出された高圧圧力値が所定の運転条件での目標高圧圧力値より高くなった場合においても、内部熱交換器6の熱交換量を所定の運転条件における熱交換量のまま、一定に維持することができ、安定した運転状態が実現できる。   As described above, even if the detected high pressure value becomes higher than the target high pressure value under a predetermined operating condition by controlling the medium-low pressure difference to be constant, the heat exchange amount of the internal heat exchanger 6 Can be maintained constant with the amount of heat exchange under predetermined operating conditions, and a stable operating state can be realized.

図7は、蒸発器出口乾き度と蒸発能力との関係を示すグラフである。図7に基づいて、蒸発器出口乾き度と蒸発能力との関係について説明する。実施の形態1や実施の形態2に係る冷凍空調装置においては、圧縮機1の吸入冷媒過熱度SHの制御目標値は、たとえば所定の運転条件において蒸発器5の出口冷媒状態が乾き度1となるように設定するとよい。図7から、蒸発器出口冷媒の状態が乾き度1の飽和ガス状態となる場合において冷凍サイクルにおける蒸発能力が最大となることがわかる。   FIG. 7 is a graph showing the relationship between the evaporator outlet dryness and the evaporation capacity. Based on FIG. 7, the relationship between the evaporator outlet dryness and the evaporation capability will be described. In the refrigerating and air-conditioning apparatus according to Embodiment 1 or Embodiment 2, the control target value of the intake refrigerant superheat degree SH of the compressor 1 is, for example, that the outlet refrigerant state of the evaporator 5 is dryness 1 under predetermined operating conditions. It is good to set so that FIG. 7 shows that the evaporation capacity in the refrigeration cycle is maximized when the state of the evaporator outlet refrigerant is a saturated gas state with a dryness of 1.

したがって、このように蒸発器5の出口冷媒が乾き度1となるように運転制御をすることで、実施の形態1や実施の形態2に係る冷凍空調装置を当該条件において蒸発能力が最大となる状態で使うことができ、冷凍サイクルの高効率化を図ることができる。また、所定の運転条件よりも高圧が高くなった場合においても、内部熱交換器6の熱交換量が一定に維持されるため、同様に蒸発器5の出口冷媒が乾き度1である状態、つまり蒸発能力が最大となる状態で使うことができる。   Therefore, by controlling the operation so that the outlet refrigerant of the evaporator 5 has a dryness of 1 in this way, the refrigeration air conditioner according to Embodiment 1 or Embodiment 2 has the maximum evaporation capability under the above conditions. The refrigeration cycle can be made highly efficient. Further, even when the high pressure is higher than the predetermined operating condition, the heat exchange amount of the internal heat exchanger 6 is kept constant, so that the outlet refrigerant of the evaporator 5 has a dryness of 1, similarly. In other words, it can be used in a state where the evaporation capability is maximized.

[変形例]
実施の形態1及び実施の形態2の冷凍空調装置では、第2膨張弁4の制御対象を圧縮機1の吸入冷媒過熱度SHとしたが、圧縮機1の吸入冷媒過熱度の代わりに、温度センサー40aで検出される圧縮機1の吐出冷媒温度、又は、温度センサー40aで検出される圧縮機1の吐出冷媒温度と圧力センサー41aで検出される圧縮機1の吐出圧力の圧力値を飽和温度に換算した高圧冷媒の飽和温度との差温で得られる圧縮機1の吐出冷媒過熱度のいずれかを制御対象としてもよい。圧縮機1の吐出冷媒過熱度を制御対象とする場合、温度センサー40a及び圧力センサー41aが冷媒吐出過熱度検出手段として機能する。
[Modification]
In the refrigeration air conditioners of the first and second embodiments, the control target of the second expansion valve 4 is the intake refrigerant superheat degree SH of the compressor 1, but instead of the intake refrigerant superheat degree of the compressor 1, the temperature The discharge refrigerant temperature of the compressor 1 detected by the sensor 40a, or the discharge refrigerant temperature of the compressor 1 detected by the temperature sensor 40a and the pressure value of the discharge pressure of the compressor 1 detected by the pressure sensor 41a are saturated. Any one of the refrigerant superheat degrees discharged from the compressor 1 obtained by the temperature difference from the saturation temperature of the high-pressure refrigerant converted to may be controlled. When the discharge refrigerant superheat degree of the compressor 1 is a control target, the temperature sensor 40a and the pressure sensor 41a function as refrigerant discharge superheat degree detection means.

また、圧縮機1の吸入冷媒過熱度の代わりに、圧力センサー41aで検出される圧縮機1の吐出圧力の圧力値を飽和温度に換算した高圧冷媒の飽和温度と温度センサー40bで検出される凝縮器2の出口温度との差温で得られる凝縮器2の出口冷媒過冷却度SCが、予め設定された目標値になるように第2膨張弁4を制御するようにしてもよい。   Further, instead of the suction refrigerant superheat degree of the compressor 1, the pressure value of the discharge pressure of the compressor 1 detected by the pressure sensor 41a is converted to the saturation temperature, and the condensation temperature detected by the temperature sensor 40b. The second expansion valve 4 may be controlled so that the outlet refrigerant supercooling degree SC of the condenser 2 obtained by the temperature difference from the outlet temperature of the condenser 2 becomes a preset target value.

実施の形態3.
図6は、本発明の実施の形態3に係る冷凍空調装置200の冷媒回路構成を示す冷媒回路図である。図6に基づいて、冷凍空調装置200の特徴部分について説明する。実施の形態3に係る冷凍空調装置200は、実施の形態1及び実施の形態2に係る冷凍空調装置の変形例の一つである。なお、この実施の形態3では上述した実施の形態1との相違点を中心に説明するものとし、冷媒回路構成など実施の形態1と同一の箇所については説明を割愛するものとする。
Embodiment 3 FIG.
FIG. 6 is a refrigerant circuit diagram showing a refrigerant circuit configuration of the refrigerating and air-conditioning apparatus 200 according to Embodiment 3 of the present invention. Based on FIG. 6, the characteristic part of the refrigerating and air-conditioning apparatus 200 will be described. Refrigeration air conditioner 200 according to Embodiment 3 is one of the modifications of the refrigeration air conditioner according to Embodiment 1 and Embodiment 2. In the third embodiment, the difference from the first embodiment will be mainly described, and the description of the same parts as in the first embodiment such as the refrigerant circuit configuration will be omitted.

さらに、実施の形態1及び実施の形態2では、蒸発器5をプレート式熱交換器で構成した場合を例に説明したが、蒸発器5及び凝縮器2の両方を伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成してもよい。この場合の被熱交換媒体は空気であり、ファンなどの送出手段(図示せず)によって送風される空気と熱交換する。   Furthermore, in Embodiment 1 and Embodiment 2, although the case where the evaporator 5 was comprised with the plate-type heat exchanger was demonstrated to the example, both the evaporator 5 and the condenser 2 were heat-transfer tubes, many fins, and You may comprise by the cross fin type fin and tube type heat exchanger comprised by these. The heat exchange medium in this case is air, and exchanges heat with air blown by a sending means (not shown) such as a fan.

実施の形態3に係る冷凍空調装置200は、蒸発器5及び凝縮器2の両方をフィン・アンド・チューブ型熱交換器で構成しているものとする。この構成の場合は、たとえば図6に示すように各センサーを配置する。   In the refrigerating and air-conditioning apparatus 200 according to Embodiment 3, both the evaporator 5 and the condenser 2 are configured as fin-and-tube heat exchangers. In the case of this configuration, for example, each sensor is arranged as shown in FIG.

温度センサー40eは、凝縮器2の中間部の冷媒流路上に設置され、設置場所の冷媒温度を計測するものである。温度センサー(中間圧冷媒温度検出手段)40fは、第1膨張弁3と第2膨張弁4との間に設置され、設置場所の冷媒温度を計測するものである。温度センサー40gは、蒸発器5の中間部の冷媒流路上に設置され、設置場所の冷媒温度を計測するものである。温度センサー40hは、凝縮器2の空気吸入側付近に設置され、凝縮器2に吸気される空気の温度を計測するものである。温度センサー40iは、蒸発器5の空気吸入側付近に設置され、蒸発器5に吸気される空気の温度を計測するものである。   The temperature sensor 40e is installed on the refrigerant flow path in the middle part of the condenser 2, and measures the refrigerant temperature at the installation location. The temperature sensor (intermediate pressure refrigerant temperature detecting means) 40f is installed between the first expansion valve 3 and the second expansion valve 4, and measures the refrigerant temperature at the installation location. The temperature sensor 40g is installed on the refrigerant flow path in the middle of the evaporator 5 and measures the refrigerant temperature at the installation location. The temperature sensor 40h is installed in the vicinity of the air suction side of the condenser 2 and measures the temperature of the air taken into the condenser 2. The temperature sensor 40 i is installed in the vicinity of the air suction side of the evaporator 5 and measures the temperature of the air sucked into the evaporator 5.

温度センサー40e、温度センサー40gは、それぞれ熱交換器(凝縮器2、蒸発器5)の中間で気液二相状態となっている冷媒温度を検知することにより、高低圧の冷媒飽和温度を検知することができる。また、凝縮器2の吸入側付近に温度センサー40hを設置し、蒸発器5の吸入側付近に温度センサー40iを設置し、それぞれの熱交換器に吸気される空気温度を計測するようにしている。   The temperature sensor 40e and the temperature sensor 40g detect the refrigerant saturation temperature at high and low pressure by detecting the refrigerant temperature in a gas-liquid two-phase state in the middle of the heat exchanger (condenser 2 and evaporator 5), respectively. can do. Further, a temperature sensor 40h is installed in the vicinity of the suction side of the condenser 2, and a temperature sensor 40i is installed in the vicinity of the suction side of the evaporator 5, so that the temperature of the air sucked into each heat exchanger is measured. .

冷凍空調装置200の場合は、図4や図5のフローに示す運転制御動作において、温度センサー40cで検知される圧縮機1の吸入温度と温度センサー40gで検出される低圧冷媒の飽和温度との差温を圧縮機1の吸入冷媒過熱度SHとし、温度センサー40eで検出される高圧冷媒の飽和温度と温度センサー40bで検出される凝縮器2の出口の冷媒温度との差温を凝縮器2の出口冷媒過冷却度SCとし、温度センサー40fで検出される冷媒温度を中間圧冷媒温度として、各膨張弁の制御動作を実行させる。また、被冷熱流体温度の代わりに、温度センサー40iで検出される蒸発器5での空気温度、又は温度センサー40hで検出される凝縮器2での空気温度のいずれかが、予め設定された目標値になるように圧縮機1の容量を調整する。   In the case of the refrigerating and air-conditioning apparatus 200, in the operation control operation shown in the flow of FIG. 4 or FIG. 5, the suction temperature of the compressor 1 detected by the temperature sensor 40c and the saturation temperature of the low-pressure refrigerant detected by the temperature sensor 40g. The difference temperature is defined as the suction refrigerant superheat degree SH of the compressor 1, and the difference temperature between the saturation temperature of the high-pressure refrigerant detected by the temperature sensor 40e and the refrigerant temperature at the outlet of the condenser 2 detected by the temperature sensor 40b is the condenser 2. The outlet refrigerant supercooling degree SC is set, and the refrigerant temperature detected by the temperature sensor 40f is set as the intermediate pressure refrigerant temperature, and the control operation of each expansion valve is executed. Also, instead of the temperature of the fluid to be cooled, either the air temperature in the evaporator 5 detected by the temperature sensor 40i or the air temperature in the condenser 2 detected by the temperature sensor 40h is set as a preset target. The capacity | capacitance of the compressor 1 is adjusted so that it may become a value.

冷凍空調装置200を上記のような冷媒回路構成・運転制御動作とした場合においても、実施の形態1や実施の形態2で述べた内容と同様の効果が得られる。   Even when the refrigerating and air-conditioning apparatus 200 has the refrigerant circuit configuration / operation control operation as described above, the same effects as those described in the first and second embodiments can be obtained.

なお、各実施の形態では、冷凍サイクル装置の一例として冷凍空調装置を例に説明したが、他の冷凍サイクル装置、たとえば冷凍機、冷蔵庫、空気調和装置等にも適用可能であることは言うまでもない。また、本発明の特徴事項を実施の形態1〜実施の形態3に分けて説明したが、それらの実施の形態で説明した内容に限定するものでなく、本発明の技術範囲内で適宜変更が可能である。さらに、各実施の形態で説明した本発明の特徴事項を適宜組み合わせて冷凍サイクル装置を構成するようにしてもよい。   In each embodiment, the refrigeration air conditioner has been described as an example of the refrigeration cycle apparatus. However, it goes without saying that the present invention can be applied to other refrigeration cycle apparatuses such as a refrigerator, a refrigerator, an air conditioner, and the like. . Moreover, although the characteristic matter of this invention was divided and demonstrated to Embodiment 1-Embodiment 3, it is not limited to the content demonstrated in those embodiments, A change is suitably carried out within the technical scope of this invention. Is possible. Furthermore, the refrigeration cycle apparatus may be configured by appropriately combining the features of the present invention described in each embodiment.

1 圧縮機、2 凝縮器、3 第1膨張弁、4 第2膨張弁、5 蒸発器、6 内部熱交換器、7 気液分離器、8 バイパス配管、9 第3膨張弁、10 被冷熱流体送出手段、30 計測制御部、40 温度センサー、40a 温度センサー、40b 温度センサー、40c 温度センサー、40d 温度センサー、40e 温度センサー、40f 温度センサー、40g 温度センサー、40h 温度センサー、40i 温度センサー、41 圧力センサー、41a 圧力センサー、41b 圧力センサー、41c 圧力センサー、50 冷媒配管、100 冷凍空調装置、200 冷凍空調装置、A 冷媒回路、B 被冷熱流体流路。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 1st expansion valve, 4th 2nd expansion valve, 5 Evaporator, 6 Internal heat exchanger, 7 Gas-liquid separator, 8 Bypass piping, 9 3rd expansion valve, 10 Cooling heat fluid Sending means, 30 measurement control unit, 40 temperature sensor, 40a temperature sensor, 40b temperature sensor, 40c temperature sensor, 40d temperature sensor, 40e temperature sensor, 40f temperature sensor, 40g temperature sensor, 40h temperature sensor, 40i temperature sensor, 41 pressure Sensor, 41a Pressure sensor, 41b Pressure sensor, 41c Pressure sensor, 50 Refrigerant piping, 100 Refrigeration air conditioner, 200 Refrigeration air conditioner, A Refrigerant circuit, B Cooled fluid flow path.

Claims (12)

冷媒を圧縮する圧縮機と、
前記圧縮機から吐出された冷媒の熱を放熱させる凝縮器と、
前記凝縮器から流出された冷媒の流量を調整する第1減圧装置と、
前記第1減圧装置から流出された冷媒を気液分離する気液分離器と、
前記気液分離器で分離された液冷媒と前記圧縮機の吸入側の冷媒とで熱交換する内部熱交換器と、
前記内部熱交換器で前記圧縮機の吸入側の冷媒と熱交換した冷媒の流量を調整する第2減圧装置と、
前記第2減圧装置から流出された冷媒に熱を吸熱させる蒸発器と、
前記気液分離器で分離されたガス冷媒を前記内部熱交換器における低圧側の入口側にバイパスするバイパス配管と、
前記バイパス配管に設置され、前記バイパス配管を流れるガス冷媒の流量を調整する第3の減圧装置と、を備えた
ことを特徴とする冷凍サイクル装置。
A compressor for compressing the refrigerant;
A condenser for radiating heat of the refrigerant discharged from the compressor;
A first pressure reducing device for adjusting a flow rate of the refrigerant flowing out of the condenser;
A gas-liquid separator that gas-liquid separates the refrigerant flowing out of the first decompression device;
An internal heat exchanger that exchanges heat between the liquid refrigerant separated by the gas-liquid separator and the refrigerant on the suction side of the compressor;
A second decompression device that adjusts the flow rate of the refrigerant that exchanges heat with the refrigerant on the suction side of the compressor in the internal heat exchanger;
An evaporator for absorbing heat into the refrigerant that has flowed out of the second decompression device;
A bypass pipe for bypassing the gas refrigerant separated by the gas-liquid separator to the low pressure side inlet side of the internal heat exchanger ;
A refrigeration cycle apparatus comprising: a third decompression device that is installed in the bypass pipe and adjusts a flow rate of the gas refrigerant flowing through the bypass pipe.
前記第1減圧装置と前記第2減圧装置との間の中間圧状態の冷媒圧力を検出する中間圧検出手段と、
前記中間圧検出手段が検出した冷媒の圧力値が予め設定してある制御目標値となるように前記第1減圧手段の開度を制御する制御装置と、を備えた
ことを特徴とする請求項1に記載の冷凍サイクル装置。
Intermediate pressure detecting means for detecting a refrigerant pressure in an intermediate pressure state between the first pressure reducing device and the second pressure reducing device;
A control device that controls the opening of the first pressure reducing means so that the pressure value of the refrigerant detected by the intermediate pressure detecting means becomes a preset control target value. The refrigeration cycle apparatus according to 1.
前記中間圧検出手段が検出した冷媒の圧力値の制御目標値は、所定の運転条件における高圧圧力よりも低い値として設定されている
ことを特徴とする請求項2に記載の冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 2, wherein the control target value of the refrigerant pressure value detected by the intermediate pressure detecting means is set as a value lower than the high pressure under predetermined operating conditions.
前記第1減圧装置と前記第2減圧装置との間の中間圧状態の冷媒温度を検出する中間圧冷媒温度検出手段と、
前記中間圧冷媒温度検出手段が検出した冷媒の温度値が予め設定したある制御目標値となるように前記第1減圧手段の開度を制御する制御装置と、を備えた
ことを特徴とする請求項1に記載の冷凍サイクル装置。
Intermediate pressure refrigerant temperature detecting means for detecting a refrigerant temperature in an intermediate pressure state between the first pressure reducing device and the second pressure reducing device;
And a control device that controls the opening of the first pressure reducing means so that the temperature value of the refrigerant detected by the intermediate pressure refrigerant temperature detecting means becomes a predetermined control target value. Item 2. The refrigeration cycle apparatus according to Item 1.
前記中間圧冷媒温度検出手段が検出した冷媒の温度値の制御目標値は、所定の運転条件における前記凝縮器出口の冷媒温度よりも低い値として設定されている
ことを特徴とする請求項4に記載の冷凍サイクル装置。
The control target value of the refrigerant temperature value detected by the intermediate-pressure refrigerant temperature detecting means is set as a value lower than the refrigerant temperature at the outlet of the condenser under a predetermined operating condition. The refrigeration cycle apparatus described.
前記凝縮器出口の冷媒過冷却度を検出する過冷却度検出手段と、
前記第1減圧装置と前記第2減圧装置との間の冷媒圧力と前記圧縮機の吸入側の冷媒圧力の圧力差を検出する中低圧差検出手段と、
前記過冷却度検出手段の検出した過冷却度が予め設定してある制御目標値となるように前記第1減圧装置の開度を制御し、前記中低圧差検出手段の検出した圧力差が予め設定してある制御目標値となるように前記第3減圧装置の開度を制御する制御装置と、を備えた
ことを特徴とする請求項1に記載の冷凍サイクル装置。
Supercooling degree detection means for detecting the refrigerant supercooling degree at the outlet of the condenser;
Medium / low pressure difference detecting means for detecting a pressure difference between the refrigerant pressure between the first pressure reducing device and the second pressure reducing device and the refrigerant pressure on the suction side of the compressor;
The opening degree of the first pressure reducing device is controlled so that the degree of supercooling detected by the degree of supercooling detection means becomes a preset control target value, and the pressure difference detected by the medium / low pressure difference detecting means is preliminarily determined. The refrigeration cycle apparatus according to claim 1, further comprising: a control device that controls an opening degree of the third decompression device so as to be a set control target value.
前記中低圧差検出手段の検出した圧力差の制御目標値は、所定の運転条件における高圧圧力よりも前記第1減圧装置と前記第2減圧装置との間の冷媒圧力の方が低くなるように設定されている
ことを特徴とする請求項6に記載の冷凍サイクル装置。
The control target value of the pressure difference detected by the medium / low pressure difference detecting means is such that the refrigerant pressure between the first pressure reducing device and the second pressure reducing device is lower than the high pressure under a predetermined operating condition. The refrigeration cycle apparatus according to claim 6, wherein the refrigeration cycle apparatus is set.
前記圧縮機吸入の冷媒過熱度を検出する吸入冷媒過熱度検出手段と、
前記吸入冷媒過熱度検出手段の検出した吸入冷媒過熱度が予め設定してある制御目標値となるように前記第2減圧手段の開度を制御する制御装置と、を備えた
ことを特徴とする請求項1〜7のいずれか一項に記載の冷凍サイクル装置。
Suction refrigerant superheat detection means for detecting the refrigerant superheat degree of the compressor suction;
And a control device that controls the opening degree of the second decompression means so that the suction refrigerant superheat degree detected by the suction refrigerant superheat degree detection means becomes a preset control target value. The refrigeration cycle apparatus according to any one of claims 1 to 7.
前記圧縮機出口の冷媒吐出温度を検出する冷媒吐出温度検出手段と、
前記冷媒吐出温度検出手段の検出した冷媒の吐出温度が予め設定したある制御目標値となるように前記第2減圧手段の開度を制御する制御装置と、を備えた
ことを特徴とする請求項1〜7のいずれか一項に記載の冷凍サイクル装置。
Refrigerant discharge temperature detecting means for detecting the refrigerant discharge temperature at the compressor outlet;
And a control device that controls an opening degree of the second decompression unit so that a refrigerant discharge temperature detected by the refrigerant discharge temperature detection unit becomes a predetermined control target value. The refrigeration cycle apparatus according to any one of 1 to 7.
前記圧縮機出口の冷媒吐出過熱度を検出する冷媒吐出過熱度検出手段と、
前記冷媒吐出過熱度検出手段の検出した冷媒吐出過熱度が予め設定してある制御目標値となるように前記第2減圧手段の開度を制御する制御装置と、を備えた
ことを特徴とする請求項1〜7のいずれか一項に記載の冷凍サイクル装置。
Refrigerant discharge superheat degree detecting means for detecting the refrigerant discharge superheat degree at the compressor outlet;
And a control device that controls the opening of the second decompression means so that the refrigerant discharge superheat degree detected by the refrigerant discharge superheat degree detection means becomes a preset control target value. The refrigeration cycle apparatus according to any one of claims 1 to 7.
前記凝縮器出口の冷媒過冷却度を検出する過冷却度検出手段と、
前記冷媒過冷却度検出手段の検出した冷媒過冷却度が予め設定してある制御目標値となるように前記第2減圧手段の開度を制御する制御装置と、を備えた
ことを特徴とする請求項1〜5のいずれか一項に記載の冷凍サイクル装置。
Supercooling degree detection means for detecting the refrigerant supercooling degree at the outlet of the condenser;
And a control device that controls the degree of opening of the second decompression means so that the refrigerant supercooling degree detected by the refrigerant supercooling degree detection means becomes a preset control target value. The refrigeration cycle apparatus according to any one of claims 1 to 5.
前記吸入冷媒過熱度、前記冷媒吐出温度、もしくは、前記冷媒吐出過熱度の制御目標値は、前記蒸発器出口の冷媒の乾き度が1となるように設定されている
ことを特徴とする請求項8〜10のいずれか一項に記載の冷凍サイクル装置。
The control target value of the suction refrigerant superheat degree, the refrigerant discharge temperature, or the refrigerant discharge superheat degree is set so that the dryness of the refrigerant at the evaporator outlet is 1. The refrigeration cycle apparatus according to any one of 8 to 10.
JP2011058302A 2011-03-16 2011-03-16 Refrigeration cycle equipment Active JP5241872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011058302A JP5241872B2 (en) 2011-03-16 2011-03-16 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011058302A JP5241872B2 (en) 2011-03-16 2011-03-16 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2012193897A JP2012193897A (en) 2012-10-11
JP5241872B2 true JP5241872B2 (en) 2013-07-17

Family

ID=47085955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011058302A Active JP5241872B2 (en) 2011-03-16 2011-03-16 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5241872B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820683B1 (en) * 2016-11-21 2018-01-22 주식회사 오티이 Cryogenic refrigeration system capable of capacity control by intermediate pressure control
KR20180056854A (en) * 2016-11-21 2018-05-30 주식회사 에프에스티 High-capacity rapid-cooling cryogenic freezer capable of controlling the suction temperature of the compressor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098121B2 (en) * 2012-11-07 2017-03-22 株式会社デンソー Cooling system
JP5991196B2 (en) * 2012-12-27 2016-09-14 ダイキン工業株式会社 Refrigeration equipment
JP5776746B2 (en) * 2013-01-29 2015-09-09 ダイキン工業株式会社 Air conditioner
WO2015002086A1 (en) * 2013-07-02 2015-01-08 三菱電機株式会社 Refrigerant circuit and air conditioning device
JP6091399B2 (en) * 2013-10-17 2017-03-08 三菱電機株式会社 Air conditioner
JP2015087020A (en) * 2013-10-28 2015-05-07 三菱電機株式会社 Refrigeration cycle device
JP6140065B2 (en) * 2013-12-04 2017-05-31 荏原冷熱システム株式会社 Turbo refrigerator
JP6282135B2 (en) * 2014-02-17 2018-02-21 東芝キヤリア株式会社 Refrigeration cycle equipment
DE102015214705A1 (en) * 2015-07-31 2017-02-02 Technische Universität Dresden Apparatus and method for performing a cold vapor process
JP2017116242A (en) * 2015-12-26 2017-06-29 株式会社コロナ Heat pump apparatus
JP6786965B2 (en) * 2016-09-01 2020-11-18 ダイキン工業株式会社 Refrigeration equipment
DE102017216361A1 (en) * 2017-09-14 2019-03-14 Weiss Umwelttechnik Gmbh Process for the conditioning of air
KR102483762B1 (en) * 2018-01-30 2023-01-03 엘지전자 주식회사 Air conditioner
JP7233845B2 (en) * 2018-03-27 2023-03-07 株式会社富士通ゼネラル air conditioner
JP7328023B2 (en) * 2019-06-26 2023-08-16 三菱重工サーマルシステムズ株式会社 refrigerated vehicle
CN110260549A (en) * 2019-07-03 2019-09-20 上海沛芾航天科技发展有限公司 Environmental test chamber auto-cascading refrigeration system
JP7369030B2 (en) 2019-12-26 2023-10-25 株式会社前川製作所 Refrigeration system and refrigeration system control method
KR102341074B1 (en) * 2020-11-17 2021-12-20 주식회사 에프에스티 Cryocooler
WO2023170874A1 (en) * 2022-03-10 2023-09-14 日本電気株式会社 Cooling apparatus and control method for cooling apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546163A (en) * 1977-06-15 1979-01-18 Sanyo Electric Co Ltd Refrigerator
JPH07310958A (en) * 1994-05-18 1995-11-28 Nippondenso Co Ltd Refrigerating cycle controller
JP3736809B2 (en) * 1997-09-19 2006-01-18 株式会社日立製作所 Air conditioner
JP2007178042A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
JP5145674B2 (en) * 2006-09-11 2013-02-20 ダイキン工業株式会社 Refrigeration equipment
JP5018496B2 (en) * 2008-01-16 2012-09-05 ダイキン工業株式会社 Refrigeration equipment
JP2010127563A (en) * 2008-11-28 2010-06-10 Sanden Corp Refrigerating system
JP4550153B2 (en) * 2009-07-30 2010-09-22 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
JP2011214753A (en) * 2010-03-31 2011-10-27 Fujitsu General Ltd Refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820683B1 (en) * 2016-11-21 2018-01-22 주식회사 오티이 Cryogenic refrigeration system capable of capacity control by intermediate pressure control
KR20180056854A (en) * 2016-11-21 2018-05-30 주식회사 에프에스티 High-capacity rapid-cooling cryogenic freezer capable of controlling the suction temperature of the compressor

Also Published As

Publication number Publication date
JP2012193897A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5241872B2 (en) Refrigeration cycle equipment
KR100958399B1 (en) Hvac system with powered subcooler
JP5991989B2 (en) Refrigeration air conditioner
EP2752627B1 (en) Refrigeration device
JP5137933B2 (en) Air conditioner
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JPH09105560A (en) Freezer
JP6379769B2 (en) Air conditioner
JP2018136107A (en) Refrigeration cycle apparatus
JP4442237B2 (en) Air conditioner
JP4096984B2 (en) Refrigeration equipment
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP4767340B2 (en) Heat pump control device
KR20110019818A (en) Defrost system
WO2019198175A1 (en) Refrigeration cycle device
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
WO2015121992A1 (en) Refrigeration cycle device
JP7375167B2 (en) heat pump
JP5571429B2 (en) Gas-liquid heat exchange type refrigeration equipment
JP6339036B2 (en) heat pump
JP2013053849A (en) Heat pump device, and outdoor unit thereof
KR20100137050A (en) Refrigeration and air conditioning system
KR100770594B1 (en) Air conditioner for Heating and Cooling in one
KR20050043089A (en) Heat pump

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5241872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250