JP5571429B2 - Gas-liquid heat exchange type refrigeration equipment - Google Patents

Gas-liquid heat exchange type refrigeration equipment Download PDF

Info

Publication number
JP5571429B2
JP5571429B2 JP2010077377A JP2010077377A JP5571429B2 JP 5571429 B2 JP5571429 B2 JP 5571429B2 JP 2010077377 A JP2010077377 A JP 2010077377A JP 2010077377 A JP2010077377 A JP 2010077377A JP 5571429 B2 JP5571429 B2 JP 5571429B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchange
gas
control valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010077377A
Other languages
Japanese (ja)
Other versions
JP2011208882A (en
Inventor
健太郎 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topre Corp
Original Assignee
Topre Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topre Corp filed Critical Topre Corp
Priority to JP2010077377A priority Critical patent/JP5571429B2/en
Publication of JP2011208882A publication Critical patent/JP2011208882A/en
Application granted granted Critical
Publication of JP5571429B2 publication Critical patent/JP5571429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、凝縮器にて凝縮した冷媒と蒸発器にて蒸発した冷媒と気液熱交換器において互いに熱交換させて各冷媒をそれぞれ過冷却及び過熱することによって冷凍能力を高めるようにした気液熱交換型冷凍装置に関するものである。   In the present invention, the refrigerant condensed in the condenser, the refrigerant evaporated in the evaporator and the gas-liquid heat exchanger are mutually heat-exchanged to supercool and superheat each refrigerant, thereby increasing the refrigeration capacity. The present invention relates to a liquid heat exchange type refrigeration apparatus.

一般に冷凍装置は、圧縮機、凝縮器、膨張弁及び蒸発器を冷媒配管によって直列に接続して閉ループの冷媒循環回路を構成するものであって、圧縮機によって圧縮された高圧のガス冷媒を凝縮器での放熱によって液化させて高圧の液冷媒とし、この液冷媒を膨張弁によって膨張(等エンタルピ膨張)させて減圧した後、沸点の下がった低圧の液冷媒を蒸発器において蒸発させ、蒸発に必要な蒸発潜熱を庫内等から奪うことによって庫内等を冷却するものである。   In general, a refrigeration system connects a compressor, a condenser, an expansion valve, and an evaporator in series by a refrigerant pipe to form a closed-loop refrigerant circulation circuit, and condenses high-pressure gas refrigerant compressed by the compressor. The refrigerant is liquefied by heat dissipation in the evaporator to form a high-pressure liquid refrigerant, and this liquid refrigerant is expanded by the expansion valve (isenthalpy expansion) and depressurized. By taking necessary latent heat of vaporization from the inside of the cabinet, the inside of the cabinet is cooled.

斯かる冷凍装置の冷凍能力或いは成績係数(COP)を向上させる方法として、冷媒循環回路の凝縮器と膨張弁との間に気液熱交換器を設け、凝縮器にて凝縮した冷媒と蒸発器にて蒸発した冷媒とを気液熱交換器において互いに熱交換させて各冷媒をそれぞれ過冷却及び過熱する方法が知られている。   As a method for improving the refrigeration capacity or coefficient of performance (COP) of such a refrigeration apparatus, a gas-liquid heat exchanger is provided between the condenser and the expansion valve of the refrigerant circulation circuit, and the refrigerant and evaporator condensed in the condenser There is known a method in which the refrigerant evaporated in step 1 is heat-exchanged with each other in a gas-liquid heat exchanger to supercool and superheat each refrigerant.

ところで、特許文献1には、気液熱交換器を備えた冷凍空調装置において、冷媒循環回路の凝縮器と気液熱交換器の間及び気液熱交換器と蒸発器の間に膨張弁をそれぞれ設け、凝縮器出口の冷媒温度と圧縮機入口の冷媒温度に基づいて膨張弁の開度を制御し、蒸発器出口での冷媒の乾き度を所定の目標値に保つことによって高効率な運転を実現するとともに、蒸発器が乾くことに起因する露飛び等の不具合を解消する提案がなされている。   By the way, in patent document 1, in the refrigeration air conditioner provided with the gas-liquid heat exchanger, an expansion valve is provided between the condenser and the gas-liquid heat exchanger of the refrigerant circulation circuit and between the gas-liquid heat exchanger and the evaporator. Efficient operation by installing each, controlling the opening of the expansion valve based on the refrigerant temperature at the condenser outlet and the refrigerant temperature at the compressor inlet, and keeping the refrigerant dryness at the evaporator outlet at a predetermined target value In addition, a proposal has been made to solve problems such as dew splattering due to drying of the evaporator.

特開2009−162388号公報JP 2009-162388 A

ところで、特許文献1において提案された冷凍空調装置を冷凍車のように圧縮機の回転数が大きく変動する環境下で運転した場合、気液熱交換器の熱交換性能が圧縮機の回転数の変動に伴って大きく変化する。例えば、圧縮機の回転数が低下すると冷媒循環量が減少し、気液熱交換器での熱交換量不足による冷却不良が発生し、逆に圧縮機の回転数が増加すると冷媒循環量が増大し、熱交換量過多による圧縮機出口での冷媒の吐出温度の上昇を招き、冷凍機油が劣化する等の問題が発生する。   By the way, when the refrigerating and air-conditioning apparatus proposed in Patent Document 1 is operated in an environment where the rotation speed of the compressor greatly varies like a refrigeration vehicle, the heat exchange performance of the gas-liquid heat exchanger is equal to the rotation speed of the compressor. It changes greatly with fluctuation. For example, if the rotation speed of the compressor decreases, the refrigerant circulation rate decreases, causing a cooling failure due to insufficient heat exchange in the gas-liquid heat exchanger. Conversely, if the compressor rotation rate increases, the refrigerant circulation rate increases. However, the refrigerant discharge temperature rises at the compressor outlet due to the excessive heat exchange amount, causing problems such as deterioration of the refrigeration oil.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、圧縮機の回転数の変動に伴う冷凍能力の変動を抑えるとともに、圧縮機出口での冷媒の吐出温度の上昇を抑えて冷凍機油の劣化を防ぐことができる気液熱交換型冷凍装置を提供することにある。   The present invention has been made in view of the above-described problems, and its intended process is to suppress fluctuations in the refrigeration capacity accompanying fluctuations in the rotational speed of the compressor and to suppress an increase in the refrigerant discharge temperature at the compressor outlet. Another object of the present invention is to provide a gas-liquid heat exchange type refrigerating apparatus that can prevent deterioration of refrigerating machine oil.

上記目的を達成するため、請求項1記載の発明は、少なくとも圧縮機、凝縮器、熱交制御弁、気液熱交換器、膨張弁及び蒸発器を冷媒配管によって直列に接続して閉ループの冷媒循環回路を構成し、前記凝縮器にて凝縮した後に前記熱交制御弁によって減圧された冷媒と前記蒸発器にて蒸発した冷媒とを前記気液熱交換器において熱交換させて各冷媒をそれぞれ過冷却及び過熱するようにした気液熱交換型冷凍装置において、前記冷媒循環回路の前記圧縮機と前記凝縮器の間に吐出温度センサを設けるとともに、前記熱交制御弁と前記気液熱交換器との間に圧力センサを設け、前記吐出温度センサによって検出される圧縮機出口の冷媒温度と前記圧力センサによって検出される熱交制御弁出口の冷媒圧力に基づいて前記熱交制御弁の開度を制御して、前記熱交制御弁を通過して前記気液熱交換器を流れる冷媒の流速を制御する制御手段を設けたことを特徴とする。 In order to achieve the above object, a first aspect of the present invention is a closed-loop refrigerant in which at least a compressor, a condenser, a heat exchange control valve, a gas-liquid heat exchanger, an expansion valve, and an evaporator are connected in series by a refrigerant pipe. A circulation circuit is configured, and after the refrigerant is condensed in the condenser, the refrigerant decompressed by the heat exchange control valve and the refrigerant evaporated in the evaporator are subjected to heat exchange in the gas-liquid heat exchanger, and each refrigerant is In the gas-liquid heat exchange type refrigeration apparatus that is supercooled and overheated, a discharge temperature sensor is provided between the compressor and the condenser of the refrigerant circulation circuit, and the heat exchange control valve and the gas-liquid heat exchange are provided. A pressure sensor is provided between the compressor and the heat exchanger control valve to open based on the refrigerant temperature at the compressor outlet detected by the discharge temperature sensor and the refrigerant pressure at the heat exchanger valve outlet detected by the pressure sensor. Control the degree To, characterized in that a control means for controlling the flow rate of refrigerant flowing through the gas-liquid heat exchanger through the heat exchange control valve.

請求項2記載の発明は、請求項1記載の発明において、前記制御手段は、前記圧縮機の回転数が低下すると前記熱交制御弁の開度を絞り、前記圧縮機の回転数が増加すると前記熱交制御弁の開度を大きくすることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, when the rotation speed of the compressor decreases, the control means throttles the opening degree of the heat exchanger control valve and increases the rotation speed of the compressor. The opening degree of the heat exchange control valve is increased.

請求項3記載の発明は、請求項1記載の発明において、前記制御手段は、前記吐出温度センサによって検出される圧縮機出口の冷媒温度が設定値を超えると、前記熱交制御弁の開度を、該熱交制御弁で減圧された後に前記気液熱交換器を通過した冷媒が気液混合状態を維持する値まで絞ることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the present invention, when the refrigerant temperature at the compressor outlet detected by the discharge temperature sensor exceeds a set value, the control means opens the opening of the heat exchanger control valve. Is reduced to a value at which the refrigerant that has passed through the gas-liquid heat exchanger after being depressurized by the heat exchange control valve maintains a gas-liquid mixed state.

請求項1及び2記載の発明によれば、圧縮機の回転数が低下すると熱交制御弁の開度を絞るようにしたため、気液熱交換器を流れる冷媒の流速が上がって熱交換量が増え、この熱交換量の増加によって、回転数低下による冷媒循環量の減少に伴う気液熱交換器での熱交換量の減少を補償することができ、熱交換量不足による冷却不良を抑制することができる。   According to the first and second aspects of the present invention, since the opening degree of the heat exchange control valve is reduced when the rotational speed of the compressor is reduced, the flow rate of the refrigerant flowing through the gas-liquid heat exchanger is increased and the heat exchange amount is reduced. By increasing this heat exchange amount, it is possible to compensate for the decrease in heat exchange amount in the gas-liquid heat exchanger due to the decrease in the refrigerant circulation amount due to the decrease in the rotational speed, and suppress the cooling failure due to insufficient heat exchange amount be able to.

又、圧縮機の回転数が増加すると熱交制御弁の開度を大きくするようにしたため、気液熱交換器を流れる冷媒の流速が下がって熱交換量が減少し、この熱交換量の減少によって、回転数増大による冷媒循環量の増加に伴う気液熱交換器での熱交換量の増加を補償することができ、熱交換量過多による圧縮機出口での冷媒の吐出温度の上昇を抑制することができる。   In addition, since the opening degree of the heat exchange control valve is increased as the number of rotations of the compressor increases, the flow rate of the refrigerant flowing through the gas-liquid heat exchanger decreases, the heat exchange amount decreases, and this heat exchange amount decreases. Can compensate for the increase in the heat exchange amount in the gas-liquid heat exchanger due to the increase in the refrigerant circulation rate due to the increase in the rotational speed, and suppress the increase in the refrigerant discharge temperature at the compressor outlet due to the excessive heat exchange amount can do.

請求項3記載の発明によれば、圧縮機出口の冷媒温度が設定値を超えると、熱交制御弁で減圧された後に気液熱交換器を通過した冷媒が気液混合状態を維持する値まで熱交制御弁の開度を大きく絞るようにしたため、気液熱交換器を気液二流として通過する冷媒と蒸発器からのガス冷媒との温度差が小さくなり、気液熱交換器での両冷媒の熱交換量が低く抑えられる。このため、圧縮機入口での冷媒の過熱度が低く抑えられ、圧縮機出口での冷媒の吐出温度の上昇が抑制されて冷凍機油の劣化が防がれる。 According to the invention of claim 3, when the refrigerant temperature at the compressor outlet exceeds a set value, the value at which the refrigerant that has passed through the gas-liquid heat exchanger after being depressurized by the heat exchanger control valve maintains a gas-liquid mixed state. Since the opening degree of the heat exchanger control valve is greatly reduced until the temperature difference between the refrigerant passing through the gas-liquid heat exchanger as a gas-liquid two- phase flow and the gas refrigerant from the evaporator becomes smaller, the gas-liquid heat exchanger The amount of heat exchange between the two refrigerants can be kept low. For this reason, the degree of superheating of the refrigerant at the compressor inlet is suppressed to a low level, the rise in the refrigerant discharge temperature at the compressor outlet is suppressed, and deterioration of the refrigerating machine oil is prevented.

本発明に係る気液熱交換型冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the gas-liquid heat exchange type refrigerating device concerning the present invention. 本発明に係る気液熱交換型冷凍装置において圧縮機回転数の変動に応じて熱交制御弁の開度を制御した場合の冷媒の状態変化を示すモリエル線図である。It is a Mollier diagram which shows the state change of a refrigerant | coolant at the time of controlling the opening degree of a heat exchanger control valve according to the fluctuation | variation of compressor rotation speed in the gas-liquid heat exchange type | mold refrigerating apparatus which concerns on this invention. 気液熱交換器における凝縮液冷媒の流速と伝熱性能との関係を示す図である。It is a figure which shows the relationship between the flow rate of the condensate refrigerant | coolant in a gas-liquid heat exchanger, and heat-transfer performance. 本発明に係る気液熱交換型冷凍装置において圧縮機出口での冷媒の吐出温度が設定を超えたときに熱交制御弁の開度を制御した場合の冷媒の状態変化を示すモリエル線図である。In the gas-liquid heat exchange type refrigeration apparatus according to the present invention, a Mollier diagram showing a change in state of the refrigerant when the opening degree of the heat exchange control valve is controlled when the refrigerant discharge temperature at the compressor outlet exceeds a set value . It is.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明に係る気液熱交換型冷凍装置の冷媒回路図であり、図示の気液熱交換型冷凍装置においては、圧縮機1、凝縮器2、熱交制御弁3、気液熱交換器4、膨張弁5及び蒸発器6が冷媒配管L1,L2,L3,L4,L5によって直列に接続されて閉ループの冷媒循環回路が形成されている。ここで、熱交制御弁3は、凝縮器2と気液熱交換器4とを接続する冷媒配管L2に設けられ、膨張弁5は、気液熱交換器4と蒸発器6とを接続する冷媒配管L3に設けられている。尚、熱交制御弁3は、開度が無段階に制御される電子制御弁で構成されている。   FIG. 1 is a refrigerant circuit diagram of a gas-liquid heat exchange type refrigeration apparatus according to the present invention. In the illustrated gas-liquid heat exchange type refrigeration apparatus, a compressor 1, a condenser 2, a heat exchange control valve 3, a gas-liquid heat are shown. The exchanger 4, the expansion valve 5 and the evaporator 6 are connected in series by refrigerant pipes L1, L2, L3, L4, and L5 to form a closed loop refrigerant circulation circuit. Here, the heat exchange control valve 3 is provided in the refrigerant pipe L2 that connects the condenser 2 and the gas-liquid heat exchanger 4, and the expansion valve 5 connects the gas-liquid heat exchanger 4 and the evaporator 6. It is provided in the refrigerant pipe L3. The heat exchange control valve 3 is an electronic control valve whose opening degree is controlled steplessly.

又、本発明に係る気液熱交換型冷凍装置においては、圧縮機1と凝縮器2を接続する冷媒配管L1には吐出温度センサ7が設けられ、冷媒配管L2の熱交制御弁3と気液熱交換器4の間には圧力センサ8が設けられ、蒸発器6と気液熱交換器4とを接続する冷媒配管L4には蒸発温度センサ9が設けられており、これらの吐出温度センサ7と圧力センサ8及び蒸発温度センサ9は制御手段であるコントローラ10に電気的に接続されている。更に、電子制御弁で構成された熱交制御弁3はコントローラ10に電気的に接続されており、後述のように熱交制御弁3はコントローラ10からの制御信号によってその開度が制御される。   In the gas-liquid heat exchange type refrigeration apparatus according to the present invention, the refrigerant pipe L1 connecting the compressor 1 and the condenser 2 is provided with the discharge temperature sensor 7, and the heat exchange control valve 3 of the refrigerant pipe L2 and the air exchange control valve 3 are connected. A pressure sensor 8 is provided between the liquid heat exchangers 4, and an evaporation temperature sensor 9 is provided in the refrigerant pipe L4 connecting the evaporator 6 and the gas-liquid heat exchanger 4, and these discharge temperature sensors are provided. 7, the pressure sensor 8 and the evaporation temperature sensor 9 are electrically connected to a controller 10 which is a control means. Further, the heat exchange control valve 3 constituted by an electronic control valve is electrically connected to the controller 10, and the opening degree of the heat exchange control valve 3 is controlled by a control signal from the controller 10 as will be described later. .

次に、本発明に係る気液熱交換型冷凍装置の作用を図2に示すモリエル線図(P−i線図)を用いて以下に説明する。 Next, the operation of the gas-liquid heat exchange type refrigeration apparatus according to the present invention will be described below with reference to the Mollier diagram (Pi diagram) shown in FIG.

圧縮機1が駆動源である不図示のエンジンによって回転駆動されると、図2にaにて示す状態(圧力P、エンタルピi)にあるガス冷媒が圧縮機1によって圧縮されて図2にbにて示す状態(圧力P、エンタルピi)の高温高圧のガス冷媒となり(圧縮行程)、このガス冷媒は冷媒配管L1を通って凝縮器2へと導入される。尚、このときの圧縮機1の圧縮動力W(熱量換算)は(i−i)で表わされる。 When the compressor 1 is rotationally driven by an engine (not shown) as a drive source, the gas refrigerant in the state (pressure P 1 , enthalpy i 1 ) shown in FIG. B becomes a high-temperature and high-pressure gas refrigerant in the state (pressure P 2 , enthalpy i 2 ) (compression stroke), and this gas refrigerant is introduced into the condenser 2 through the refrigerant pipe L1. In addition, the compression power W (heat amount conversion) of the compressor 1 at this time is represented by (i 2 −i 1 ).

凝縮器2では、高温高圧のガス冷媒が外気に凝縮熱Qを放出して図2のb→cへと状態変化(相変化)して液化し(凝縮行程)、図2にcにて示す状態(圧力P、エンタルピi3)の高圧液冷媒となる。尚、このときの放熱量(凝縮熱)Qは(i−i)で表わされる。 In the condenser 2, high-temperature high-pressure gas refrigerant by releasing heat of condensation Q 2 to the outside air and liquefied by the state change (phase change) to the b → c 2 (condensation stroke) at c in FIG. 2 state (pressure P 2, enthalpy i3) showing a high-pressure liquid refrigerant. Incidentally, the heat radiation amount of time (condensation heat) Q 2 is represented by (i 2 -i 3).

そして、上述のように凝縮器2において液化した高圧液冷媒は、図2において例えばBにて示す経路(条件)を経て状態変化する。即ち、凝縮器2において液化した高圧液冷媒は、冷媒配管L2を通って熱交制御弁3に至り、該熱交制御弁3によって圧力Pまで減圧されて断熱膨張(等エンタルピ膨張)し(膨張行程)、図2にdにて示す状態(圧力P、エンタルピi)となって、その一部がガス化する。 Then, the high-pressure liquid refrigerant liquefied in the condenser 2 as described above changes its state through a path (condition) indicated by B in FIG. That is, high-pressure liquid refrigerant that has liquefied in the condenser 2 reaches the heat exchange control valve 3 through the refrigerant pipe L2, it is depressurized by the heat exchange control valve 3 to a pressure P 3 adiabatic expansion (isentropic expansion) and ( 2 (expansion stroke), a state indicated by d in FIG. 2 (pressure P 3 , enthalpy i 3 ), and a part thereof is gasified.

上述のように一部がガス化した冷媒は、冷媒配管L2を通って気液熱交換器4に導入されるが、この気液熱交換器4には後述のように蒸発器6において蒸発して気化したガス冷媒が冷媒配管L4を経て導入されているため、冷媒配管L2から気液熱交換器4へと導入された冷媒(一部がガス化した冷媒)は蒸発器6にて蒸発して冷媒配管L4から導入される温度の低いガス冷媒との熱交換によって過冷却され、図2にeにて示す状態(圧力P、エンタルピi)の液冷媒となる。尚、この場合の過冷却熱量ΔQは(i−i)で表わされる。 The refrigerant partially gasified as described above is introduced into the gas-liquid heat exchanger 4 through the refrigerant pipe L2, and is evaporated in the evaporator 6 as described later. Since the vaporized gas refrigerant is introduced through the refrigerant pipe L4, the refrigerant (partially gasified refrigerant) introduced from the refrigerant pipe L2 to the gas-liquid heat exchanger 4 is evaporated in the evaporator 6. Then, it is supercooled by heat exchange with the low-temperature gas refrigerant introduced from the refrigerant pipe L4, and becomes a liquid refrigerant in a state indicated by e in FIG. 2 (pressure P 3 , enthalpy i 4 ). In this case, the supercooling heat quantity ΔQ 2 is represented by (i 3 −i 4 ).

そして、上述のように気液熱交換器4において過冷却された液冷媒は、膨張弁5を通過することによって再度減圧されて断熱膨張(等エンタルピ膨張)し(膨張行程)、図2のfにて示す状態(圧力P、エンタルピi)へと状態変化してその一部がガス化し、減圧されることによって沸点が下がる。このように膨張弁5によって減圧されて沸点が下がった冷媒は、冷媒配管L3から蒸発器6へと導入され、該蒸発器6を流れる過程で周囲から蒸発熱Qを奪って蒸発してf→g(圧力P、エンタルピi)へと状態変化してガス化する(蒸発行程)。このときの蒸発熱量Q1は(i−i)で表わされるが、前述のように膨張弁5で減圧される前の冷媒は気液熱交換器4においてΔQ(=i−i)だけ過冷却されているため、この過冷却分の熱量ΔQだけ蒸発熱量が増加し、その増加分ΔQだけ冷凍能力が高められる。 Then, the liquid refrigerant supercooled in the gas-liquid heat exchanger 4 as described above is decompressed again by passing through the expansion valve 5 and undergoes adiabatic expansion (equal enthalpy expansion) (expansion stroke). The state changes to the state indicated by (pressure P 1 , enthalpy i 4 ), part of which is gasified and reduced in pressure to lower the boiling point. Thus the refrigerant that is depressurized dropped boiling point by the expansion valve 5 is introduced from the refrigerant pipe L3 to the evaporator 6, and evaporated depriving heat of evaporation Q 1 from the surroundings in the process of flowing through the evaporator 6 f → The gas changes into the gas state (pressure P 1 , enthalpy i 5 ) and gasifies (evaporation process). The amount of heat of vaporization Q1 at this time is represented by (i 5 -i 4 ), but the refrigerant before being depressurized by the expansion valve 5 is ΔQ 2 (= i 3 -i 4 ) in the gas-liquid heat exchanger 4 as described above. ), The amount of heat of evaporation is increased by the amount of heat ΔQ 2 for the amount of subcooling, and the refrigeration capacity is increased by the amount of increase ΔQ 2 .

その後、蒸発器6にて蒸発した低圧ガス冷媒は、前述のように冷媒配管L4から気液熱交換器4を流れる過程で冷媒配管L2から気液熱交換器4へと導入される高圧冷媒の過冷却に供されるために温度が上昇し、圧縮機1に吸入される段階では図2に示すg→a(圧力P、エンタルピi)へと変化して図示の熱量ΔQ(=i−i)だけ過熱される。そして、この過熱されたガス冷媒は、圧縮機1によって再度圧縮され、以後は冷媒の上記と同様の状態変化が繰り返される。 Thereafter, the low-pressure gas refrigerant evaporated in the evaporator 6 is the high-pressure refrigerant introduced from the refrigerant pipe L2 to the gas-liquid heat exchanger 4 in the process of flowing through the gas-liquid heat exchanger 4 from the refrigerant pipe L4 as described above. At the stage where the temperature rises to be used for supercooling and is sucked into the compressor 1 , it changes from g → a (pressure P 1 , enthalpy i 1 ) shown in FIG. 2 and the amount of heat ΔQ 1 (= i 1 -i 5 ) is overheated. The overheated gas refrigerant is compressed again by the compressor 1, and thereafter, the state change of the refrigerant is repeated as described above.

而して、本発明に係る気液熱交換型冷凍装置においては、以上説明した冷凍サイクルが繰り返され、蒸発器6での低温液冷媒の蒸発に伴う吸熱によって所要の冷凍が行われるが、圧縮機1から吐出されるガス冷媒の温度は吐出温度センサ7によって検出され、凝縮器2によって凝縮された後に熱交制御弁3によって減圧された冷媒の圧力は圧力センサ8によって検出され、これらの検出値はコントローラ10へと送信される。すると、コントローラ10は、吐出温度センサ7によって検出される圧縮機1の出口における冷媒温度と圧力センサ8によって検出される熱交制御弁3の出口における冷媒圧力に基づいて熱交制御弁3の開度を制御する。   Thus, in the gas-liquid heat exchange type refrigeration apparatus according to the present invention, the refrigeration cycle described above is repeated, and the required refrigeration is performed by the heat absorption accompanying the evaporation of the low-temperature liquid refrigerant in the evaporator 6, but the compression is performed. The temperature of the gas refrigerant discharged from the machine 1 is detected by the discharge temperature sensor 7, and the pressure of the refrigerant decompressed by the heat exchanger control valve 3 after being condensed by the condenser 2 is detected by the pressure sensor 8, and these are detected. The value is transmitted to the controller 10. Then, the controller 10 opens the heat exchange control valve 3 based on the refrigerant temperature at the outlet of the compressor 1 detected by the discharge temperature sensor 7 and the refrigerant pressure at the outlet of the heat exchange control valve 3 detected by the pressure sensor 8. Control the degree.

具体的には、圧縮機1の回転数が低下すると熱交制御弁3の開度を絞り、逆に圧縮機1の回転数が増加すると熱交制御弁3の開度を大きくする。又、吐出温度センサ7によって検出される圧縮機1の出口における冷媒温度が設定値を超えると、前記熱交制御弁3の開度を、該熱交制御弁3で減圧された後に気液熱交換器4を通過した冷媒が気液混合状態を維持する値まで絞る(図4参照)。   Specifically, when the rotational speed of the compressor 1 decreases, the opening degree of the heat exchange control valve 3 is reduced, and conversely, when the rotational speed of the compressor 1 increases, the opening degree of the heat exchange control valve 3 is increased. When the refrigerant temperature at the outlet of the compressor 1 detected by the discharge temperature sensor 7 exceeds a set value, the opening degree of the heat exchange control valve 3 is reduced by the heat exchange control valve 3 and then the gas-liquid heat. The refrigerant that has passed through the exchanger 4 is throttled to a value that maintains the gas-liquid mixed state (see FIG. 4).

本発明に係る気液熱交換型冷凍装置を例えば冷凍車に搭載した場合、エンジンによって駆動される圧縮機1の回転数は冷凍車の走行状態によって変動する。 If the gas-liquid heat exchanger replaceable refrigeration apparatus according to the present invention is mounted, for example, refrigerated vehicle, the rotational speed of the compressor 1 which is driven by the engine varies by the running condition of the refrigerated vehicle.

例えば、圧縮機1の回転数が低下すると冷媒循環回路における冷媒の循環量が減少するために冷凍能力が低下するが、この場合は前述のようにコントローラ10は熱交制御弁3の開度を絞るようにしたため、気液熱交換器4を流れる冷媒の流速が上がって熱交換量が増え、この熱交換量の増加によって、回転数低下による冷媒循環量の減少に伴う気液熱交換器4での熱交換量の減少が補償され、熱交換量不足による冷却不良が抑制される。   For example, when the rotational speed of the compressor 1 is reduced, the refrigerant circulation amount in the refrigerant circulation circuit is reduced, so that the refrigeration capacity is lowered. In this case, the controller 10 increases the opening degree of the heat exchanger control valve 3 as described above. Since the flow is reduced, the flow rate of the refrigerant flowing through the gas-liquid heat exchanger 4 is increased and the heat exchange amount is increased. By the increase in the heat exchange amount, the gas-liquid heat exchanger 4 is associated with a decrease in the refrigerant circulation amount due to a decrease in the rotational speed. The decrease in the heat exchange amount at is compensated, and poor cooling due to insufficient heat exchange amount is suppressed.

ここで、凝縮器2において液化した高圧液冷媒が熱交制御弁3から気液熱交換器4を経て膨張弁5へと流れるときの状態変化を例えば図2にB,C,Dにて示す。Bにて示す状態で運転している場合には熱交制御弁3によって圧力がPからPへと減圧されるが、圧縮機1の回転数が低下すると、その回転数の低下の度合いに応じて熱交制御弁3を絞って図2のC,Dにて示すように圧力P’,P”(P>P’>P”)まで減圧すれば、気液熱交換器4を流れる冷媒の流速が上がって図示のように熱交換量が増えるため、前述のように熱交換量不足による冷却不良を抑制することができる。 Here, the state change when the high-pressure liquid refrigerant liquefied in the condenser 2 flows from the heat exchanger control valve 3 through the gas-liquid heat exchanger 4 to the expansion valve 5 is shown by B, C, and D in FIG. . When operating in the state indicated by B, the pressure is reduced from P 2 to P 3 by the heat exchanger control valve 3, but when the rotation speed of the compressor 1 decreases, the degree of decrease in the rotation speed If the heat exchange control valve 3 is throttled to reduce the pressure to pressures P 3 ′ and P 3 ″ (P 3 > P 3 ′> P 3 ″) as shown by C and D in FIG. Since the flow rate of the refrigerant flowing through the exchanger 4 increases and the amount of heat exchange increases as shown in the figure, it is possible to suppress the cooling failure due to insufficient heat exchange amount as described above.

図3に気液熱交換器4における冷媒の流速(m/s)と伝熱性能KA(W/K)との関係を示すが、伝熱性能(熱交換量)KAは冷媒の流速の増加と共に増大することが分かる。   FIG. 3 shows the relationship between the refrigerant flow rate (m / s) and the heat transfer performance KA (W / K) in the gas-liquid heat exchanger 4, and the heat transfer performance (heat exchange amount) KA is an increase in the refrigerant flow rate. It turns out that it increases with.

ここで、熱交制御弁3を用いないで気液熱交換器4において冷媒を過冷却した後に膨張弁5によって膨張させた場合の過程(条件)を図2にAにて示すが、この過程Aを経て冷媒を状態変化させた場合を基準として各過程B,C,Dを経て冷媒を状態変化させたときの冷媒の流速と気液熱交換器4での熱交換量及び性能アップ率をシミュレーションによって求めると表1に示すような結果が得られた。   Here, a process (condition) when the refrigerant is supercooled in the gas-liquid heat exchanger 4 without using the heat exchanger control valve 3 and then expanded by the expansion valve 5 is shown by A in FIG. The flow rate of the refrigerant, the amount of heat exchange in the gas-liquid heat exchanger 4 and the performance increase rate when the refrigerant is changed through the processes B, C, D with reference to the case where the refrigerant is changed through A. When obtained by simulation, the results shown in Table 1 were obtained.

Figure 0005571429
表1の結果から明らかなように、圧縮機1の回転数が低下した場合に熱交制御弁3を絞ると流速が増大して気液熱交換器4での交換熱量が増え、結果的に性能がアップして冷凍能力が高められることが分かる。
Figure 0005571429
As is clear from the results in Table 1, when the heat exchange control valve 3 is throttled when the rotation speed of the compressor 1 is reduced, the flow rate increases and the amount of heat exchanged in the gas-liquid heat exchanger 4 increases. It can be seen that the performance is improved and the refrigeration capacity is increased.

逆に、圧縮機1の回転数が増加すると冷媒循環量が増大し、気液熱交換器4での交換熱量過多による圧縮機1の出口における冷媒の吐出温度が上昇し、冷凍機油が劣化する等の問題が発生するため、前述のようにコントローラ10は熱交制御弁3を開いてその開度が大きくなるよう制御する。   Conversely, when the rotation speed of the compressor 1 increases, the refrigerant circulation amount increases, the refrigerant discharge temperature rises at the outlet of the compressor 1 due to excessive heat exchange in the gas-liquid heat exchanger 4, and the refrigeration oil deteriorates. As described above, the controller 10 opens the heat exchange control valve 3 and controls the opening degree to increase.

例えば、図2のDにて示す状態で運転している場合には熱交制御弁3によって圧力がP2からP3”へと減圧されるが、圧縮機1の回転数が増加すると、その回転数の増加の度合いに応じて熱交制御弁3を開いて図2のC,Bにて示すように圧力P3’,P3(P3”<P3’<P3)まで減圧すれば、気液熱交換器4を流れる冷媒の流速が下がって図示のように熱交換量が減少するため、熱交換量過多による圧縮機1の出口での冷媒の吐出温度の上昇が抑えられて冷凍油の劣化が防がれる。 For example, when operating in the state indicated by D in FIG. 2, the pressure is reduced from P2 to P3 ″ by the heat exchange control valve 3, but when the rotation speed of the compressor 1 increases, the rotation speed If the heat exchanger control valve 3 is opened according to the degree of increase of the pressure and the pressure is reduced to the pressures P3 ′ and P3 (P3 ″ <P3 ′ <P3) as shown by C and B in FIG. 2, the gas-liquid heat exchanger since the amount of heat exchange as shown down the flow velocity of the refrigerant flowing in the 4 decreases, the refrigerating machine oil degradation increase in the discharge temperature of the refrigerant at the outlet of the compressor 1 by heat exchange amount excessive is suppressed and it is proof Can be removed.

表1の結果から明らかなように、圧縮機1の回転数が増加した場合に熱交制御弁3を開くと流速が減少して気液熱交換器4での交換熱量が減少し、結果的に性能がダウンして冷凍能力が下がることが分かる。   As is apparent from the results in Table 1, when the heat exchange control valve 3 is opened when the number of rotations of the compressor 1 is increased, the flow rate is decreased and the amount of heat exchanged in the gas-liquid heat exchanger 4 is decreased. It can be seen that the performance decreases and the refrigeration capacity decreases.

そして、本発明に係る気液熱交換型冷凍装置においては、吐出温度センサ7によって検出される圧縮機1の出口での冷媒温度が設定値を超えると、前述のようにコントローラ10は熱交制御弁3の開度を、該熱交制御弁3で減圧された後に気液熱交換器4を通過した冷媒が気液混合状態を維持する値まで絞るようにしている。   In the gas-liquid heat exchange type refrigeration apparatus according to the present invention, when the refrigerant temperature at the outlet of the compressor 1 detected by the discharge temperature sensor 7 exceeds the set value, the controller 10 controls the heat exchange as described above. The opening degree of the valve 3 is reduced to a value at which the refrigerant that has passed through the gas-liquid heat exchanger 4 after being depressurized by the heat exchange control valve 3 maintains a gas-liquid mixed state.

例えば、凝縮器2において液化した高圧液冷媒が熱交制御弁3から気液熱交換器4を経て膨張弁5へと流れるときの状態変化を例えば図4にB,C,Dにて示すが、凝縮器2において液化した高圧液冷媒を熱交制御弁3を絞ることによって圧力PからP’,P”へと大きく減圧させれば、Bにて示す状態で運転している場合には熱交制御弁3によって圧力がPからPへと減圧されるが、圧縮機1の回転数が低下すると、その回転数の低下の度合いに応じて熱交制御弁3を絞って図2のC,Dにて示すように圧力P3’,P3”(P”<P’<P)まで減圧すれば、熱交制御弁3で減圧された後に気液熱交換器4を通過した冷媒が気液混合状態を維持する。 For example, the state change when high-pressure liquid refrigerant liquefied in the condenser 2 flows from the heat exchange control valve 3 through the gas-liquid heat exchanger 4 to the expansion valve 5 is shown by B, C, and D in FIG. If the high pressure liquid refrigerant liquefied in the condenser 2 is greatly reduced from the pressure P 2 to P 3 ′, P 3 ″ by restricting the heat exchange control valve 3, the vehicle is operating in the state indicated by B the Although pressure by heat exchange control valve 3 is reduced from P 2 to P 3, when the rotational speed of the compressor 1 decreases, concentrates heat exchange control valve 3 according to the degree of reduction of the rotational speed C of FIG. 2, the pressure as indicated by D P3 ', P3 "(P 3"<P3'<P 3) if reduced to, gas-liquid heat exchanger 4 is reduced by the heat exchange control valve 3 The refrigerant that passed through maintains a gas-liquid mixed state.

上述のように熱交制御弁3で減圧された後に気液熱交換器4を通過した冷媒が気液混合状態を維持すると、気液熱交換器4を気液二流として通過する冷媒と蒸発器6から冷媒配管L4を経て気液熱交換器4へと導入されるガス冷媒との温度差が小さくなり、気液熱交換器4での両冷媒の熱交換量が低く抑えられる。このため、圧縮機1の入口での冷媒の過熱度が低く抑えられ、圧縮機1の出口での冷媒の吐出温度の上昇が抑制されて冷凍機油の劣化が防がれる。 When the refrigerant that has passed through the gas-liquid heat exchanger 4 after being depressurized by the heat exchange control valve 3 as described above maintains a gas-liquid mixed state, the refrigerant that passes through the gas-liquid heat exchanger 4 as a gas-liquid two- phase flow The temperature difference from the gas refrigerant introduced from the evaporator 6 to the gas-liquid heat exchanger 4 via the refrigerant pipe L4 is reduced, and the heat exchange amount of both refrigerants in the gas-liquid heat exchanger 4 is kept low. For this reason, the degree of superheating of the refrigerant at the inlet of the compressor 1 is suppressed to a low level, and an increase in the discharge temperature of the refrigerant at the outlet of the compressor 1 is suppressed, thereby preventing deterioration of the refrigerator oil.

ここで、熱交制御弁を用いないで気液熱交換器4において冷媒を過冷却した後に膨張弁5によって膨張させた場合の過程を図4にAにて示すが、この過程Aを経て冷媒を状態変化させた場合を基準として各過程B,C,Dを経て冷媒を状態変化させたときの冷媒の流速と気液熱交換器4での熱交換量及び性能アップ率をシミュレーションによって求めると表2に示すような結果が得られた。   Here, the process when the refrigerant is supercooled in the gas-liquid heat exchanger 4 without using the heat exchanger control valve and then expanded by the expansion valve 5 is shown by A in FIG. When the state of the refrigerant is changed, the flow rate of the refrigerant, the heat exchange amount in the gas-liquid heat exchanger 4 and the performance increase rate when the state of the refrigerant is changed through the processes B, C, and D are obtained by simulation. Results as shown in Table 2 were obtained.

Figure 0005571429

表2の結果から明らかなように、吐出温度センサ7によって検出される圧縮機1の出口での冷媒温度が設定値を超えた場合に熱交制御弁3を大きく絞ると、冷媒の流速が増大する反面、気液熱交換器4を気液二流として通過する冷媒と蒸発器6から冷媒配管L4を経て気液熱交換器4へと導入されるガス冷媒との温度差が小さくなるため、結果的に気液熱交換器4での両冷媒の熱交換量が低く抑えられ、冷凍能力が低下することが分かる。
Figure 0005571429

As is apparent from the results in Table 2, when the refrigerant temperature at the outlet of the compressor 1 detected by the discharge temperature sensor 7 exceeds the set value, the flow rate of the refrigerant increases when the heat exchange control valve 3 is greatly throttled. However, the temperature difference between the refrigerant passing through the gas-liquid heat exchanger 4 as a gas-liquid two- phase flow and the gas refrigerant introduced from the evaporator 6 to the gas-liquid heat exchanger 4 via the refrigerant pipe L4 is reduced. As a result, it can be seen that the heat exchange amount of both refrigerants in the gas-liquid heat exchanger 4 is kept low, and the refrigerating capacity is lowered.

以上のように、本発明によれば、圧縮機1の回転数の変動に伴う冷凍能力の変動を抑えるとともに、圧縮機1の出口での冷媒の吐出温度の上昇を抑えて冷凍機油の劣化を防ぐことができるという効果が得られる。   As described above, according to the present invention, it is possible to suppress refrigeration oil deterioration by suppressing fluctuations in the refrigerating capacity associated with fluctuations in the rotational speed of the compressor 1 and suppressing an increase in refrigerant discharge temperature at the outlet of the compressor 1. The effect that it can prevent is acquired.

1 圧縮機
2 凝縮器
3 熱交制御弁
4 気液熱交換器
5 膨張弁
6 蒸発器
7 吐出温度センサ
8 圧力センサ
9 蒸発温度センサ
10 コントローラ(制御手段)
L1〜L5 冷媒配管
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Heat exchange control valve 4 Gas-liquid heat exchanger 5 Expansion valve 6 Evaporator 7 Discharge temperature sensor 8 Pressure sensor 9 Evaporation temperature sensor 10 Controller (control means)
L1-L5 Refrigerant piping

Claims (3)

少なくとも圧縮機、凝縮器、熱交制御弁、気液熱交換器、膨張弁及び蒸発器を冷媒配管によって直列に接続して閉ループの冷媒循環回路を構成し、前記凝縮器にて凝縮した後に前記熱交制御弁によって減圧された冷媒と前記蒸発器にて蒸発した冷媒とを前記気液熱交換器において熱交換させて各冷媒をそれぞれ過冷却及び過熱するようにした気液熱交換型冷凍装置において、
前記冷媒循環回路の前記圧縮機と前記凝縮器の間に吐出温度センサを設けるとともに、前記熱交制御弁と前記気液熱交換器との間に圧力センサを設け、前記吐出温度センサによって検出される圧縮機出口の冷媒温度と前記圧力センサによって検出される熱交制御弁出口の冷媒圧力に基づいて前記熱交制御弁の開度を制御して、前記熱交制御弁を通過して前記気液熱交換器を流れる冷媒の流速を制御する制御手段を設けたことを特徴とする気液熱交換型冷凍装置。
At least a compressor, a condenser, a heat exchange control valve, a gas-liquid heat exchanger, an expansion valve, and an evaporator are connected in series by a refrigerant pipe to form a closed-loop refrigerant circulation circuit, and after being condensed in the condenser A gas-liquid heat exchange type refrigerating apparatus in which the refrigerant decompressed by the heat exchange control valve and the refrigerant evaporated in the evaporator are subjected to heat exchange in the gas-liquid heat exchanger to supercool and superheat each refrigerant. In
A discharge temperature sensor is provided between the compressor and the condenser in the refrigerant circulation circuit, and a pressure sensor is provided between the heat exchange control valve and the gas-liquid heat exchanger, and is detected by the discharge temperature sensor. The opening degree of the heat exchange control valve is controlled based on the refrigerant temperature at the compressor outlet and the refrigerant pressure at the heat exchange control valve outlet detected by the pressure sensor, and passes through the heat exchange control valve. A gas-liquid heat exchange type refrigeration apparatus comprising a control means for controlling the flow rate of the refrigerant flowing through the liquid heat exchanger.
前記制御手段は、前記圧縮機の回転数が低下すると前記熱交制御弁の開度を絞り、前記圧縮機の回転数が増加すると前記熱交制御弁の開度を大きくすることを特徴とする請求項1記載の気液熱交換型冷凍装置。   The control means throttles the opening degree of the heat exchange control valve when the rotation speed of the compressor decreases, and increases the opening degree of the heat exchange control valve when the rotation speed of the compressor increases. The gas-liquid heat exchange type refrigeration apparatus according to claim 1. 前記制御手段は、前記吐出温度センサによって検出される圧縮機出口の冷媒温度が設定値を超えると、前記熱交制御弁の開度を、該熱交制御弁で減圧された後に前記気液熱交換器を通過した冷媒が気液混合状態を維持する値まで絞ることを特徴とする請求項1記載の気液熱交換型冷凍装置。
When the refrigerant temperature at the compressor outlet detected by the discharge temperature sensor exceeds a set value, the control means reduces the opening degree of the heat exchange control valve after the pressure is reduced by the heat exchange control valve. The gas-liquid heat exchange type refrigeration apparatus according to claim 1, wherein the refrigerant that has passed through the exchanger is throttled to a value that maintains a gas-liquid mixed state.
JP2010077377A 2010-03-30 2010-03-30 Gas-liquid heat exchange type refrigeration equipment Expired - Fee Related JP5571429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077377A JP5571429B2 (en) 2010-03-30 2010-03-30 Gas-liquid heat exchange type refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077377A JP5571429B2 (en) 2010-03-30 2010-03-30 Gas-liquid heat exchange type refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2011208882A JP2011208882A (en) 2011-10-20
JP5571429B2 true JP5571429B2 (en) 2014-08-13

Family

ID=44940130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077377A Expired - Fee Related JP5571429B2 (en) 2010-03-30 2010-03-30 Gas-liquid heat exchange type refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5571429B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978242B2 (en) * 2017-07-25 2021-12-08 東プレ株式会社 Refrigerant circuit equipment
CN108716763B (en) * 2018-05-08 2020-09-25 青岛海尔空调器有限总公司 Air conditioner
CN115962424A (en) * 2021-09-17 2023-04-14 中兴智能科技南京有限公司 Gas-liquid heat exchange treatment method and device, storage medium and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693562B2 (en) * 2000-10-23 2005-09-07 松下エコシステムズ株式会社 Refrigeration cycle apparatus and refrigeration cycle control method
JP2002130849A (en) * 2000-10-30 2002-05-09 Calsonic Kansei Corp Cooling cycle and its control method
JP2005351537A (en) * 2004-06-10 2005-12-22 Matsushita Electric Ind Co Ltd Refrigerating cycle system and its control method
JP2007101069A (en) * 2005-10-05 2007-04-19 Mitsubishi Electric Corp Air conditioner
JP2009092258A (en) * 2007-10-04 2009-04-30 Panasonic Corp Refrigerating cycle device
JP4884365B2 (en) * 2007-12-28 2012-02-29 三菱電機株式会社 Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device

Also Published As

Publication number Publication date
JP2011208882A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5241872B2 (en) Refrigeration cycle equipment
JP6053826B2 (en) Air conditioner
JP4895883B2 (en) Air conditioner
CN105627649A (en) Refrigeration cycle apparatus
CN107076473A (en) Cooling system
JP5412193B2 (en) Turbo refrigerator
JP2007225140A (en) Turbo refrigerating machine, and control device and method of turbo refrigerating machine
JP6388260B2 (en) Refrigeration equipment
WO2014038028A1 (en) Refrigerating device
JP5571429B2 (en) Gas-liquid heat exchange type refrigeration equipment
WO2017179210A1 (en) Refrigerating device
JP2001004235A (en) Steam compression refrigeration cycle
CN102997527B (en) Gas-liquid heat exchange type refrigeration device
JP2008096072A (en) Refrigerating cycle device
JP6339036B2 (en) heat pump
JP2015087020A (en) Refrigeration cycle device
TWI568984B (en) Gas - liquid heat exchange type refrigeration device
JP6978242B2 (en) Refrigerant circuit equipment
JPWO2016207992A1 (en) Air conditioner
CN104676936A (en) Turbo-refrigerator
JPWO2020008916A1 (en) Refrigeration cycle device and its control method
JP6169003B2 (en) Refrigeration equipment
JP2009024998A (en) Supercooling device
JP2009024999A (en) Supercooling device
JP2008082677A (en) Supercooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R150 Certificate of patent or registration of utility model

Ref document number: 5571429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees