JP5234580B2 - 回転機ロータ冷却装置および方法 - Google Patents

回転機ロータ冷却装置および方法 Download PDF

Info

Publication number
JP5234580B2
JP5234580B2 JP2007291359A JP2007291359A JP5234580B2 JP 5234580 B2 JP5234580 B2 JP 5234580B2 JP 2007291359 A JP2007291359 A JP 2007291359A JP 2007291359 A JP2007291359 A JP 2007291359A JP 5234580 B2 JP5234580 B2 JP 5234580B2
Authority
JP
Japan
Prior art keywords
rotor
refrigerant
rotor cooling
rotating machine
cooling wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007291359A
Other languages
English (en)
Other versions
JP2009118693A (ja
Inventor
誠二 山下
正 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2007291359A priority Critical patent/JP5234580B2/ja
Publication of JP2009118693A publication Critical patent/JP2009118693A/ja
Application granted granted Critical
Publication of JP5234580B2 publication Critical patent/JP5234580B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Description

本発明は、回転機のロータを冷却する方法と装置に関し、特に冷凍機に使用される電動機のロータ冷却に適した回転機ロータ冷却構造に関する。
電動機を運転すると、ステータやロータの温度が上昇し、永久磁石やコイルを損傷するおそれがある。そこで、通常電動機には空冷、あるいはさらに効果的な油冷の冷却機構が組み込まれている。しかし、特に、高速回転するロータについては有効な除熱方法が無く、簡単安価で効果的な冷却構造の開発が待たれている。
たとえば、特許文献1には、キャンドモータの冷却構造が開示されている。開示された冷却構造は、ロータ室の底部に潤滑油を溜めて、ロータを漬けることにより冷却すると共に、ロータの円周部に設けたフィンで潤滑油を跳ね上げ、油滴として分散させることにより軸受の潤滑やロータ室内壁面の腐食防止などを行う。
しかし、特許文献1に記載された冷却構造はロータ回転に対する抵抗が大きく、高速回転するロータに適用することは困難である。
また、特許文献2には、多段圧縮冷凍機の電動機ロータを冷却する方法が開示されている。開示方法は、多段圧縮機から吐出されたガス冷媒を凝縮液化する凝縮器と液冷媒を減圧冷却する中間冷却器と中間冷却器から抽出した液冷媒を蒸発させる蒸発器を具備した冷凍機の圧縮機駆動用電動機の冷却方法に関し、蒸発器から抽出した冷凍機用液冷媒でステータを冷却し、中間冷却器で蒸発したガス冷媒でロータを冷却することを特徴とする。
従来のようにステータの内周面とロータの外周面のギャップに無駄に多量の気液二相冷媒を供給して冷却する方法と比較すると、特許文献2に記載された方法は、ステータを液冷媒、ロータをガス冷媒で別々に冷却するので、ステータを効果的に冷却すると共に、ロータの回転抵抗が少なくなり電動機の機械効率、ひいては冷凍機の効率が向上する。
しかし、特許文献2記載のロータ冷却方法では、ガス冷媒の顕熱により冷却するので、大量のガス冷媒を供給するため余分な圧縮動力を必要とし冷凍機の効率を十分向上させることができない。
さらに、特許文献3には、ロータの内側に回転軸に対向する冷却面を有し、軸中心部から供給された液冷媒がその冷却面に沿って流れるようにしたロータ冷却構造であって、冷却面の端面に環状の突起などの堰を設けて、ロータが高速回転するときにも冷媒を一定の深さに保持して冷却能を維持するようにしたものである。
高速運転するロータでは、液冷媒が強力な遠心力により冷却面に押し付けられると共に、冷却面上に貯留する量が減るため、液膜の厚さが非常に薄くなり、その結果液膜が途切れたりして、液膜流れが不安定になり、冷却性能が低下する。また、液膜の厚さを確保するために、冷媒の流入量を増加させると、ロータの動力損失を増大させる問題があった。
特許文献3記載の方法では、冷却面の端部に環状の突起を設けて堰とし、ロータ冷却面上の冷媒膜の厚さを確保することにより高い伝熱係数を維持して、冷却効果を高めている。
しかし、開示方法では、冷媒の顕熱を利用して冷却するため、大量の冷媒を循環させる必要がある。また、開示方法では、冷媒をロータ軸内に設けた軸心流路から供給するが、軸心流路が回転するため、固定部との間をシールする複雑な機構を備える必要がある。なお、実際には特許文献3に記載の通り、精密なシール機構を備える代わりに潤滑油を冷媒として利用することが推奨されると考えられる。
なお、回転機ロータには微小なロータ重量偏差が必ず存在するので、回転中心とロータ中心に偏差が生じ、これに起因する振れ回りが起こる。
ロータ内部に液冷媒を導入する冷却方法では、液がロータ重量偏差の大きい側に偏るので、重量偏差を助長してさらに液層の偏りを大きくし、ロータダイナミクス上不安定な系を形成し、特に高速運転を困難にする傾向がある。
また、ロータが振れ回りするので、冷媒の偏在位置が固定化して、常時冷却されない部分が生じることになる。
ロータの冷却が不十分であると、PM(永久磁石)型電動機の場合は永久磁石が高温になって減磁する問題が生じ、また、永久磁石を用いない電動機では巻線の温度が上昇し巻線の被覆が溶けて絶縁不良が生じる。さらに、熱膨張により、軸受などのクリアランスが変化して焼き付きが生じるおそれがある。
特開2006−342721号公報 特開平11−132581号公報 特開2005−198451号公報
そこで、本発明が解決しようとする課題は、簡単な構造で回転機ロータを効率的に均等に冷却する回転機ロータ冷却方法および冷却装置を提供することである。また、特に圧縮型冷凍機の電動機ロータに最適に適用できる冷却方法と装置を提供することを目的とする。
上記課題を解決するため、本発明の回転機ロータ冷却構造は、ロータの内側に少なくとも一端が開放されたシリンダ面で構成されるロータ冷却壁を有し、ロータ冷却壁の開放端側から挿入されロータ冷却壁に冷媒を供給するノズルを備え、ロータ冷却壁の面のロータの中心軸方向にロータ冷却壁の一端から他端まで冷媒が遠心力で薄膜化したときの膜厚より高い複数の仕切りが設けられて、ノズルからロータ冷却壁面に供給される冷媒の蒸発潜熱を使ってロータを冷却することを特徴とする。
本発明の回転機ロータ冷却構造によれば、ロータ冷却壁に供給された冷媒が回転による遠心力でロータ冷却壁の表面に薄膜を形成するので、蒸発潜熱を使って効率よくロータを冷却することができる。冷媒薄膜の膜厚は、冷媒の種類と遠心力により異なるが、通常の高速運転で0.1mmから0.6mm程度になり、ロータ冷却壁から冷媒への伝熱効率は薄膜効果により十分に高い値を示す。
本発明の回転機ロータ冷却構造は、電動機、発電機、過給機、工作機械等のロータ構造を有する機器に適用することができる。なお、工作機械においても、回転軸よりワークへの伝熱が加工精度を劣化させるので、本発明の冷却構造を適用してロータを冷却することが好ましい。
さらに、ロータ冷却壁面に、ロータの中心軸方向にロータ冷却壁の一端から他端まで複数の仕切りを設けた構成であれば、回転軸位置に偏芯があって振れ回りしてもロータ冷却壁に押し付けられた冷媒が仕切りで仕切られるため、液膜の偏りを防ぎ、ロータダイナミックスへの悪影響や冷却効果の偏りを防止することができる。
なお、軸方向の複数の仕切りは周に沿って等間隔に設けても、異なる幅で設けてもよい。また、軸に平行に設けても、軸に対して角度を有するようにしてもよい。
仕切りは冷媒の乗り越えを防いでロータ冷却壁の部分ごとに均質な冷却を行うために設けられるので、仕切りは端から端まで連続したものであって、高さは冷媒が遠心力で薄膜化したときの膜厚を越えていることが好ましい。
ただし、仕切りの途中に切り欠きを持たせて、冷媒の一部が仕切りを越えて流通できるようにすることもできる。
ノズルは、ごく少量ずつの冷媒を連続的に供給してロータ冷却壁の表面に均等に配分するようにすることが好ましい。
ロータを冷却するために所定の温度で作動する冷媒が蒸発して潜熱を奪うようにするためには、冷媒はロータ冷却過程において液相から気相へ相変化するものである必要がある。このような冷媒として、炭化水素、アンモニア、水などが利用できる。
また、冷媒の温度あるいは圧力を適正に維持したり冷媒が外部に漏洩することを防ぐため、冷媒流路は密閉構造とすることが好ましい。
特に、空調などに用いる蒸気圧縮型冷凍機の圧縮機駆動用電動機のロータ冷却を行う場合には、冷凍機で使用する冷媒の一部を使用することにより、冷却機構をより単純化、小型化および低コスト化することができ、さらに保守作業も簡素化することができる。
冷凍機の冷媒を用いてロータを冷却する機構では、冷凍機の蒸発器から液体状態の冷媒を抽出して、ノズルを介してロータ内側のロータ冷却壁に供給し、ロータの熱を奪って気化した冷媒は圧縮機の吸気側に注入される。
このような構造では、別途、ロータ冷却用冷媒の放熱処理機構を設けずに、既存の冷凍サイクルを利用して冷媒処理を行うことができる。
さらに、上記課題を解決するため、本発明の回転機ロータ冷却方法は、回転機のロータの内側に少なくとも一端が開放されたシリンダ面で構成されたロータ冷却壁を備えたロータを使用し、ロータの回転中にロータ冷却壁に液体冷媒を連続的に供給し、供給された冷媒をロータの回転による遠心力でロータ冷却壁表面に押し付けて薄膜化し、ロータの熱により該冷媒の沸点以上に加熱され蒸発するときの蒸発潜熱を使ってロータを冷却することを特徴とする。
本発明の冷却方法によれば、簡単な構造の冷却装置を使って、回転機ロータを均等に効果的に冷却することができる。
特に、蒸気圧縮型冷凍機における圧縮機を駆動する電動機を対象として、冷媒は蒸気圧縮型冷凍機の作動冷媒の一部を使用するものとして、冷凍機の蒸発器から抽出してロータ冷却壁に供給され、ロータ冷却壁で蒸発した気体冷媒は蒸気圧縮型冷凍機の圧縮機の吸気側に供給されることが好ましい。
このように、冷凍機の冷却サイクルを利用することにより、ロータ冷却機構をより単純化、小型化することができ、かつ僅かな運転費用でロータ冷却を行うことができる。
以下、実施例に基づき、図面を用いて、本発明の回転機ロータ冷却機構について詳細に説明する。なお、本実施例は電動機に適用したものであるが、本発明は、電動機、発電機、過給機、工作機械等のロータ構造を有する機器に対して同等に適用できることは言うまでもない。
図1は本実施例のロータ冷却装置の主要部を表す断面図、図2は本実施例における電動機ロータの冷却機構説明図、図3は電動機ロータの内側に設けた仕切りを説明する図2のIII−III面に関する断面図、図4はロータ冷却壁面の仕切りを例示する展開図である。
図1から図4に示したように、本実施例のロータ冷却装置10は、電動機20の電動機ロータ21の冷却を効率的に行う冷却機構である。電動機20は、ステータ24のなかで電磁力により回転する電動機ロータ21を有し、電動機ロータ21の回転は動力軸23を介して接続される外部の回転体を回転させる。電動機20を運転すると、電動機ロータ21は発熱するので、永久磁石あるいは巻線を保護するため冷却する必要がある。
本実施例のロータ冷却装置10は、電動機ロータ21内部に設けたロータ冷却壁11に液体冷媒12を導入し、液体冷媒12を遠心力で冷却壁面13に押し付け薄膜化して蒸発させることにより、少量の冷媒で効率よくロータ21を冷却する。
ロータ冷却壁11は、電動機ロータ21の内側にロータ回転軸22を中心軸14として形成されたシリンダ状の冷却壁面13で構成されたものであって、軸方向の仕切り15を備えることが好ましい。冷却壁面13は軸に平行な円筒内側面で形成されている。電動機ロータ21はロータ冷却壁11を通して吸熱され冷却される。
軸方向の仕切り15は、たとえば図4(a)に示すように、ロータ冷却壁11に等間隔に多数設けられて、冷却壁面13を短冊状のほぼ等しい領域に分割する。仕切り15は、冷媒液が隣の領域に移動するのを防ぐため、遠心力により薄膜化した冷媒膜の厚さより高くなるように選択され、たとえば1mm程度の高さを持つ。
仕切り15の部分には冷媒膜が存在しないが、ロータ自体の熱伝導により冷却が可能であるので、仕切り15の幅を極端に狭くする必要はない。たとえば1mmから数mm程度、径の大きなロータでは数10mmまで、製作上便利な任意の幅を選択すればよい。
なお、仕切り15は、等間隔に設けるのではなく、図4(b)に示すように、隣の仕切り同士の間隔を適当に選択して配置してもよい。仕切り間の冷却面に供給される冷媒の量は仕切り間隔に比例するので、仕切り同士が平行である限り遠心力で形成される冷媒膜の厚さは均等になる。
また、図4(c)に示すように、仕切り15は軸方向に対して角度を有して螺旋状に形成するようにしてもよい。
さらに、図4(d)に示すように、仕切り15の中間に仕切りの両側を連絡する切り欠き18を備えてもよい。なお、隣の壁面区分から漏れ込んだ冷媒が直ちにさらに隣の区分まで流れ出さないように、切り欠き18は隣り合った仕切り15同士で軸方向にずれた位置に配置することが好ましい。
仕切り15は、機械加工によりロータ冷却壁11のシリンダ壁を削り取って冷却壁面13を製作するときに、削り残して形成することができる。あるいは別途製作した仕切り板をロウ付けしてもよい。さらに、仕切り15は1mm程度の極く低いもので十分なので、金属薄膜の帯を貼り付ける方法やエッチング法などによっても形成することができる。
ロータの回転バランスは、仕切り15の取り付け加工後に通常の方法、たとえばロータ端部に凸部を設けて凸部を削ることでバランスを取る方法などにより調整することができる。
冷媒12は、電動機20の静止部分に固定された冷媒ノズル16により回転する電動機ロータ21の冷却壁面13の領域に導入される。液体によるロータの加振を防ぐために、冷媒液は液滴でなく液柱として連続的に供給することが好ましい。
なお、図示しないが、冷媒ノズル16の先端は封止され先端部側面に軸に垂直な1方向に径1mm程度の小さなキリ穴が設けられていて、冷媒12が冷却壁面13に向けて少量ずつ連続に供給されるようになっている。1個の小孔から供給するのであれば、毎分数10ml程度の小流量でも液柱として連続的に供給することができる。なお、キリ穴は鉛直下方に向けられると冷媒ノズル16を伝わって目的外の位置に垂れることなどを防止することができる。
電動機ロータ21は高速回転するので、冷媒12は仕切り15で区分された冷却壁面13の各領域に対してそれぞれ仕切り間隔に比例した量が供給されることになる。また、冷媒ノズル16は、静止部分に固定されたパイプに過ぎないので、液漏れを防ぐ複雑なシール機構などを全く必要としない。なお、冷媒供給量によっては冷媒ノズル16に複数個の穴を備えてもよいことはいうまでもない。
電動機ロータ21には、微小なロータ重量偏差に起因する振れ回りが生じやすい。本実施例のロータ冷却装置10では、電動機ロータ21の内部に形成されたロータ冷却壁11に冷媒液12を導入するが、冷媒液12は遠心力により薄膜化され仕切り15を越えることができないので、各領域に仕切り間隔に比例した量の冷媒液が滞留することになり、回転軸22と中心軸14の間に偏差が存在する場合にも、液膜がロータ重量偏差の大きい側に偏らないのでロータダイナミクス上問題となる不安定系にならず、問題なく高速運転をすることができる。
また、ロータ21に振れ回りがあっても、仕切り15のため冷媒液が偏在しないので、土手で仕切られた各領域ごとにほぼ同等の冷却効果を享受することができ、ロータ温度は位置によらずほぼ同等になる。
したがって、PM型電動機のロータの永久磁石が高温になって減磁する問題、また永久磁石を用いない電動機であっても巻線の被覆が溶けて絶縁不良が生じる問題、さらに、熱膨張により軸受などのクリアランスが変化して焼き付きが生じる問題のいずれも大きく軽減される。
なお、ロータ冷却壁面13表面の薄膜化冷媒12は、ロータ回転による遠心力、冷媒の粘性、重力、供給量のバランスにより膜厚が異なり、高速回転するほど膜厚が薄くなる。
図5は、冷媒の種類ごとに、ロータの回転数と冷媒薄膜の膜厚の関係を示すグラフである。普通、冷媒として使用される液体には、フロン、代替フロン、さらに自然冷媒として、炭化水素、二酸化炭素、アンモニア、水、アルコールなどがある。
図5は、これらの冷媒のうち本実施例で使用する可能性が高いものとして、(a)図に代替フロン(例として、R134a)、(b)図に炭化水素(例として、イソブタン)、(c)図にアンモニア、(d)図に水を使用した場合について、遠心力で壁に押し付けられて形成される液膜の厚さを示している。
いずれも、内径40mm、長さ300mm、片端開放の筒型をしたロータ冷却壁を対象として、冷媒供給量を2kg/h、3kg/h、6kg/hの場合について、1000rpmから10000rpmの範囲の回転速度に対して形成される膜厚の理論値を示すものである。
なお、(d)図には、水を3kg/hで供給する試験により得られた液膜厚さの値がプロットされていて、理論値と実験値がよく一致するということができる。
この解析結果から、径40mmの筒形ロータ冷却壁の端部に堰を設けず開放端になっている場合には、ロータ冷却壁の回転数1000rpmでは膜厚0.3mmから0.7mmの範囲、10000rpmでは膜厚0.07mmから0.18mmの範囲にあることが分かる。
たとえば、水の場合、ロータ回転数3000rpm、水の供給量3kg/hにおける理論液膜厚は0.30mmである。
高速回転するロータ冷却壁に押し付けられて薄膜化した冷媒は、冷媒の界面領域が壁表面に密着し、また冷媒容積に対して大きい接触面積を持つことなどから、壁から吸熱する効率が高くなると考えることができる。
顕熱と比較すると数10倍も大きな潜熱を利用することにより、少量の冷媒で冷却熱を搬送することができるので、冷媒循環量が節約でき、冷媒循環に必要なポンプ類の動力は小さくて済む。
なお、蒸発潜熱により冷却する場合は液膜厚さは薄い方がよいが、図5からも知れるように、液膜の厚さは主として回転数により決まり、冷媒の循環量を増しても軸方向の流速が大きくなるだけで冷却壁面に形成される冷媒膜の膜厚はさして変わらないから、冷媒の供給量は蒸発量に対して十分大きな量としてよい。
このようにして、冷媒ノズルから供給される液体冷媒の一部は液体のまま冷却壁開放端側から排出されるので、冷媒循環量は蒸発分とドレン排出分を加えたものになる。したがって、冷媒循環ポンプは電動機の負荷によらず一定の運転をすればよいので、より簡易な構成とすることができる。
図6は、水を用いた試験に基づいて、本実施例のロータ冷却装置の振れ回りによる冷却効果偏在防止効果を説明する図面である。なお、図では仕切りの大きさおよび液膜の厚さの表示を強調して、実験結果を見やすく示している。
図6(a)は、ロータ冷却壁に仕切りが設けられていない内径40mmのロータを回転数3000rpmで運転するときに3kg/hで水を供給したときの液膜分布状況を示す断面図である。振れ回り偏差は9の方向に0.2mmある。
回転中心22からの距離が長い部分には最大0.25mmの厚さの液膜が生じるが、回転中心22からの距離が短い部分の冷却壁面には液膜切れが生じる。このように、冷却効果に偏在が生じ、液膜切れ部分は十分に冷却されない。
図6(b)は、同じ条件で、ロータ冷却壁に高さ1mmの仕切りが8本設けられたロータに水を供給したときの液膜分布状況を示す断面図である。
仕切りの効果で、液膜は全ての分割領域に維持され、最大厚0.28mm、最小厚0.14mmであった。
このように、仕切りの存在により、液膜はほぼ均等に分布して液膜切れは生ぜず、液膜偏りによるロータダイナミクスの悪化もない。
図7は、1000rpmで回転中のロータについて熱負荷を階段状に変化させる間に冷媒ノズルから冷媒としての水を供給したときのロータ外周温度分布を確認した結果から、ロータ発熱量280Wのときの変化を示す図面、図8は図7の確認試験における温度測定位置を示す断面図である。
図8に示すように、外径50mm、内径25mmのロータの外周に、先端から10mmのところから110mmの幅で電熱ヒータを巻き、電熱ヒータ先端から20mmの位置(T1,T2)と後端から20mmの位置(T4,T5)で、それぞれ回転軸を挟んで対称の表面位置に温度検出端を貼付して、ロータを回転させながら加熱して連続的に温度測定した。
図7の(a)図は、冷却壁面に仕切りを設けないロータにおける温度変化例、(b)図は、冷却壁面に仕切りを設けたロータにおける温度変化例を示す。 (a)図から、冷却壁面に仕切りがない場合には、冷却が十分でないため表面温度が高くなり、また各部の温度差が大きいことが分かる。最高温度は74.1℃を示し、測定点同士の偏差も大きく、周方向の温度偏差もロータ先端部(T1,T2)で29.1℃、奥側(T4,T5)で19.0℃と大きい。平均熱伝達率は467W/mKであった。
これに対して、ロータ内面に仕切りを設けた本実施例のロータ冷却機構を用いると、(b)図に示すように、最高温度が51.7℃と低下して冷却効果が大きいことを示し、また温度偏差が小さくなり、周方向の温度偏差もロータ先端部(T1,T2)で最大7.6℃、奥側(T4,T5)で最大6.1℃と、より均質に冷却されることが分かる。また、平均熱伝達率も505W/mKと冷却性能が(a)図の場合と比較して向上している。
なお、冷媒を供給しないときは、発熱量100Wでもロータ温度が100℃以上に上昇し続け、運転が不能になる。
図9は、本実施例のロータ冷却装置の適用例として空調用ターボ冷凍機に適用した例を示す構成図である。
空調用ターボ冷凍機30は、蒸発器31、ターボ圧縮機32、凝縮器33、膨張弁34を主機として構成される。
蒸発器31には冷水配管が取り込まれていて、蒸発器内の冷媒が蒸発することにより冷水が冷やされ、冷やされた冷水が空調負荷36に運ばれて冷熱を放出して負荷を冷却する。
蒸発器31で吸熱して生成した気体冷媒はターボ圧縮機32の吸引口に吸われて圧縮され、凝縮器33に供給される。ターボ圧縮機32は電動機20によって駆動される。
凝縮器33には冷却水が供給され、ターボ圧縮機32から供給された高圧の気体冷媒を凝縮して液体冷媒に戻す。凝縮器33の液体冷媒は膨張弁34を通して蒸発器31に供給される際に、断熱膨張により温度が下がる。
本実施例のロータ冷却装置10は、電動機20のロータを冷却するもので、空調用ターボ冷凍機30の作動冷媒の一部を取ってロータ冷却装置10用の冷媒としている。
すなわち、蒸発器31の液体冷媒を循環ポンプ35で引き出し、冷媒ノズル16を介してロータ冷却壁11の冷却壁面13に供給する。
冷却壁面13で蒸発した冷媒は、ターボ圧縮機32の吸引側に供給し、ターボ圧縮機32で元の空調用冷媒と合わせて昇圧し、凝縮器33に送られる。
冷却壁面13に押し付けられ溢れてドレンになる液体冷媒は、電動機ケーシングの底に設けられたドレン溜17に集められ、蒸発器31に戻される。
なお、蒸発器31から重力で冷媒ノズル16に冷媒を供給することができる場合は、循環ポンプ35を省略してもよい。
従来、ターボ冷凍機に使う冷媒として、化学的安定性に優れたR−12(CCl)に代表されるフロンが利用されていたが、近年の環境問題から代替フロン(例として、R134a)や炭化水素、アンモニア等に代表される自然冷媒が使用されるようになっている。
代替フロン(R134a)はオゾン層破壊係数がゼロで、作動圧力が高く機器を小さくすることができるが、地球温暖化係数はフロンと差が無いため、地球温暖化防止の観点から適切に回収・廃棄する必要がある。
なお、炭化水素、アンモニアなどの自然冷媒は、オゾン層破壊係数がゼロで、地球温暖化係数も小さく、作動圧力も比較的高く機器を小さくすることができ、冷凍機に利用することができるが、可燃性、毒性、爆発性があるので取扱いに注意がいる。
ところで、水は、不燃性、無毒性を備え、オゾン層の破壊要因を持たず、地球温暖化係数はゼロであるので、取扱いに問題がなく、冷媒として使用することが奨められる。しかし、水を冷媒として用いるときは、大気圧より低い負圧域で作動させなければならず、機器が大きくなるという問題がある。
図9に例示した空調負荷36に適用するターボ冷凍機30の場合は、凝縮器33で40℃になった液体冷媒が膨張弁34で断熱膨張して蒸発器31の冷媒を3℃に冷やし、蒸発器31で3℃の冷媒と熱交換して7℃に冷却された冷水を循環して空調負荷36を冷やした後、冷水は12℃になって蒸発器31に戻るものとする。
このとき、冷凍機の冷媒として代替フロン(R134a)、イソブタン、アンモニアの各冷媒を使ったときに、40℃の凝縮器と3℃の蒸発器における冷媒圧力は、それぞれ、代替フロン(R134a)で1.0MPaと0.33MPa、イソブタンで0.53MPaと0.18MPa、アンモニアで1.6MPaと0.48MPaと大気圧より高いが、水の場合はそれぞれ7.3kPaと0.73kPaと大気圧よりかなり低い状態になる。
図9に示す本実施例の実施態様では、上記各種の冷媒のいずれを利用した冷凍機にも適用できる。
しかも、ロータ冷却装置10の冷媒は冷凍機30の冷媒の一部を流用するもので、使用後は全て元の冷媒と一緒にされて冷凍機30の冷媒処理装置で処理されるので、ロータ冷却装置10の側に特別な処理装置を備える必要がない。
なお、冷凍機の冷媒が循環する蒸発器31や凝縮器33が上記条件の通りに運転される場合には、ロータ発熱量が500Wであれば、ロータ冷却装置10において蒸発潜熱だけで冷却するときに必要な冷媒量は、蒸発器の圧力における蒸発潜熱を基準として算定すると、蒸発潜熱が199J/gの代替フロン(R134a)を使用する場合に9.0kg/h、蒸発潜熱が351J/gのイソブタンでは5.1kg/h、蒸発潜熱が1290J/gのアンモニアでは1.4kg/hと算定される。
従来方法により、潤滑油の顕熱で発熱量500Wのロータを冷却する場合に、潤滑油の比熱2.0J/g℃、冷却による潤滑油の温度上昇を25℃とすれば、36kg/hの潤滑油を循環する必要があるのと比較して、冷媒の蒸発潜熱を使って冷却する方式では冷媒循環量を大きく節減することができることが分かる。
また、冷媒に水を用いるターボ冷凍機に適用する場合は、水の蒸発潜熱が2520J/gと大きいことから循環量0.71kg/hの水で冷却することができ、さらに大幅に循環量を減少させることができる。
また、冷媒は、経路を循環する間に相変化し加減圧して熱交換し目的物を冷却するが、冷媒自体の収支は変動しないから、密封して作動させることができる。これに対して、外気に対して開放された容器を使うと、冷媒が外部に漏洩して減量する分を補充する機構が必要になる上、漏洩する冷媒が毒性を有する場合には無害化する機構を備えなければならない。したがって、冷媒の循環経路は密閉構造にすることが好ましい。
図10は、本実施例のロータ冷却装置に適用できる各種冷媒の物性値と特性を表した表である。
表には、代替フロン、イソブタン、アンモニアを使用する場合は、オゾン層破壊の防止に貢献すること、小型の冷凍機を構成すること、ロータ冷却壁における冷媒膜を極めて薄くできること、イソブタンとアンモニアは地球温暖化係数が小さいこと、取扱いに注意が必要なこと、などが示されている。
また、水の場合は、オゾン層破壊を行わないこと、地球温暖化係数がゼロであること、不燃性で無害であり取扱いが容易であること、一方、0℃で凍るため冷凍領域での利用はできないこと、作動圧力が極めて低く冷凍機が大型になること、などが示されている。
以上実施例に基づいて詳しく説明した通り、本発明のロータ冷却装置は、簡単な機構を用いて、高速運転の電動機ロータを均質にかつ効率的に冷却することができる。特に、空調などに用いるターボ冷凍機の電動機ロータに適用する場合に、冷凍機に多少の改造を加えるだけで冷凍用冷媒の一部を流用して電動機ロータを冷却することができる。冷凍用冷媒をロータ冷却用冷媒に流用する場合は、ロータ冷却装置に使った冷媒の処理を冷凍機の冷媒処理に組み込んで実施することで、余分な装置と操作が不要になって、費用の節減が可能である。
本発明の1実施例におけるロータ冷却装置の主要部を表す断面図である。 本実施例における電動機ロータの冷却機構説明図である。 本実施例における電動機ロータの内側に設けた仕切りを説明する断面図である。 仕切りの配置例を説明するロータ冷却壁の展開図である。 ロータの回転数に対する冷媒膜厚の関係を示したグラフである。 ロータ回転に振れ回りがあるときの冷媒の偏在状態を表す図面である。 本実施例のロータ冷却装置を使って冷却するモデル実験におけるロータ温度を表すグラフである。 図7のモデル実験におけるロータの温度測定点を示す説明図である。 本実施例のロータ冷却装置を適用した空調用ターボ冷凍機の例を示す構成図である。 本実施例のロータ冷却装置に適用できる各種冷媒の物性値と特性を表した表である。
符号の説明
10 ロータ冷却装置
11 ロータ冷却壁
12 液体冷媒
13 冷却壁面
14 中心軸
15 仕切り
16 冷媒ノズル
17 ドレン溜
18 切り欠き
20 電動機
21 電動機ロータ
22 ロータ回転軸
23 動力軸
24 ステータ
30 ターボ冷凍機
31 蒸発器
32 ターボ圧縮機
33 凝縮器
34 膨張弁
35 循環ポンプ
36 空調負荷

Claims (12)

  1. 回転機のロータの内側に少なくとも一端が開放されたシリンダ面で構成されたロータ冷却壁を有し、該ロータ冷却壁の開放端側から挿入された、冷媒を供給するノズルを備え、前記ロータ冷却壁の面に前記ロータの中心軸に平行に該ロータ冷却壁の一端から他端まで前記冷媒が遠心力で薄膜化したときの膜厚より高い複数の仕切りが設けられて、該ノズルから該ロータ冷却壁面に供給される該冷媒の蒸発潜熱を使って該ロータを冷却する回転機ロータ冷却装置。
  2. 前記仕切りが0.28mm以上の高さを有することを特徴とする請求項1に記載の回転機ロータ冷却装置。
  3. 前記仕切りが前記ロータ冷却壁に6個以上設けられることを特徴とする請求項1または2に記載の回転機ロータ冷却装置。
  4. 前記ロータ冷却壁面に設けられた仕切りが、該仕切りの両側を連絡する切り欠きを有することを特徴とする請求項1から3のいずれか1項に記載の回転機ロータ冷却装置。
  5. 前記冷媒は密閉流路内を循環して作動することを特徴とする請求項1から4のいずれか1項に記載の回転機ロータ冷却装置。
  6. 前記冷媒は炭化水素、アンモニアもしくは水であることを特徴とする請求項1からのいずれか1項に記載の回転機ロータ冷却装置。
  7. 前記回転機は蒸気圧縮型冷凍機における圧縮機を駆動する回転機であることを特徴とする請求項1からのいずれか1項に記載の回転機ロータ冷却装置。
  8. 前記冷媒は前記冷凍機の冷媒の一部であって、該冷凍機の蒸発器から抽出して液体冷媒として前記ノズルに供給され、前記ロータ冷却壁で蒸発した気体冷媒は該冷凍機の圧縮機の吸気側に供給されることを特徴とする請求項記載の回転機ロータ冷却装置。
  9. 回転機のロータの内側に少なくとも一端が開放されたシリンダ面で構成され前記ロータの中心軸に平行に該ロータ冷却壁の一端から他端まで前記冷媒が遠心力で薄膜化したときの膜厚より高い複数の仕切りが設けられたロータ冷却壁を備えたロータを使用し、該ロータの回転中に前記ロータ冷却壁に液体冷媒を連続的に供給し、供給された冷媒の蒸発潜熱を使って該ロータを冷却する回転機ロータ冷却方法。
  10. 前記ロータ冷却壁面に設けられた仕切りが、該仕切りの両側を連絡する切り欠きを有することを特徴とする請求項記載の回転機ロータ冷却方法。
  11. 前記回転機は蒸気圧縮型冷凍機における圧縮機を駆動する回転機であって、前記冷媒は該蒸気圧縮型冷凍機の作動冷媒の一部であって該冷凍機の蒸発器から抽出して前記ロータ冷却壁に供給され、該ロータ冷却壁で蒸発した気体冷媒は該蒸気圧縮型冷凍機の圧縮機の吸気側に供給されることを特徴とする請求項9または10に記載の回転機ロータ冷却方法。
  12. 前記冷媒は炭化水素、アンモニアもしくは水であることを特徴とする請求項9から11のいずれか1項に記載の回転機ロータ冷却方法。
JP2007291359A 2007-11-08 2007-11-08 回転機ロータ冷却装置および方法 Active JP5234580B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291359A JP5234580B2 (ja) 2007-11-08 2007-11-08 回転機ロータ冷却装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291359A JP5234580B2 (ja) 2007-11-08 2007-11-08 回転機ロータ冷却装置および方法

Publications (2)

Publication Number Publication Date
JP2009118693A JP2009118693A (ja) 2009-05-28
JP5234580B2 true JP5234580B2 (ja) 2013-07-10

Family

ID=40785176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291359A Active JP5234580B2 (ja) 2007-11-08 2007-11-08 回転機ロータ冷却装置および方法

Country Status (1)

Country Link
JP (1) JP5234580B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536813B2 (en) 2010-05-19 2013-09-17 The Invention Science Fund I Llc Motor with rotor-mounted control circuitry
US8466649B2 (en) * 2010-05-19 2013-06-18 The Invention Science Fund I Llc Heat removal from motor components
CN103650301B (zh) 2011-07-21 2016-10-12 大金工业株式会社 电动马达及涡轮压缩机
DE102014107845B4 (de) * 2014-06-04 2024-02-15 Thyssenkrupp Presta Teccenter Ag Ölverteilelement
JP6399721B1 (ja) 2016-11-24 2018-10-03 株式会社エムリンク 定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571302Y2 (ja) * 1992-07-20 1998-05-18 株式会社安川電機 高速回転電機の冷却装置
JPH11132581A (ja) * 1997-10-31 1999-05-21 Mitsubishi Heavy Ind Ltd 冷凍機
JP3758583B2 (ja) * 2002-02-06 2006-03-22 日産自動車株式会社 回転体の冷却構造
JP3979389B2 (ja) * 2004-01-09 2007-09-19 日産自動車株式会社 電動機のロータ冷却構造

Also Published As

Publication number Publication date
JP2009118693A (ja) 2009-05-28

Similar Documents

Publication Publication Date Title
EP2736152B1 (en) Electric motor and turbo compressor
US10670030B2 (en) Turbo machine and refrigerating cycle apparatus
JP5234580B2 (ja) 回転機ロータ冷却装置および方法
JPH10131889A (ja) 冷凍機用圧縮機
EP2933498B1 (en) Turbomachine and refrigeration cycle apparatus
JP2008082623A (ja) 圧縮式冷凍装置
US20180252233A1 (en) Turbo compressor and turbo chilling apparatus equipped with the turbo compressor
EP3191773B1 (en) Chiller compressor oil conditioning
EP3366927B1 (en) Fluid machine and refrigeration cycle apparatus
JP2000230760A (ja) 冷凍機
JP2005106454A (ja) 冷蔵庫
KR102189168B1 (ko) 압축기 조립체 및 그 제어 방법 그리고 냉각/가열 시스템
JP2010060202A (ja) 冷凍機用電動機における冷却構造
JP2018066308A (ja) ターボ機械
JP2020159294A (ja) ターボ圧縮機及び冷凍サイクル装置
JP2016161226A (ja) 冷凍システム、冷凍システムの運転方法及び冷凍システムの設計方法
JP2018068021A (ja) ターボ機械及びそれを用いた冷凍サイクル装置
KR100309011B1 (ko) 냉동사이클
JP2001200791A (ja) 密閉型圧縮機、及び、密閉型圧縮機の冷却方法。
JP2019211170A (ja) 冷凍サイクル装置
JP2020193587A (ja) 速度型圧縮機、冷凍サイクル装置及び速度型圧縮機の運転方法
KR102379341B1 (ko) 히트싱크
JP2001201195A (ja) ターボ冷凍機、及び、ターボ冷凍機における圧縮機の潤滑方法
JP6919741B1 (ja) グリス及びグリスが潤滑剤として使用される冷凍サイクル装置
KR20090122641A (ko) 냉매 균압장치를 적용한 인버터 오일쿨러

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250