JP5209934B2 - Scratch-resistant wear-resistant elastomer - Google Patents

Scratch-resistant wear-resistant elastomer Download PDF

Info

Publication number
JP5209934B2
JP5209934B2 JP2007275421A JP2007275421A JP5209934B2 JP 5209934 B2 JP5209934 B2 JP 5209934B2 JP 2007275421 A JP2007275421 A JP 2007275421A JP 2007275421 A JP2007275421 A JP 2007275421A JP 5209934 B2 JP5209934 B2 JP 5209934B2
Authority
JP
Japan
Prior art keywords
group
copolymer
cross
carbon atoms
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007275421A
Other languages
Japanese (ja)
Other versions
JP2009102515A (en
Inventor
亨 荒井
歩 塚本
勝 長谷川
邦彦 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007275421A priority Critical patent/JP5209934B2/en
Publication of JP2009102515A publication Critical patent/JP2009102515A/en
Application granted granted Critical
Publication of JP5209934B2 publication Critical patent/JP5209934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、特定の製造方法により得られる、特定の組成を持った共重合体で、優れた耐傷つき摩耗性を有する熱可塑性エラストマ−であり、その用途である。   The present invention is a thermoplastic elastomer having a specific composition, obtained by a specific production method, having excellent scratch resistance and abrasion resistance, and its use.

従来、耐傷つき摩耗性を有する熱可塑性エラストマ−(軟質樹脂)としては軟質塩ビやポリウレタンが知られている。軟質塩ビは優れた耐傷付き性を有するが、耐摩耗性はある条件下では十分ではない。また、リサイクルや焼却処分の観点からは非塩ビが好ましい場合がある。ポリウレタンは優れた耐傷付き摩耗性を有するエラストマ−であるが、耐候性、耐水性、施工容易性の観点からは改善が求められている。
非塩ビのエラストマ−としてはポリオレフィン系のエラストマ−が用いられるが、例えばプロピレン系軟質樹脂(例えばiPP−EPDMコンパウンド)やエチレン系軟質樹脂(例えばEVA)は耐傷つき摩耗性が不十分である。
また、本耐傷つき摩耗性は用途により種々の評価法があり、用途をより広く網羅するためには、各評価法に対して広くその耐傷つき摩耗性を発揮するエラストマ−素材が求められている。
従来、スチレン−エチレン共重合体は優れた耐傷つき摩耗性を有することが知られている(特開2000−119339、特表2001−516371)が、耐熱性に乏しい点に課題がある。本スチレン−エチレン共重合体の耐熱性や力学物性を改良したクロス共重合体が提案されている(再表00/037517号公報)。
Conventionally, soft vinyl chloride and polyurethane are known as thermoplastic elastomers (soft resins) having scratch resistance and abrasion resistance. Soft PVC has excellent scratch resistance, but wear resistance is not sufficient under certain conditions. Moreover, non-vinyl chloride may be preferable from the viewpoint of recycling and incineration. Polyurethane is an elastomer having excellent scratch resistance and abrasion resistance, but improvement is demanded from the viewpoint of weather resistance, water resistance, and ease of construction.
Polyolefin elastomers are used as non-vinyl chloride elastomers. For example, propylene-based soft resins (for example, iPP-EPDM compound) and ethylene-based soft resins (for example, EVA) have scratch resistance and insufficient wear resistance.
In addition, there are various evaluation methods for the scratch-resistant wear depending on the application, and in order to cover a wide range of applications, an elastomer material that exhibits the abrasion-resistant wear widely is required for each evaluation method. .
Conventionally, it is known that styrene-ethylene copolymers have excellent scratch resistance and abrasion resistance (Japanese Patent Laid-Open No. 2000-119339, Special Table 2001-516371), but there is a problem in that heat resistance is poor. A cross copolymer having improved heat resistance and mechanical properties of the styrene-ethylene copolymer has been proposed (Re-Table 00/037517).

特開2000−119339号公報JP 2000-119339 A 特表2001−516371号公報Special table 2001-516371 gazette 再表00/037517号公報No. 00/037517

種々の耐傷つき摩耗性試験に対し、優れた性能を示す熱可塑性エラストマ−(軟質樹脂)を提供することである。   It is to provide a thermoplastic elastomer (soft resin) that exhibits excellent performance for various abrasion resistance abrasion tests.

本発明者らは、従来のクロス共重合体の製造方法や組成を鋭意検討することで、特定の製造方法により得られる共重合体(クロス共重合体)のうち、特定の構造を有する共重合体が、種々の耐傷つき摩耗性試験に対し優れた耐傷つき摩耗性を示すことを見いだし発明に至った。 The inventors of the present invention have intensively studied the production method and composition of conventional cross-copolymers, so that the copolymer (cross-copolymer) obtained by a specific production method has a specific structure. It has been found that the coalescence exhibits excellent abrasion resistance with respect to various abrasion resistance tests and has led to the invention.

特定の製造方法により得られる、特定の組成を持った共重合体(クロス共重合体)が、種々の耐傷つき摩耗性試験に対し優れた耐傷つき摩耗性を示し、耐傷つき摩耗性を必要とする各用途において有用である。   Copolymers (cross-copolymers) with a specific composition obtained by a specific manufacturing method show excellent scratch resistance against various scratch resistance wear tests and require scratch resistance. It is useful in each application.

本発明は、配位重合工程とこれに続くアニオン重合工程からなる重合工程を含む製造方法であって、配位重合工程として、シングルサイト配位重合触媒を用いてエチレンモノマー、芳香族ビニル化合物モノマーおよび芳香族ポリエンの共重合を行って、エチレン−芳香族ビニル化合物−芳香族ポリエン共重合体を合成し、次にアニオン重合工程として、このエチレン−芳香族ビニル化合物−芳香族ポリエン共重合体と芳香族ビニル化合物モノマーの共存下、アニオン重合開始剤を用いて重合することを特徴とする製造方法で得られるクロス共重合体において、下記条件を満足する製造方法により得られる耐傷つき摩耗性に優れたクロス共重合体である。
(1)配位重合工程で得られるエチレン−芳香族ビニル化合物−芳香族ポリエン共重合体の芳香族ビニル化合物ユニット含量が8モル%以上28モル%以下、芳香族ポリエンユニット含量が0.01モル%以上0.5モル%以下である。好ましくは芳香族ビニル化合物ユニット含量が10モル%以上25モル%以下、芳香族ポリエンユニット含量が0.01モル%以上0.2モル%以下である。
(2)配位重合工程で得られるエチレン−芳香族ビニル化合物−芳香族ポリエン共重合体の質量割合が、アニオン重合工程を経て最終的に得られるクロス共重合体質量に対して83質量%以上95質量%以下である。好ましくは85質量%以上95質量%以下である。
The present invention relates to a production method comprising a coordination polymerization step followed by a polymerization step comprising an anionic polymerization step, wherein a single-site coordination polymerization catalyst is used as the coordination polymerization step, using an ethylene monomer and an aromatic vinyl compound monomer. And an aromatic polyene are copolymerized to synthesize an ethylene-aromatic vinyl compound-aromatic polyene copolymer, and then as an anionic polymerization step, the ethylene-aromatic vinyl compound-aromatic polyene copolymer and In a cross-copolymer obtained by a production method characterized by polymerization using an anionic polymerization initiator in the presence of an aromatic vinyl compound monomer, it has excellent scratch resistance and abrasion resistance obtained by a production method satisfying the following conditions: A cross-copolymer.
(1) The aromatic vinyl compound unit content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step is 8 mol% to 28 mol%, and the aromatic polyene unit content is 0.01 mol. % Or more and 0.5 mol% or less. Preferably, the aromatic vinyl compound unit content is 10 mol% or more and 25 mol% or less, and the aromatic polyene unit content is 0.01 mol% or more and 0.2 mol% or less.
(2) The mass ratio of the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step is 83% by mass or more based on the mass of the cross-copolymer finally obtained through the anionic polymerization step. It is 95 mass% or less. Preferably they are 85 mass% or more and 95 mass% or less.

本発明に用いられる芳香族ビニル化合物は、スチレンおよび各種の置換スチレン、例えばp−メチルスチレン、m−メチルスチレン、o−メチルスチレン、o−t−ブチルスチレン、m−t−ブチルスチレン、p−t−ブチルスチレン、p−クロロスチレン、o−クロロスチレン等が挙げられる。工業的には好ましくはスチレン、p−メチルスチレン、p−クロロスチレン、特に好ましくはスチレンが用いられる。
本発明に用いられる芳香族ポリエンは10以上30以下の炭素数を持ち、複数の二重結合(ビニル基)と単数または複数の芳香族基を有し配位重合可能な芳香族ポリエンであり、二重結合(ビニル基)の1つが配位重合に用いられて重合した状態において残された二重結合がアニオン重合可能な芳香族ポリエンである。好ましくは、オルトジビニルベンゼン、パラジビニルベンゼン及びメタジビニルベンゼンのいずれか1種または2種以上の混合物が好適に用いられる。
配位重合工程で得られるエチレン−芳香族ビニル化合物−芳香族ポリエン共重合体の芳香族ビニル化合物ユニット含量が8モル%未満では、熱可塑性エラストマ−としての軟質性が損なわれてしまう場合がある。またポリエチレン連鎖に由来する結晶性が大きくなり、成型時の寸法安定性が悪くなる場合がある。配位重合工程で得られるエチレン−芳香族ビニル化合物−芳香族ポリエン共重合体の結晶融解熱は好ましくは100J/g以下、特に好ましくは60J/g以下である。
また、28モル%より高い場合、耐傷つき摩耗性が悪化してしまう。
The aromatic vinyl compound used in the present invention includes styrene and various substituted styrenes such as p-methylstyrene, m-methylstyrene, o-methylstyrene, ot-butylstyrene, mt-butylstyrene, p- Examples include t-butyl styrene, p-chlorostyrene, o-chlorostyrene, and the like. Industrially, styrene, p-methylstyrene, p-chlorostyrene, particularly preferably styrene is used.
The aromatic polyene used in the present invention is an aromatic polyene having 10 to 30 carbon atoms and having a plurality of double bonds (vinyl group) and one or more aromatic groups and capable of coordination polymerization, One of the double bonds (vinyl group) is used for coordination polymerization, and the remaining double bond in the polymerized state is an aromatic polyene capable of anion polymerization. Preferably, any one or a mixture of two or more of orthodivinylbenzene, paradivinylbenzene and metadivinylbenzene is preferably used.
If the content of the aromatic vinyl compound unit in the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step is less than 8 mol%, the softness as a thermoplastic elastomer may be impaired. . In addition, the crystallinity derived from the polyethylene chain increases, and the dimensional stability during molding may deteriorate. The heat of crystal melting of the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step is preferably 100 J / g or less, particularly preferably 60 J / g or less.
On the other hand, if it is higher than 28 mol%, the wear resistance with scratches is deteriorated.

配位重合工程で得られるエチレン−芳香族ビニル化合物−芳香族ポリエン共重合体の質量割合が、アニオン重合工程を経て最終的に得られるクロス共重合体質量に対して83質量%未満では、熱可塑性エラストマ−としての軟質性が損なわれてしまったり、耐傷つき摩耗性が低下してしまう場合がある。一方、95質量%より高い場合には、本共重合体の耐熱性が低下してしまう。 When the mass ratio of the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step is less than 83% by mass with respect to the mass of the cross-copolymer finally obtained through the anionic polymerization step, The softness as a plastic elastomer may be impaired, and the abrasion resistance may be deteriorated. On the other hand, when it is higher than 95% by mass, the heat resistance of the copolymer is lowered.

本発明に用いられるシングルサイト配位重合触媒とは、遷移金属化合物と助触媒から構成され、いわゆるメタロセン触媒やハ−フメタロセン触媒、幾何拘束(CGC)触媒を包含する。具体的には下記文献に記載さているか、または引用されている触媒である。
たとえば、メタロセン触媒については、USP5324800、特公平7−37488号公報、特開平6−49132号公報、Polymer Preprints,Japan,42,2292(1993)、Macromol. Chem., Rapid Commun.,17,745(1996)、特開平9−309925号公報、EP0872492A2号公報、特開平6−184179号公報、USP6376406公報、US6891004号公報、再表00/037517号公報である。ハーフメタロセン触媒については、Makromol.Chem.191,2387(1990)に記載されている。幾何拘束(CGC)触媒については、特開平3−163088号公報、特開平7−53618号公報、EP−A−416815、US6323294号公報、再表00/037517号公報に記載されている。
The single-site coordination polymerization catalyst used in the present invention is composed of a transition metal compound and a co-catalyst, and includes so-called metallocene catalysts, half-metallocene catalysts, and geometrically constrained (CGC) catalysts. Specifically, it is a catalyst described or cited in the following documents.
For example, as for the metallocene catalyst, US Pat. No. 5,324,800, JP-B-7-37488, JP-A-6-49132, Polymer Preprints, Japan, 42, 2292 (1993), Macromol. Chem. Rapid Commun. 17, 745 (1996), JP-A-9-309925, EP0872492A2, JP-A-6-184179, USP6376406, US6891004, and Table 00/037517. For the half metallocene catalyst, see Makromol. Chem. 191, 387 (1990). Geometrically constrained (CGC) catalysts are described in Japanese Patent Application Laid-Open Nos. 3-163088, 7-53618, EP-A-416815, US 6323294, and Table 00/037517.

重合体中に均一にジエンが含まれる、均一な組成を有するオレフィン−スチレン−ジエン共重合体が本発明のクロス共重合体またはクロス共重合物を得るためには好適に用いられるが、このような均一な組成の共重合体を得るためには、Zieglar−Natta触媒では困難であり、シングルサイト配位重合触媒が用いられる。 An olefin-styrene-diene copolymer having a uniform composition in which a diene is uniformly contained in the polymer is preferably used in order to obtain the cross copolymer or the cross copolymer of the present invention. In order to obtain a copolymer having a uniform composition, it is difficult with a Zieglar-Natta catalyst, and a single site coordination polymerization catalyst is used.

さらに好ましくは、配位重合工程において、下記の一般式(1)で表される遷移金属化合物と助触媒から構成されるシングルサイト配位重合触媒を用いることを特徴とする製造方法により得られるクロス共重合体である。 More preferably, in the coordination polymerization step, a cloth obtained by a production method using a single site coordination polymerization catalyst composed of a transition metal compound represented by the following general formula (1) and a cocatalyst: It is a copolymer.

式中、A、Bは同一でも異なっていてもよく、いずれも一般式(2)、(3)、または(4)で示される非置換もしくは置換ベンゾインデニル基、一般式(5)で示される非置換もしくは置換インデニル基から選ばれる基である。なお、下記の一般式(2)、(3)、(4)においてR1〜R3はそれぞれ水素、炭素数1〜20のアルキル基、炭素数6〜10のアリール基、炭素数7〜20のアルキルアリール基、ハロゲン原子、OSiR3基、SiR3基またはPR2基(Rはいずれも炭素数1〜10の炭化水素基を表す)である。R1同士、R2同士、R3同士は互いに同一でも異なっていてもよく、また、隣接するR1、R2基は一体となって5〜8員環の芳香環または脂肪環を形成してもよい。 下記の一般式(5)においてR4はそれぞれ水素、炭素数1〜20のアルキル基、炭素数6〜10のアリール基、炭素数7〜20のアルキルアリール基、ハロゲン原子、OSiR3基、SiR3基またはPR2基(Rはいずれも炭素数1〜10の炭化水素基を表す)である。R4同士は互いに同一でも異なっていてもよい。   In the formula, A and B may be the same or different, and each is an unsubstituted or substituted benzoindenyl group represented by the general formula (2), (3), or (4), represented by the general formula (5). And a group selected from an unsubstituted or substituted indenyl group. In the following general formulas (2), (3), and (4), R1 to R3 are each hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an alkyl group having 7 to 20 carbon atoms. An aryl group, a halogen atom, an OSiR3 group, an SiR3 group or a PR2 group (R represents a hydrocarbon group having 1 to 10 carbon atoms). R1s, R2s, and R3s may be the same as or different from each other, and adjacent R1 and R2 groups may be combined to form a 5- to 8-membered aromatic or alicyclic ring. In the following general formula (5), R4 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, a halogen atom, an OSiR3 group, an SiR3 group, or It is a PR2 group (R represents a hydrocarbon group having 1 to 10 carbon atoms). R4 may be the same or different from each other.

YはA、Bと結合を有し、他に置換基として水素もしくは炭素数1〜15の炭化水素基(1〜3個の窒素、酸素、硫黄、燐、珪素原子を含んでもよい)を有するメチレン基、または硼素基である。置換基は互いに異なっていても同一でもよい。また、Yは環状構造を有していてもよい。好ましくは、YはA、Bと結合を有し、他に置換基として水素もしくは炭素数1〜15の炭化水素基(1〜3個の窒素、酸素、硫黄、燐、珪素原子を含んでもよい)を有するメチレン基である。
Xは、水素、水酸基、ハロゲン、炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基、炭素数1〜4の炭化水素置換基を有するシリル基、または炭素数1〜20の炭化水素置換基を有するアミド基である。2個のXは結合を有してもよい。
Mはジルコニウム、ハフニウム、またはチタンである。
本発明においては、一般式(1)で表される遷移金属化合物は、好ましくはラセミ体である。
Y has a bond with A and B, and additionally has hydrogen or a hydrocarbon group having 1 to 15 carbon atoms (may contain 1 to 3 nitrogen, oxygen, sulfur, phosphorus, or silicon atoms) as a substituent. A methylene group or a boron group; The substituents may be different or the same. Y may have a cyclic structure. Preferably, Y has a bond with A and B, and may further include hydrogen or a hydrocarbon group having 1 to 15 carbon atoms (1 to 3 nitrogen, oxygen, sulfur, phosphorus, or silicon atoms) as a substituent. ).
X is hydrogen, a hydroxyl group, halogen, a C1-C20 hydrocarbon group, a C1-C20 alkoxy group, a silyl group having a C1-C4 hydrocarbon substituent, or a C1-C20 It is an amide group having a hydrocarbon substituent. Two Xs may have a bond.
M is zirconium, hafnium, or titanium.
In the present invention, the transition metal compound represented by the general formula (1) is preferably a racemate.

一般式(1)で表される遷移金属化合物と助触媒から構成されるシングルサイト配位重合触媒を本発明の配位重合工程に用いることで、非常に高い活性でエチレン−芳香族ビニル化合物−芳香族ポリエン共重合体を得ることができ、好ましい。また、芳香族ビニル化合物や芳香族ポリエンに対し、著しく高い共重合性を示すために、特に配位重合工程に用いた重合液から得られた共重合体を分離回収せずに、重合液をアニオン重合工程に用いる(ワンポット反応)場合に非常に有利である。すなわち、芳香族ポリエン(ジビニルベンゼン)に対し著しく高い共重合性を示すため、必要な芳香族ポリエンユニット含量を与えるための重合液中芳香族ポリエン濃度が非常に低くても良く(低芳香族ポリエン濃度)、かつ共重合性が高いためその転換率が高く、そのため、反応後の重合液に残留する芳香族ポリエン濃度を著しく低下させることが可能である。そのため、この重合液をそのままアニオン重合工程に用いても、残留芳香族ポリエンに起因する悪影響(自己架橋やゲル化、成形加工性の低下)を強く抑制することができるため、非常に好ましい。 By using a single site coordination polymerization catalyst composed of a transition metal compound represented by the general formula (1) and a co-catalyst in the coordination polymerization step of the present invention, ethylene-aromatic vinyl compound with very high activity An aromatic polyene copolymer can be obtained, which is preferable. In addition, in order to show remarkably high copolymerization properties with respect to aromatic vinyl compounds and aromatic polyenes, the polymerization solution is obtained without separating and recovering the copolymer obtained from the polymerization solution used in the coordination polymerization process. This is very advantageous when used in an anionic polymerization process (one-pot reaction). That is, since it exhibits extremely high copolymerizability with respect to aromatic polyene (divinylbenzene), the concentration of aromatic polyene in the polymerization solution for providing the required aromatic polyene unit content may be very low (low aromatic polyene). Concentration) and high copolymerizability, the conversion rate is high. Therefore, the concentration of the aromatic polyene remaining in the polymerization solution after the reaction can be significantly reduced. Therefore, even if this polymerization solution is used in the anionic polymerization step as it is, it is very preferable because an adverse effect caused by the residual aromatic polyene (self-crosslinking, gelation, deterioration of molding processability) can be strongly suppressed.

助触媒としては、公知のアルモキサン(アルミノキサン)や硼素化合物が用いられる。このような例としては、各種メチルアルモキサン(MAO)やトリスペンタフルオロフェニルボラン、トリチルテトラキスペンタフルオロフェニルボラン、ジメチルアニリニウムペンタフルオロフェニルボランが例示できる。本発明に用いることが出来る助触媒は、上記シングルサイト配位重合触媒の文献中に例示されている。   As the promoter, known alumoxane (aluminoxane) or boron compound is used. Examples thereof include various methylalumoxanes (MAO), trispentafluorophenylborane, trityltetrakispentafluorophenylborane, and dimethylanilinium pentafluorophenylborane. Cocatalysts that can be used in the present invention are exemplified in the literature on the single site coordination polymerization catalyst.

本発明の条件を満たすクロス共重合体は、熱可塑性エラストマ−として良好な力学物性を示すことができる。すなわち、A硬度で50以上95以下、好ましくは55以上90以下であり、引っ張り弾性率は概ね1MPa以上100MPa以下、好ましくは1MPa以上70MPa以下、破断点伸びは300%以上、1500%以下、破断点強度は概ね3MPa以上、100MPa以下、好ましくは5MPa以上100MPa以下である。
本発明の条件を満たすクロス共重合体のMFR値には特に限定はないが、200℃、加重10kgで測定したMFR値は、好ましくは0.1g/10分以上、100g/10分以下の範囲の値を示す。
本発明の条件を満たすクロス共重合体は、JISK7024で規定されるテ−バ−摩耗試験において、テ−バ−摩耗量が100mg以下である良好な耐摩耗性を示すことができる。
また、本発明の条件を満たすクロス共重合体は、耐傷つき性試験(スクラッチ試験)に於いて傷高低差が8ミクロン以下である良好な耐傷付き性を示すことができる。
本発明の条件を満たすクロス共重合体は上記すべての耐傷つき摩耗試験において、上記の条件を満たす優れた耐傷つき摩耗性を示すことができる特徴がある。
A cross-copolymer satisfying the conditions of the present invention can exhibit good mechanical properties as a thermoplastic elastomer. That is, the A hardness is 50 or more and 95 or less, preferably 55 or more and 90 or less, the tensile elastic modulus is generally 1 MPa or more and 100 MPa or less, preferably 1 MPa or more and 70 MPa or less, the elongation at break is 300% or more and 1500% or less, the break point The strength is generally 3 MPa or more and 100 MPa or less, preferably 5 MPa or more and 100 MPa or less.
The MFR value of the cross-copolymer satisfying the conditions of the present invention is not particularly limited, but the MFR value measured at 200 ° C. and a load of 10 kg is preferably in the range of 0.1 g / 10 min or more and 100 g / 10 min or less. Indicates the value of.
The cross-copolymer satisfying the conditions of the present invention can exhibit good wear resistance with a taber wear amount of 100 mg or less in the taber wear test specified by JISK7024.
Moreover, the cross-copolymer satisfying the conditions of the present invention can exhibit good scratch resistance with a scratch height difference of 8 microns or less in a scratch resistance test (scratch test).
The cross-copolymer that satisfies the conditions of the present invention is characterized by being able to exhibit excellent scratch-resistant wear that satisfies the above conditions in all the scratch-resistant wear tests described above.

<樹脂組成物>
本発明のクロス共重合体は他の樹脂との組成物として用いることができる。
本発明のクロス共重合体は、以下に挙げる「芳香族ビニル化合物系ポリマ−」、「オレフィン系ポリマ−」、及び「ブロック共重合体系ポリマ−」の群から選ばれる1種以上のポリマ−と組成物として用いることが出来る。この場合、本クロス共重合体は組成物全体質量に対し50質量%以上含む樹脂組成物である。50質量%未満では、本発明のクロス共重合体の優れた耐傷つき摩耗性が生かせない場合がある。
<Resin composition>
The cross copolymer of the present invention can be used as a composition with other resins.
The cross-copolymer of the present invention includes at least one polymer selected from the group of “aromatic vinyl compound-based polymer”, “olefin-based polymer”, and “block copolymer-based polymer” described below. It can be used as a composition. In this case, the present cross copolymer is a resin composition containing 50% by mass or more based on the total mass of the composition. If it is less than 50% by mass, the excellent abrasion resistance and abrasion resistance of the cross-copolymer of the present invention may not be utilized.

「芳香族ビニル化合物系ポリマ−」
芳香族ビニル化合物単独の重合体または芳香族ビニル化合物と共重合可能な1種類以上のモノマー成分を含み芳香族ビニル化合物ユニット含量が10質量%以上、好ましくは30質量%以上の統計的共重合体。芳香族ビニル化合物系ポリマ−に用いられる芳香族ビニル化合物モノマーとしては、スチレンおよび各種の置換スチレン、例えばp−メチルスチレン、m−メチルスチレン、o−メチルスチレン、o−t−ブチルスチレン、m−t−ブチルスチレン、p−t−ブチルスチレン、α−メチルスチレン等が挙げられ、またジビニルベンゼン等の一分子中に複数個のビニル基を有する化合物等も挙げられる。また、これら複数の芳香族ビニル化合物間の統計的共重合体も用いられる。なお、芳香族ビニル化合物の相互の芳香族基間の立体規則性は、アタクティック、アイソタクティック、シンジオタクティックいずれでもよい。
"Aromatic vinyl compound polymer"
A polymer of an aromatic vinyl compound alone or a statistical copolymer containing at least one monomer component copolymerizable with an aromatic vinyl compound and having an aromatic vinyl compound unit content of 10% by mass or more, preferably 30% by mass or more . Examples of the aromatic vinyl compound monomer used in the aromatic vinyl compound polymer include styrene and various substituted styrenes such as p-methylstyrene, m-methylstyrene, o-methylstyrene, ot-butylstyrene, m- Examples thereof include t-butyl styrene, p-t-butyl styrene, α-methyl styrene, etc., and compounds having a plurality of vinyl groups in one molecule such as divinylbenzene. In addition, a statistical copolymer between these plural aromatic vinyl compounds is also used. The stereoregularity between the aromatic groups of the aromatic vinyl compound may be any of atactic, isotactic, and syndiotactic.

芳香族ビニル化合物と共重合可能なモノマーとしては、ブタジエン、イソプレン、その他の共役ジエン類、アクリル酸、メタクリル酸、及びこれらのアミド誘導体やエステル誘導体、アクリロニトリル、無水マレイン酸及びその誘導体が挙げられる。共重合形式は統計的共重合である。以上の芳香族ビニル化合物系ポリマ−は、その実用樹脂としての物性と成型加工性を発現するために、ポリスチレン換算重量平均分子量として、3万以上、好ましくは5万以上で50万以下、好ましくは30万以下である必要がある。また、耐衝撃性を付与するためにゴム成分をブレンドまたはグラフトしてもよい。用いられる芳香族ビニル化合物系例えばアイソタクティックポリスチレン(i−PS)、シンジオタクティックポリスチレン(s−PS)、アタクティックポリスチレン(a−PS)、ゴム強化ポリスチレン(HIPS)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)樹脂、スチレン−アクリロニトリル共重合体(AS樹脂)、スチレン−メタクリル酸メチル共重合体等のスチレン−メタクリル酸エステル共重合体、スチレン−ジエン共重合体(SBRなど)およびその水添物、スチレン−マレイン酸共重合体、スチレン−イミド化マレイン酸共重合体、石油樹脂およびその水添物等が挙げられる。 Examples of monomers copolymerizable with the aromatic vinyl compound include butadiene, isoprene, other conjugated dienes, acrylic acid, methacrylic acid, amide derivatives and ester derivatives thereof, acrylonitrile, maleic anhydride and derivatives thereof. The type of copolymerization is statistical copolymerization. The above aromatic vinyl compound-based polymer has a polystyrene-reduced weight average molecular weight of 30,000 or more, preferably 50,000 or more and 500,000 or less, preferably, in order to express physical properties and molding processability as a practical resin. It needs to be 300,000 or less. Further, a rubber component may be blended or grafted to impart impact resistance. Aromatic vinyl compound system used, for example, isotactic polystyrene (i-PS), syndiotactic polystyrene (s-PS), atactic polystyrene (a-PS), rubber-reinforced polystyrene (HIPS), acrylonitrile-butadiene-styrene Polymer (ABS) resin, styrene-acrylonitrile copolymer (AS resin), styrene-methacrylate copolymer such as styrene-methyl methacrylate copolymer, styrene-diene copolymer (SBR, etc.) and water thereof Examples thereof include additives, styrene-maleic acid copolymers, styrene-imidated maleic acid copolymers, petroleum resins and hydrogenated products thereof.

「オレフィン系ポリマ−」
高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、エチレン−環状オレフィン共重合体、オレフィン単独重合体またはオレフィンモノマ−ユニットを30質量%以上含む共重合体であり、例えばアイソタクティックポリオレフィン(i−PP、ホモPP、ランダムPP、ブロックPPを含む)、シンジオタクティックポリオレフィン(s−PP)、アタクティックポリオレフィン(a−PP)、オレフィンエチレンブロック共重合体、オレフィンエチレンランダム共重合体、オレフィンブテン共重合体が挙げられる。必要に応じてブタジエンやα−ωジエン等のジエン類を共重合した共重合体でも良い。このような例としてはエチレン−オレフィンジエン共重合体(EPDM)、エチレン−オレフィンエチリデンノルボルネン共重合体等が挙げられる。以上のオレフィン系ポリマ−は、その実用樹脂としての物性、成型加工性を発現するために、ポリスチレン換算重量平均分子量として、1万以上、好ましくは3万以上50万以下、好ましくは30万以下が必要である。
"Olefin polymer"
High density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene-cyclic olefin copolymer, olefin homopolymer or copolymer containing 30% by mass or more of olefin monomer units For example, isotactic polyolefin (including i-PP, homo PP, random PP, block PP), syndiotactic polyolefin (s-PP), atactic polyolefin (a-PP), olefin ethylene block copolymer , An olefin ethylene random copolymer, and an olefin butene copolymer. If necessary, a copolymer obtained by copolymerizing dienes such as butadiene and α-ω diene may be used. Examples of such include ethylene-olefin diene copolymer (EPDM), ethylene-olefin ethylidene norbornene copolymer, and the like. The above olefin polymer has a polystyrene-reduced weight average molecular weight of 10,000 or more, preferably 30,000 or more and 500,000 or less, preferably 300,000 or less, in order to develop physical properties and molding processability as practical resins. is necessary.

「ブロック共重合体系ポリマ−」
アニオン重合またはその他の重合方法によるリビング重合により得られるジブロック、トリブロック、マルチブロック、スタ−ブロックあるいはテ−パ−ドブロック構造を有するブロック共重合体である。この様な例として、スチレン−ブタジエンブロック共重合体(SBS)、スチレン−イソプレン共重合体(SIS)やこれらの水素添加体(SEBSやSIPS)が挙げられる。以上のブロック共重合体系ポリマ−は、その実用樹脂としての物性、成型加工性を発現するために、ポリスチレン換算重量平均分子量として、5000以上、好ましくは1万以上30万以下、好ましくは20万以下が必要である。
"Block copolymer polymer"
It is a block copolymer having a diblock, triblock, multiblock, star block or taper block structure obtained by living polymerization by anionic polymerization or other polymerization methods. Examples thereof include styrene-butadiene block copolymer (SBS), styrene-isoprene copolymer (SIS), and hydrogenated products thereof (SEBS and SIPS). The above block copolymer polymer has a polystyrene-reduced weight average molecular weight of 5,000 or more, preferably 10,000 or more and 300,000 or less, preferably 200,000 or less, in order to express physical properties and molding processability as a practical resin. is necessary.

本発明のクロス共重合体は以下の「その他の樹脂、エラストマ−、ゴム」と組成物として用いることも可能である。 The cross copolymer of the present invention can also be used as a composition with the following “other resins, elastomers, rubbers”.

「その他の樹脂、エラストマ−、ゴム」
例えば、石油樹脂およびその水添物、ナイロン等のポリアミド、ポリイミド、ポリエチレンテレフタレート等のポリエステル、ポリビニルアルコールや、天然ゴム、シリコン樹脂、シリコンゴムが挙げられる。
"Other resins, elastomers, rubber"
Examples include petroleum resins and hydrogenated products thereof, polyamides such as nylon, polyesters such as polyimide and polyethylene terephthalate, polyvinyl alcohol, natural rubber, silicone resin, and silicone rubber.

<可塑剤>
本発明のクロス共重合体には従来塩ビや他の樹脂に用いられる公知の任意の可塑剤を配合することが出来る。好ましく用いられる可塑剤は含酸素または含窒素系可塑剤であり、エステル系可塑剤、エポキシ系可塑剤、エ−テル系可塑剤、またはアミド系可塑剤から選ばれる可塑剤である。
<Plasticizer>
The cross-copolymer of the present invention can be blended with any known plasticizer conventionally used for vinyl chloride and other resins. The plasticizer preferably used is an oxygen-containing or nitrogen-containing plasticizer, and is a plasticizer selected from an ester plasticizer, an epoxy plasticizer, an ether plasticizer, or an amide plasticizer.

これらの可塑剤は、本発明のクロス共重合体に用いられるエチレン−芳香族ビニル化合物−芳香族ポリエン共重合体との相溶性が比較的良好でブリ−ドし難く、またガラス転移温度が低下する度合いで評価できる可塑化効果も大きく、好適に用いることが出来る。またこれらの可塑剤を用いた場合、特異的な効果として本発明のクロス共重合体に用いられるエチレン−芳香族ビニル化合物−芳香族ポリエン共重合体、特にエチレン−芳香族ビニル化合物−ジビニルベンゼン共重合体中のエチレンと芳香族ビニル化合物ユニットのアイソタクティック交互構造の結晶化を促進し結晶化度を上げる効果があり、通常の可塑化効果に加え耐熱性や耐油性の向上効果をも示すことが出来る。
一方、例えば芳香族、脂肪族、脂環系の鉱物油は、本組成のエチレン−芳香族ビニル化合物共重合体との相溶性が低いためブリ−ドし易く、またガラス転移温度が低下する度合いで評価できる可塑化効果も少ないため適当でない場合がある。
These plasticizers have a relatively good compatibility with the ethylene-aromatic vinyl compound-aromatic polyene copolymer used in the cross-copolymer of the present invention, are difficult to bleed, and have a low glass transition temperature. The plasticizing effect that can be evaluated by the degree to which it is applied is large and can be suitably used. When these plasticizers are used, the ethylene-aromatic vinyl compound-aromatic polyene copolymer, particularly the ethylene-aromatic vinyl compound-divinylbenzene copolymer used in the cross-copolymer of the present invention has a specific effect. It has the effect of accelerating the crystallization of isotactic alternating structure of ethylene and aromatic vinyl compound unit in the polymer and increasing the crystallinity, and also shows the effect of improving heat resistance and oil resistance in addition to the usual plasticizing effect I can do it.
On the other hand, for example, aromatic, aliphatic, and alicyclic mineral oils are easily compatible with the ethylene-aromatic vinyl compound copolymer of the present composition, and the degree to which the glass transition temperature decreases. The plasticizing effect that can be evaluated by the method is small and may not be appropriate.

本発明に好適に用いることができるエステル系可塑剤の例としては、各種フタル酸エステル、トリメリット酸エステル、アジピン酸エステル、セバチン酸エステル、アゼレ−ト系エステル、クエン酸エステル、アセチルクエン酸エステル、グルタミン酸エステル、コハク酸エステル、酢酸エステル等のモノ脂肪酸エステル、リン酸エステルやこれらのポリエステルである。   Examples of ester plasticizers that can be suitably used in the present invention include various phthalic acid esters, trimellitic acid esters, adipic acid esters, sebacic acid esters, azelate esters, citrate esters, and acetyl citrate esters. Monofatty acid esters such as glutamic acid esters, succinic acid esters, and acetic acid esters, phosphoric acid esters, and polyesters thereof.

本発明に好適に用いることができるエポキシ系可塑剤の例としては、エポキシ化大豆油、エポキシ化亜麻仁油が挙げられる。 Examples of the epoxy plasticizer that can be suitably used in the present invention include epoxidized soybean oil and epoxidized linseed oil.

本発明に好適に用いることができるエ−テル系可塑剤の例としては、ポリエチレングリコ−ルやポリオレフィングリコ−ルやこれらの共重合物、混合物が挙げられる。
本発明に好適に用いることができるアミド系可塑剤の例としては、各種スルホン酸アミドが挙げられる。これら可塑剤は単独で用いても、複数を用いても良い。
Examples of ether plasticizers that can be suitably used in the present invention include polyethylene glycol, polyolefin glycol, copolymers thereof, and mixtures thereof.
Examples of amide plasticizers that can be suitably used in the present invention include various sulfonic acid amides. These plasticizers may be used alone or in combination.

本発明に特に好ましく用いられるのは上記エステル系可塑剤である。これらの可塑剤は、本組成範囲のエチレン−芳香族ビニル化合物共重合体との相溶性に優れ、可塑化効果に優れ(ガラス転移温度低下度が高い)、ブリ−ドが少ないという利点がある。加えて優れたエチレン−芳香族ビニル化合物交互構造の結晶化促進効果があり、高い融点を与え、好適である。さらに本発明に最も好ましく用いられるのは、アジピン酸エステル系またはアセチルクエン酸エステル系の可塑剤である。これらの可塑剤を用いた場合、その結晶化速度が著しく速く、溶融成形から短時間で結晶が成長し各種物性が安定するという利点がある。 The ester plasticizer is particularly preferably used in the present invention. These plasticizers have the advantages of excellent compatibility with the ethylene-aromatic vinyl compound copolymer in the composition range, excellent plasticizing effect (high degree of glass transition temperature reduction), and less bled. . In addition, it has an excellent effect of promoting crystallization of an excellent ethylene-aromatic vinyl compound alternating structure, which gives a high melting point and is suitable. Furthermore, an adipate ester type or acetyl citrate ester type plasticizer is most preferably used in the present invention. When these plasticizers are used, there is an advantage that the crystallization speed is remarkably high, crystals grow in a short time from melt molding, and various physical properties are stabilized.

可塑剤の配合量は、本発明のクロス共重合体またはその樹脂組成物100質量部に対して、可塑剤1質量部以上30質量部以下、好ましくは1質量部以上20質量部以下である。1質量部未満では上記効果が不足し、30質量部より高いとブリ−ドや、過度の軟化、それによる過度のべたつきの発現等の原因となる場合がある。 The compounding amount of the plasticizer is 1 part by mass or more and 30 parts by mass or less, preferably 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the cross copolymer of the present invention or the resin composition thereof. If the amount is less than 1 part by mass, the above effect is insufficient. If the amount is more than 30 parts by mass, it may cause bleeding, excessive softening, and excessive stickiness.

<無機質充填剤>
以下、本発明に用いることができる無機質充填剤について示す。
無機質充填剤は、本クロス共重合体に難燃性を付与するためにも用いられる。無機質充填剤の体積平均粒子径は、例えば20μm以下、好ましくは10μm以下の範囲である。体積平均粒子径が、0.5μm未満もしくは10μmを超えるとフィルム化したときの力学物性(引張強度、破断伸度等)の低下が生じるとともに柔軟性の低下やピンホールの発生を引き起こしてしまうことがある。体積平均粒子径は、レーザ回析法で測定した体積平均粒子径である。
<Inorganic filler>
Hereinafter, the inorganic filler that can be used in the present invention will be described.
The inorganic filler is also used to impart flame retardancy to the present cross copolymer. The volume average particle diameter of the inorganic filler is, for example, 20 μm or less, preferably 10 μm or less. If the volume average particle diameter is less than 0.5 μm or more than 10 μm, mechanical properties (tensile strength, elongation at break, etc.) when formed into a film are reduced, and flexibility and pinholes are generated. There is. The volume average particle diameter is a volume average particle diameter measured by a laser diffraction method.

無機質充填剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム、水酸化カルシウム、水酸化カリウム、水酸化バリウム、トリフェニルホスフィート、ポリリン酸アンモニウム、ポリリン酸アミド、酸化ジリコニウム、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化モリブデン、リン酸グアニジン、ハイドロタルサイト、スネークタイト、硼酸亜鉛、無水硼酸亜鉛、メタ硼酸亜鉛、メタ硼酸バリウム、酸化アンチモン、三酸化アンチモン、五酸化アンチモン、赤燐、タルク、アルミナ、シリカ、ベーマイト、ベントナイト、珪酸ソーダ、珪酸カルシウム、硫酸カルシウム、炭酸カルシウム、炭酸マグネシウムであり、これらから選ばれる1種又は2種以上の化合物が使用される。特に、水酸化アルミニウム、水酸化マグネシウム、ハイドロタルサイト、炭酸マグネシウムからなる群から選ばれる少なくとも1種を用いるのが難燃性の付与効果に優れ、経済的に有利である。 Examples of inorganic fillers include aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, calcium hydroxide, potassium hydroxide, barium hydroxide, triphenyl phosphite, ammonium polyphosphate, polyphosphate amide, zirconium oxide and magnesium oxide. , Zinc oxide, titanium oxide, molybdenum oxide, guanidine phosphate, hydrotalcite, snakerite, zinc borate, anhydrous zinc borate, zinc metaborate, barium metaborate, antimony oxide, antimony trioxide, antimony pentoxide, red phosphorus, Talc, alumina, silica, boehmite, bentonite, sodium silicate, calcium silicate, calcium sulfate, calcium carbonate, and magnesium carbonate, and one or more compounds selected from these are used. In particular, the use of at least one selected from the group consisting of aluminum hydroxide, magnesium hydroxide, hydrotalcite, and magnesium carbonate is excellent in flame retardancy and is economically advantageous.

無機質充填剤の配合量は、本クロス共重合体またはその樹脂組成物100質量部に対し1〜300質量部、好ましくは5〜200質量部の範囲である。無機質充填剤が1質量部未満では、難燃性が劣る場合がある。一方で、無機質充填剤が300質量部を超えると、樹脂組成物の成形性及び強度等の機械的物性が劣る場合がある。
無機質充填剤を非ハロゲン系難燃剤として配合した場合は、チャー(炭化層)の形成を図り、フィルムの難燃性を向上させることもできる。
The compounding quantity of an inorganic filler is 1-300 mass parts with respect to 100 mass parts of this cross copolymer or its resin composition, Preferably it is the range of 5-200 mass parts. If the inorganic filler is less than 1 part by mass, flame retardancy may be inferior. On the other hand, when the inorganic filler exceeds 300 parts by mass, mechanical properties such as moldability and strength of the resin composition may be inferior.
When an inorganic filler is blended as a non-halogen flame retardant, char (carbonized layer) can be formed and the flame retardancy of the film can be improved.

本発明の樹脂組成物、可塑剤組成物、フィラ−組成物を製造する方法は特に限定されず、公知の適当なブレンド法を用いることができる。例えば、単軸、二軸のスクリュー押出機、バンバリー型ミキサー、プラストミル、コニーダー、加熱ロールなどで溶融混合を行うことができる。溶融混合を行う前に、ヘンシェルミキサー、リボンブレンダー、スーパーミキサー、タンブラーなどで各原料を均一に混合しておくこともよい。溶融混合温度はとくに制限はないが、100〜300℃、好ましくは150〜250℃が一般的である。 The method for producing the resin composition, plasticizer composition, and filler composition of the present invention is not particularly limited, and a known appropriate blending method can be used. For example, melt mixing can be performed with a single-screw or twin-screw extruder, a Banbury mixer, a plast mill, a kneader, a heating roll, or the like. Prior to melt mixing, the raw materials may be mixed uniformly with a Henschel mixer, ribbon blender, super mixer, tumbler, or the like. The melt mixing temperature is not particularly limited, but is generally 100 to 300 ° C, preferably 150 to 250 ° C.

本発明のクロス共重合体またはその各種組成物の成形体を得るための成形法としては、真空成形、射出成形、ブロー成形、インフレ−ション成形、押出し成形、異型押し出し成形、ロ−ル成形、カレンダ−成形等公知の成形法を用いることができ、それにより各種シ−ト、フィルム、バッグ、チュ−ブ、容器、発泡材、発泡シ−ト、電線被覆材等に成形することが出来る。
更に、本発明記載の樹脂及び樹脂組成物はハロゲンを基本的に含有しないため、環境適応性や安全性が高いという基本的特徴を有する。
As a molding method for obtaining a molded body of the cross copolymer of the present invention or various compositions thereof, vacuum molding, injection molding, blow molding, inflation molding, extrusion molding, profile extrusion molding, roll molding, A known molding method such as calendar molding can be used, whereby various sheets, films, bags, tubes, containers, foamed materials, foamed sheets, wire covering materials, etc. can be formed.
Furthermore, since the resin and the resin composition described in the present invention basically do not contain halogen, they have a basic feature that environmental adaptability and safety are high.

<フィルム、シ−ト>
本発明のクロス共重合体またはその樹脂組成物をフィルムとして用いる場合、その厚みに特に制限はないが、一般に3μm〜1mm、好ましくは10μm〜0.5mmである。
本発明の樹脂組成物からなるフィルム、シ−トを製造するには、インフレーション成形、Tダイ成形、カレンダ−成形、ロ−ル成形などの成形法を採用することができる。本発明のフィルムは、物性の改善を目的として、他の適当なフィルム、例えば、アイソタクティックまたはシンジオタクティックのポリプロピレン、高密度ポリエチレン、低密度ポリエチレン(LDPE、またはLLDPE)、ポリスチレン、ポリエチレンテレフタレート、エチレン−酢酸ビニル共重合体(EVA)等のフィルムと多層化することができる。また金属基材の表面を覆い、その外装用として用いることができる。
<Film, sheet>
When the cross copolymer of the present invention or the resin composition thereof is used as a film, the thickness is not particularly limited, but is generally 3 μm to 1 mm, preferably 10 μm to 0.5 mm.
In order to produce a film or sheet comprising the resin composition of the present invention, a molding method such as inflation molding, T-die molding, calendar molding or roll molding can be employed. For the purpose of improving physical properties, the film of the present invention may be other suitable films such as isotactic or syndiotactic polypropylene, high density polyethylene, low density polyethylene (LDPE or LLDPE), polystyrene, polyethylene terephthalate, It can be multilayered with a film such as ethylene-vinyl acetate copolymer (EVA). Moreover, the surface of a metal base material is covered and it can use for the exterior use.

本発明のクロス共重合体、その組成物またはこれらのフィルム、シ−トの具体的用途は特に限定されないが、その良好な物性、耐傷付き摩耗性から各種合成皮革用途、自動車内装用途、外装用フィルム、保護シ−ト、グリップ材が例示できる。 The specific use of the cross-copolymer of the present invention, the composition thereof or these films and sheets is not particularly limited, but due to its good physical properties and scratch resistance, various synthetic leather applications, automotive interior applications, exterior applications Examples include films, protective sheets, and grip materials.

<発泡体>
また、本発明のクロス共重合体またはその組成物は、発泡体(フォーム材)として好適に使用できる。フォームの製造方法は公知の製造方法を用いることができる。発泡体の製造方法に特に制限はないが、無機系、有機系の化学発泡剤、物理発泡剤等の発泡剤を添加する方法等公知の技術を例示することができる。一般的には、本発明のクロス共重合体と発泡剤(blowing agent)、必要に応じて架橋剤、その他の添加剤を加熱溶融し、押出しながら加熱圧縮し、その後に圧力を減じて発泡、フォーム化する。発泡剤、必要に応じてラジカル架橋剤の添加は、ポリマ−の加熱前のドライブレンドでも加熱溶融後でもよい。これらの加熱ブレンドには、公知の方法、例えば押出機、混合機、またはブレンダー等で行うことができる。架橋は、上記架橋剤の添加による方法以外に、放射線(電子線、ガンマ線等)による方法もある。発泡体に関する公知の技術は例えば”プラスチックフォームハンドブック(日刊工業新聞社、1973年発行)”等に記載されている。
<Foam>
In addition, the cross copolymer of the present invention or the composition thereof can be suitably used as a foam (foam material). A known manufacturing method can be used as the method for manufacturing the foam. Although there is no restriction | limiting in particular in the manufacturing method of a foam, Well-known techniques, such as the method of adding foaming agents, such as an inorganic type and an organic type chemical foaming agent, a physical foaming agent, can be illustrated. In general, the cross-copolymer of the present invention and a blowing agent, and if necessary, a crosslinking agent and other additives are heated and melted and heated and compressed while extruding, and then the pressure is reduced and foamed. Form. The foaming agent and, if necessary, the radical crosslinking agent may be added before or after the polymer is dry blended or heated and melted. These heat blends can be carried out by a known method such as an extruder, a mixer, or a blender. In addition to the above-described method of adding a cross-linking agent, there is a method of using a radiation (electron beam, gamma ray, etc.). Known techniques relating to foams are described in, for example, “Plastic Foam Handbook” (published by Nikkan Kogyo Shimbun, 1973).

また、WO00/37517号公報や特表2001−514275号公報記載の方法は発泡体の作製に好ましく採用することが出来る。本発明のクロス共重合体は、結晶性が一定値以下であり、したがって軟質性、風合いに優れる発泡体が容易に得られるという特徴がある。本発明の発泡体を製造するに当たっては、上記「芳香族ビニル化合物系ポリマ−」、「オレフィン系ポリマ−」、「ブロック共重合体系ポリマ−」と本発明のクロス共重合体との組成物を用いてもよい。
本発明の発泡体には必要に応じて、分散剤、軟化剤、粘着防止剤、フィラー、顔料等を添加することができる。
本発明の発泡体を製造する方法にとくに制限は無く、ガス注入による物理発泡法、水による発泡法、化学的発泡剤による化学発泡法等を例示することが出来る。またビーズ等に発泡剤を含ませ、後に発泡させることも可能である。
得られた発泡体のシート、フィルム等の成形法としては押出成形、射出成形、ブロー成形等特に制限はなく、さらにシートフィルム等は熱成形、圧縮成形等で容器等に成形することが可能である。また、エンボス加工、印刷等を行うこともできる。本クロス共重合体は優れた印刷性を有する特徴がある。
本発明の発泡体は、優れた耐傷つき摩耗性と良好な軟質性、風合いを有するため、各種外装材や床材、壁材、壁紙等の建築材料、自動車用内外装品、スポ−ツ用品やハンドル等のグリップ材として好適に用いることができる。
本発明のクロス共重合体を含む組成物、架橋体、発泡体は、フィルム、シ−ト、チユ−ブ、容器等として有用である。特に、建築材料、壁材、壁紙、床材として好適に用いることができる。このような建築材料、壁材、壁紙、床材については、例えば、WO96/04419、EP0661345、WO98/10160等に記載されている。これらの用途に用いる場合、高い力学的強度と、伸び等の力学物性や物性を維持したままフィラ−を高い含量で充填できる点は、これら用途にもちいる場合、特に難燃性を付与できることを意味し、価値は大きい。
In addition, the methods described in WO 00/37517 and JP-T-2001-514275 can be preferably used for producing a foam. The cross-copolymer of the present invention has a characteristic that the crystallinity is not more than a certain value, and therefore a foam having excellent softness and texture can be easily obtained. In producing the foam of the present invention, the composition of the above “aromatic vinyl compound polymer”, “olefin polymer”, “block copolymer polymer” and the cross copolymer of the present invention is used. It may be used.
If necessary, a dispersant, a softener, an anti-tacking agent, a filler, a pigment, and the like can be added to the foam of the present invention.
There is no restriction | limiting in particular in the method to manufacture the foam of this invention, The physical foaming method by gas injection | pouring, the foaming method by water, the chemical foaming method by a chemical foaming agent, etc. can be illustrated. It is also possible to add a foaming agent to the beads or the like and foam them later.
There are no particular limitations on the molding method of the obtained foam sheet, film, etc., such as extrusion molding, injection molding, blow molding, etc. Furthermore, the sheet film etc. can be molded into a container etc. by thermoforming, compression molding, etc. is there. Moreover, embossing, printing, etc. can also be performed. This cross copolymer is characterized by having excellent printability.
Since the foam of the present invention has excellent scratch-resistant wear properties, good softness, and texture, it is a building material such as various exterior materials, flooring materials, wall materials, and wallpaper, automotive interior and exterior products, and sporting goods. It can be suitably used as a grip material such as a handle.
The composition, cross-linked product, and foam containing the cross-copolymer of the present invention are useful as a film, a sheet, a tube, a container and the like. In particular, it can be suitably used as building materials, wall materials, wallpaper, and floor materials. Such building materials, wall materials, wallpaper, and floor materials are described in, for example, WO96 / 04419, EP0661345, WO98 / 10160, and the like. When used in these applications, the high mechanical strength and the ability to fill the filler with a high content while maintaining the mechanical properties and physical properties such as elongation indicate that flame retardancy can be imparted particularly when used in these applications. Meaning and value.

<電線被覆材>
本発明記載のクロス共重合体及び樹脂組成物は、各種電線、ケ−ブル被覆材として好適に用いることができる。特にフィラ−及びまたは公知の難燃剤との組成物は、軟質性、力学物性、耐摩耗性、及び耐油性に優れこのような用途には好適である。また、耐熱性を向上させるために、各種の公知の架橋法、例えば架橋剤による化学架橋、電子線等による架橋法を行うことも可能である。
<Wire covering material>
The cross-copolymer and resin composition described in the present invention can be suitably used as various electric wires and cable coating materials. In particular, compositions with fillers and / or known flame retardants are excellent in softness, mechanical properties, abrasion resistance, and oil resistance, and are suitable for such applications. Moreover, in order to improve heat resistance, it is also possible to perform various well-known crosslinking methods, for example, the chemical crosslinking by a crosslinking agent, the crosslinking method by an electron beam, etc.

以下、実施例により、本発明を説明するが、本発明は、以下の実施例に限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is limited to a following example and is not interpreted.

実施例で得られた共重合体の分析は以下の手段によって実施した。   The analysis of the copolymer obtained in the examples was carried out by the following means.

13C−NMRスペクトルは、日本電子社製α−500を使用し、重クロロホルム溶媒または重1,1,2,2−テトラクロロエタン溶媒を用い、TMS(テトラメチルシラン)を基準として測定した。ここでいうTMSを基準とした測定は以下のような測定である。先ずTMSを基準として重1,1,2,2−テトラクロロエタンの3重線13C−NMRピークの中心ピークのシフト値を決めた。次いで共重合体を重1,1,2,2−テトラクロロエタンに溶解して13C−NMRを測定し、各ピークシフト値を、重1,1,2,2−テトラクロロエタンの3重線中心ピークを基準として算出した。重1,1,2,2−テトラクロロエタンの3重線中心ピークのシフト値は73.89ppmであった。測定は、これら溶媒に対し、ポリマーを3質量/体積%溶解して行った。
ピーク面積の定量を行う13C−NMRスペクトル測定は、NOEを消去させたプロトンゲートデカップリング法により、パルス幅は45°パルスを用い、繰り返し時間5秒を標準として行った。
The 13C-NMR spectrum was measured using α-500 manufactured by JEOL Ltd., using deuterated chloroform solvent or deuterated 1,1,2,2-tetrachloroethane solvent and TMS (tetramethylsilane) as a reference. The measurement based on TMS here is the following measurement. First, the shift value of the center peak of the triplet 13C-NMR peak of heavy 1,1,2,2-tetrachloroethane was determined based on TMS. Next, the copolymer was dissolved in deuterated 1,1,2,2-tetrachloroethane and 13C-NMR was measured, and each peak shift value was determined as the triplet center peak of deuterated 1,1,2,2-tetrachloroethane. Was calculated on the basis of The shift value of the triplet center peak of deuterated 1,1,2,2-tetrachloroethane was 73.89 ppm. The measurement was performed by dissolving 3% by mass / volume of the polymer in these solvents.
The 13C-NMR spectrum measurement for quantifying the peak area was performed by a proton gate decoupling method in which NOE was eliminated, using a 45 ° pulse with a repetition time of 5 seconds as a standard.

共重合体中のスチレンユニット含量の決定は、1H−NMRで行い、機器は日本電子社製α−500及びBRUCKER社製AC−250を用いた。重1,1,2,2−テトラクロロエタンに溶解し、測定は、80〜100℃で行った。TMSを基準としてフェニル基プロトン由来のピーク(6.5〜7.5ppm)とアルキル基由来のプロトンピーク(0.8〜3ppm)の面積強度比較で行った。   Determination of the styrene unit content in the copolymer was carried out by 1H-NMR, and equipment used was α-500 manufactured by JEOL Ltd. and AC-250 manufactured by BRUCKER. It dissolved in deuterated 1,1,2,2-tetrachloroethane, and the measurement was performed at 80 to 100 ° C. The area intensity of the peak derived from the phenyl group proton (6.5 to 7.5 ppm) and the proton peak derived from the alkyl group (0.8 to 3 ppm) was compared based on TMS.

分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて標準ポリスチレン換算の重量平均分子量を求めた。THFを溶媒とし、東ソー社製HLC−8020を用い測定した。   As for the molecular weight, the weight average molecular weight in terms of standard polystyrene was determined using GPC (gel permeation chromatography). Measurement was carried out using HLC-8020 manufactured by Tosoh Corporation using THF as a solvent.

DSC測定は、セイコー電子社製DSC200を用い、窒素気流下で行った。すなわち樹脂組成物10mgを用い、昇温速度10℃/分で−50℃から240℃までDSC測定を行い、融点、結晶融解熱及びガラス転移点を求めた。1回目の測定後液体窒素で急冷した後に行う2度目の測定により求めた。
なお、物性評価用の試料は加熱プレス法(温度200℃、時間3分間、圧力50kg/cm2)により成形した厚さ1.0mmのシ−トを用いた。
DSC measurement was performed under a nitrogen stream using a DSC200 manufactured by Seiko Denshi. That is, using 10 mg of the resin composition, DSC measurement was performed from −50 ° C. to 240 ° C. at a heating rate of 10 ° C./min, and the melting point, heat of crystal melting, and glass transition point were determined. It was determined by a second measurement after the first measurement and after quenching with liquid nitrogen.
As a sample for evaluating physical properties, a sheet having a thickness of 1.0 mm formed by a hot press method (temperature 200 ° C., time 3 minutes, pressure 50 kg / cm 2) was used.

<引張試験>
JIS K−6251に準拠し、シートを2号1/2号型テストピース形状にカットし、島津製作所社製AGS−100D型引張試験機を用い、引張速度500mm/minにて測定した。
<Tensile test>
In accordance with JIS K-6251, the sheet was cut into a No. 2 1/2 type test piece shape and measured at a tensile speed of 500 mm / min using an AGS-100D type tensile tester manufactured by Shimadzu Corporation.

<硬度>
硬度はJIS K−7215プラスチックのデュロメーター硬さ試験法に準じてタイプAのデュロメーター硬度を求めた。この硬度は瞬間値である。
<Hardness>
The hardness was determined as a type A durometer hardness according to the JIS K-7215 plastic durometer hardness test method. This hardness is an instantaneous value.

<全光線透過率、ヘイズ>
透明度は加熱プレス法(温度200℃、時間4分間、圧力50kg/cm2G)により1mm厚にシートを成形しJIS K−7105プラスチックの光学的特性試験方法に準じて日本電色工業社製濁度計NDH2000を用いて全光線透過率およびヘイズを測定した。
<Total light transmittance, haze>
Transparency is a turbidimeter manufactured by Nippon Denshoku Industries Co., Ltd. according to a method for testing optical properties of JIS K-7105 plastic after forming a sheet with a thickness of 1 mm by a hot press method (temperature 200 ° C., time 4 minutes, pressure 50 kg / cm 2 G). The total light transmittance and haze were measured using NDH2000.

<耐傷つき性試験>
200℃、100気圧でプレス成型して得られた厚さ2mm、一辺100mmの正方形試験片を用い、下記スクラッチテスタ−、下記条件にてスクラッチ後、表面粗さ測定器にて評価を行った。
また、傷の形状をSEM(走査型電子顕微鏡)で観察した。
スクラッチ
装置) スクラッチテスタ− : テ−バ−式スクラッチテスタ−(東洋精機社製)
条件) 荷重 : 1N
針 : サファイヤ針
スクラッチ速度 : 0.67mm/s

傷測定
装置) 表面粗さ測定機 サ−フテストSJ−400(Mitutoyo社製)
条件) 測定速度 : 0.5mm/s
評価項目 : 傷の最深部と最高部の差(高低差)を測定した。
測定は場所を変えて6回行い、最大値と最小値を除いた後、4回の平均を求めた。
<Scratch resistance test>
Using a square test piece having a thickness of 2 mm and a side of 100 mm obtained by press molding at 200 ° C. and 100 atm, after scratching under the following scratch tester and under the following conditions, evaluation was performed with a surface roughness measuring instrument.
Further, the shape of the scratch was observed with a SEM (scanning electron microscope).
Scratch device) Scratch tester: Taber type scratch tester (manufactured by Toyo Seiki Co., Ltd.)
Condition) Load: 1N
Needle: Sapphire needle
Scratch speed: 0.67 mm / s

Scratch measuring device) Surface roughness measuring machine Surf test SJ-400 (manufactured by Mitutoyo)
Condition) Measurement speed: 0.5 mm / s
Evaluation item: The difference (height difference) between the deepest part and the highest part of the wound was measured.
The measurement was performed 6 times at different locations, and after removing the maximum and minimum values, the average of 4 times was obtained.

<テ−バ−摩耗試験>
テ−バ−摩耗試験はJIS K 7204に準拠し、東洋精機製テ−バ−磨耗試験機を用い、以下の試験条件下で実施し、摩耗量を測定した。
摩耗輪:H-22
円盤の回転速度:1rpm荷重:1kg (回転数1000回転:JIS)
試験片:200℃、50気圧でプレス成型し得られた2mm、一辺約100mmの正方形試験片。
<Taber abrasion test>
The taber abrasion test was based on JIS K 7204, and was conducted under the following test conditions using a Toyo Seiki Taber abrasion tester to measure the amount of wear.
Wear wheel: H-22
Disk rotation speed: 1rpm Load: 1kg (Rotation speed 1000 rotations: JIS)
Test piece: A square test piece of 2 mm obtained by press molding at 200 ° C. and 50 atm.

<ジビニルベンゼン>
用いたジビニルベンゼンは、アルドリッチ社製(ジビニルベンゼンとしての純度80%、メタ体、パラ体混合物のメタ体:パラ体質量比は70:30)である。
<Divinylbenzene>
The divinylbenzene used was manufactured by Aldrich (purity 80% as divinylbenzene, meta-form, para-form mass ratio of para-form mixture: para-form mass is 70:30).

<ゲル分>
ASTM D−2765−84に従い、クロス共重合体のゲル分を測定した。すなわち、精秤した1.0gポリマー(直径約1mm、長さ約3mmの成型物)を、100メッシュのステンレス製網袋に包み、精秤した。これを沸騰キシレン中で約5時間抽出したのちに網袋を回収し、真空中90℃で10時間以上乾燥した。十分に冷却後、網袋を精秤し、以下の式により、ポリマーゲル量を算出した。
ゲル量=網袋に残留したポリマーの質量/はじめのポリマー質量×100
<Gel content>
The gel content of the cross-copolymer was measured according to ASTM D-2765-84. That is, a precisely weighed 1.0 g polymer (a molded product having a diameter of about 1 mm and a length of about 3 mm) was wrapped in a 100 mesh stainless steel net bag and precisely weighed. After extracting this in boiling xylene for about 5 hours, the net bag was collected and dried in a vacuum at 90 ° C. for 10 hours or more. After cooling sufficiently, the net bag was precisely weighed, and the polymer gel amount was calculated by the following formula.
Gel amount = mass of polymer remaining in mesh bag / initial polymer mass × 100

<触媒(遷移金属化合物)>
以下の実施例1〜11では、触媒(遷移金属化合物)として、rac(ラセミ体)−ジメチルメチレンビス(4,5−ベンゾ−1−インデニル)ジルコニウムジクロライド(式7)を用いた。
<Catalyst (transition metal compound)>
In Examples 1 to 11 below, rac (racemic) -dimethylmethylenebis (4,5-benzo-1-indenyl) zirconium dichloride (Formula 7) was used as a catalyst (transition metal compound).

実施例1
<クロス共重合体の合成>
触媒としてrac−ジメチルメチレンビス(4,5−ベンゾ−1−インデニル)ジルコニウムジクロライドを用い、以下のように実施した。
容量50L、攪拌機及び加熱冷却用ジャケット付のオートクレーブを用いて重合を行った。
シクロヘキサン21.8kg、スチレン2.5kg及びアルドリッチ社製ジビニルベンゼン(メタ、パラ混合品、ジビニルベンゼンとして48.7mmol)を仕込み、内温60℃に調整し攪拌(220rpm)した。乾燥窒素ガスを10L/分の流量で30分、液中にバブリングして系内及び重合液の水分をパージした。次いで、トリイソブチルアルミニウム50mmol、メチルアルモキサン(東ソーアクゾ社製、MMAO−3A/ヘキサン溶液)をAl基準で60mmol(表中ではMAOと記載)加え、ただちにエチレンで系内ガスを置換した。置換後、内温を75℃に昇温してエチレンを導入し、圧力0.4MPaG(4.0Kg/cmG)で安定した後に、オートクレーブ上に設置した触媒タンクから、rac−ジメチルメチレンビス(4,5−ベンゾ−1−インデニル)ジルコニウムジクロライドを80μmol、トリイソブチルアルミニウム1mmolを溶かしたトルエン溶液約50mlをオートクレーブ中に加えた。直ちに重合が始まり、内温は85℃まで上昇した。内温を85℃、エチレンを補給し圧力を0.4MPaGに維持しながら60分間重合を実施した(配位重合工程)。この段階でエチレンの消費量(流量計を通過したエチレン積算量:参考値)は標準状態で約1600Lであった。重合液の少量(数十ml)をサンプリングし、メタノールに混合してポリマーを析出させることにより配位重合工程のポリマーサンプルを得た。本サンプリング液より、配位重合工程でのポリマ−収量、組成、分子量等を求めた。
直ちに重合缶へのエチレンの供給を停止し、急速にエチレンを放圧すると共に内温を60℃まで冷却した。次いで、n−ブチルリチウム160mmolを触媒タンクから窒素ガスに同伴させて重合缶内に導入した。直ちにアニオン重合が開始し、内温は60℃から一時75℃まで上昇した。そのまま30分間温度を75℃に維持し、攪拌を継続し重合を続けた(アニオン重合工程)。
重合終了後、約100mlのメタノ−ルを注入することでブチルリチウムを失活させた。得られたポリマー液を、分散剤(プルロニック)とカリミョウバンを含む激しく攪拌した加熱水中にギアポンプにて少しずつ投入し、溶媒を除去し、加熱水中に分散したポリマ−クラム(大きさ約1cm)を得た。このポリマークラムを、遠心脱水し、室温で1昼夜風乾した後に60℃、真空中、質量変化が認められなくなるまで乾燥した。
約4.7kgのポリマー(クロス共重合体)が得られた。
Example 1
<Synthesis of cross copolymer>
Using rac-dimethylmethylenebis (4,5-benzo-1-indenyl) zirconium dichloride as a catalyst, the reaction was carried out as follows.
Polymerization was carried out using an autoclave with a capacity of 50 L, a stirrer and a heating / cooling jacket.
Cyclohexane (21.8 kg), styrene (2.5 kg), and Aldrich divinylbenzene (meta, para-mixed product, 48.7 mmol as divinylbenzene) were charged, adjusted to an internal temperature of 60 ° C., and stirred (220 rpm). Dry nitrogen gas was bubbled into the liquid at a flow rate of 10 L / min for 30 minutes to purge the water in the system and the polymerization liquid. Subsequently, 50 mmol of triisobutylaluminum and methylalumoxane (manufactured by Tosoh Akzo, MMAO-3A / hexane solution) were added in an amount of 60 mmol based on Al (described as MAO in the table), and immediately, the system gas was replaced with ethylene. After the replacement, the internal temperature was raised to 75 ° C., ethylene was introduced, and after stabilization at a pressure of 0.4 MPaG (4.0 Kg / cm 2 G), rac-dimethylmethylenebis was removed from the catalyst tank installed on the autoclave. About 50 ml of a toluene solution in which 80 μmol of (4,5-benzo-1-indenyl) zirconium dichloride and 1 mmol of triisobutylaluminum were dissolved was added to the autoclave. Polymerization started immediately and the internal temperature rose to 85 ° C. Polymerization was carried out for 60 minutes while maintaining an internal temperature of 85 ° C., ethylene, and a pressure of 0.4 MPaG (coordination polymerization step). At this stage, ethylene consumption (total amount of ethylene passed through the flow meter: reference value) was about 1600 L in the standard state. A small amount (several tens of ml) of the polymerization solution was sampled and mixed with methanol to precipitate a polymer, thereby obtaining a polymer sample for the coordination polymerization step. From this sampling solution, the polymer yield, composition, molecular weight and the like in the coordination polymerization step were determined.
Immediately, the supply of ethylene to the polymerization can was stopped, the ethylene was rapidly released, and the internal temperature was cooled to 60 ° C. Next, 160 mmol of n-butyllithium was introduced from the catalyst tank into the polymerization can with nitrogen gas. Anionic polymerization started immediately, and the internal temperature rose from 60 ° C to 75 ° C temporarily. The temperature was maintained at 75 ° C. for 30 minutes as it was, and stirring was continued to continue polymerization (anionic polymerization step).
After the polymerization was completed, butyl lithium was deactivated by injecting about 100 ml of methanol. The obtained polymer solution is poured little by little with a gear pump into vigorously stirred heated water containing a dispersing agent (pluronic) and potash alum, the solvent is removed, and polymer crumb (size: about 1 cm) dispersed in the heated water. Got. This polymer crumb was centrifuged and dehydrated, air-dried at room temperature for one day and night, and then dried in a vacuum at 60 ° C. until no mass change was observed.
About 4.7 kg of polymer (cross copolymer) was obtained.

実施例2〜4
実施例1と同様の手順で、ただし条件は表1に示す条件に変更して重合を実施した。
Examples 2-4
Polymerization was carried out in the same procedure as in Example 1, except that the conditions were changed to those shown in Table 1.

比較例
実施例1と同様の手順で、ただし条件は表1に示す条件に変更して重合を実施した。
重合条件及びポリマ−分析結果を表1及び表2に示す。
Comparative Example The polymerization was carried out in the same procedure as in Example 1, except that the conditions were changed to those shown in Table 1.
The polymerization conditions and polymer analysis results are shown in Tables 1 and 2.


A硬度、力学物性、成形加工性(MFR値)を表3に示す。

Table 3 shows A hardness, mechanical properties, and moldability (MFR value).


また、耐摩耗性、傷付き性試験結果を表4に示す。

Table 4 shows the results of the abrasion resistance and scratch resistance test.


表4においては、比較例として、市販の代表的エラストマ−である、軟質塩ビ(A硬度70)、EVA(A硬度80)、SEBS(A硬度85)、PP−EPDMコンパウンド(A硬度80)、SEPS−PP系コンパウンド(A硬度80)、ポリウレタン(A硬度80)の測定値も示す。
スクラッチ試験後の試験片の表面のSEM観察を行った。

In Table 4, as a comparative example, commercially available representative elastomers such as soft vinyl chloride (A hardness 70), EVA (A hardness 80), SEBS (A hardness 85), PP-EPDM compound (A hardness 80), The measured values of the SEPS-PP compound (A hardness 80) and polyurethane (A hardness 80) are also shown.
SEM observation of the surface of the test piece after the scratch test was performed.

本発明のクロス共重合体及び軟質塩ビでは、SEM観察で傷を特定することは出来なかったので、図1、2ではその表面を示す。 In the cross-copolymer and the soft vinyl chloride of the present invention, the scratches could not be specified by SEM observation, so the surfaces are shown in FIGS.

一方、EVA及びPP−EPDMコンパウンドでは、明確な傷が観察されたので、同じ倍率で示す(図3、4)。 On the other hand, with EVA and PP-EPDM compounds, clear scratches were observed, so they are shown at the same magnification (FIGS. 3 and 4).

本発明の条件を満たすクロス共重合体(実施例1〜4)は、いずれも熱可塑性エラストマ−として良好な軟質性(A硬度)、力学物性、成形加工性を示す。さらに、本発明の条件を満たすクロス共重合体(実施例1〜4)は、いずれも良好な耐テ−バ−摩耗性(テ−バ−摩耗量100mg以下)と良好な耐傷つき性(スクラッチ試験、傷高低差 8ミクロン以下)を示すことができる。
一方、軟質塩ビはスクラッチ試験に於いて良好な耐傷つき性を示すものの、テ−バ−摩耗試験に於いて耐摩耗性は劣っている(摩耗量多い)。PP−EPDMコンパウンド及びEVAは耐摩耗性、耐傷つき性共に劣っている。以上から、本発明のクロス共重合体は優れた耐摩耗性(テ−バ−摩耗性)及び耐傷つき性を示すことがわかる。
The cross-copolymers (Examples 1 to 4) that satisfy the conditions of the present invention all exhibit good softness (A hardness), mechanical properties, and moldability as a thermoplastic elastomer. Furthermore, the cross-copolymers (Examples 1 to 4) that satisfy the conditions of the present invention all have good taber wear resistance (taber wear amount of 100 mg or less) and good scratch resistance (scratch). Test, scratch height difference of 8 microns or less).
On the other hand, soft vinyl chloride shows good scratch resistance in the scratch test, but inferior in wear resistance in the taber wear test (a large amount of wear). PP-EPDM compound and EVA are inferior in both wear resistance and scratch resistance. From the above, it can be seen that the cross-copolymer of the present invention exhibits excellent wear resistance (Taber abrasion) and scratch resistance.

実施例3で得られたクロス共重合体シ−トの表面(スクラッチ試験後)のSEM画像である。4 is a SEM image of the surface of the cross copolymer sheet obtained in Example 3 (after a scratch test). 軟質塩ビシ−トの表面(スクラッチ試験後)のSEM画像である。It is a SEM image of the surface (after a scratch test) of a soft vinyl chloride sheet. EVAシ−トの表面(スクラッチ試験後)のSEM画像である。It is a SEM image of the surface (after a scratch test) of an EVA sheet. PP−EPDMコンパウンドのシ−ト表面(スクラッチ試験後)のSEM画像である。It is a SEM image of the sheet | seat surface (after a scratch test) of PP-EPDM compound.

Claims (8)

配位重合工程とこれに続くアニオン重合工程からなる重合工程を含む製造方法であって、配位重合工程として、シングルサイト配位重合触媒を用いてエチレンモノマー、芳香族ビニル化合物モノマーおよび芳香族ポリエンの共重合を行って、エチレン−芳香族ビニル化合物−芳香族ポリエン共重合体を合成し、次にアニオン重合工程として、このエチレン−芳香族ビニル化合物−芳香族ポリエン共重合体と芳香族ビニル化合物モノマーの共存下、アニオン重合開始剤を用いて重合することを特徴とする製造方法で得られるクロス共重合体において、下記条件を満足する製造方法により得られるA硬度が61以上86以下の耐傷つき摩耗性に優れたクロス共重合体。
(1)配位重合工程で得られるエチレン−芳香族ビニル化合物−芳香族ポリエン共重合体の芳香族ビニル化合物ユニット含量が8モル%以上28モル%以下、芳香族ポリエンユニット含量が0.01モル%以上0.5モル%以下である。
(2)配位重合工程で得られるエチレン−芳香族ビニル化合物−芳香族ポリエン共重合体の質量割合が、アニオン重合工程を経て最終的に得られるクロス共重合体質量に対して83質量%以上95質量%以下である。
A production method comprising a polymerization step comprising a coordination polymerization step and a subsequent anion polymerization step, wherein as a coordination polymerization step, an ethylene monomer, an aromatic vinyl compound monomer and an aromatic polyene are used using a single site coordination polymerization catalyst. Is synthesized to produce an ethylene-aromatic vinyl compound-aromatic polyene copolymer, and then, as an anionic polymerization step, this ethylene-aromatic vinyl compound-aromatic polyene copolymer and aromatic vinyl compound are synthesized. In a cross-copolymer obtained by a production method characterized by polymerization using an anionic polymerization initiator in the presence of a monomer, the A hardness obtained by the production method satisfying the following conditions is scratch resistance of 61 to 86: Cross copolymer with excellent wear.
(1) The aromatic vinyl compound unit content of the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step is 8 mol% to 28 mol%, and the aromatic polyene unit content is 0.01 mol. % Or more and 0.5 mol% or less.
(2) The mass ratio of the ethylene-aromatic vinyl compound-aromatic polyene copolymer obtained in the coordination polymerization step is 83% by mass or more based on the mass of the cross-copolymer finally obtained through the anionic polymerization step. It is 95 mass% or less.
配位重合工程において、下記の一般式(1)で表される遷移金属化合物と助触媒から構成されるシングルサイト配位重合触媒を用いることを特徴とする製造方法により得られる請求項1に記載のクロス共重合体。


式中、A、Bは同一でも異なっていてもよく、いずれも一般式(2)、(3)、または(4)で示される非置換もしくは置換ベンゾインデニル基、一般式(5)で示される非置換もしくは置換インデニル基から選ばれる基である。なお、下記の一般式(2)、(3)、(4)においてR1〜R3はそれぞれ水素、炭素数1〜20のアルキル基、炭素数6〜10のアリール基、炭素数7〜20のアルキルアリール基、ハロゲン原子、OSiR3基、SiR3基またはPR2基(Rはいずれも炭素数1〜10の炭化水素基を表す)である。R1同士、R2同士、R3同士は互いに同一でも異なっていてもよく、また、隣接するR1、R2基は一体となって5〜8員環の芳香環または脂肪環を形成してもよい。 下記の一般式(5)においてR4はそれぞれ水素、炭素数1〜20のアルキル基、炭素数6〜10のアリール基、炭素数7〜20のアルキルアリール基、ハロゲン原子、OSiR3基、SiR3基またはPR2基(Rはいずれも炭素数1〜10の炭化水素基を表す)である。R4同士は互いに同一でも異なっていてもよい。








YはA、Bと結合を有し、他に置換基として水素もしくは炭素数1〜15の炭化水素基(1〜3個の窒素、酸素、硫黄、燐、珪素原子を含んでもよい)を有するメチレン基、または硼素基である。置換基は互いに異なっていても同一でもよい。また、Yは環状構造を有していてもよい。
Xは、水素、水酸基、ハロゲン、炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基、炭素数1〜4の炭化水素置換基を有するシリル基、または炭素数1〜20の炭化水素置換基を有するアミド基である。2個のXは結合を有してもよい。
Mはジルコニウム、ハフニウム、またはチタンである。
The coordination polymerization step is obtained by a production method using a single site coordination polymerization catalyst composed of a transition metal compound represented by the following general formula (1) and a cocatalyst. Cross copolymer.


In the formula, A and B may be the same or different, and each is an unsubstituted or substituted benzoindenyl group represented by the general formula (2), (3), or (4), represented by the general formula (5). And a group selected from an unsubstituted or substituted indenyl group. In the following general formulas (2), (3), and (4), R1 to R3 are each hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an alkyl group having 7 to 20 carbon atoms. An aryl group, a halogen atom, an OSiR3 group, an SiR3 group or a PR2 group (R represents a hydrocarbon group having 1 to 10 carbon atoms). R1s, R2s, and R3s may be the same as or different from each other, and adjacent R1 and R2 groups may be combined to form a 5- to 8-membered aromatic or alicyclic ring. In the following general formula (5), R4 is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, a halogen atom, an OSiR3 group, an SiR3 group, or It is a PR2 group (R represents a hydrocarbon group having 1 to 10 carbon atoms). R4 may be the same or different from each other.








Y has a bond with A and B, and additionally has hydrogen or a hydrocarbon group having 1 to 15 carbon atoms (may contain 1 to 3 nitrogen, oxygen, sulfur, phosphorus, or silicon atoms) as a substituent. A methylene group or a boron group; The substituents may be different or the same. Y may have a cyclic structure.
X is hydrogen, a hydroxyl group, halogen, a C1-C20 hydrocarbon group, a C1-C20 alkoxy group, a silyl group having a C1-C4 hydrocarbon substituent, or a C1-C20 It is an amide group having a hydrocarbon substituent. Two Xs may have a bond.
M is zirconium, hafnium, or titanium.
請求項1記載のクロス共重合体を50質量%以上含む樹脂組成物。 A resin composition comprising 50% by mass or more of the cross copolymer according to claim 1. 請求項1記載のクロス共重合体または請求項3記載の樹脂組成物からなる耐傷つき摩耗性フィルムまたはシ−ト A scratch-resistant wear film or sheet comprising the cross copolymer according to claim 1 or the resin composition according to claim 3. 請求項1記載のクロス共重合体または請求項3記載の樹脂組成物からなる耐傷つき摩耗性フィルムまたはシ−トを表層に有する成形体 A molded body having a scratch-resistant wear film or sheet comprising the cross copolymer according to claim 1 or the resin composition according to claim 3 as a surface layer. 請求項1記載のクロス共重合体または請求項3記載の樹脂組成物からなる合成皮革製品 A synthetic leather product comprising the cross-copolymer according to claim 1 or the resin composition according to claim 3. 請求項1記載のクロス共重合体または請求項3記載の樹脂組成物からなるグリップまたは外装部材 A grip or an exterior member comprising the cross copolymer according to claim 1 or the resin composition according to claim 3. 請求項1記載のクロス共重合体または請求項3記載の樹脂組成物からなる発泡体

A foam comprising the cross copolymer according to claim 1 or the resin composition according to claim 3.

JP2007275421A 2007-10-23 2007-10-23 Scratch-resistant wear-resistant elastomer Active JP5209934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007275421A JP5209934B2 (en) 2007-10-23 2007-10-23 Scratch-resistant wear-resistant elastomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275421A JP5209934B2 (en) 2007-10-23 2007-10-23 Scratch-resistant wear-resistant elastomer

Publications (2)

Publication Number Publication Date
JP2009102515A JP2009102515A (en) 2009-05-14
JP5209934B2 true JP5209934B2 (en) 2013-06-12

Family

ID=40704533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275421A Active JP5209934B2 (en) 2007-10-23 2007-10-23 Scratch-resistant wear-resistant elastomer

Country Status (1)

Country Link
JP (1) JP5209934B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5908771B2 (en) * 2012-03-27 2016-04-26 デンカ株式会社 Medical tube
JP6556627B2 (en) * 2013-11-12 2019-08-07 デンカ株式会社 Thermoplastic elastomer resin composition
JPWO2017110235A1 (en) 2015-12-25 2018-10-18 デンカ株式会社 Cross-copolymer and medical single-layer tube using the same
JP2018070676A (en) * 2016-10-25 2018-05-10 デンカ株式会社 Self-adhesive sheet and protective material
WO2020045082A1 (en) * 2018-08-30 2020-03-05 デンカ株式会社 Thermoplastic elastomer composition and production method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6559234B1 (en) * 1998-12-22 2003-05-06 Denki Kagaku Kogyo Kabushiki Kaisha Cross-copolymerized olefin/styrene/diene copolymer, process for the production of the same and uses thereof
JP2001316431A (en) * 2000-05-08 2001-11-13 Denki Kagaku Kogyo Kk Medical molded article

Also Published As

Publication number Publication date
JP2009102515A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
US8722831B2 (en) Process for production of cross copolymers, cross copolymers obtained by the process, and use thereof
JP4398591B2 (en) Cross-copolymerized olefin-styrene-diene copolymer, production method thereof and use thereof
JP5058764B2 (en) CROSS COPOLYMER MANUFACTURING METHOD, OBTAINED CROSS COPOLYMER, AND USE THEREOF
JP5620815B2 (en) Thermoplastic resin composition
US6566453B1 (en) Cross-copolymerized olefin/aromatic vinyl/diene copolymer and process for producing the same
JP6622186B2 (en) Cross copolymer and resin composition
JP5209934B2 (en) Scratch-resistant wear-resistant elastomer
JP2011074187A (en) Easily cross-linkable thermoplastic resin
JP5891229B2 (en) Skin material sheet
US6878779B2 (en) Cross-copolymerized olefin/aromatic vinyl compound/diene copolymer and process for its production
EP1394187B1 (en) Process for producing olefin/aromatic vinyl copolymer
WO1999048972A1 (en) Resin composition
JP5242485B2 (en) Thermoplastic resin composition
JP5430117B2 (en) Method for producing heat-resistant cloth copolymer, heat-resistant cloth copolymer obtained, and use thereof
JP2011207936A (en) Sheet for skin material
JP2006176708A (en) Resin composition
JP2007191654A (en) Resin composition
JP2000119413A (en) Heat-shrinking film
WO2018186403A1 (en) Resin composition
JP2010013575A (en) Thermoplastic resin composition and coating sheet thereof with excellent abrasion resistance, heat resistance, and embossing holding property
JP2002265641A (en) Heat-shrinkable film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5209934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250