JP5196638B2 - Column base semi-rigid joint building - Google Patents

Column base semi-rigid joint building Download PDF

Info

Publication number
JP5196638B2
JP5196638B2 JP2007248591A JP2007248591A JP5196638B2 JP 5196638 B2 JP5196638 B2 JP 5196638B2 JP 2007248591 A JP2007248591 A JP 2007248591A JP 2007248591 A JP2007248591 A JP 2007248591A JP 5196638 B2 JP5196638 B2 JP 5196638B2
Authority
JP
Japan
Prior art keywords
column
layer
building
semi
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007248591A
Other languages
Japanese (ja)
Other versions
JP2009079397A (en
Inventor
努 小室
宏道 藤野
健好 是永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2007248591A priority Critical patent/JP5196638B2/en
Publication of JP2009079397A publication Critical patent/JP2009079397A/en
Application granted granted Critical
Publication of JP5196638B2 publication Critical patent/JP5196638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は大地震時の塑性変形を梁に集中させる架構を有する建築物に関し、特に、当該建築物において特定階の柱の下端部を半剛接合することによって、大地震時の柱脚部の曲げモーメントを低減すると同時に損傷を軽減することのできる建築物に関するものである。   The present invention relates to a building having a frame that concentrates plastic deformation during a large earthquake on a beam, and in particular, by semi-rigidly joining the lower end of a column on a specific floor in the building, The present invention relates to a building that can reduce bending moment and at the same time reduce damage.

柱梁からなる耐震架構を有する多層建築物においては、大地震時に、柱よりも先に梁が降伏する構造の方が、梁よりも先に柱が降伏する構造に比較して、一般に崩壊モードに到達するまでのエネルギー吸収が大きいために耐震上好ましいと考えられている。そのために、大地震時に塑性変形を梁に集中させる形式の架構がある。例えば、プレキャストコンクリート造の梁を柱に圧着接合した架構や部分的に降伏点の低い鋼材を使用した梁を有する架構である(図1)。このような建築物は、大地震時に、梁の特定部分(例えば、梁端の圧着接合部分や降伏点の低い鋼材の部分)に塑性変形を集中し、当該部分が塑性ヒンジとなって非線形挙動することが知られている。   In multi-story buildings with seismic frames composed of column beams, in the event of a large earthquake, the structure in which the beam yields before the column is generally in a collapse mode compared to the structure in which the column yields before the beam. It is considered that it is preferable for earthquake resistance because of the large energy absorption until it reaches. For this purpose, there is a type of frame that concentrates plastic deformation on the beam during a large earthquake. For example, it is a frame with a precast concrete beam bonded to a column and a frame made of steel with a partially low yield point (Fig. 1). Such a building concentrates plastic deformation on a specific part of a beam (for example, a crimped joint at the end of a beam or a steel part with a low yield point) during a large earthquake, and that part becomes a plastic hinge to perform nonlinear behavior. It is known to do.

図2Aに示した従来の柱梁構造によれば、梁210はPC鋼材(または高強度鋼材)212によって圧縮力を加えられたプレキャストコンクリート造であり、PC鋼材212の端部204は、柱100を貫通して、梁210の反対側でアンカーされている。一方、梁210のPC鋼材以外の鉄筋は柱100にアンカーされておらず、梁210は、その端部において、PC鋼材の緊張力で柱100に圧着されている。同図に示した例では、柱100もまたプレキャストプレストレストコンクリート造であり、PC鋼材202は、柱の両端部においてアンカーされている。   According to the conventional column beam structure shown in FIG. 2A, the beam 210 is a precast concrete structure to which a compressive force is applied by a PC steel material (or high strength steel material) 212, and the end portion 204 of the PC steel material 212 is formed of the column 100. And is anchored on the opposite side of the beam 210. On the other hand, the reinforcing bars other than the PC steel material of the beam 210 are not anchored to the column 100, and the beam 210 is crimped to the column 100 at the end by the tension of the PC steel material. In the example shown in the figure, the pillar 100 is also made of a precast prestressed concrete structure, and the PC steel material 202 is anchored at both ends of the pillar.

図2Bに示した従来の柱梁構造は、柱の下端部222が基礎梁と一体化されている点が図2Aに示した柱梁構造とは異なるが、プレキャスト梁がその端部220において柱に圧着接合されている点は同じである。図2Cに示した従来の柱梁構造は、一部に降伏点の低い鋼材を用いた梁232を柱230に片端を埋め込みもう一端を突出させた鋼製ブラケット231に対して、ボルト等によって接合したものである。当該構造の場合、柱梁は剛に接合されていてもよいが、ボルト接合によって柱梁接合部における梁の剛性を低くしたものであってもよい。   The conventional column beam structure shown in FIG. 2B is different from the column beam structure shown in FIG. 2A in that the lower end portion 222 of the column is integrated with the foundation beam, but the precast beam has a column at its end 220. It is the same in that it is crimped to the same. In the conventional column beam structure shown in FIG. 2C, a beam 232 made of a steel material having a low yield point is partially bonded to a steel bracket 231 with one end embedded in the column 230 and the other end protruding by a bolt or the like. It is a thing. In the case of this structure, the column beam may be rigidly joined, but may be one in which the rigidity of the beam at the column beam joint portion is reduced by bolt joining.

図2A〜2Cに図示した柱梁構造は、PC鋼材の引張降伏または梁の一部に用いた降伏点の低い鋼材の降伏によって、大地震時には柱の降伏前に梁の降伏を生じさせる(つまり塑性変形させる)構造である。   The column beam structure shown in FIGS. 2A to 2C causes the beam to yield before the column yields in a large earthquake due to the tensile yield of PC steel or the yield of steel with a low yield point used for a part of the beam. It is a structure that is plastically deformed.

一方、杭頭と基礎との接合を半剛接合として当該接合部分に発生する曲げモーメントを低減し、杭頭及び杭頭と接合される基礎の損傷を低減するとともに、これらの部材設計を合理化することが提案されている(特許文献1)。   On the other hand, the joint between the pile head and the foundation is made semi-rigid and the bending moment generated at the joint is reduced, damage to the pile head and the foundation joined to the pile head is reduced, and the design of these members is rationalized. (Patent Document 1).

大地震時に塑性変形を梁に集中させる上述のような架構の場合、必然的に梁の剛性が低くなるために、図3Bに示すように、第一層の柱脚部に応力が集中する傾向を生じる。柱梁接合部における梁310の剛性と柱300の剛性の比(梁剛性/柱剛性)が低い建物は、柱の剛性が主として水平力に抵抗するからである。また、建物の変形モードは、梁310の変形と同時に第一層柱の柱脚部302の変形が支配的になる。梁が塑性変形した後は、第1層柱脚部への曲げモーメントの集中は一層顕著になる。したがって、大地震時に塑性変形を梁に集中させる架構の場合には特に、柱脚部分への応力集中を緩和する構造が望まれる。
特許第3661997号公報
In the case of the above-mentioned frame that concentrates plastic deformation on the beam in the event of a large earthquake, the rigidity of the beam inevitably decreases, so that stress tends to concentrate on the column base of the first layer as shown in FIG. 3B. Produce. This is because in a building where the ratio of the rigidity of the beam 310 to the rigidity of the column 300 (beam rigidity / column rigidity) at the column-beam joint is low, the rigidity of the column mainly resists horizontal force. In the deformation mode of the building, the deformation of the column base 302 of the first layer column is dominant simultaneously with the deformation of the beam 310. After the beam is plastically deformed, the concentration of the bending moment on the first layer column base becomes more prominent. Therefore, in the case of a frame that concentrates plastic deformation on a beam during a large earthquake, a structure that reduces stress concentration on the column base is desired.
Japanese Patent No. 3661997

上記の課題を解決するために、本発明は、梁に塑性変形を集中させる架構を有するとともに、特定層に下端部が半剛接合された鉄筋コンクリート柱を有する建築物を提案する。   In order to solve the above-described problems, the present invention proposes a building having a frame that concentrates plastic deformation on a beam and having a reinforced concrete column whose lower end is semi-rigidly joined to a specific layer.

本明細書において特定層とは、一般にはいわゆる1階部分をさすが、これに限定されない。特定層は地下階であっても良いし、1階よりも上の階であっても良い。また、一層のみであってもよいし、複数の層であってもよい。柱の下端部とは、本明細書では柱脚部あるいは柱の下端部から階高の4分の1程度の範囲、望ましくは柱の下端部から10cm未満の範囲をいう。   In this specification, the specific layer generally refers to a so-called first floor portion, but is not limited thereto. The specific layer may be an underground floor or a floor above the first floor. Moreover, only one layer may be sufficient and a several layer may be sufficient. In this specification, the lower end portion of the column means a range of about a quarter of the floor height from the column base portion or the lower end portion of the column, preferably a range less than 10 cm from the lower end portion of the column.

半剛接合とは、一定断面積の柱梁の配筋を相互に貫通させてコンクリートに埋設する、いわゆる剛接合に比較して、接合部分の剛性が顕著に低い接合をいう。具体的には、柱の接合部分の断面積を他の部分に比較して低減する(あるいは柱を一部切り欠く)方法、柱の鉄筋を貫通させず実質的にコンクリートのみで接合する方法、断面の中心部近傍のみにおいて鋼材を貫通させる方法、特定の機械式ジョイントを用いる方法などによって実現することができる。柱の断面は、直線状あるいは曲線状になだらかに減少していてもよいが、階段状に減少してもよい。せん断力の伝達をより確実にするためには、柱は、半剛接合部分に軸方向鋼材を有するのが望ましい。軸方向鋼材は、減少した柱の断面内に位置し、柱とその下部の構造とを連結する。   The semi-rigid joint refers to a joint in which the rigidity of the joint portion is remarkably lower than that of a so-called rigid joint in which the reinforcement of column beams having a constant cross-sectional area is penetrated and embedded in concrete. Specifically, the method of reducing the cross-sectional area of the joint part of the column compared to other parts (or notching part of the column), the method of joining only with concrete without penetrating the column reinforcement, It can be realized by a method of penetrating a steel material only in the vicinity of the center of the cross section, a method using a specific mechanical joint, or the like. The cross section of the column may be gradually reduced linearly or curvedly, but may be reduced stepwise. In order to make the transmission of the shearing force more reliable, the column preferably has an axial steel material at the semi-rigid joint. The axial steel is located in the reduced column cross section and connects the column and its underlying structure.

本発明は、さらに、前記の構造を有する建築物であって、前記特定層の柱の下端部は、水平断面積が下方向に向かって漸減する建築物を提案する。   The present invention further proposes a building having the above-described structure, wherein the lower end portion of the pillar of the specific layer has a horizontal sectional area that gradually decreases downward.

当該構造の場合、柱の断面積は、柱下端部において上から下に向けて直線的、曲線的あるいは階段状に減少する。このような柱断面積の減少は、柱下端部から例えば階高の1/4程度の範囲にわたってもよい。   In the case of this structure, the cross-sectional area of the column decreases linearly, curvilinearly, or stepwise from the top to the bottom at the bottom end of the column. Such a reduction in the column cross-sectional area may extend from the lower end of the column to, for example, about 1/4 of the floor height.

上述のように下端部が半剛接合された柱は建物の第1層の柱であっても良いが、これに限定されない。また、複数の階にわたって半剛接合されても良い。また、特定層の柱すべてについて、柱の下端部が半剛接合されていることは必ずしも必要でなく、一定の柱だけが半剛接合されてもよい。   As described above, the column whose lower end is semi-rigidly joined may be a first layer column of the building, but is not limited thereto. Moreover, it may be semi-rigidly joined over a plurality of floors. Further, it is not always necessary that the lower end portions of the columns are semi-rigidly joined for all the columns of the specific layer, and only certain columns may be semi-rigidly joined.

前記特定層の上層の床を支持する梁は、プレキャスト圧着工法によって柱と接合されていてもよいし、鋼製の梁、例えば極軟鋼を用いた履歴降伏型の制振構造梁であってもよい。また、建物全体にわたってプレキャスト梁がコンクリート柱に圧着された構造のように、大地震時の塑性変形が柱梁接合部分の梁側、特に柱フェイス位置近傍に集中する構造であることが望ましい。   The beam that supports the upper floor of the specific layer may be joined to the column by a precast crimping method, or may be a steel beam, for example, a hysteretic yield type damping structure beam using ultra-soft steel. Good. Further, it is desirable that the structure is such that the plastic deformation at the time of a large earthquake is concentrated on the beam side of the column beam joint portion, particularly in the vicinity of the column face position, like a structure in which precast beams are crimped to concrete columns throughout the building.

また、特定層の柱の下端部近傍は、必要に応じて鉛直方向鋼材が柱の下端部とその下部構造とを連結しているものであってもよい。   Moreover, the bottom direction vicinity of the pillar of a specific layer may connect the bottom direction part of a pillar, and its lower structure as needed.

本発明によれば、特定層の柱は、下端部においてその下部構造と半剛接合されることから、他の部分に比較して剛性が顕著に低い。したがって、地震時に特に柱脚部に発生する曲げモーメントを一層顕著に低減することができるだけでなく、建築物の水平変形を柱が柔軟に吸収することができる。さらに、半剛接合された柱下端部の回転変形が柱自体の曲げ変形、せん断変形を補なうことができ、半剛接合部の損傷を低減することが可能である。   According to the present invention, since the pillar of the specific layer is semi-rigidly joined to the lower structure at the lower end portion, the rigidity is remarkably low as compared with other portions. Therefore, not only can the bending moment generated particularly in the column base portion during an earthquake be significantly reduced, but also the column can flexibly absorb the horizontal deformation of the building. Furthermore, the rotational deformation of the lower end of the semi-rigidly joined column can compensate for bending deformation and shear deformation of the column itself, and damage to the semi-rigid joint can be reduced.

また、軸方向鋼材が柱の外表面と平行に設けられているために、断面が漸減するにもかかわらず柱は高い耐力と靭性を維持しており、非常に大きな地震動に対しても安全にせん断力を伝達することができる。   In addition, because the axial steel is parallel to the outer surface of the column, the column maintains high yield strength and toughness despite the gradual reduction of the cross-section, making it safe even against very large earthquake motions. Shear force can be transmitted.

特定層の柱の断面積が下方向に漸減する場合には、当該層の柱の変形能力を最大限に利用することができるので、地震時に発生する曲げモーメントの低減及び柱脚部の損傷軽減に一層有利である。一般には、地震時には第1層の柱脚部に最大の曲げモーメントが発生するので、第1層に本件発明を適用するのが有利であるが、本発明の適用は第1層には限定されず、地下階であっても、第2層以上であっても、上述の効果を得ることができる。   When the cross-sectional area of a column in a specific layer gradually decreases downward, the deformation capacity of the column in that layer can be used to the maximum, reducing the bending moment generated during an earthquake and reducing damage to the column base. More advantageous. In general, since the maximum bending moment is generated in the column base of the first layer during an earthquake, it is advantageous to apply the present invention to the first layer, but the application of the present invention is limited to the first layer. Even if it is a basement floor or more than the second layer, the above-mentioned effects can be obtained.

地震時に第1層の柱脚部に大きな曲げモーメントが発生する傾向は、第1層の柱梁が圧着接合されている場合、さらに、圧着接合された梁の剛性が低い場合、つまり、地震時の水平力によって柱に発生する曲げモーメントを、梁に効果的に伝達しにくい構造の場合に一層顕著である。したがって、特定層の上層の床を支持する梁がプレキャスト圧着工法によって梁と接合されている場合や、特定層の上層の床を支持する梁が鋼製の梁である場合には、本発明の効果は特に顕著である。   The tendency for a large bending moment to occur at the column base of the first layer during an earthquake is that when the column beam of the first layer is bonded by pressure bonding, and when the rigidity of the beam bonded by pressure bonding is low, that is, during an earthquake. This is more conspicuous in the case of a structure in which it is difficult to effectively transmit the bending moment generated in the column due to the horizontal force to the beam. Therefore, when the beam supporting the upper floor of the specific layer is joined to the beam by the precast crimping method, or when the beam supporting the upper floor of the specific layer is a steel beam, The effect is particularly remarkable.

建物の高さが横幅に比較して割高な場合など、構造によっては地震時に柱に引張力が加わる場合がある。このような場合には、特定層の柱の下端部近傍において、鉛直方向鋼材が柱の下端部とその下部構造とを連結している構造が、有効に引張力を伝達することができる。この場合、鉛直方向鋼材を柱の水平断面の中心部近傍に集中させることで、軸方向の力に対して有効に抵抗し、モーメントに対しては剛性の低い接合部を実現することができる。   Depending on the structure, a tensile force may be applied to the column during an earthquake, such as when the height of the building is relatively high compared to the width. In such a case, in the vicinity of the lower end portion of the column of the specific layer, the structure in which the vertical steel material connects the lower end portion of the column and its lower structure can effectively transmit the tensile force. In this case, by concentrating the vertical steel material in the vicinity of the central portion of the horizontal cross section of the column, it is possible to effectively resist the axial force and realize a joint having low rigidity with respect to the moment.

以下に実施例を参照して本発明を詳細に説明する。ただし、実施例は発明の理解を助けるための例示であって、本発明がこれらの実施例に限定されるものではないことは言うまでもない。
図1は、本発明を適用した4スパン、7層の柱梁構造を有する建築物の骨組みを示す図である。柱は鉄筋コンクリート造であり、第1層の柱脚部が半剛接合されているが、上層の柱脚は通常の剛性を有している。第1層の柱脚部は、下部構造との接合部の断面積を低減している。つまり、この例においては、第1層が前述した特定層に当たる。梁は、プレキャストコンクリート造であって、梁のPC鋼材に緊張力を導入して柱にアンカーすることによって、梁の端部は柱に圧着接合されている。
Hereinafter, the present invention will be described in detail with reference to examples. However, it is needless to say that the examples are illustrations for helping understanding of the invention, and the present invention is not limited to these examples.
FIG. 1 is a diagram showing a framework of a building having a four-span, seven-layer column beam structure to which the present invention is applied. The column is reinforced concrete, and the column base of the first layer is semi-rigidly joined, but the column base of the upper layer has normal rigidity. The column base portion of the first layer reduces the cross-sectional area of the joint portion with the lower structure. That is, in this example, the first layer corresponds to the specific layer described above. The beam is a precast concrete structure, and the end of the beam is pressure-bonded to the column by introducing tension into the PC steel material of the beam and anchoring it to the column.

図4Aは、図1に示した本発明の実施例の第1層部分を示したものである。PC鋼材412によってプレストレス力を与えられたプレストレストコンクリート梁410は、PC鋼材412の端部404が柱にアンカーされることによって、梁端部414において柱に対して圧着接合されている。柱の下端部は、下に向かって断面積が漸減しており、柱の最下端部の断面積は、上部の断面積よりも小さい。また、柱の主筋の下端部は、柱の内部にとどまっており、下の構造に貫入されていない。一方、柱断面の中央部近傍には鉛直方向鉄筋409が柱と下の構造に貫入して両者を連結している。   FIG. 4A shows the first layer portion of the embodiment of the present invention shown in FIG. The prestressed concrete beam 410 applied with prestressing force by the PC steel material 412 is pressure-bonded to the column at the beam end portion 414 by anchoring the end portion 404 of the PC steel material 412 to the column. The cross-sectional area of the lower end portion of the column gradually decreases downward, and the cross-sectional area of the lowermost end portion of the column is smaller than the upper cross-sectional area. Moreover, the lower end part of the main reinforcement of the pillar remains inside the pillar and does not penetrate into the underlying structure. On the other hand, a vertical reinforcing bar 409 penetrates the column and the lower structure in the vicinity of the center of the column cross section to connect the two.

図4Aに示した柱梁接合部は、梁が柱に対し押圧される方向には高い剛性を有するが、梁が柱から離れる方向にはPC鋼材412の剛性のみによって抵抗するので剛性が低く、結果的に柱梁接合部分にとりつく梁の曲げ剛性が比較的小さい。また、大地震時には、PC鋼材412の抜け出しや降伏によって、梁の塑性変形が柱の塑性変形に先行する。   The beam-column joint shown in FIG. 4A has high rigidity in the direction in which the beam is pressed against the column, but in the direction in which the beam is away from the column, it resists only by the rigidity of the PC steel material 412, so the rigidity is low, As a result, the bending rigidity of the beam attached to the beam-column joint is relatively small. Further, in the event of a large earthquake, the plastic deformation of the beam precedes the plastic deformation of the column due to the withdrawal or yielding of the PC steel material 412.

図5は、第1層の柱脚部を含めてすべての柱梁を剛接合した架構(従来の架構、図5A)と本件発明を適用して第1層の柱脚部を半剛接合した架構(図5B)との地震時に発生する曲げモーメントの分布を模式的に示した図である。従来の架構においては柱脚部に大きな曲げモーメントが発生しているのに対して、本発明を適用した架構では柱脚部の曲げモーメントが低減していることが分かる。本発明にもとづいて、柱脚部を基礎梁に対して半剛接合しただけで、図に示されるように顕著な曲げモーメント(応力)低減効果が得られる。さらに、本発明では、半剛接合された接合部が変形する分、柱自体の変形が小さくなり、本発明による場合には柱下部の損傷がいっそう小さくなることが分かる。第1層の柱の靭性と変形能力を向上させれば大地震時の耐震尤度は一層向上する。   FIG. 5 shows a structure in which all column beams including the first layer column base are rigidly joined (conventional frame, FIG. 5A) and the first layer column base is semi-rigidly joined by applying the present invention. It is the figure which showed typically distribution of the bending moment which generate | occur | produces at the time of an earthquake with a frame (FIG. 5B). In the conventional frame, a large bending moment is generated in the column base, whereas in the frame to which the present invention is applied, the bending moment in the column base is reduced. According to the present invention, a remarkable bending moment (stress) reduction effect can be obtained only by semi-rigidly joining the column base to the foundation beam as shown in the figure. Furthermore, in the present invention, the deformation of the column itself is reduced by the amount of deformation of the semi-rigid bonded joint, and it can be seen that the damage to the lower part of the column is further reduced according to the present invention. If the toughness and deformation capacity of the first-layer pillars are improved, the seismic likelihood during a large earthquake will be further improved.

図4Bは極軟鋼を用いた履歴降伏型の制振構造梁を柱に接合した状態を示す概念図である。圧着工法による接合は剛性が低いこと、履歴降伏型の制振構造梁は梁自体の剛性が低いことにより、図4Bに示した構造の場合には、地震時に第1層の柱脚部の曲げモーメントが大きくなる傾向がある。したがって、このような構造の場合には本発明による曲げモーメントの低減と、接合部の損傷低減効果は一層顕著である。   FIG. 4B is a conceptual diagram showing a state in which a hysteretic yielding type damping structure beam using extremely mild steel is joined to a column. In the case of the structure shown in FIG. 4B, the bending of the column base of the first layer is caused in the case of the structure shown in FIG. The moment tends to increase. Therefore, in the case of such a structure, the bending moment reduction and the damage reduction effect of the joint according to the present invention are more remarkable.

本発明を適用した建築物の軸組図A framework diagram of a building to which the present invention is applied 大地震時に塑性変形を梁に集中させる従来の架構の柱梁部分を示す。The column beam part of a conventional frame that concentrates plastic deformation on the beam during a large earthquake is shown. 大地震時に塑性変形を梁に集中させる架構において大地震時に変形が集中する部分を示す。The part of the frame that concentrates plastic deformation on the beam in the event of a large earthquake shows the concentration of deformation in the event of a large earthquake. 本発明に基づく架構の柱梁部分を示す。The column beam part of the frame based on this invention is shown. 従来技術による架構と本発明による架構において地震時に発生するモーメントの分布を模式的に示した図である。It is the figure which showed typically distribution of the moment which generate | occur | produces at the time of an earthquake in the frame by a prior art, and the frame by this invention.

符号の説明Explanation of symbols

100 建築物の鉄筋コンクリート耐震架構
106 第1層の柱の下端部
110 架構を構成する柱(第1層以外の柱)
120、210、410 架構を構成する梁
214、220、414 柱に圧着接合された梁端部
408 柱下端部(半剛接部分)
409 軸方向鉄筋
100 Reinforced concrete seismic frame for building 106 Lower end 110 of the first layer column 110 Columns constituting the frame (columns other than the first layer)
120, 210, 410 Beams 214, 220, 414 constituting the frame Beam end portion 408 joined to the column by pressure bonding Column lower end portion (semi-rigid contact portion)
409 Axial rebar

Claims (4)

梁に塑性変形を集中させる架構を有するとともに、特定層に下端部が半剛接合された鉄筋コンクリート柱を有し、柱の下端部は下に向かって断面積が減少しており、柱の最下端部の断面積は上部の断面積より小さく、また、柱の主筋の下端部は柱の内部にとどまっており、下の構造に貫入されておらず、柱の下端部近傍における断面の中央部近傍と下部構造に貫入して両者を連結している鉛直方向鉄筋が設けられている建築物。 It has a frame that concentrates plastic deformation on the beam, and has a reinforced concrete column with a semi-rigid joint at the lower end in a specific layer. sectional area of the parts is smaller than the cross-sectional area of the upper and lower ends of the main reinforcement of the pillar is stayed inside the pillar, not been intruded in the structure below the vicinity of the central portion of the cross section in the vicinity of the lower end of the column A building with a vertical rebar that penetrates into the lower structure and connects the two. 前記特定層は建物の第1層である請求項1に記載の建築物。   The building according to claim 1, wherein the specific layer is a first layer of a building. 梁がプリキャストコンクリート造で柱と圧着結合されている、請求項1または2に記載の建築物。 The building according to claim 1 or 2 , wherein the beam is made of precast concrete and is pressure-bonded to the column. 梁が鋼製で、少なくともその一部には、降伏点の低い鋼材が用いられている請求項1または2に記載の建築物。 The building according to claim 1 or 2, wherein the beam is made of steel, and at least part of the beam is made of a steel material having a low yield point.
JP2007248591A 2007-09-26 2007-09-26 Column base semi-rigid joint building Active JP5196638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248591A JP5196638B2 (en) 2007-09-26 2007-09-26 Column base semi-rigid joint building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248591A JP5196638B2 (en) 2007-09-26 2007-09-26 Column base semi-rigid joint building

Publications (2)

Publication Number Publication Date
JP2009079397A JP2009079397A (en) 2009-04-16
JP5196638B2 true JP5196638B2 (en) 2013-05-15

Family

ID=40654355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248591A Active JP5196638B2 (en) 2007-09-26 2007-09-26 Column base semi-rigid joint building

Country Status (1)

Country Link
JP (1) JP5196638B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798243B2 (en) 2009-03-27 2011-10-19 富士電機機器制御株式会社 Thermal overload relay
JP5323653B2 (en) * 2009-11-25 2013-10-23 大成建設株式会社 Column structure
JP6182387B2 (en) * 2013-08-07 2017-08-16 大成建設株式会社 Building structure with frame consisting of small RC pillars
JP6764645B2 (en) * 2015-11-30 2020-10-07 株式会社竹中工務店 Joint structure of structural members
JP6739206B2 (en) * 2016-03-30 2020-08-12 大成建設株式会社 Joint structure of foundation and steel reinforced concrete column and building structure provided with the joint structure
JP6709699B2 (en) * 2016-07-22 2020-06-17 三井住友建設株式会社 Column base connection structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3170557B2 (en) * 1995-10-12 2001-05-28 株式会社間組 Seismic column beam structure
JP3999591B2 (en) * 2002-07-11 2007-10-31 株式会社竹中工務店 Seismic control structure of concrete structure with fiber reinforced cementitious material
JP4424112B2 (en) * 2004-08-02 2010-03-03 Jfeスチール株式会社 Multi-layer steel structure

Also Published As

Publication number Publication date
JP2009079397A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP4587386B2 (en) Seismic reinforcement structure for existing buildings
JP5196638B2 (en) Column base semi-rigid joint building
KR101349649B1 (en) Composite structure of bulit-up steel-girder with reinforced end unit
JP4224589B2 (en) Seismic reinforcement method for buildings with piloti frames
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP5779119B2 (en) Composite beam and frame with composite beam
JP4621072B2 (en) Seismic structure
JP4719119B2 (en) Seismic retrofitting method for existing building structures
JP4987776B2 (en) Panel joining structure and method for building, building structure
JP5158947B2 (en) Composite structural beam and building structure having composite structural beam
KR101638564B1 (en) seismic reinforcement apparatus and seismic reinforcement method using the same
JP5087026B2 (en) Seismic reinforcement structure
JP7276568B2 (en) wooden structure
JP5429812B2 (en) Joining structure and method of shaft member and RC member
JP3170535B2 (en) Damping structure
JP4861792B2 (en) Pressure bonding method and pressure bonding structure for precast concrete column / beam joint
JP3297413B2 (en) Damping frame with friction damping mechanism
JP4431986B2 (en) Seismic reinforcement structure of building and seismic reinforcement method
JPH11229631A (en) Damping reinforcing method for outer shell of existing building
JP2000017849A (en) Vibration control reinforcing structure of existing building
JP2012207389A (en) Seismic strengthening construction method for existing building
JP4558218B2 (en) Seismic control method and structure for column base joints of wooden buildings
JP2005171643A (en) Earthquake resistant structure using pc binding method
JPH10220027A (en) Aseismatic reinforced construction
JP3708712B2 (en) Slab panel construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190215

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 5196638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250