JP2012207389A - Seismic strengthening construction method for existing building - Google Patents

Seismic strengthening construction method for existing building Download PDF

Info

Publication number
JP2012207389A
JP2012207389A JP2011071995A JP2011071995A JP2012207389A JP 2012207389 A JP2012207389 A JP 2012207389A JP 2011071995 A JP2011071995 A JP 2011071995A JP 2011071995 A JP2011071995 A JP 2011071995A JP 2012207389 A JP2012207389 A JP 2012207389A
Authority
JP
Japan
Prior art keywords
steel material
energy
longitudinal direction
column
absorbing steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011071995A
Other languages
Japanese (ja)
Other versions
JP5868603B2 (en
Inventor
Yoshito Arima
義人 有馬
Hitoshi Sasaki
仁 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2011071995A priority Critical patent/JP5868603B2/en
Publication of JP2012207389A publication Critical patent/JP2012207389A/en
Application granted granted Critical
Publication of JP5868603B2 publication Critical patent/JP5868603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seismic strengthening construction method for an existing building with reinforced concrete or steel-framed reinforced concrete.SOLUTION: An energy absorption steel member 10 in a long and thin shape made of low yield strength steel or ultra-low yield strength steel, which absorbs earthquake energy as it plastically deforms and has a certain cross section at the middle point in the longitudinal direction, is installed at a beam end part. In this state, a first end of the energy absorption steel member is jointed at a position on a column close to a column-beam joint portion, and the energy absorption steel member is extended along the beam end part in the longitudinal direction of a beam 14, and a second end part of the energy absorption steel member 10 is jointed at a position on the beam end part separated from the column-beam joint portion. The energy absorption steel member is made to plastically expand and contract as it receives a tensile load or a compression load in the longitudinal direction when an earthquake occurs and the column-beam joint portion and/or the beam end part deform. Furthermore, to prevent the energy absorption steel member from buckling, a stiffening member 30 for restraining buckling, which stiffens the energy absorption steel member by surrounding the middle point in the longitudinal direction of the energy absorption steel member, is provided at the beam end part.

Description

本発明は既存建物の耐震補強工法に関し、より詳しくは鉄筋コンクリート造(RC造)ないし鉄骨鉄筋コンクリート造(SRC造)の既存建物の耐震補強工法に関するものである。   The present invention relates to a seismic reinforcement method for existing buildings, and more particularly to a seismic reinforcement method for existing buildings of reinforced concrete (RC) or steel reinforced concrete (SRC).

RC造ないしSRC造の高層建物は1次固有周期が長いため、長周期地震動を受けた際に梁端部の圧壊や柱梁接合部の損傷が顕著となる。RC造ないしSRC造の建物の耐震補強工法には様々なものがあり、その代表的なものを挙げるならば、建物の架構の開口部に補強ブレースを設置する工法(例えば特許文献1、2など)、建物の柱や梁の外周に繊維材を巻装する工法(例えば特許文献3、4など)、それに、建物の外壁に外付フレームを取り付ける工法(例えば特許文献5など)がある。   High-rise buildings with RC or SRC structures have a long primary natural period, so when subjected to long-period ground motion, crushing of beam ends and damage of column-beam joints become prominent. There are a variety of seismic reinforcement methods for RC or SRC buildings. Typical examples of such methods are methods of installing reinforcing braces in the openings of building frames (for example, Patent Documents 1 and 2). ), A method of winding a fiber material around the outer periphery of a pillar or beam of a building (for example, Patent Documents 3 and 4), and a method of mounting an external frame on the outer wall of a building (for example, Patent Document 5).

特開2010−242392JP2010-242392A 特開平11−071906JP 11-071906 A 特開2001−152676JP 2001-152676 A 特開平09−203218JP 09-203218 A 特開2005−155139JP-A-2005-155139

建物の架構の開口部に補強ブレースを設置する工法には、補強ブレースが設置されることで開口部の開口面積が減少するという問題や、動線の変更を余儀なくされるという問題があり、また、耐震補強工事の施工中に建物の使用が制限されるという問題もある。繊維材を巻装する工法は、柱や梁の長手方向中間部分のせん断耐力を向上させる上では大きな効果があるものの、長周期地震動を受けた際の梁端部の圧潰や柱梁接合部の損傷を抑制する上では効果が乏しい。外付フレーム工法では、開口部の開口面積が減少するという問題や施工中に建物の使用が制限されるという問題は存在しないが、大掛かりな工事とならざるを得ないという問題がある。   The method of installing a reinforcing brace at the opening of a building frame has a problem that the opening area of the opening decreases due to the installation of the reinforcing brace, and there is a problem that the flow line must be changed, and There is also a problem that the use of buildings is restricted during the construction of seismic reinforcement. Although the method of wrapping fiber material has a great effect on improving the shear strength of the middle part of the column or beam in the longitudinal direction, the end of the beam when subjected to long-period ground motion or the column beam joint Ineffective to suppress damage. In the external frame method, there is no problem that the opening area of the opening is reduced or the use of the building is restricted during construction, but there is a problem that it is unavoidable.

本発明は上記課題を解決するべくなされたものであり、本発明の目的は、従来の耐震補強工法に付随していた様々な制約ないし問題を解決及び緩和することのできる、RC造ないしSRC造の既存建物の耐震補強工法を提供することにある。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an RC structure or an SRC structure that can solve and alleviate various restrictions or problems associated with conventional seismic reinforcement methods. Is to provide a seismic reinforcement method for existing buildings.

本発明に係る耐震補強工法は、柱梁接合部において接合された柱及び梁を有する鉄筋コンクリート造ないし鉄骨鉄筋コンクリート造の既存建物の耐震補強工法において、低降伏点鋼ないし極低降伏点鋼から成り塑性変形することで地震エネルギを吸収する細長く少なくともその長手方向中間部分が一定断面を有するエネルギ吸収鋼材を前記梁の梁端部に設置し、その際に、該エネルギ吸収鋼材の第1端を前記柱の前記柱梁接合部に近接した位置に接合し、該エネルギ吸収鋼材を前記梁端部に沿わせて前記梁の長手方向に延在させ、該エネルギ吸収鋼材の第2端を前記梁端部の前記柱梁接合部から離隔した位置に接合することで、地震が発生して前記柱梁接合部及び/または前記梁端部が変形した際に該エネルギ吸収鋼材が長手方向の引張荷重及び圧縮荷重を受けて伸縮塑性変形するようにし、長手方向の圧縮荷重を受けた前記エネルギ吸収鋼材が座屈するのを防止するべく前記エネルギ吸収鋼材の長手方向中間部分を囲繞して前記エネルギ吸収鋼材を補剛する座屈拘束用の補剛材を前記梁端部に設けることを特徴とする。   The seismic strengthening method according to the present invention is a seismic strengthening method for an existing building of reinforced concrete or steel reinforced concrete having columns and beams joined at a beam-column joint. An elongated energy absorbing steel material that absorbs seismic energy by deformation and at least a middle portion in the longitudinal direction thereof has a constant cross section is installed at the beam end of the beam, and at this time, the first end of the energy absorbing steel material is connected to the column. The energy absorbing steel material is extended in the longitudinal direction of the beam along the beam end portion, and the second end of the energy absorbing steel material is connected to the beam end portion. By joining at a position separated from the beam-to-column joint, the energy absorbing steel material is pulled in the longitudinal direction when an earthquake occurs and the beam-to-beam joint and / or the beam end is deformed. The energy absorbing steel material surrounds a middle portion in the longitudinal direction of the energy absorbing steel material so as to be elastically deformed by receiving a compressive load and prevent buckling of the energy absorbing steel material subjected to the compressive load in the longitudinal direction. A stiffening material for buckling restraining to stiffen is provided at the beam end.

また本発明においては、前記梁の上側に床スラブが一体に設けられており、前記エネルギ吸収鋼材を前記床スラブの上面及び/または前記梁端部の下面に設けることを特徴とする。   In the present invention, a floor slab is integrally provided on the upper side of the beam, and the energy absorbing steel material is provided on the upper surface of the floor slab and / or the lower surface of the beam end.

また本発明においては、前記柱に第1ベースプレートを固設し、前記梁端部に第2ベースプレートを固設し、前記第1プレート及び前記第2プレートに前記エネルギ吸収鋼材の前記第1端及び前記第2端を取外し可能に連結することを特徴とする。   In the present invention, a first base plate is fixed to the column, a second base plate is fixed to the beam end, and the first end of the energy absorbing steel material is attached to the first plate and the second plate. The second end is detachably connected.

本発明に係る耐震補強工法によれば、建物の架構の開口部を殆ど塞ぐことがなく、補強箇所が外観に及ぼす影響は軽微である。また、梁端部の近傍領域に施工するだけであるため、従来の耐震補強工法と比べて工期が短く、施工中の建物の使用制限も緩和される。更には、低コストで容易に施工できる上に、耐震補強設計も非常に簡易である。   According to the seismic reinforcement method according to the present invention, the opening of the frame of the building is hardly blocked, and the influence of the reinforcing portion on the appearance is slight. Moreover, since the construction is only performed in the vicinity of the beam end, the construction period is shorter than that of the conventional seismic reinforcement method, and the use restriction of the building under construction is eased. Furthermore, it can be easily constructed at low cost, and the seismic reinforcement design is very simple.

本発明の実施の形態に係る耐震補強工法を施工したRC造建物の補強部位を示した模式図である。It is the schematic diagram which showed the reinforcement site | part of the RC building which constructed the earthquake-proof reinforcement method which concerns on embodiment of this invention. 図1の2−2線に沿った梁の横断面図である。FIG. 2 is a cross-sectional view of the beam along line 2-2 in FIG. 1. 図1の3−3線に沿った梁の横断面図である。FIG. 3 is a cross-sectional view of the beam along line 3-3 in FIG. 1. 図1に示した耐震補強構造の作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of the earthquake-proof reinforcement structure shown in FIG.

本発明に係る耐震補強工法は、柱梁接合部において接合された柱及び梁を有するRC造ないしSRC造の既存建物に耐震補強を施す工法である。本発明に係る耐震補強工法は、エネルギ吸収鋼材を用いるものであり、このエネルギ吸収鋼材は、低降伏点鋼ないし極低降伏点鋼から成り、塑性変形することで地震エネルギを吸収する細長く少なくともその長手方向中間部分が一定断面を有する鋼材である。低降伏点鋼ないし極低降伏点鋼材としては、例えば「LY100」鋼材や、「LY225」鋼材などを用いることができる。このエネルギ吸収鋼材を既存建物の梁の梁端部に設置し、その際に、このエネルギ吸収鋼材の第1端を柱の柱梁接合部に近接した位置に接合し、このエネルギ吸収鋼材を梁端部に沿わせて梁の長手方向に延在させ、そして、このエネルギ吸収鋼材の第2端を梁端部の柱梁接合部から離隔した位置に接合することで、地震が発生して柱梁接合部及び/または梁端部が変形した際にこのエネルギ吸収鋼材が長手方向の引張荷重及び圧縮荷重を受けて伸縮塑性変形するようにする。   The seismic reinforcement method according to the present invention is a method of applying seismic reinforcement to an existing RC or SRC building having columns and beams joined at the column beam joint. The seismic reinforcement method according to the present invention uses an energy absorbing steel material, and this energy absorbing steel material is composed of a low yield point steel or an extremely low yield point steel, and at least its elongated shape absorbs seismic energy by plastic deformation. It is a steel material whose middle part in the longitudinal direction has a constant section. As the low yield point steel or the extremely low yield point steel, for example, “LY100” steel, “LY225” steel or the like can be used. This energy absorbing steel is installed at the beam end of a beam in an existing building. At that time, the first end of the energy absorbing steel is joined to a position close to the column beam connection of the column, and the energy absorbing steel is joined to the beam. By extending the energy absorbing steel material along the end in the longitudinal direction of the beam and joining the second end of the energy absorbing steel material to a position separated from the beam-to-column joint at the beam end, an earthquake occurs and the column When the beam joint portion and / or the beam end portion is deformed, the energy absorbing steel material receives a tensile load and a compressive load in the longitudinal direction so as to undergo elastic plastic deformation.

図1の模式図において、参照符号10を付して示したのがエネルギ吸収鋼材である。また、耐震補強を施す既存建物は、柱梁接合部において接合された柱12及び梁14を有するRC造ないしSRC造の建物である。図示した実施の形態では、エネルギ吸収鋼材10を梁14の梁端部に設置するために、柱12に第1ベースプレート16を取付け、梁14の梁端部に第2ベースプレート18を取付けている。より詳しくは、第1ベースプレート16は、図1に示したように柱12の柱梁接合部に近接した位置にあと施工アンカー20を打ち、そのあと施工アンカー20に結合することで、柱12の柱梁接合部に近接した位置に固定して取付けられる。また第2ベースプレート18は、図1及び図3に示したようにその背面にアンカー筋22を植設する一方で、梁14の梁端部の柱梁接合部から離隔した位置にあと施工アンカー24を打ち、そしてそれらアンカー筋22及びあと施工アンカー24を包持するようにコンクリートもしくはモルタル26を打設することで、梁端部の柱梁接合部から離隔した位置に固定して取付けられる。尚、以上の説明からも明らかなように、本発明に関して使用する「梁端部」という用語は、梁の先端面のことではなく、梁の長手方向における端部近傍の長さを有する部分を意味している。   In the schematic diagram of FIG. 1, the reference numeral 10 indicates an energy absorbing steel material. Further, the existing building to which the seismic reinforcement is applied is an RC or SRC building having the column 12 and the beam 14 joined at the column beam joint. In the illustrated embodiment, the first base plate 16 is attached to the column 12 and the second base plate 18 is attached to the beam end of the beam 14 in order to install the energy absorbing steel material 10 at the beam end of the beam 14. More specifically, as shown in FIG. 1, the first base plate 16 hits the post-construction anchor 20 at a position close to the column-beam joint of the column 12 and then couples to the construction anchor 20, thereby Fixed and attached at a position close to the beam-column joint. Further, as shown in FIGS. 1 and 3, the second base plate 18 is provided with anchor bars 22 on the back surface thereof, while the post-installed anchor 24 is located at a position separated from the column beam joint at the beam end of the beam 14. Then, concrete or mortar 26 is placed so as to hold the anchor bars 22 and the post-installed anchors 24, so that they are fixedly attached at positions separated from the beam-to-column joints at the beam ends. As is clear from the above description, the term “beam end” used in the present invention is not the end face of the beam, but a portion having a length near the end in the longitudinal direction of the beam. I mean.

更に、第1ベースプレート16及び第2ベースプレート18に、エネルギ吸収鋼材10の第1端及び第2端を接合することにより、既述のごとく、エネルギ吸収鋼材10の第1端を柱梁接合部の近傍において柱12に接合し、エネルギ吸収鋼材10を梁端部に沿わせて梁14の長手方向に延在させ、エネルギ吸収鋼材10の第2端を梁端部の柱梁接合部から離隔した位置に接合している。ここで、第1ベースプレート16及び第2ベースプレート18とエネルギ吸収鋼材10の第1端及び第2端との接合形態は、例えばボルトなどの適宜の連結手段を用いてそれらを取外し可能に連結した接合形態としておくとよく、そうしておけば、大きな地震が発生した後などに、必要に応じてエネルギ吸収鋼材10を交換することが容易となる。   Further, by joining the first end and the second end of the energy absorbing steel material 10 to the first base plate 16 and the second base plate 18, as described above, the first end of the energy absorbing steel material 10 is connected to the column beam joint portion. Joined to the column 12 in the vicinity, the energy absorbing steel material 10 extends along the beam end in the longitudinal direction of the beam 14, and the second end of the energy absorbing steel material 10 is separated from the beam-to-column joint at the beam end. It is joined to the position. Here, the joining form of the first base plate 16 and the second base plate 18 and the first end and the second end of the energy absorbing steel material 10 is a joint in which they are detachably connected using an appropriate connecting means such as a bolt, for example. It is good to make it into a form, and then it becomes easy to replace the energy-absorbing steel material 10 as necessary after a large earthquake occurs.

また、エネルギ吸収鋼材10を設置する位置は、梁端部の上面及び/または下面とするのがよい。ただし実際の建物では、図示例のように梁14の上側に床スラブ28が一体に設けられていることが多く、そのような場合には、床スラブ28を介して第2ベースプレート18を梁端部に固設することになるため、エネルギ吸収鋼材10を床スラブの上面及び/または梁端部の下面に設けることになる。   Moreover, the position where the energy absorbing steel material 10 is installed is preferably the upper surface and / or the lower surface of the beam end. However, in an actual building, a floor slab 28 is often provided integrally on the upper side of the beam 14 as in the illustrated example. In such a case, the second base plate 18 is attached to the beam end via the floor slab 28. Therefore, the energy absorbing steel material 10 is provided on the upper surface of the floor slab and / or the lower surface of the beam end.

既述のごとく、エネルギ吸収鋼材10は細長く少なくともその長手方向中間部分が一定断面を有する部材である。そして、本発明に係る耐震補強工法では、地震発生時に長手方向の圧縮荷重を受けたエネルギ吸収鋼材10が座屈するのを防止するべく、エネルギ吸収鋼材10の長手方向中間部分を囲繞してエネルギ吸収鋼材10を補剛する座屈拘束用の補剛材30を梁端部に設けるようにしている。特に図示例では、図2に示すように、エネルギ吸収鋼材10の表面をアンボンド材32で被覆し、その周りを鋼管34で囲繞し、その鋼管34の中にコンクリートもしくはモルタル36を充填して補剛材30を構成することにより、エネルギ吸収鋼材10の座屈を防止するようにしている。また図示例では、断面形状が扁平な長方形のエネルギ吸収鋼材10を、その側面が鉛直方向に延展するようにして2本並設した構成としているが、エネルギ吸収鋼材の断面形状、本数、及び側面の延展方向は図示例のものに限られず、様々なものとすることができる。   As described above, the energy absorbing steel material 10 is a long and narrow member having at least a middle portion in the longitudinal direction having a constant cross section. In the seismic reinforcement method according to the present invention, the energy absorbing steel material 10 that has received a longitudinal compressive load in the event of an earthquake is prevented from buckling and the energy absorbing steel material 10 is surrounded by the middle portion in the longitudinal direction to absorb energy. A buckling restraining stiffener 30 for stiffening the steel material 10 is provided at the beam end. In particular, in the illustrated example, as shown in FIG. 2, the surface of the energy absorbing steel material 10 is covered with an unbonded material 32, the periphery thereof is surrounded by a steel pipe 34, and the steel pipe 34 is filled with concrete or mortar 36 to compensate. By constituting the rigid material 30, buckling of the energy absorbing steel material 10 is prevented. Further, in the illustrated example, the rectangular energy-absorbing steel material 10 having a flat cross-sectional shape is arranged in parallel so that the side surfaces thereof extend in the vertical direction, but the cross-sectional shape, the number, and the side surfaces of the energy-absorbing steel materials The extending direction is not limited to the illustrated example, and may be various.

また、添付図面には明示していないが、補剛材30の端面と第1ベースプレートないし第2ベースプレートの端面との間には隙間を確保してあり、その隙間によって、エネルギ吸収鋼材10が長手方向の圧縮荷重を受けてその長さが短縮したときに、補剛材30の端面が第1ベースプレートないし第2ベースプレートと衝突するのを回避している。   Although not clearly shown in the accompanying drawings, a gap is secured between the end face of the stiffener 30 and the end face of the first base plate or the second base plate, and the energy absorbing steel material 10 is elongated by the gap. The end face of the stiffener 30 is prevented from colliding with the first base plate or the second base plate when its length is shortened by receiving a compressive load in the direction.

以上の構成において、地震が発生していないときには、エネルギ吸収鋼材10の長さは図4(A)に示したようにLとなっている。そして、地震が発生して柱梁接合部及び/または梁端部が変形した際に、エネルギ吸収鋼材10が長手方向の引張荷重及び圧縮荷重を受けて伸縮塑性変形することで、その長さが図4(B)に示したようにL+ε×L及びL−ε×Lとなる。この伸縮塑性変形によって地震エネルギが吸収される。また、エネルギ吸収鋼材10が長手方向の圧縮加重を受けたときには、エネルギ吸収鋼材10の長手方向中間部分を囲繞している補剛材30がエネルギ吸収鋼材10の座屈を防止する。尚、エネルギ吸収鋼材10の長さLは、地震発生時の梁14の梁主筋(不図示)の変形量が弾性範囲に収まり、エネルギ吸収鋼材10だけが塑性変形するような長さに設定することが好ましい。 In the above configuration, when an earthquake does not occur, the length of the energy absorbing steel material 10 is L as shown in FIG. And when an earthquake occurs and the beam-column joint and / or the beam end is deformed, the energy absorbing steel material 10 receives the tensile load and the compressive load in the longitudinal direction and undergoes elastic plastic deformation, so that its length is reduced. As shown in FIG. 4B, L + ε 1 × L and L−ε 2 × L. Seismic energy is absorbed by this stretch plastic deformation. Further, when the energy absorbing steel material 10 is subjected to a compressive load in the longitudinal direction, the stiffener 30 surrounding the intermediate portion in the longitudinal direction of the energy absorbing steel material 10 prevents the energy absorbing steel material 10 from buckling. The length L of the energy absorbing steel material 10 is set to such a length that the deformation amount of the beam main reinforcement (not shown) of the beam 14 at the time of the earthquake falls within the elastic range, and only the energy absorbing steel material 10 is plastically deformed. It is preferable.

以上から明らかなように、本発明に係る耐震補強工法によれば、建物の架構の開口部を殆ど塞ぐことがなく、補強箇所が外観に及ぼす影響は軽微である。また、梁端部の近傍領域に施工するだけであるため、従来の耐震補強工法と比べて工期が短く、施工中の建物の使用制限も緩和される。更には、低コストで容易に施工できる上に、耐震補強設計も非常に簡易である。   As is clear from the above, according to the seismic reinforcement method according to the present invention, the opening of the frame of the building is hardly blocked, and the influence of the reinforcing portion on the appearance is slight. Moreover, since the construction is only performed in the vicinity of the beam end, the construction period is shorter than that of the conventional seismic reinforcement method, and the use restriction of the building under construction is eased. Furthermore, it can be easily constructed at low cost, and the seismic reinforcement design is very simple.

10 エネルギ吸収鋼材
12 柱
14 梁
16 第1ベースプレート
18 第2ベースプレート
20 あと施工アンカー
22 アンカー筋
24 あと施工アンカー
26 コンクリートもしくはモルタル
28 床スラブ
30 補剛材
DESCRIPTION OF SYMBOLS 10 Energy absorption steel material 12 Column 14 Beam 16 1st base plate 18 2nd base plate 20 Post-construction anchor 22 Anchor reinforcement 24 Post-construction anchor 26 Concrete or mortar 28 Floor slab 30 Stiffener

Claims (3)

柱梁接合部において接合された柱及び梁を有する鉄筋コンクリート造ないし鉄骨鉄筋コンクリート造の既存建物の耐震補強工法において、
低降伏点鋼ないし極低降伏点鋼から成り塑性変形することで地震エネルギを吸収する細長く少なくともその長手方向中間部分が一定断面を有するエネルギ吸収鋼材を前記梁の梁端部に設置し、その際に、該エネルギ吸収鋼材の第1端を前記柱の前記柱梁接合部に近接した位置に接合し、該エネルギ吸収鋼材を前記梁端部に沿わせて前記梁の長手方向に延在させ、該エネルギ吸収鋼材の第2端を前記梁端部の前記柱梁接合部から離隔した位置に接合することで、地震が発生して前記柱梁接合部及び/または前記梁端部が変形した際に該エネルギ吸収鋼材が長手方向の引張荷重及び圧縮荷重を受けて伸縮塑性変形するようにし、
長手方向の圧縮荷重を受けた前記エネルギ吸収鋼材が座屈するのを防止するべく前記エネルギ吸収鋼材の長手方向中間部分を囲繞して前記エネルギ吸収鋼材を補剛する座屈拘束用の補剛材を前記梁端部に設ける、
ことを特徴とする耐震補強工法。
In the seismic reinforcement method for existing buildings of reinforced concrete structures or steel reinforced concrete structures with columns and beams joined at the beam-column joint,
An energy absorbing steel material, which is made of a low yield point steel or an extremely low yield point steel and absorbs seismic energy by plastic deformation and has at least an intermediate part in the longitudinal direction having a constant cross section, is installed at the beam end of the beam. In addition, the first end of the energy absorbing steel material is joined at a position close to the column beam joint portion of the column, the energy absorbing steel material is extended along the beam end portion in the longitudinal direction of the beam, When the second end of the energy-absorbing steel material is joined at a position separated from the beam-beam joint at the beam end, an earthquake occurs and the beam-beam joint and / or the beam end is deformed. The energy absorbing steel material undergoes stretch plastic deformation under a tensile load and a compressive load in the longitudinal direction,
A buckling-restraining stiffening material that stiffens the energy-absorbing steel material by surrounding a middle portion in the longitudinal direction of the energy-absorbing steel material so as to prevent the energy-absorbing steel material that has received a compressive load in the longitudinal direction from buckling. Provided at the beam end,
Seismic reinforcement construction method characterized by that.
前記梁の上側に床スラブが一体に設けられており、前記エネルギ吸収鋼材を前記床スラブの上面及び/または前記梁端部の下面に設けることを特徴とする請求項1記載の耐震補強工法。   The seismic reinforcement method according to claim 1, wherein a floor slab is integrally provided on the upper side of the beam, and the energy absorbing steel material is provided on an upper surface of the floor slab and / or a lower surface of the beam end. 前記柱に第1ベースプレートを固設し、前記梁端部に第2ベースプレートを固設し、前記第1プレート及び前記第2プレートに前記エネルギ吸収鋼材の前記第1端及び前記第2端を取外し可能に連結することを特徴とする請求項2記載の耐震補強工法。   A first base plate is fixed to the column, a second base plate is fixed to the beam end, and the first end and the second end of the energy absorbing steel material are detached from the first plate and the second plate. The seismic reinforcement method according to claim 2, wherein the seismic reinforcement method is connected.
JP2011071995A 2011-03-29 2011-03-29 Seismic reinforcement method for existing buildings Active JP5868603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071995A JP5868603B2 (en) 2011-03-29 2011-03-29 Seismic reinforcement method for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071995A JP5868603B2 (en) 2011-03-29 2011-03-29 Seismic reinforcement method for existing buildings

Publications (2)

Publication Number Publication Date
JP2012207389A true JP2012207389A (en) 2012-10-25
JP5868603B2 JP5868603B2 (en) 2016-02-24

Family

ID=47187359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071995A Active JP5868603B2 (en) 2011-03-29 2011-03-29 Seismic reinforcement method for existing buildings

Country Status (1)

Country Link
JP (1) JP5868603B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147591A (en) * 2013-03-18 2013-06-12 新蒲建设集团有限公司 Construction method for adding earthquake-proof layer to brick concrete building
CN103835524A (en) * 2014-03-09 2014-06-04 湖南金海钢结构股份有限公司 Load-bearing floor steel beam section diminishing method according to design change
CN107401219A (en) * 2017-09-09 2017-11-28 王昆 The node of column and beam and its construction method of the anti-buckling energy-consumption component of replacing easy to install

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101418U (en) * 1991-02-12 1992-09-02 大成建設株式会社 steel structure
JP2005188035A (en) * 2003-12-24 2005-07-14 Nippon Steel Corp Vibration control structure for building structure
JP2006299584A (en) * 2005-04-19 2006-11-02 Nippon Steel Corp Aseismatic reinforcing joining structure
JP2010196430A (en) * 2009-02-27 2010-09-09 Taisei Corp Seismic-response controlled structure
JP2010285780A (en) * 2009-06-10 2010-12-24 Takenaka Komuten Co Ltd Column-beam joint structure and building having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101418U (en) * 1991-02-12 1992-09-02 大成建設株式会社 steel structure
JP2005188035A (en) * 2003-12-24 2005-07-14 Nippon Steel Corp Vibration control structure for building structure
JP2006299584A (en) * 2005-04-19 2006-11-02 Nippon Steel Corp Aseismatic reinforcing joining structure
JP2010196430A (en) * 2009-02-27 2010-09-09 Taisei Corp Seismic-response controlled structure
JP2010285780A (en) * 2009-06-10 2010-12-24 Takenaka Komuten Co Ltd Column-beam joint structure and building having the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147591A (en) * 2013-03-18 2013-06-12 新蒲建设集团有限公司 Construction method for adding earthquake-proof layer to brick concrete building
CN103835524A (en) * 2014-03-09 2014-06-04 湖南金海钢结构股份有限公司 Load-bearing floor steel beam section diminishing method according to design change
CN103835524B (en) * 2014-03-09 2017-01-25 湖南金海钢结构股份有限公司 Load-bearing floor steel beam section diminishing method according to design change
CN107401219A (en) * 2017-09-09 2017-11-28 王昆 The node of column and beam and its construction method of the anti-buckling energy-consumption component of replacing easy to install
CN107401219B (en) * 2017-09-09 2019-06-14 万品建筑设计(上海)有限公司 The node of column and beam and its construction method of the anti-buckling energy-consumption component of replacement easy to install

Also Published As

Publication number Publication date
JP5868603B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP4587386B2 (en) Seismic reinforcement structure for existing buildings
KR101165320B1 (en) Earthquake-proof construction method for opening parts of building
JP5007380B2 (en) Seismic isolation / damping mechanism
KR101348577B1 (en) Seismic retrofit method using lateral beam-type damper installed in opening space of building structure
JP5213248B2 (en) Seismic reinforcement structure for existing buildings
KR20180010833A (en) Seismic retrofit RC beam-column joints using hunch
JP4038472B2 (en) Seismic retrofitting frame for existing buildings and seismic control structures using the same
KR101139761B1 (en) Reinforcing wall for construction
JP5868603B2 (en) Seismic reinforcement method for existing buildings
JP2010071044A (en) Aseismatic structure and building
JP2010047933A (en) Damping reinforcement frame
KR101638564B1 (en) seismic reinforcement apparatus and seismic reinforcement method using the same
KR101652621B1 (en) Aseismic structure for existing building
JP5654060B2 (en) Damper brace and damping structure
JP2008208612A (en) External aseismatic reinforcing structure
JP5301746B1 (en) Buildings using steel columns with seismic prestressing
JP6099128B2 (en) Joint structure of RC frame and brace and RC frame with brace
JP5946165B2 (en) Seismic reinforcement structure
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
JPH10280725A (en) Damping skeleton construction
KR101242972B1 (en) Method for constructing partition wall using seismic control device
JP5291390B2 (en) Earthquake-resistant structure, construction method of earthquake-resistant structure, and building
JP2012233374A5 (en)
JP5211258B1 (en) Buildings using steel columns with seismic prestressing
KR101442487B1 (en) Building structure seismic retrofit method using lateral beam-type damper and damper fixing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160106

R150 Certificate of patent or registration of utility model

Ref document number: 5868603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250