JP7276568B2 - wooden structure - Google Patents

wooden structure Download PDF

Info

Publication number
JP7276568B2
JP7276568B2 JP2022097898A JP2022097898A JP7276568B2 JP 7276568 B2 JP7276568 B2 JP 7276568B2 JP 2022097898 A JP2022097898 A JP 2022097898A JP 2022097898 A JP2022097898 A JP 2022097898A JP 7276568 B2 JP7276568 B2 JP 7276568B2
Authority
JP
Japan
Prior art keywords
column
wooden
steel
steel material
side beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022097898A
Other languages
Japanese (ja)
Other versions
JP2022113877A (en
Inventor
靖彦 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018083851A external-priority patent/JP7243037B2/en
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2022097898A priority Critical patent/JP7276568B2/en
Publication of JP2022113877A publication Critical patent/JP2022113877A/en
Application granted granted Critical
Publication of JP7276568B2 publication Critical patent/JP7276568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Description

本発明は、木質構造に関する。 The present invention relates to wooden structures.

木造建物等では柱や大梁が別々の部材として製作されることが一般的なため、鉄筋コンクリート造、鉄骨造とは違って、接合部(例えば柱梁接合部)の一体性の確保が困難である。そのため、既往の継手形式によっては継手のガタつきなどにより初期剛性が低下したり、破壊形式が脆性的になったり、大きな力(弾性範囲を超える力)を受けると強度・剛性が大幅に低下したりすることがある。そこで、木造の柱と梁の接合部に、予め引張応力(緊張力)を付与した鋼材を設け、鋼材が元に戻ろうとする圧縮応力(プレストレス)により柱と梁を圧着させる方法が提案されている(例えば、特許文献1参照)。 In wooden buildings, columns and girders are generally manufactured as separate members, so unlike reinforced concrete and steel structures, it is difficult to ensure the integrity of joints (e.g., column-to-beam joints). . Therefore, depending on the existing joint type, the initial rigidity may decrease due to rattling of the joint, the fracture mode may become brittle, and the strength and rigidity may drop significantly when subjected to a large force (force exceeding the elastic range). sometimes Therefore, a method has been proposed in which steel materials to which tensile stress has been applied in advance are placed at the joints of wooden columns and beams, and the columns and beams are crimped by the compressive stress (prestress) that causes the steel materials to return to their original state. (See, for example, Patent Document 1).

特開2009-197416号公報JP 2009-197416 A

上述したような木質構造では、鋼材に引張応力を付与する際に、木質の部材のうち引張応力を付与している部位とその周辺の部位との間で破壊(割裂破壊)するおそれがあった。また、鋼材が降伏することにより残留変形が残るおそれがあった。 In the wooden structure described above, when tensile stress is applied to the steel material, there is a risk of breakage (split fracture) between the portion of the wooden member to which the tensile stress is applied and the surrounding portion. . In addition, there is a possibility that residual deformation may remain due to yielding of the steel material.

本発明は、かかる課題に鑑みてなされたものであって、その目的とするところは、破壊を抑制するとともに、残留変形を残りにくくすることにある。 The present invention has been made in view of such problems, and an object of the present invention is to suppress breakage and to make it difficult for residual deformation to remain.

かかる目的を達成するため、本発明の木質構造は、木質部材である柱と、木質部材であって、前記柱の長手方向と直交する方向の一方側に設けられた一方側梁と、木質部材であって、前記柱の長手方向と直交する方向の他方側に設けられた他方側梁と、予め所定の引張応力が付与されて、前記一方側梁と前記柱と前記他方側梁とを連結する曲線状の鋼材と、を備えた木質構造であって、前記鋼材は、上に凸となる曲線状であり、前記鋼材は、前記柱を貫通して、前記一方側梁の下端から前記他方側梁の下端に至っており、前記鋼材は、前記一方側梁及び前記他方側梁の上端よりも下方の位置において、前記柱を貫通していることを特徴とする。 In order to achieve such an object, the wooden structure of the present invention comprises a pillar which is a wooden member; The other side beam provided on the other side in the direction orthogonal to the longitudinal direction of the pillar and a predetermined tensile stress are applied in advance to connect the one side beam, the pillar and the other side beam. and a curvilinear steel member, the steel member has an upwardly convex curvilinear shape, and the steel member penetrates the column and extends from the lower end of the one side beam to the other side beam. It reaches the lower end of the side beam, and the steel material penetrates the column at a position below the upper ends of the one side beam and the other side beam.

かかる木質構造であって、予め所定の引張応力が付与されて、前記一方側梁と前記柱と前記他方側梁とを連結する曲線状の他の鋼材を有し、前記他の鋼材は、下に凸となる曲線状であり、前記他の鋼材は、前記柱を貫通して、前記一方側梁の上端から前記他方側梁の上端に至っており、前記他の鋼材は、前記一方側梁及び前記他方側梁の下端よりも上方の位置において、前記柱を貫通していることとしてもよい。In such a wooden structure, a predetermined tensile stress is applied in advance, and there is another curved steel material that connects the one side beam, the column and the other side beam, and the other steel material is a lower part. The other steel material passes through the column and extends from the upper end of the one side beam to the upper end of the other side beam, and the other steel material is the one side beam and The pillar may be penetrated at a position above the lower end of the other side beam.

本発明によれば、破壊を抑制するとともに、残留変形を残りにくくすることができる。 ADVANTAGE OF THE INVENTION According to this invention, while suppressing destruction, residual deformation can be made difficult to remain.

図1A~図1Cは、本実施形態の柱梁接合構造の説明図である。図1Aは正面図、図1Bは、図1AのA-A断面図、図1Cは、図1AのB-B断面図である。1A to 1C are explanatory diagrams of the beam-to-column joint structure of this embodiment. 1A is a front view, FIG. 1B is a sectional view taken along line AA of FIG. 1A, and FIG. 1C is a sectional view taken along line BB of FIG. 1A. 図1Aの柱用板材10Aと梁用板材20Aを透過した見た正面図である。It is the front view which saw 10 A of board|plate materials for pillars of FIG. 1A, and 20 A of board|plate materials for beams which were permeate|transmitted. 変位と応力との関係を示す図である。It is a figure which shows the relationship between displacement and stress. 図4A~4Cは、本実施形態の柱梁接合構造の施工方法の一例を示す図である。4A to 4C are diagrams showing an example of a construction method for the beam-to-column joint structure of this embodiment. 図5A、図5Bは、施工方法の別の例を示す図である。5A and 5B are diagrams showing another example of the construction method. 柱梁接合構造の第1変形例を示す概略図である。It is the schematic which shows the 1st modification of a beam-column connection structure. 柱梁接合構造の第2変形例を示す概略図である。It is the schematic which shows the 2nd modification of a beam-column connection structure. 柱梁接合構造の第3変形例を示す概略図である。It is the schematic which shows the 3rd modification of a beam-column connection structure.

以下の説明から明らかなように、少なくとも、次のような発明が含まれる。As is clear from the following description, at least the following inventions are included.

一方の木質部材と、他方の木質部材と、予め所定の引張応力が付与されて、前記一方の木質部材と前記他方の木質部材とを連結する曲線状の鋼材と、を備えることを特徴とする木質構造。 It comprises one wooden member, the other wooden member, and a curved steel member to which a predetermined tensile stress is applied in advance and which connects the one wooden member and the other wooden member. wooden structure.
このような木質構造によれば、破壊を抑制できるとともに、残留変形を残りにくくすることできる。また、鋼材が直線状の場合と比べて、施工における制約を改善でき施工が簡易になる。 According to such a wooden structure, destruction can be suppressed, and residual deformation can be made difficult to remain. In addition, as compared with the case where the steel material is linear, restrictions in construction can be improved, and construction becomes easier.

かかる木質構造であって、前記一方の木質部材及び前記他方の木質部材を前記曲線状に貫通する貫通穴を有し、前記鋼材は前記貫通穴に挿入されていることが望ましい。 In such a wooden structure, it is preferable that the wooden structure has a through hole penetrating the one wooden member and the other wooden member in the curved shape, and the steel member is inserted into the through hole.
このような木質構造によれば、一方の木質部材と他方の木質部材に曲線状の鋼材を配置することができる。 According to such a wooden structure, curved steel members can be arranged on one wooden member and the other wooden member.

かかる木質構造であって、前記一方の木質部材及び前記他方の木質部材は、ぞれぞれ、板状の木質板材が複数積層されて構成されたものであり、前記貫通穴は、複数の前記木質板材のうちの隣接する前記木質板材の境界部分に設けられており、前記隣接する前記木質板材の対向する面のうちの少なくとも一方には、前記貫通穴を構成するための溝部が設けられていることが望ましい。 In such a wooden structure, the one wooden member and the other wooden member are each formed by laminating a plurality of plate-shaped wooden boards, and the through hole is formed by a plurality of the wooden boards. It is provided at a boundary portion between the adjacent wooden boards among the wooden boards, and at least one of the facing surfaces of the adjacent wooden boards is provided with a groove for forming the through hole. It is desirable to be
このような木質構造によれば、貫通穴を加工しやすい。 With such a wooden structure, it is easy to process through holes.

かかる木質構造であって、前記貫通穴が形成された部位における前記一方の木質部材の繊維方向、及び、前記他方の木質部材の繊維方向は、それぞれ、前記一方の木質部材と前 In such a wooden structure, the fiber direction of the one wooden member and the fiber direction of the other wooden member at the site where the through holes are formed are respectively the same as the one wooden member and the front.
記他方の木質部材を連結する方向と一致していることが望ましい。It is desirable that the direction matches the direction in which the other wooden member is connected.
このような木質構造によれば、一方の木質部材と他方の木質部材の当接部分に金物などの補強部材を設けなくてもよい。 According to such a wooden structure, it is not necessary to provide a reinforcing member such as a hardware at the contact portion between one wooden member and the other wooden member.

かかる木質構造であって、前記鋼材が、前記一方の木質部材又は前記他方の木質部材に対して固定される支圧面を有し、前記支圧面の法線方向は、前記繊維方向に対して傾いていることが望ましい。 In this wooden structure, the steel material has a bearing surface fixed to the one wooden member or the other wooden member, and the normal direction of the bearing surface is inclined with respect to the fiber direction. It is desirable that
このような木質構造によれば、割裂破壊しにくくできる。 According to such a wooden structure, splitting failure can be made difficult.

かかる木質構造であって、前記曲線を上下反転させた形状に設けられた反転鋼材をさらに有し、前記一方の木質部材と前記他方の木質部材は、前記鋼材と前記反転鋼材とによって連結されていることが望ましい。 The wooden structure further includes an inverted steel member provided in a shape obtained by vertically inverting the curve, and the one wooden member and the other wooden member are connected by the steel member and the inverted steel member. It is desirable to be
このような木質構造によれば、面内力をキャンセルでき安定する。 With such a wooden structure, the in-plane force can be canceled and stabilized.

かかる木質構造であって、前記鋼材は、前記曲線の径方向に並ぶように複数設けられており、内側の前記鋼材の長さが、外側の前記鋼材の長さよりも短いことが望ましい。 In such a wooden structure, it is desirable that a plurality of the steel members are arranged in a radial direction of the curve, and that the length of the inner steel member is shorter than the length of the outer steel member.
このような木質構造によれば、破壊を抑制しつつ、プレストレスをより大きくすることができる。 According to such a wooden structure, prestress can be increased while suppressing breakage.

かかる木質構造であって、前記一方の木質部材は柱であり、前記他方の木質部材は梁であり、前記鋼材は、前記柱を跨いで設けられることが望ましい。 In such a wooden structure, it is desirable that the one wooden member is a pillar, the other wooden member is a beam, and the steel member is provided across the pillar.
このような木質構造によれば、鋼材を長くできるので、過大な力が加わった場合でも、鋼材の弾性伸びの範囲で接合部が離間して剛性が低下することで、架構としては健全性が保たれる。 With this type of wooden structure, the length of the steel material can be lengthened, so even if excessive force is applied, the joints will separate within the range of elastic elongation of the steel material and the rigidity will decrease, resulting in a sound frame. be kept.

かかる木質構造であって、前記一方の木質部材又は前記他方の木質部材の少なくとも一方と、前記鋼材との摩擦により減衰力が発生することが望ましい。 In such a wooden structure, it is desirable that a damping force is generated by friction between at least one of the one wooden member or the other wooden member and the steel material.
このような木質構造によれば、エネルギー吸収でき、揺れを抑制できる。 Such a wooden structure can absorb energy and suppress shaking.

以下、本発明の一実施形態について図面を参照しつつ説明する。以下の実施形態では、木質構造として木質の柱と梁との接合構造を例に挙げて説明する。 An embodiment of the present invention will be described below with reference to the drawings. In the following embodiments, a joint structure between a wooden column and a beam will be described as an example of a wooden structure.

===実施形態===
<<柱梁接合構造について>>
図1A~図1Cは、本実施形態の柱梁接合構造の説明図である。図1Aは正面図、図1Bは、図1AのA-A断面図、図1Cは、図1AのB-B断面図である。また、図2は、図1Aの柱用板材10Aと梁用板材20Aを透過して見た正面図である。
===Embodiment===
<<About column-to-beam joint structure>>
1A to 1C are explanatory diagrams of the beam-to-column joint structure of this embodiment. 1A is a front view, FIG. 1B is a sectional view taken along line AA of FIG. 1A, and FIG. 1C is a sectional view taken along line BB of FIG. 1A. FIG. 2 is a front view of the pillar plate material 10A and the beam plate material 20A in FIG. 1A seen through.

なお、本実施形態では図に示すように方向を定義する。すなわち鉛直方向をZ方向とし、Z方向と直交する水平方向のうち梁20の長手方向をX方向とし、X方向及びZ方向と直交する方向をY方向とする。 In this embodiment, directions are defined as shown in the drawing. That is, the vertical direction is defined as the Z direction, the longitudinal direction of the beam 20 among the horizontal directions orthogonal to the Z direction is defined as the X direction, and the direction orthogonal to the X and Z directions is defined as the Y direction.

本実施形態の木質構造は、例えば木造建物などにおける架構構造(柱と梁で構成された構造)であり、柱10と、梁20と、鋼材30及び鋼材40と、せん断力伝達部材50とを有している。 The wooden structure of the present embodiment is, for example, a frame structure (a structure composed of columns and beams) in a wooden building or the like. have.

柱10は、梁20や床(不図示)などの鉛直荷重を支える構造部材であり、Z方向(鉛直方向)に沿って立設されている。本実施形態の柱10は、木質部材であり、図1Bに示すように4つの木質板材(柱用板材10A、10B、10C、及び、柱内梁板材10D)を有している。柱用板材10A、10B、10Cは、長辺がZ方向に沿うように配置された矩形の板状部材であり、図1Bに示すように、Y方向に積層されている。ただし、梁20との接合部において、柱用板材10Bは不連続となっており、代わりに柱内梁板材10Dが設けられている。柱内梁板材10Dは、図2に示すように略正方形状の板状部材であり、X方向の両端部には、内側に窪んだ凹部11が設けられている。 The pillar 10 is a structural member such as a beam 20 and a floor (not shown) that supports a vertical load, and is erected along the Z direction (vertical direction). The pillar 10 of the present embodiment is a wooden member, and has four wooden board members (pillar board members 10A, 10B, and 10C, and an inner beam plate member 10D) as shown in FIG. 1B. The pillar plate members 10A, 10B, and 10C are rectangular plate-shaped members arranged so that the long sides extend along the Z direction, and are stacked in the Y direction as shown in FIG. 1B. However, the pillar plate material 10B is discontinuous at the joint portion with the beam 20, and instead, a pillar inner beam plate material 10D is provided. As shown in FIG. 2, the in-column beam plate 10D is a substantially square plate-like member, and is provided with inwardly recessed recesses 11 at both ends in the X direction.

Y方向に積層された各板材は、不図示の綴り材(例えば、ドリフトピン、ボルト、ビスなど)によって固定されて一体となっている。また、図1A、図1Bに示すように、柱用板材10A、10B、10Cの繊維方向は、それぞれ、柱10の長手方向(Z方向)に沿っており、柱内梁板材10Dの繊維方向は、梁20の長手方向(X方向)に沿っている。なお、木材は異方性材料であり、作用する力の方向に対し強度的に強い方向と弱い方向が存在する。例えば、繊維方向については他の方向に比べて強度が強く、繊維直交方向については、他の方向に比べて強度が弱い。前述したように、柱内梁板材10Dは、繊維方向がX方向に沿っているので、X方向が強度的に強い方向である。一方、柱10の柱内梁板材10Dを除く部位は、繊維方向がZ方向に沿っているので、Z方向(鉛直方向)が強度的に強い方向である。 Each plate member laminated in the Y direction is fixed and integrated with binding members (for example, drift pins, bolts, screws, etc.) (not shown). Further, as shown in FIGS. 1A and 1B, the fiber directions of the pillar plate materials 10A, 10B, and 10C are respectively along the longitudinal direction (Z direction) of the pillar 10, and the fiber direction of the beam plate material 10D within the pillar is , along the longitudinal direction (X direction) of the beam 20 . Note that wood is an anisotropic material, and there are strong directions and weak directions with respect to the direction of the acting force. For example, the strength in the fiber direction is higher than in other directions, and the strength in the direction perpendicular to the fibers is lower than in other directions. As described above, the fiber direction of the intra-column beam plate material 10D is along the X direction, so the X direction is the strong direction. On the other hand, since the fiber direction of the portion of the column 10 other than the in-column beam plate material 10D is along the Z direction, the Z direction (vertical direction) is the strong direction.

梁20は、柱10同士を水平方向につなぐ構造部材である。本実施形態では、柱10と梁20がX方向に並んでいる。すなわち、柱10と梁20がX方向に連結されている。本実施形態の梁20は、柱10と同様に木質部材であり、3つの木質板材(梁用板材20A、20B、20C)を有している。梁用板材20A、20B、20Cは、長辺がX方向に沿うように配置された矩形の板状部材であり、図1Cに示すように、Y方向に積層されている。なお、梁用板材20BのX方向の端部には、内側に窪んだ凹部21が設けられている。凹部21は、柱内梁板材10Dの凹部11と対向する位置に設けられている。 The beams 20 are structural members that horizontally connect the pillars 10 to each other. In this embodiment, the pillars 10 and the beams 20 are arranged in the X direction. That is, the pillar 10 and the beam 20 are connected in the X direction. The beam 20 of this embodiment is a wooden member like the pillar 10, and has three wooden board members (beam board members 20A, 20B, and 20C). The beam plate members 20A, 20B, and 20C are rectangular plate-like members arranged so that the long sides thereof extend along the X direction, and are stacked in the Y direction as shown in FIG. 1C. A concave portion 21 recessed inward is provided at an end portion of the beam plate member 20B in the X direction. The recessed portion 21 is provided at a position facing the recessed portion 11 of the intra-column beam plate material 10D.

Y方向に積層された各板材(梁用板材20A、20B、20C)は、不図示の綴り材(例えば、ドリフトピン、ボルト、ビスなど)によって固定されて一体となっている。また、各板材の繊維方向は、それぞれ水平方向(ここではX方向)に沿っている。つまり、梁20は、X方向が強度的に強い方向である。 The plate members (beam plate members 20A, 20B, and 20C) stacked in the Y direction are fixed and integrated with binding members (eg, drift pins, bolts, screws, etc.) (not shown). Further, the fiber direction of each plate member is along the horizontal direction (here, the X direction). In other words, the beam 20 is strong in the X direction.

図1A~図1Cに示すように、本実施形態の柱梁接合部分には、隣接する梁用板材20Bとその間の柱内梁板材10Dを円弧状(曲線状に相当)に貫通する貫通穴HA、HBが設けられている。 As shown in FIGS. 1A to 1C, in the column-to-beam joint portion of the present embodiment, a through hole HA penetrating the adjacent beam plate material 20B and the column-in-beam plate material 10D therebetween in an arc shape (corresponding to a curved shape). , HB are provided.

貫通穴HAは、梁用板材20Bと梁用板材20A、及び、柱内梁板材10Dと柱用板材
10Aとの境界部分に形成されている。具体的には、図2に示すように、梁用板材20Bと柱内梁板材10Dの一方側の表面には、柱10を挟んで隣接する梁用板材20Bの上端と上端とを結ぶ円弧状の溝部Haが形成されている。そして、梁用板材20Bと梁用板材20A、及び、柱内梁板材10Dと柱用板材10Aがそれぞれ重ね合わせられることにより、円弧状の貫通穴HAが形成されている。
The through holes HA are formed at the boundary portions between the beam plate material 20B and the beam plate material 20A, and between the intra-column beam plate material 10D and the column plate material 10A. Specifically, as shown in FIG. 2, on the surface of one side of the beam plate material 20B and the intra-column beam plate material 10D, there is an arcuate shape connecting the upper ends of the adjacent beam plate materials 20B with the column 10 interposed therebetween. is formed. The beam plate material 20B and the beam plate material 20A, and the in-column beam plate material 10D and the column plate material 10A are respectively overlapped to form arc-shaped through holes HA.

貫通穴HBは、梁用板材20Bと梁用板材20C、及び、柱内梁板材10Dと柱用板材10Cとの境界部分に形成されている。具体的には、貫通穴HAと同様に、梁用板材20Bと柱内梁板材10Dの他方側の表面には、柱10を挟んで隣り合う梁用板材20Bの下端と下端とを結ぶ円弧状の溝部Hbが形成されている。そして、梁用板材20Bと梁用板材20C、及び、柱内梁板材10Dと柱用板材10Cがそれぞれ重ね合わせられることにより、貫通穴HAとは上下反転した円弧状の貫通穴HBが形成されている。 The through holes HB are formed at the boundary portions between the beam plate material 20B and the beam plate material 20C, and between the intra-column beam plate material 10D and the column plate material 10C. Specifically, similarly to the through hole HA, on the surface of the other side of the beam plate material 20B and the in-column beam plate material 10D, there is an arcuate shape connecting the lower ends of the adjacent beam plate materials 20B with the column 10 interposed therebetween. is formed. Then, the beam plate material 20B and the beam plate material 20C, and the beam plate material 10D in the column and the pillar plate material 10C are respectively overlapped to form an arc-shaped through hole HB that is vertically inverted from the through hole HA. there is

梁20における貫通穴HAの両端部には定着部23が設けられている。定着部23は、鋼材30の貫通穴HAへの挿入口であるとともに、鋼材30を引張応力が付与された状態で固定する部位であり受圧金物等が配置されている。本実施形態では、定着部23の面(支圧面に相当)の法線が鋼材30の軸方向に沿うように形成されている。すなわち、定着部23の面の法線方向は、梁20の繊維方向(X方向)に対して傾いている。 Fixing portions 23 are provided at both ends of the through hole HA in the beam 20 . The fixing portion 23 is a port for inserting the steel material 30 into the through hole HA, and is a portion for fixing the steel material 30 in a state in which a tensile stress is applied, and pressure-receiving metal fittings and the like are arranged. In the present embodiment, the normal to the surface of the fixing portion 23 (corresponding to the bearing surface) is formed along the axial direction of the steel material 30 . That is, the normal direction of the surface of the fixing portion 23 is inclined with respect to the fiber direction (X direction) of the beam 20 .

同様に、梁20における貫通穴HBの両端部には定着部24が設けられている。定着部24は、鋼材40の貫通穴HBへの挿入口であるとともに、鋼材40を引張応力が付与された状態で固定する部位であり受圧金物等が配置されている。本実施形態では、定着部24の面の法線が鋼材40の軸方向に沿うように形成されている。すなわち、定着部24の面の法線は、梁20の繊維方向(X方向)に対して傾いている。 Similarly, fixing portions 24 are provided at both ends of the through hole HB in the beam 20 . The fixing portion 24 is a port for inserting the steel material 40 into the through hole HB, and is a portion for fixing the steel material 40 in a state where a tensile stress is applied. In this embodiment, the normal line of the surface of the fixing portion 24 is formed along the axial direction of the steel material 40 . That is, the normal to the surface of the fixing portion 24 is inclined with respect to the fiber direction (X direction) of the beam 20 .

鋼材30は、貫通穴HAの形状に合うように形成された(すなわち円弧状に湾曲した)鋼製の部材(例えば鋼棒)であり、貫通穴HAに挿入されている。また、鋼材30は予め引張応力(緊張力)が付与されて定着部23に固定されており、元に戻ろうとする力によって、梁用板材20Bと柱内梁板材10D(換言すると梁20と柱10)との間に圧縮応力が発生している。 The steel material 30 is a steel member (for example, a steel bar) formed to match the shape of the through hole HA (that is, curved in an arc shape), and is inserted into the through hole HA. In addition, the steel material 30 is fixed to the fixing portion 23 by applying a tensile stress (tension) in advance, and the beam plate material 20B and the beam plate material 10D in the column (in other words, the beam 20 and the column) 10) and a compressive stress is generated between them.

鋼材40も同様に、貫通穴HBの形状に合うように形成された(すなわち円弧状に湾曲した)鋼製部材(例えば鋼棒)であり、貫通穴HBに挿入されている。また、鋼材40は予め引張応力(緊張力)が付与されて定着部24に固定されており、元に戻ろうとする力によって、梁用板材20Bと柱内梁板材10D(換言すると梁20と柱10)との間に圧縮応力が発生している。 Similarly, the steel member 40 is a steel member (for example, a steel bar) formed to match the shape of the through hole HB (that is, curved in an arc) and is inserted into the through hole HB. In addition, the steel material 40 is fixed to the fixing portion 24 by applying a tensile stress (tension) in advance, and the beam plate material 20B and the beam plate material 10D in the column (in other words, the beam 20 and the column) 10) and a compressive stress is generated between them.

本実施形態では、鋼材30、40が円弧状であり引張力を付与する方向が梁20の長手方向に対して傾いているので、直線状の場合と比べて、引張応力を付与する際に発生する応力の広がりが大きい。これにより、引張力を付与する際に割裂破壊しにくくなる(破断面が形成されにくい)。 In this embodiment, the steel materials 30 and 40 are arc-shaped and the direction in which the tensile force is applied is tilted with respect to the longitudinal direction of the beam 20. Therefore, compared to the case where the steel materials 30 and 40 are linear, when the tensile stress is applied The spread of the applied stress is large. As a result, splitting fracture is less likely to occur when a tensile force is applied (fractured surfaces are less likely to be formed).

また、鋼材30、40が円弧状であることにより、直線状の場合よりも長さが長くなる。よって、弾性領域の範囲が大きくなり、残留変形が残りにくい。 In addition, since the steel materials 30 and 40 are arc-shaped, the length becomes longer than when they are straight. Therefore, the range of the elastic region is widened, and residual deformation is less likely to remain.

なお、本実施形態では、貫通穴HAと貫通穴HBを、上下反転した円弧状(曲線状)に形成しており、この貫通穴HAに挿入された鋼材30と貫通穴HBに挿入された鋼材40にそれぞれ引張応力を付与している。これにより、面内力をキャンセルでき、安定して柱10と梁20とを圧着させることができる。 In this embodiment, the through hole HA and the through hole HB are formed in an arcuate shape (curved line) that is inverted upside down. 40 are each given a tensile stress. As a result, the in-plane force can be canceled, and the column 10 and the beam 20 can be stably pressure-bonded.

また、仮に、柱10の繊維方向が全てZ方向(鉛直方向)に沿っていると、水平方向(繊維直交方向)の応力に対して弱くなる。よって、柱梁の接合部に圧縮力を加えると、梁が柱に食い込むなど、柱が破損する恐れがあり、柱梁接合部に金属製の部材を配置するなどの対応が必要になる。これに対し、本実施形態では、柱10と梁20との接合部に設けられた柱内梁板材10Dの繊維方向がX方向(梁20の繊維方向)に沿っている。これにより、梁用板材20Bと柱内梁板材10Dの界面部分に補強を行わなくても強度が保てる。 Moreover, if all the fiber directions of the column 10 are along the Z direction (vertical direction), the stress in the horizontal direction (perpendicular to the fiber direction) is weakened. Therefore, if a compressive force is applied to the beam-to-column joint, the beam may bite into the column, causing damage to the column. In contrast, in the present embodiment, the fiber direction of the intra-column beam board 10D provided at the joint between the column 10 and the beam 20 is along the X direction (the fiber direction of the beam 20). As a result, the strength can be maintained without reinforcing the interface between the beam plate material 20B and the in-column beam plate material 10D.

せん断力伝達部材50は、柱10と梁20との間でZ方向のせん断力を伝達させるための部材であり、柱内梁板材10Dの凹部11と梁用板材20Bの凹部21との間に設けられている。 The shear force transmission member 50 is a member for transmitting a shear force in the Z direction between the column 10 and the beam 20, and is provided between the recess 11 of the beam plate member 10D in the column and the recess portion 21 of the beam plate member 20B. is provided.

図3は、変位と応力との関係を示す図である。なお図3の横軸は変位を示し、縦軸は応力を示している。 FIG. 3 is a diagram showing the relationship between displacement and stress. In FIG. 3, the horizontal axis indicates displacement, and the vertical axis indicates stress.

地震などにより柱10が水平力を受けると、曲げモーメントが柱10と梁20との圧縮応力を超えない範囲(応力がδ0以下の範囲)では、初期剛性を保っている。曲げモーメ
ントが柱10と梁20との圧縮応力を超えると(応力がδ0よりも大きくなると)、柱1
0と梁20との間に隙間が発生し(柱10と梁20の境界が離間し)、剛性が低下する。ただし、鋼材30、40の弾性伸びの範囲に保たれるので、地震後には元の状態に戻り、残留変形が生じない。これにより元の性能を回復できる。
When the column 10 receives a horizontal force due to an earthquake or the like, the initial rigidity is maintained within the range where the bending moment does not exceed the compressive stress between the column 10 and the beam 20 (the stress is δ0 or less). When the bending moment exceeds the compressive stress of column 10 and beam 20 (when the stress becomes greater than δ 0 ), column 1
A gap is generated between 0 and the beam 20 (the boundary between the pillar 10 and the beam 20 is separated), and the rigidity is lowered. However, since it is kept within the range of elastic elongation of the steel materials 30 and 40, it returns to its original state after the earthquake, and no residual deformation occurs. This will restore the original performance.

特に、本実施形態では、鋼材30、40は柱10を跨いで設けられている。これにより、鋼材30、40を長くできるので、過大な力が加わった場合でも、鋼材30、40の弾性伸びの範囲で接合部が離間して剛性が低下することで、架構として健全性が保たれる。 In particular, in this embodiment, the steel materials 30 and 40 are provided straddling the column 10 . As a result, since the steel members 30 and 40 can be lengthened, even when an excessive force is applied, the joints are separated within the range of elastic elongation of the steel members 30 and 40, and the rigidity is lowered, thereby maintaining the soundness of the frame. drip.

<<柱梁接合構造の施工について>>
以下、図面を参照しつつ、本実施形態の柱梁接合構造(木質構造)の施工方法について説明する。なお、図では、柱10及び梁20のうち、中央部分の板材(柱用板材10B、柱内梁板材10D、梁用板材20B)のみを示している。
<<Construction of column-to-beam joint structure>>
Hereinafter, a construction method for the beam-to-column joint structure (wooden structure) of the present embodiment will be described with reference to the drawings. In addition, in the figure, only the plate materials in the central portion of the pillar 10 and the beam 20 (the pillar plate material 10B, the in-column beam plate material 10D, and the beam plate material 20B) are shown.

図4A~4Cは、本実施形態の柱梁接合構造の施工方法の一例を示す図である。 4A to 4C are diagrams showing an example of a construction method for the beam-to-column joint structure of this embodiment.

まず、図4Aに示すように、まず柱10を、複数階分(例えば3FL分)の柱10をZ方向(鉛直方向)に沿うように立設する。なお、本実施形態では、柱10の立設にはグルードインロッド(GIR)接合が用いられている。GIRとは、鉄筋や鋼棒を木材(ここでは柱10)の接合部に挿入し、接着剤にて定着させる接合方法である。ただし、GIR接合には限られず、他の接合方法であってもよい。 First, as shown in FIG. 4A, the pillars 10 for a plurality of floors (for example, for 3 FLs) are erected along the Z direction (vertical direction). In this embodiment, the pillars 10 are erected by glue-in-rod (GIR) joining. GIR is a joining method in which reinforcing bars or steel rods are inserted into joints of wood (pillars 10 in this case) and fixed with an adhesive. However, it is not limited to GIR bonding, and other bonding methods may be used.

次に、図4Bに示すように、柱10に梁20をセットする。これにより、柱10と梁20との接合部分に、円弧状の貫通穴HA、HBが形成される。また、柱内梁板材10Dの凹部11と、梁用板材20Bの凹部21との間には、袋部材(不図示)を配置しておく。 Next, as shown in FIG. 4B, a beam 20 is set on the pillar 10 . As a result, arc-shaped through holes HA and HB are formed in the joints between the pillar 10 and the beam 20 . In addition, a bag member (not shown) is arranged between the recessed portion 11 of the in-column beam plate material 10D and the recessed portion 21 of the beam plate material 20B.

次に、図4Cに示すように、せん断力伝達部材50を設ける。ここでは、予め配置した袋部材(不図示)に、チューブ(不図示)などを介して、モルタルを注入している。これにより、袋部材がモルタルで膨らみ、せん断力伝達部材50が形成される。 Next, as shown in FIG. 4C, a shear force transmission member 50 is provided. Here, mortar is injected into a pre-arranged bag member (not shown) via a tube (not shown) or the like. Thereby, the bag member is expanded with mortar, and the shear force transmission member 50 is formed.

また、円弧状の鋼材30を貫通穴HAに挿入し、例えば、一方側の端部を定着部23に固定した状態で、他方側から引張り(緊張し)、鋼材30に予め所定の引張応力を付与する。そして、他方側の端部を定着部23に固定する。貫通穴HB側も同様に鋼材40を固
定する。
Further, the arc-shaped steel material 30 is inserted into the through hole HA, and, for example, with one end fixed to the fixing portion 23, the steel material 30 is pulled (tensioned) from the other side so that a predetermined tensile stress is applied to the steel material 30 in advance. Give. Then, the other end is fixed to the fixing portion 23 . The steel member 40 is similarly fixed on the through hole HB side.

次に、梁20の上に床(不図示)を施工する。床の構造は、RC、PC、木、鉄板、それらの合成材など、何れでもよい。 Next, a floor (not shown) is constructed on the beams 20 . The structure of the floor may be any of RC, PC, wood, iron plate, synthetic material thereof, and the like.

他の階(FL)の柱梁接合部についても同様に施工を行う。 Do the same for the column-to-beam joints of the other floors (FL).

もし仮に、貫通穴や鋼材が直線状である場合、施工方法に制約がある。例えば、柱と梁を組立てた後に鋼材を挿入できないので、予め柱に鋼材を両端から突出するように設けて置き、梁を横から差し込むなどする必要がある。 If the through hole and the steel material are linear, there are restrictions on the construction method. For example, since the steel material cannot be inserted after the column and the beam are assembled, it is necessary to place the steel material on the column in advance so as to protrude from both ends, and then insert the beam from the side.

これに対し、本実施形態では、鋼材30、40、や貫通穴HA、HBが円弧状であるので、施工が簡易になる。すなわち、本実施形態では、柱10と梁20を接合した後に、鋼材30を設置し(貫通穴HAに挿入し)引張応力を付与することができる(鋼材40についても同様)。これにより、鋼材や貫通穴が直線状の場合と比べて、施工が簡易になる。 On the other hand, in this embodiment, since the steel members 30 and 40 and the through holes HA and HB are arcuate, construction is simplified. That is, in the present embodiment, after joining the column 10 and the beam 20, the steel material 30 can be installed (inserted into the through hole HA) and tensile stress can be applied (the same applies to the steel material 40). This simplifies construction compared to the case where the steel material or the through hole is linear.

図5A、図5Bは、施工方法の別の例を示す図である。前述した実施形態と同一構成の部分には同一符号を付し説明を省略する。 5A and 5B are diagrams showing another example of the construction method. Parts having the same configurations as those of the above-described embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.

ここでは、梁20´が用いられている。梁20´は、X方向の端部に外側に突出する凸部22が設けられている。凸部22はせん断力を伝達させるための部位であり、図5Aに示すように、柱10の凹部11に挿入(嵌合)される。 Here beams 20' are used. The beam 20' has a protrusion 22 protruding outward at the end in the X direction. The convex portion 22 is a portion for transmitting shearing force, and is inserted (fitted) into the concave portion 11 of the column 10 as shown in FIG. 5A.

この例では、工場などで予め、柱10に梁20´を取り付け、さらに、円弧状の鋼材30、40を貫通穴HA、HBにそれぞれ挿入して引張応力を付与しておく。そして、現場において図5Aに示すように柱10を設置した後、図5Bに示すように隣接する梁20´の端部同士を、追加部材(図に示す連結部材200など)を用いて連結する。梁20´の端部と連結部材200との接合方式は特に限定されない。なお、これには限られず、梁20´を長手方向に長くして、梁20´の端部同士を連結してもよい。 In this example, a beam 20' is attached to the column 10 in advance at a factory or the like, and arc-shaped steel members 30 and 40 are inserted into the through holes HA and HB, respectively, to apply tensile stress. After the pillars 10 are installed at the site as shown in FIG. 5A, the ends of the adjacent beams 20' are connected as shown in FIG. 5B using additional members (such as the connecting member 200 shown in the figure) . The method of joining the ends of the beams 20' and the connecting member 200 is not particularly limited. In addition, it is not limited to this, and the beams 20' may be elongated in the longitudinal direction and the ends of the beams 20' may be connected to each other.

この例の場合、工場にて柱梁の接合部分を予め組立てているので、現場における施工がより簡易になる。 In the case of this example, since the joints of the columns and beams are pre-assembled at the factory, construction at the site becomes easier.

===その他の実施形態について===
上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。特に、以下に述べる実施形態であっても、本発明に含まれるものである。
===Other Embodiments===
The above-described embodiments are intended to facilitate understanding of the present invention, and are not intended to limit and interpret the present invention. The present invention can be modified and improved without departing from its spirit, and it goes without saying that the present invention includes equivalents thereof. In particular, even the embodiments described below are included in the invention.

<柱梁接合構造について>
前述の実施形態では、柱内梁板材10Dと梁20との接合面が柱10の外面と一致していたが、これには限られない。
<Regarding column-to-beam joint structure>
In the above-described embodiment, the joint surface between the in-column beam plate material 10D and the beam 20 coincides with the outer surface of the column 10, but it is not limited to this.

図6は、柱梁接合構造の第1変形例を示す概略図である。なお、図6は図2に相当する部分の図であり、図2と同一構成の部分には同一符号を付し説明を省略する。 FIG. 6 is a schematic diagram showing a first modification of the beam-to-column joint structure. FIG. 6 is a diagram of a portion corresponding to FIG. 2, and portions having the same configuration as in FIG.

図6の柱10には柱内梁板材10D´が設けられている。柱内梁板材10D´はX方向に長い矩形状の板状部材であり、柱内梁板材10D´のX方向の端は、柱10のX方向の端よりも外側に突出している。この場合、破壊面(柱内梁板材10D´と梁用板材20Bとの境界面)が柱10から離れるため、モーメントが小さくなりプレストレスを抑えるこ
とができる。
The column 10 in FIG. 6 is provided with a column-internal beam plate material 10D'. The beam plate member 10D' within the column is a rectangular plate member elongated in the X direction, and the end of the beam plate member 10D' in the X direction protrudes outside the end of the column 10 in the X direction. In this case, since the fracture surface (boundary surface between the beam plate material 10D' in the column and the beam plate material 20B) is separated from the column 10, the moment is reduced and the prestress can be suppressed.

また、前述の実施形態では、柱10と梁20が、円弧状の鋼材30と鋼材40で連結されていたが、これには限られない。 Moreover, in the above-described embodiment, the column 10 and the beam 20 were connected by the arc-shaped steel material 30 and the steel material 40, but this is not restrictive.

図7は柱梁接合構造の第2変形例を示す概略図である。なお、図では、簡略化のため、木質部材の繊維、定着部、貫通穴の図示を省略している。 FIG. 7 is a schematic diagram showing a second modification of the beam-to-column joint structure. For the sake of simplification, illustration of the fiber of the wooden member, the fixing portion, and the through hole is omitted in the drawing.

この変形例では、円弧の半径方向(径方向)にそれぞれ2つの鋼材(鋼材30と30´、及び、鋼材40と40´)が並ぶように配置されている。鋼材30´は鋼材30よりも内側に設けられた円弧状の鋼材であり、鋼材30よりも長さが短い。また、鋼材40´は鋼材40よりも内側に設けられた円弧状の鋼材であり、鋼材40よりも長さが短い。このようにすることにより、部材の破壊を抑制しつつ、プレストレスを大きくすることができる。 In this modification, two steel materials (steel materials 30 and 30' and steel materials 40 and 40') are arranged side by side in the radial direction (radial direction) of the arc. The steel material 30 ′ is an arc-shaped steel material provided inside the steel material 30 and has a shorter length than the steel material 30 . Further, the steel material 40 ′ is an arc-shaped steel material provided inside the steel material 40 and has a shorter length than the steel material 40 . By doing so, prestress can be increased while suppressing breakage of the member.

また、前述の実施形態では、図1Aや図2に示すように、柱10と梁20が十字状に交差しており、鋼材30、40が柱10を跨ぐように設けられていたがこれには限られない。 In the above-described embodiment, as shown in FIGS. 1A and 2, the column 10 and the beam 20 intersect in a cross shape, and the steel materials 30 and 40 are provided so as to straddle the column 10. is not limited.

図8は、柱梁接合構造の第3変形例を示す概略図である。ここでも、木質部材の繊維、定着部、貫通穴の図示を省略している。 FIG. 8 is a schematic diagram showing a third modification of the beam-to-column joint structure. Here too, illustration of fibers of the wooden member, fixing portions, and through-holes is omitted.

この変形例では、柱10のX方向の一方側のみに梁20が接合されている(ト型)。この場合、定着部23の一方(定着部23´)及び、定着部24の一方(定着部24´)は、柱10の鉛直面に形成されることになる。また、図示しないが、梁20が柱10の上端で接合されていてもよい(柱10が梁20の上に出ていなくてもよい)。また、梁20が柱10のX方向側のみでなく、Y方向側にも接合されていてもよい。 In this modified example, a beam 20 is joined only to one side of the column 10 in the X direction (G type). In this case, one of the fixing portions 23 (fixing portion 23 ′) and one of the fixing portions 24 (fixing portion 24 ′) are formed on the vertical surface of the column 10 . Also, although not shown, the beam 20 may be joined at the upper end of the column 10 (the column 10 may not protrude above the beam 20). Also, the beam 20 may be joined not only to the X-direction side of the column 10 but also to the Y-direction side.

また、鋼材30、40が柱10に位置していなくてもよい。例えば、梁20を水平方向の複数の位置で分割するように構成し、当該分割した部位を円弧状の鋼材30、40で連結させてもよい。 Also, the steel materials 30 and 40 do not have to be positioned on the column 10 . For example, the beam 20 may be divided at a plurality of positions in the horizontal direction, and the divided portions may be connected by arc-shaped steel members 30 and 40 .

<貫通穴について>
前述の実施形態では、貫通穴HA、HBが円弧状であったが、これには限られず、曲線状であれよい。ただし、円弧状でない場合、貫通穴HA、HBに挿入する鋼材30、40として、穴の形状に沿って変形可能な柔らかい鋼材(例えば、鋼線)が望ましい。一方、円弧状である場合、曲率が一定であるので、同じ曲率の硬い鋼材(例えば、円弧状に形成された鋼棒)を挿入することができる。
<About through holes>
Although the through holes HA and HB are arcuate in the above-described embodiment, they are not limited to this, and may be curved. However, if the shape is not arcuate, the steel materials 30 and 40 inserted into the through holes HA and HB are preferably soft steel materials (for example, steel wire) that can be deformed along the shape of the holes. On the other hand, in the case of an arc shape, since the curvature is constant, a hard steel material with the same curvature (for example, a steel bar formed in an arc shape) can be inserted.

また、前述の実施形態では、重ね合される板材の一方に溝部Ha、Hbが形成されていたが、重ね合される板材の両方(対向する面同士)に溝部が形成されて、板材(溝部)が重ね合されて、貫通穴HA、HBが形成されてもよい。 Further, in the above-described embodiment, grooves Ha and Hb are formed in one of the plate materials to be overlapped, but grooves are formed in both of the plate materials to be overlapped (opposing surfaces), so that the plate materials (groove portions ) may be overlapped to form the through holes HA and HB.

また、前述の実施形態では、貫通穴HA、HBが、柱10と梁20の複数層に積層された板材の境界部分に形成されていたが、これには限られない。例えば、板材の厚さ方向の中央に孔を掘っていき貫通穴HA、HBを形成するようにしてもよい。ただし、前述の実施形態のようにすると、貫通穴HA、HBを加工しやすい。 In addition, in the above-described embodiment, the through holes HA and HB are formed in the boundary portions of the plate materials laminated in multiple layers of the pillar 10 and the beam 20, but the present invention is not limited to this. For example, the through holes HA and HB may be formed by digging a hole in the center of the plate material in the thickness direction. However, the through holes HA and HB can be easily processed in the above-described embodiment.

<減衰力について>
前述の実施形態では、鋼材30と溝部Ha(柱10と梁20の少なくとも一方)、鋼材
40と溝部Hb(柱10と梁20の少なくとも一方)との摩擦により減衰力が発生する。これにより、エネルギー吸収することができ、揺れを抑制することができる。
<About damping force>
In the above embodiment, damping force is generated by friction between the steel material 30 and the groove Ha (at least one of the column 10 and the beam 20) and between the steel material 40 and the groove Hb (at least one of the column 10 and the beam 20). As a result, energy can be absorbed and shaking can be suppressed.

また、上記以外にも減衰力を別途付加してもよい。例えば、貫通穴HA、HB内に粘性体を充填してもよい。また、柱10と梁20との接合面にゴム等の減衰材を設けてもよい。 Further, a damping force other than the above may be added separately. For example, the through holes HA and HB may be filled with a viscous material. Also, a damping material such as rubber may be provided on the joint surface between the column 10 and the beam 20 .

10 柱(木質部材)
10A,10B,10C 柱用板材(木質板材)
10D 柱内梁板材(木質板材)
11 凹部
20 梁(木質部材)
20A,20B,20C 梁用板材(木質板材)
21 凹部
22 凸部
23,24 定着部
30 鋼材
40 鋼材
50 せん断力伝達部材
Ha,Hb 溝部
HA,HB 貫通穴
10 pillars (wooden members)
10A, 10B, 10C Pillar board (wood board)
10D Column inner beam board (wood board)
11 recess 20 beam (wooden member)
20A, 20B, 20C beam board (wood board)
21 concave portion 22 convex portions 23, 24 fixing portion 30 steel material 40 steel material 50 shear force transmission members Ha, Hb grooves HA, HB through hole

Claims (2)

木質部材である柱と、a pillar that is a wooden member;
木質部材であって、前記柱の長手方向と直交する方向の一方側に設けられた一方側梁と、 a one-side beam, which is a wooden member, provided on one side in a direction orthogonal to the longitudinal direction of the pillar;
木質部材であって、前記柱の長手方向と直交する方向の他方側に設けられた他方側梁と、 a second side beam, which is a wooden member, provided on the other side in a direction perpendicular to the longitudinal direction of the pillar;
予め所定の引張応力が付与されて、前記一方側梁と前記柱と前記他方側梁とを連結する曲線状の鋼材と、a curved steel member to which a predetermined tensile stress is applied in advance and which connects the one-side beam, the column, and the other-side beam;
を備えた木質構造であって、 A wooden structure comprising
前記鋼材は、上に凸となる曲線状であり、 The steel material has a curved shape that is convex upward,
前記鋼材は、前記柱を貫通して、前記一方側梁の下端から前記他方側梁の下端に至っており、 The steel material penetrates the column and extends from the lower end of the one side beam to the lower end of the other side beam,
前記鋼材は、前記一方側梁及び前記他方側梁の上端よりも下方の位置において、前記柱を貫通している The steel material penetrates the column at a position below the upper ends of the one side beam and the other side beam
ことを特徴とする木質構造。 A wooden structure characterized by:
請求項1に記載の木質構造であって、A wooden structure according to claim 1,
予め所定の引張応力が付与されて、前記一方側梁と前記柱と前記他方側梁とを連結する曲線状の他の鋼材を有し、 Another curved steel material that is applied with a predetermined tensile stress in advance and connects the one-side beam, the column, and the other-side beam,
前記他の鋼材は、下に凸となる曲線状であり、 The other steel material has a curved shape that protrudes downward,
前記他の鋼材は、前記柱を貫通して、前記一方側梁の上端から前記他方側梁の上端に至っており、 The other steel material passes through the column and extends from the upper end of the one side beam to the upper end of the other side beam,
前記他の鋼材は、前記一方側梁及び前記他方側梁の下端よりも上方の位置において、前記柱を貫通している The other steel material penetrates the column at a position above the lower ends of the one-side beam and the other-side beam.
ことを特徴とする木質構造。 A wooden structure characterized by:
JP2022097898A 2018-04-25 2022-06-17 wooden structure Active JP7276568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022097898A JP7276568B2 (en) 2018-04-25 2022-06-17 wooden structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018083851A JP7243037B2 (en) 2018-04-25 2018-04-25 wooden structure
JP2022097898A JP7276568B2 (en) 2018-04-25 2022-06-17 wooden structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018083851A Division JP7243037B2 (en) 2018-04-25 2018-04-25 wooden structure

Publications (2)

Publication Number Publication Date
JP2022113877A JP2022113877A (en) 2022-08-04
JP7276568B2 true JP7276568B2 (en) 2023-05-18

Family

ID=87846655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022097898A Active JP7276568B2 (en) 2018-04-25 2022-06-17 wooden structure

Country Status (1)

Country Link
JP (1) JP7276568B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498451B1 (en) 2023-11-20 2024-06-12 株式会社i-Fix Joint structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3117004B2 (en) 1997-08-19 2000-12-11 日本電気株式会社 Electron beam exposure method
JP2008075251A (en) 2006-09-19 2008-04-03 Takenaka Komuten Co Ltd Method and structure for joining precast reinforced concrete beam members together
JP2009002101A (en) 2007-06-25 2009-01-08 Takenaka Komuten Co Ltd Method and structure for joining precast-concrete construction beam-column
JP2014109111A (en) 2012-11-30 2014-06-12 Isamu Yahara Junction structure between beam members and junction structure between column member and beam member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198936A (en) * 1988-02-03 1989-08-10 Sumitomo Electric Ind Ltd Reinforcement of flat slab pillar head part
JPH0734965Y2 (en) * 1990-03-15 1995-08-09 清水建設株式会社 Bonded structure of laminated wood

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3117004B2 (en) 1997-08-19 2000-12-11 日本電気株式会社 Electron beam exposure method
JP2008075251A (en) 2006-09-19 2008-04-03 Takenaka Komuten Co Ltd Method and structure for joining precast reinforced concrete beam members together
JP2009002101A (en) 2007-06-25 2009-01-08 Takenaka Komuten Co Ltd Method and structure for joining precast-concrete construction beam-column
JP2014109111A (en) 2012-11-30 2014-06-12 Isamu Yahara Junction structure between beam members and junction structure between column member and beam member

Also Published As

Publication number Publication date
JP2022113877A (en) 2022-08-04

Similar Documents

Publication Publication Date Title
JP7276568B2 (en) wooden structure
JP2018080569A (en) Woody earthquake-proof wall
JP5196638B2 (en) Column base semi-rigid joint building
JP7058190B2 (en) Joint structure of wooden columns and wooden beams
JP6638905B2 (en) Beam-column connection structure and beam-column connection method
JP7059788B2 (en) Wood structure
JP2023126339A (en) Reinforcement structure of wooden member
JP7243037B2 (en) wooden structure
JP2010084503A (en) Structure and method for joining concrete column and steel-frame beam
JP2018204397A (en) Wood-steel hybrid structure and method for constructing the same
JP5087026B2 (en) Seismic reinforcement structure
JP2011064012A (en) Brace, aseismatic structure and building
JP6850681B2 (en) Column-beam joint structure
JP5271164B2 (en) Floor slab structure
JP4861792B2 (en) Pressure bonding method and pressure bonding structure for precast concrete column / beam joint
JP2019027022A (en) Reinforcing structure of horizontal member
JP6575035B2 (en) Joint structure and joint hardware of wooden members
JP5417489B2 (en) Joint structure of wooden building components
JP2018162602A (en) Joint metal and joint structure of wall
JP6052460B2 (en) Seismic reinforcement structure and construction method
JP5116587B2 (en) Gate-type frame with vibration control device by brace structure
JP6764645B2 (en) Joint structure of structural members
JP6769758B2 (en) Vibration damping device
JP5192093B1 (en) Concrete beam shear reinforcement structure
JP7267167B2 (en) Column-beam frame with wooden beams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7276568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150