JP5195636B2 - Manufacturing method of continuous cast slab - Google Patents

Manufacturing method of continuous cast slab Download PDF

Info

Publication number
JP5195636B2
JP5195636B2 JP2009122155A JP2009122155A JP5195636B2 JP 5195636 B2 JP5195636 B2 JP 5195636B2 JP 2009122155 A JP2009122155 A JP 2009122155A JP 2009122155 A JP2009122155 A JP 2009122155A JP 5195636 B2 JP5195636 B2 JP 5195636B2
Authority
JP
Japan
Prior art keywords
slab
reduction
cooling
center
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009122155A
Other languages
Japanese (ja)
Other versions
JP2010269328A (en
Inventor
信輔 渡辺
道和 古賀
寛隆 畑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009122155A priority Critical patent/JP5195636B2/en
Publication of JP2010269328A publication Critical patent/JP2010269328A/en
Application granted granted Critical
Publication of JP5195636B2 publication Critical patent/JP5195636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、炭素鋼、合金鋼全般における鋳片の連続鋳造において、中心偏析を抑制した、内部品質の良好な連続鋳造鋳片を得ることを可能とする、連続鋳造鋳片の製造方法に関する。   The present invention relates to a method for producing a continuous cast slab that makes it possible to obtain a continuous cast slab having good internal quality, in which central segregation is suppressed in continuous casting of slabs of carbon steel and alloy steel in general.

一般に、連続鋳造鋳片を製造する際において、中心偏析の発生は避けがたい問題である。この中心偏析は、連続鋳造鋳片の凝固過程における、炭素(C)、マンガン(Mn)、リン(P)、硫黄(S)等の溶鋼の成分元素の鋳片中心部への濃化現象によって発生する。中心偏析部を有する連続鋳造鋳片を圧延した場合には、中心偏析部の延性不良等に起因する破断等の品質欠陥問題が発生する。   In general, when manufacturing a continuous cast slab, the occurrence of center segregation is an unavoidable problem. This center segregation is caused by the concentration phenomenon of molten steel component elements such as carbon (C), manganese (Mn), phosphorus (P), sulfur (S), etc. in the center of the slab during the solidification process of the continuous cast slab. Occur. When a continuous cast slab having a center segregation part is rolled, quality defect problems such as fracture due to a ductility defect of the center segregation part occur.

特許文献1には、連続鋳造鋳片の中心偏析抑制方法として、鋳片厚さの2〜5倍の直径を有する、連続鋳造機内に配置された圧下ロールを用いて鋳片の凝固末期部(最終凝固部)を圧下することにより、中心偏析やポロシティを低減させる方法が開示されている。   In Patent Document 1, as a method for suppressing the center segregation of a continuous cast slab, the final stage of solidification of the slab using a reduction roll having a diameter of 2 to 5 times the thickness of the slab and placed in a continuous casting machine ( A method of reducing center segregation and porosity by reducing the final solidified portion) is disclosed.

特許文献2には、鋳片の最終凝固部の、鋳造方向の上流側に設置した電磁攪拌装置または超音波印加装置を用いて、鋳片内部の溶鋼を強制的に流動させ、凝固したデンドライトを切断することにより最終凝固部(凝固完了点)付近に等軸晶を形成させた上で、最終凝固部直前に配置した圧下ロールにより、凝固収縮相当量以上の3〜20mm程度の圧下を与えて強制的に凝固完了点を形成し、鋳片の内部割れを発生させることなく中心偏析を防止する方法が開示されている。   In Patent Document 2, the molten steel inside the slab is forced to flow by using an electromagnetic stirrer or an ultrasonic application device installed on the upstream side in the casting direction of the final solidification portion of the slab. By forming an equiaxed crystal in the vicinity of the final solidification part (solidification completion point) by cutting, a reduction of about 3 to 20 mm, which is equal to or more than the amount corresponding to the solidification shrinkage, is given by a reduction roll arranged immediately before the final solidification part. A method for forcibly forming a solidification completion point and preventing center segregation without causing internal cracks in the slab is disclosed.

連続鋳造鋳片の鋳造時には、鋳造条件が変動した場合、例えば鋳造速度が増加した場合や溶鋼温度が上昇した場合などには、鋳片圧下時の鋳片温度の上昇に伴って鋳片の変形抵抗の低下が生じる。鋳片の変形抵抗が低下すると、その結果として、鋳片中心部へのローラーによる圧下の浸透性が低下する。そして、圧下浸透性が低下することに起因して、中心偏析の悪化や中心ポロシティの残存といった鋳片の内部品質の悪化問題が生じる可能性が存在する。しかし、特許文献1および特許文献2に記載の技術では、ローラーによる圧下浸透性を向上させることができないため、この問題に対処することができない。   When casting the continuous cast slab, if the casting conditions fluctuate, such as when the casting speed increases or the molten steel temperature rises, the slab deforms as the slab temperature increases during slab reduction. A drop in resistance occurs. When the deformation resistance of the slab decreases, as a result, the permeability of the slab center by the roller to the center of the slab decreases. And there exists a possibility that the deterioration of the internal quality of the slab such as the deterioration of the center segregation and the remaining of the center porosity may arise due to the reduction of the rolling permeability. However, since the techniques described in Patent Document 1 and Patent Document 2 cannot improve the rolling permeability by a roller, this problem cannot be addressed.

特許文献3には、鋳片の厚み中心部の固相率が少なくとも0.5になる時点までは、鋳片の長辺側中央部の表面温度を750℃以上に保ち、鋳片の厚み中心部の固相率が0.5を超え且つ圧下を継続している時点で、鋳片の長辺側中央部の表面温度を850℃以下に制御することで、軽圧下を効果的に作用させ、鋳片の中心偏析を低減できる方法が開示されている。   In Patent Document 3, the surface temperature of the long side side central portion of the slab is kept at 750 ° C. or more until the solid phase ratio at the thickness center portion of the slab becomes at least 0.5, and the thickness center of the slab is maintained. By controlling the surface temperature of the central part on the long side of the slab at 850 ° C. or less at the time when the solid phase ratio of the part exceeds 0.5 and the reduction is continued, the light reduction is made to act effectively. A method that can reduce the center segregation of a slab is disclosed.

しかし、特許文献3に記載の方法では、表面温度が850℃以下の鋳片を圧下するため、特に表面温度が800℃以下の鋳片を圧下した場合には、鋼の脆化温度域での圧下歪みに起因する鋳片の表面割れが発生する可能性がある。そのため、中心偏析が低減され、鋳片の中心の品質が良好であったとしても表面の品質が低下する問題が存在する。   However, in the method described in Patent Document 3, a slab having a surface temperature of 850 ° C. or lower is squeezed, and particularly when a slab having a surface temperature of 800 ° C. or lower is squeezed, There is a possibility that the surface crack of the slab due to the rolling strain may occur. Therefore, there is a problem that the center segregation is reduced, and the quality of the surface is lowered even if the quality of the center of the slab is good.

特開平3−124352号公報JP-A-3-124352 特願昭61−42460号公報Japanese Patent Application No. 61-42460 特願2008−207201号公報Japanese Patent Application No. 2008-207201

上述のように、特許文献1〜3に記載の連続鋳造鋳片の中心偏析を抑制する技術は、連続鋳造機内に設けられたローラーを用いて鋳片を圧下するという手法を用いるものであった。そして、特許文献1および2に記載の技術における、鋳片の温度が高い場合に、鋳片の中心部への圧下浸透性の低下にともなう中心偏析の悪化が生じる可能性があるという問題点、および特許文献3に記載の技術における、鋳片の中心偏析の発生を抑制できても、表面割れが発生するという問題点については、いずれの特許文献にも解決手法は明記されていなかった。   As described above, the technology for suppressing the center segregation of the continuous cast slabs described in Patent Documents 1 to 3 uses a technique of rolling down the slab using a roller provided in the continuous casting machine. . And in the technique of patent document 1 and 2, when the temperature of a slab is high, the problem that the deterioration of the center segregation with the fall of the rolling permeability to the center part of a slab may arise, In the technique described in Japanese Patent Application Laid-Open No. H11-133707, and the technique described in Patent Document 3, no solution method is clearly described in any of the Patent Documents regarding the problem that surface cracks occur even though the center segregation of the slab can be suppressed.

本発明は、上記の問題に鑑みてなされたものであり、鋳造条件の変動が生じ
鋳片温度が上昇しても、中心偏析、中心ポロシティおよび表面割れが抑制された鋳片の製造が可能な連続鋳造鋳片の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and even if the casting conditions fluctuate and the slab temperature rises, it is possible to produce a slab in which central segregation, central porosity and surface cracks are suppressed. It aims at providing the manufacturing method of a continuous casting slab.

本発明者らは、上記課題について検討した結果、鋳片の表面をローラーで圧下する直前に冷却して、局所的に鋳片の表面の温度を低下させることに想到した。温度低下をともなう鋳片の表層部に限定して変形抵抗を増加させ、鋳片の表層部の変形抵抗と鋳片の中心部の変形抵抗との比(鋳片の表層部の変形抵抗を鋳片の中心部の変形抵抗で除した値)を増大させることによって、鋳片の中心部へのローラー圧下の浸透性を向上させることができ、中心偏析を安定して抑制することが可能である。そして、本発明者らは、通常の連続鋳造では行われていない、鋳片の厚み中心部の固相率が0.2〜1.0である部分の圧下前後における二次冷却を局所的に行うことにより、実際に中心偏析の発生を抑制することができることを知見した。   As a result of studying the above problems, the present inventors have conceived that the surface of the slab is cooled immediately before being squeezed with a roller to locally lower the temperature of the surface of the slab. The deformation resistance is increased only for the surface layer portion of the slab with a temperature drop, and the ratio of the deformation resistance of the surface layer portion of the slab to the deformation resistance of the center portion of the slab (the deformation resistance of the surface layer portion of the slab is cast By increasing the value divided by the deformation resistance of the center part of the piece, the permeability under the roller pressure to the center part of the slab can be improved, and the center segregation can be stably suppressed. . And the present inventors locally perform the secondary cooling before and after the reduction of the portion where the solid phase ratio in the central portion of the slab thickness is 0.2 to 1.0, which is not performed in the normal continuous casting. It has been found that the occurrence of center segregation can be actually suppressed by doing so.

また、上記の連続鋳造鋳片の製造方法において、局所的な鋳片の表面の冷却の強度を適切に制御することによって、鋳片の脆化温度域を回避し、鋳片の表面割れの発生を防止することも可能であることを知見した。   Further, in the above-described continuous casting slab manufacturing method, by appropriately controlling the local cooling strength of the slab surface, the embrittlement temperature range of the slab is avoided, and surface cracks of the slab are generated. It was found that it is also possible to prevent this.

本発明は、上記の知見に基づいてなされたものであり、下記(1)および(2)の連続鋳造鋳片の製造方法を要旨としている。   The present invention has been made on the basis of the above findings, and the gist thereof is the following (1) and (2) continuous casting slab manufacturing method.

(1)鋳型から鋳片を下方に引き抜き、複数のガイドロール対によって湾曲させた後、さらに鋳造方向下流側の複数のガイドロール対によって凝固末期の鋳片を圧下するとともに湾曲を矯正し、水平方向に引き抜く連続鋳造機を用いて連続鋳造する連続鋳造鋳片の製造方法であって、通常の鋳片の二次冷却を終了した後に、鋳片を、その厚み中心部の固相率が0.2〜1.0の範囲であり、その湾曲している部分から湾曲の矯正を完了した後の部分までを前記複数のガイドロール対によって圧下するに際し、前記圧下開始前後の鋳片表面に、さらに局所冷却である鋳片の二次冷却を、比水量を0.04L/kg−steel以上0.18L/kg−steel未満として行うことにより、前記圧下開始直前の鋳片の表面温度を900〜950℃に制御することを特徴とする連続鋳造鋳片の製造方法。
(1) After the slab is drawn downward from the mold and curved by a plurality of guide roll pairs, the slab at the end of solidification is further reduced by a plurality of guide roll pairs on the downstream side in the casting direction, and the curvature is corrected and leveled. A method for producing a continuous cast slab that is continuously cast using a continuous casting machine that is drawn in the direction, and after the secondary cooling of the normal slab is finished, the slab has a solid phase ratio of 0 at the center of its thickness. in the range of .2~1.0, upon which pressure up part after completing the correction of curvature from the portion that has its curvature by the plurality of guide roll pairs, the pressure before and after the start of the slab surface, Furthermore, the secondary cooling of the slab, which is local cooling, is performed at a specific water amount of 0.04 L / kg-steel or more and less than 0.18 L / kg-steel, so that the surface temperature of the slab immediately before the start of rolling is 900 to 950 Method for producing a continuously cast slab, characterized in that the controlled.

(2)前記局所冷却が、エアーミストによる二次冷却であって、かつ、局所冷却全体での冷却水量が30L/min以上150L/minであり、エアー流量を冷却水量で除した値である気水比が30以上100以下であることを特徴とする(1)に記載の連続鋳造鋳片の製造方法。 (2) The local cooling is secondary cooling by air mist, and the cooling water amount in the whole local cooling is 30 L / min or more and 150 L / min, and the air flow rate is a value obtained by dividing the air flow rate by the cooling water amount. The method for producing a continuous cast slab according to (1), wherein the water ratio is 30 or more and 100 or less.

本発明において、「鋳片厚み中心部の固相率」とは、鋳片の厚さ方向の中心部における固相と液相の全体量に対する固相の割合を意味する。   In the present invention, the “solid phase ratio at the center of the slab thickness” means the ratio of the solid phase to the total amount of the solid phase and the liquid phase at the center in the thickness direction of the slab.

本明細書の記載において、「溶鋼過熱度」とは、実際に測定される溶鋼温度から平衡状態図等により求められる液相線温度を減じた温度差を意味する。   In the description of this specification, the “molten steel superheat degree” means a temperature difference obtained by subtracting the liquidus temperature obtained by an equilibrium diagram or the like from the actually measured molten steel temperature.

また、以下の記述において、鋼の成分組成を表す「質量%」を、単に「%」とも表記する。   Further, in the following description, “mass%” representing the component composition of steel is also simply expressed as “%”.

本発明の連続鋳造鋳片の製造方法によれば、炭素鋼、合金鋼全般を連続鋳造により製造する際に、鋳造条件の変動が生じて鋳片温度が上昇しても、鋳片の中心部へのローラー圧下の浸透性を向上させることができ、中心偏析や中心ポロシティの抑制された連続鋳造鋳片を安定して製造することができる。   According to the continuous cast slab manufacturing method of the present invention, when carbon steel and alloy steel in general are manufactured by continuous casting, even if the casting condition fluctuates and the slab temperature rises, the center part of the slab Thus, it is possible to improve the permeability under roller pressure, and to stably produce a continuous cast slab with reduced center segregation and center porosity.

また、従来の鋳片の圧下方法では、圧下浸透性を向上させるには圧下量を増加させることが不可欠であったため、圧下量が過大となった場合には、圧下量とともに過大となった圧下歪みに起因する鋳片の表面割れが発生するという問題点が存在した。   In addition, in the conventional slab reduction method, it is indispensable to increase the reduction amount in order to improve the reduction permeability. Therefore, when the reduction amount is excessive, the reduction amount becomes excessive with the reduction amount. There existed a problem that the surface crack of the slab resulting from distortion generate | occur | produced.

しかし、本発明の連続鋳造鋳片の製造方法では、圧下の対象となる鋳片の表面を局所的に冷却することによって、鋳片中心部へのローラー圧下の浸透性を向上させることが可能である。これにより、本発明の連続鋳造鋳片の製造方法では、鋳片の圧下量の増加は不要であり、圧下歪み自体は変化しないため、鋳片の表面割れ等の、鋳片の表面の品質への悪影響が生じる可能性は認められない。   However, in the continuous cast slab manufacturing method of the present invention, it is possible to improve the permeability under the roller pressure to the center of the slab by locally cooling the surface of the slab to be reduced. is there. As a result, in the continuous cast slab manufacturing method of the present invention, it is not necessary to increase the amount of slab reduction, and the reduction strain itself does not change, so the surface quality of the slab, such as surface cracks of the slab, is reduced. There is no possibility of adverse effects.

本発明を実施するための連続鋳造機および周辺装置の縦断面の概略を示す図である。It is a figure which shows the outline of the longitudinal cross-section of the continuous casting machine and peripheral device for implementing this invention.

1.連続鋳造鋳片の製造方法の基本構成
図1は、本発明を実施するための連続鋳造機および周辺装置の縦断面の概略を示す図である。
1. FIG. 1 is a diagram schematically showing a longitudinal section of a continuous casting machine and peripheral devices for carrying out the present invention.

取鍋1に収容された溶鋼2は、タンディッシュ3に供給され、タンディッシュ3から浸漬ノズル4を経てメニスカス5を形成するように鋳型6内に注入される。鋳型6内に注入された溶鋼2は、鋳型6で冷却された後、鋳型6の下方に設けられた二次冷却ゾーン7において、図示しない二次冷却スプレーノズル群から噴射されるスプレー水により冷却され、凝固シェル8を形成して鋳片9となる。鋳片9は、その内部に未凝固の液相(溶鋼2)を保持したまま、ガイドロール対10によって支持されながらピンチロール対11により引き抜かれる。また、鋳片9は、ガイドロール対10のうち、鋳造方向下流側の鋳片圧下ゾーン12に配置されたものによって圧下される。図1では、複数対配置されたガイドロール対10のうち、1対にのみ符号を付している。   The molten steel 2 accommodated in the ladle 1 is supplied to the tundish 3 and injected from the tundish 3 through the immersion nozzle 4 into the mold 6 so as to form a meniscus 5. The molten steel 2 injected into the mold 6 is cooled by the mold 6 and then cooled by spray water sprayed from a group of secondary cooling spray nozzles (not shown) in a secondary cooling zone 7 provided below the mold 6. Then, a solidified shell 8 is formed to become a cast piece 9. The slab 9 is pulled out by the pinch roll pair 11 while being supported by the guide roll pair 10 while holding the unsolidified liquid phase (molten steel 2) therein. Moreover, the slab 9 is reduced by what is arrange | positioned among the guide roll pairs 10 in the slab reduction zone 12 of the casting direction downstream. In FIG. 1, only one pair of the guide roll pairs 10 arranged in a plurality of pairs is provided with a reference numeral.

2.圧下前鋳片冷却(局所冷却)
本発明の連続鋳造鋳片の製造方法では、二次冷却ゾーン7に加えて、二次冷却ゾーン7の鋳造方向下流側に設けられた圧下前鋳片冷却ゾーン(局所冷却ゾーン)13においても、さらなる二次冷却として、図示しない二次冷却スプレーノズル群から噴射されるスプレー水により鋳片9を局所的に冷却する(以下、このような鋳片の冷却を、「圧下前鋳片冷却」または「局所冷却」という)。鋳片9の局所冷却は、鋳片9の鋳片厚み中心部の固相率が0.2〜1.0の部分において、鋳片9のガイドロール対10に接する面(図1では天側および地側の両方の面)に対して行い、圧下開始直前の鋳片9の表面温度を900〜950℃に制御する。局所冷却ゾーン13は、図1に示すように、鋳片圧下ゾーン12の鋳造方向の上流端と重複する。
2. Cooling slab before rolling (local cooling)
In the continuous cast slab manufacturing method of the present invention, in addition to the secondary cooling zone 7, also in the pre-rolling slab cooling zone (local cooling zone) 13 provided downstream in the casting direction of the secondary cooling zone 7, As further secondary cooling, the slab 9 is locally cooled by spray water sprayed from a secondary cooling spray nozzle group (not shown) (hereinafter, such slab cooling is referred to as “cooling before slab cooling” or “ "Local cooling"). The local cooling of the slab 9 is performed on the surface of the slab 9 that is in contact with the guide roll pair 10 (the top side in FIG. And the surface temperature of the slab 9 immediately before the start of reduction is controlled to 900 to 950 ° C. As shown in FIG. 1, the local cooling zone 13 overlaps the upstream end of the slab reduction zone 12 in the casting direction.

このような鋳片の冷却を行うことによって、鋳片圧下ゾーン12に配置されたガイドロール対10によって圧下される鋳片9の表層部の変形抵抗と鋳片9の中心部の変形抵抗との比(鋳片9の表層部の変形抵抗を鋳片9の中心部の変形抵抗で除した値)を増大させることができる。そのため、鋳造条件が変動して鋳片9の温度が上昇しても、鋳片圧下ゾーン12に配置されたガイドロール対10による圧下の浸透性を向上させ、鋳片9の中心偏析や中心ポロシティを安定して抑制することができる。   By performing such cooling of the slab, the deformation resistance of the surface layer portion of the slab 9 and the deformation resistance of the center portion of the slab 9 are reduced by the guide roll pair 10 disposed in the slab reduction zone 12. The ratio (the value obtained by dividing the deformation resistance of the surface layer portion of the slab 9 by the deformation resistance of the center portion of the slab 9) can be increased. Therefore, even if the casting conditions fluctuate and the temperature of the slab 9 rises, the permeability of the rolling by the guide roll pair 10 disposed in the slab reduction zone 12 is improved, and the center segregation and central porosity of the slab 9 are improved. Can be stably suppressed.

また、鋳片圧下ゾーン12に配置されたガイドロール対10による鋳片9の圧下量を増加させなくも、圧下の浸透性を向上させることができるため、鋳片9の圧下歪み自体は変化しない。そのため、鋳片9の表面割れ等の、鋳片9の表面の品質への悪影響が生じる可能性は認められない。   Moreover, since the permeability of the slab 9 can be improved without increasing the amount of reduction of the slab 9 by the guide roll pair 10 disposed in the slab reduction zone 12, the reduction strain itself of the slab 9 does not change. . Therefore, there is no possibility that an adverse effect on the quality of the surface of the slab 9 such as a surface crack of the slab 9 will occur.

鋳片厚み中心部の固相率が0.2〜1.0の部分(0.2を超えて大きくかつ1.0未満の部分)に対して局所冷却を行う理由は次の通りである。すなわち、鋳片厚み中心部の固相率が0.2以下の領域を圧下した場合には鋳片9の内部に圧下歪みによる内部割れが生じやすいからであり、鋳片9が完全に凝固して中心部固相率が1.0となった後では、鋳片9を圧下しても中心偏析を抑制する効果が得られないからである。   The reason why local cooling is performed on a portion having a solid phase ratio of 0.2 to 1.0 (portion greater than 0.2 and less than 1.0) at the center of the slab thickness is as follows. That is, when a region where the solid phase ratio at the center of the slab thickness is 0.2 or less is reduced, an internal crack is easily generated inside the slab 9 due to the reduction strain, and the slab 9 is completely solidified. This is because, after the solid fraction of the central portion reaches 1.0, the effect of suppressing the center segregation cannot be obtained even if the slab 9 is reduced.

鋳片9の局所冷却を行う領域は、鋳片圧下前5m以内であることが望ましい。すなわち鋳片9の局所冷却を行う領域の鋳造方向に対する上流端を、鋳片圧下ゾーン12の鋳造方向に対する上流端よりも上流側に5m以下とすることが望ましい。この範囲を超えて、鋳造方向の上流側から局所冷却を行った場合には、鋳片9全体の温度が低下して、単に鋳片9全体の変形抵抗が増大するだけである。そのため、期待する鋳片の中心偏析を抑制する効果を得ることは困難であるとともに、さらに脆化温度域での圧下歪みに起因する鋳片の表面割れが発生する可能性も生じる。   The region where the slab 9 is locally cooled is preferably within 5 m before the slab is reduced. That is, it is desirable that the upstream end in the casting direction of the region where the slab 9 is locally cooled be 5 m or less upstream from the upstream end in the casting direction of the slab reduction zone 12 in the casting direction. When this range is exceeded and local cooling is performed from the upstream side in the casting direction, the temperature of the entire slab 9 decreases, and the deformation resistance of the entire slab 9 simply increases. Therefore, it is difficult to obtain the expected effect of suppressing the center segregation of the slab, and there is a possibility that the surface crack of the slab is caused by the rolling strain in the embrittlement temperature region.

鋳片9の局所冷却の冷却強度に関する条件は、局所冷却の範囲全体での冷却水量を30L/min以上150L/min未満、かつ気水比が30以上100以下とする。気水比とは、エアー流量と冷却水量の比、すなわちエアー流量を冷却水量で除した値である。冷却水量および気水比がともに上記範囲の最低値以下である場合には、鋳片の局所的温度低下が不足し、期待した中心偏析の抑制効果が得られない可能性が高い。冷却水量および気水比がともに上記範囲の最大値以上である場合には、鋳片の局所的温度低下が過大となり、圧下による鋳片の表面割れが生じ、表面疵指数の悪化にともなう問題が生じる可能性が高い。   The conditions regarding the cooling strength of the local cooling of the slab 9 are that the cooling water amount in the entire local cooling range is 30 L / min or more and less than 150 L / min, and the air-water ratio is 30 or more and 100 or less. The air / water ratio is a ratio between the air flow rate and the cooling water amount, that is, a value obtained by dividing the air flow rate by the cooling water amount. When the amount of cooling water and the air / water ratio are both below the minimum value in the above range, the local temperature drop of the slab is insufficient, and there is a high possibility that the expected effect of suppressing center segregation cannot be obtained. When both the cooling water amount and the air / water ratio are above the maximum values in the above range, the local temperature drop of the slab becomes excessive, surface cracking of the slab occurs due to reduction, and there is a problem with deterioration of the surface flaw index. Likely to occur.

鋳片9の局所冷却は、圧下の対象面のみに行うことが、鋳片9の中心偏析を抑制する効果を得るための必要条件である。その理由は、非圧下面を冷却した場合には、非圧下面の変形抵抗が増大し、非圧下面を冷却しない場合よりも鋳片の中心部への圧下浸透性が低下するからである。   The local cooling of the slab 9 is a necessary condition for obtaining the effect of suppressing the center segregation of the slab 9 to be performed only on the target surface under reduction. The reason for this is that when the non-pressed surface is cooled, the deformation resistance of the non-pressed surface increases, and the reduction permeability to the center of the slab is lower than when the non-pressed surface is not cooled.

上記条件で局所冷却を行う際に望ましい連続鋳造鋳片の製造条件は以下の通りである。鋳造速度:0.66〜0.85m/min、二次冷却比水量:0.18〜0.54L/kg−steel、局所冷却比水量:0.04〜0.18未満L/kg−steel、局所冷却ゾーン長さ:2.4〜7.2m、圧下速度:0.27〜1.28mm/min、総圧下量:40mm以下。   Desirable conditions for producing a continuous cast slab when local cooling is performed under the above conditions are as follows. Casting speed: 0.66 to 0.85 m / min, secondary cooling specific water amount: 0.18 to 0.54 L / kg-steel, local cooling specific water amount: 0.04 to less than 0.18 L / kg-steel, Local cooling zone length: 2.4 to 7.2 m, reduction speed: 0.27 to 1.28 mm / min, total reduction amount: 40 mm or less.

上記製造条件のうち、二次冷却比水量とは、二次冷却ゾーン7における、通常の二次冷却での比水量である。圧下速度とは、鋳片圧下ゾーン12に配置されたガイドロール対10による圧下による単位時間当たりの圧下量であり、総圧下量とは、鋳片圧下ゾーン12に配置されたガイドロール対10による圧下の合計である。   Among the manufacturing conditions, the secondary cooling specific water amount is a specific water amount in normal secondary cooling in the secondary cooling zone 7. The reduction speed is a reduction amount per unit time due to the reduction by the guide roll pair 10 disposed in the slab reduction zone 12, and the total reduction amount is by the guide roll pair 10 disposed in the slab reduction zone 12. The total reduction.

鋳片9の局所冷却は、エアーミスト冷却とすることが望ましい。また、その冷却水量は30〜150L/min、気水比は30〜100とすることが望ましい。   The local cooling of the slab 9 is desirably air mist cooling. The amount of cooling water is preferably 30 to 150 L / min, and the air / water ratio is preferably 30 to 100.

また、本発明を実施することのできる炭素鋼および合金鋼の成分組成の一例は次の通りである。ただし、本発明による連続鋳造鋳片の中心偏析および中心ポロシティの抑制効果は、鋼種によらず得ることができる。   Moreover, an example of the component composition of the carbon steel and alloy steel which can implement this invention is as follows. However, the effect of suppressing the center segregation and the center porosity of the continuously cast slab according to the present invention can be obtained regardless of the steel type.

炭素鋼の成分組成の一例は、[C]=0.10〜1.10%、[Si]=0.10〜0.50%、[Mn]=0.50〜1.20%、[P]=0.05%以下、[S]=0.060%以下である。   Examples of the composition of carbon steel include [C] = 0.10 to 1.10%, [Si] = 0.10 to 0.50%, [Mn] = 0.50 to 1.20%, [P ] = 0.05% or less, and [S] = 0.060% or less.

合金鋼の成分組成の一例は、[C]=0.10〜1.10%、[Si]=0.10〜2.00%、[Mn]=0.50〜1.20%、[P]=0.05%以下、[S]=0.060%以下、[Al]=0.01〜0.10%、[N]=0.005〜0.03%であり、かつ[Cr]、[Ni]および[Mo]に関しては任意添加成分で、[Cr]=1.50%以下、[Mo]=1.0%以下、[Ni]=2.0%以下である。   An example of the composition of alloy steel is [C] = 0.10 to 1.10%, [Si] = 0.10 to 2.00%, [Mn] = 0.50 to 1.20%, [P ] = 0.05% or less, [S] = 0.060% or less, [Al] = 0.01-0.10%, [N] = 0.005-0.03%, and [Cr] , [Ni] and [Mo] are optional addition components, [Cr] = 1.50% or less, [Mo] = 1.0% or less, and [Ni] = 2.0% or less.

以下に、本発明の効果を確認するために行った試験について説明する。   Below, the test done in order to confirm the effect of this invention is demonstrated.

1.試験方法
1−1.鋳造試験方法
前記図1に示した連続鋳造機を用いて鋳造試験を行った。鋳造試験には、鋼成分組成が、C:0.56%、Si:0.20%、Mn:0.80%、P:0.020%、S:0.005%の炭素鋼の溶鋼を用い、幅が400〜440mm、厚みが300〜340mmの鋳片(ブルーム)を製造した。鋳造速度は0.71m/minで一定とし、二次冷却ゾーンでの二次冷却比水量は0.28L/kg−steelで一定とした。
1. Test method 1-1. Casting Test Method A casting test was performed using the continuous casting machine shown in FIG. For the casting test, a carbon steel molten steel having a steel composition of C: 0.56%, Si: 0.20%, Mn: 0.80%, P: 0.020%, S: 0.005% is used. Used, a slab (bloom) having a width of 400 to 440 mm and a thickness of 300 to 340 mm was produced. The casting speed was constant at 0.71 m / min, and the secondary cooling specific water amount in the secondary cooling zone was constant at 0.28 L / kg-steel.

連続鋳造機において、鋳片圧下ゾーンはメニスカスから鋳造方向に17.1m下流側の位置から設定し、局所冷却ゾーンはメニスカスから鋳造方向に14.7〜21.9m下流側の位置に設定した。圧下前の鋳片冷却は、ガイドロール対による圧下対象面に対して行った。   In the continuous casting machine, the slab reduction zone was set from a position 17.1 m downstream from the meniscus in the casting direction, and the local cooling zone was set from 14.7 to 21.9 m downstream from the meniscus in the casting direction. The slab cooling before the reduction was performed on the surface to be reduced by the pair of guide rolls.

表1に、試験番号1〜7の各実施例について、鋳造速度、タンディッシュ内溶鋼過熱度、二次冷却比水量、圧下速度、鋳片総圧下量、圧下前冷却水量、圧下前冷却気水比、圧下前冷却比水量、圧下時の中心固相率および圧下対象面中央部の圧下前鋳片表面温度を記載した。各実施例とも、複数チャージの鋳造試験を行い、表1には、各チャージの設定数値の平均値を記載した。   In Table 1, for each of the test numbers 1 to 7, the casting speed, the molten steel superheat degree in the tundish, the secondary cooling specific water amount, the reduction speed, the total slab reduction amount, the cooling water amount before reduction, and the cooling air water before reduction The ratio, the cooling specific water amount before reduction, the central solid fraction during reduction, and the surface temperature of the slab before reduction at the center of the reduction target surface are described. In each example, a casting test of a plurality of charges was performed, and Table 1 shows an average value of setting values for each charge.

Figure 0005195636
Figure 0005195636

試験番号1および2は、圧下前の鋳片冷却を行わなかった比較例であり、試験番号1と2とではタンディッシュ内溶鋼過熱度を異なる値とした。試験番号3〜5は、本発明に係る圧下前の鋳片冷却を行った本発明例であり、試験番号3〜5は、それぞれタンディッシュ内溶鋼過熱度を異なる値とした。試験番号6は圧下前冷却比水量が本発明の規定範囲未満の条件で圧下前の鋳片冷却を行った比較例であり、試験番号7は圧下前冷却比水量が本発明の規定範囲を超えて多い条件で圧下前の鋳片冷却を行った比較例である。   Test Nos. 1 and 2 are comparative examples in which the slab cooling before the reduction was not performed, and the test Nos. 1 and 2 have different values of the superheating degree of the molten steel in the tundish. Test Nos. 3 to 5 are examples of the present invention in which slab cooling before reduction according to the present invention was performed, and Test Nos. 3 to 5 each had different values of tundish molten steel superheat. Test No. 6 is a comparative example in which slab cooling before reduction was performed under the condition that the cooling specific water amount before reduction was less than the specified range of the present invention, and Test No. 7 was that the cooling specific water amount before reduction exceeded the specified range of the present invention. This is a comparative example in which the slab was cooled before rolling under many conditions.

1−2.中心偏析の評価方法
鋳片の中心偏析の評価は、鋳片から切り出した試料の炭素濃度比(以下、「C/Co」ともいう)を指標として行った。
1-2. Evaluation Method for Center Segregation Evaluation of center segregation of a slab was performed using a carbon concentration ratio (hereinafter also referred to as “C / Co”) of a sample cut out from the slab as an index.

C/Coは、鋳片の厚さ方向中心部を含む位置において、幅1mmのフライス刃を用いて、鋳片厚み方向へ2mmピッチで21箇所から切り粉を採取し、それぞれの切り粉の炭素濃度分析値C(質量%)を取鍋分析値すなわち取鍋中の溶鋼の炭素量の分析値Co(質量%)で除して算出した。それらのC/Coの最大値をその鋳片の中心偏析の評価の対象とした。   C / Co collects swarf from 21 locations at a pitch of 2 mm in the slab thickness direction using a milling blade having a width of 1 mm at a position including the center portion in the thickness direction of the slab, and carbon of each slab The concentration analysis value C (mass%) was calculated by dividing the ladle analysis value, that is, the analysis value Co (mass%) of the carbon content of the molten steel in the ladle. The maximum value of C / Co was used for the evaluation of the center segregation of the slab.

2.試験結果
表1には、試験条件とともに試験結果を示す。評価項目は、C/Co最大値と、鋼片軽手入率とした。各実施例のデータの数値は、チャージ毎に測定したデータの平均値であり、各実施例について行った各チャージの結果を代表する数値である。
2. Test results Table 1 shows the test results together with the test conditions. The evaluation items were the C / Co maximum value and the steel bill light care rate. The numerical value of the data in each example is an average value of data measured for each charge, and is a numerical value representative of the result of each charge performed for each example.

一般に、鋳片の中心偏析は、C/Coを管理指標として用いた場合にはC/Coの上限しきい値を105%として管理することが望ましい。これは、製品鋳片の圧延時の中心偏析に起因する破断を安定して抑制できる範囲として、経験的に求められたC/Coの数値とほぼ一致する。   In general, center segregation of a slab is desirably managed by setting the upper limit threshold value of C / Co to 105% when C / Co is used as a management index. This substantially coincides with the C / Co value obtained empirically as a range in which the fracture caused by the center segregation during rolling of the product slab can be stably suppressed.

鋼片軽手入率とは、分塊圧延後のビレットを、表面割れ疵の個数、およびグラインダーを用いた表面割れ疵の手入れに要した所要工数に基づいて評価した、試料の表面品質を表す指標である。鋳片軽手入率が大きいほど表面品質が良好であることを示しており、通常の鋳片製造時には、管理目標値は70%以上に設定している。   The billet care rate represents the surface quality of the sample, which was evaluated on the basis of the number of surface cracks and the required man-hours required for the maintenance of surface cracks using a grinder. It is an indicator. The larger the slab light care rate, the better the surface quality. At the time of normal slab production, the management target value is set to 70% or more.

表1に示すように、圧下前鋳片冷却を行わなかった比較例である試験番号1では、C/Coの最大値は119%と高い値であった。試験番号1と同様に圧下前鋳片冷却を行わず、試験番号1よりもタンディッシュ内溶鋼過熱度の高い試験番号2では、C/Coの最大値は127%とさらに高い値であり、試験番号1と比べて中心偏析が大きく悪化した。   As shown in Table 1, in Test No. 1, which is a comparative example in which cooling before slab cooling was not performed, the maximum value of C / Co was a high value of 119%. As in test number 1, the slab is not cooled before reduction, and in test number 2, which has a higher degree of superheat of molten steel in tundish than test number 1, the maximum value of C / Co is 127%, which is a higher value. Compared with No. 1, the center segregation was greatly deteriorated.

比較例である試験番号6は、圧下前冷却比水量が本発明の規定範囲未満であり、冷却水量不足のため、圧下前冷却効果を十分に得ることができず、C/Coの最大値は111%と、管理指標の上限しきい値である105%にまで低減させることができなかった。   Test No. 6, which is a comparative example, has a cooling specific water amount before reduction that is less than the specified range of the present invention, and because the cooling water amount is insufficient, the cooling effect before reduction cannot be sufficiently obtained, and the maximum value of C / Co is It could not be reduced to 111%, which is 105%, which is the upper threshold value of the management index.

比較例である試験番号7は、圧下前冷却比水量が本発明の規定範囲を超えて大きく、圧下前鋳片冷却の強度が過大となった。そのため、C/Coの最大値は105%と、管理指標の範囲内を満足したものの、圧下前鋳片表面温度が798℃と800℃以下まで低下しており、脆化温度域での圧下歪みによって鋳片表面割れが生じた。この鋳片表面割れの影響で、分塊圧延後のビレットの表面疵手入れを行わなければならず、鋼片手入率は63%と他の実施例と比較して低位であり、表面疵手入れコストが悪化した。   In Test No. 7, which is a comparative example, the amount of cooling specific water before reduction is larger than the specified range of the present invention, and the strength of cooling before slab slab is excessive. Therefore, although the maximum value of C / Co was 105%, which was within the range of the management index, the slab surface temperature before reduction decreased to 798 ° C and 800 ° C or less, and the reduction strain in the embrittlement temperature range. As a result, a slab surface crack occurred. Due to the effect of this slab surface crack, the surface of the billet after partial rolling must be cleaned, and the steel slab maintenance rate is 63%, which is lower than that of the other examples, and the surface scouring cost is low. Worsened.

これに対して、本発明例であり、本発明の技術である局所的な鋳片冷却を適用し、鋳片中心部への圧下浸透性を向上させた試験番号3〜5では、C/Coの最大値は100〜104%であり、管理指標範囲内を達成し、大幅な中心偏析改善効果が認められた。冷却を行った後の鋳片の、圧下対象表面の温度は、試験番号3〜5のいずれも900℃以上であり、脆化温度域は回避された。そのため、圧下歪みに起因する表面割れは発生せず、鋳片軽手入率に悪影響は認められない。   On the other hand, in Test Nos. 3 to 5, which are examples of the present invention and the local slab cooling that is the technique of the present invention is applied to improve the reduction permeability to the center of the slab, The maximum value of 100 to 104% was achieved within the management index range, and a significant effect of improving center segregation was recognized. The temperature of the reduction target surface of the slab after cooling was 900 ° C. or higher for all test numbers 3 to 5, and the embrittlement temperature range was avoided. Therefore, the surface crack resulting from the rolling strain does not occur, and no adverse effect is observed on the slab light care rate.

本発明の連続鋳造鋳片の製造方法によれば、炭素鋼、合金鋼全般を連続鋳造により製造する際に、鋳造条件の変動が生じて鋳片温度が上昇しても、鋳片の中心部へのローラー圧下の浸透性を向上させることができ、中心偏析や中心ポロシティの抑制された連続鋳造鋳片を安定して製造することができる。さらに、鋳片の圧下量を増加する必要がないため、鋳片の表面の品質を低下させることもない。したがって、本発明の方法は、連続鋳造鋳片の製造に対して優れた効果を発揮する方法として、広く適用できる技術である。   According to the continuous cast slab manufacturing method of the present invention, when carbon steel and alloy steel in general are manufactured by continuous casting, even if the casting condition fluctuates and the slab temperature rises, the center part of the slab Thus, it is possible to improve the permeability under roller pressure, and to stably produce a continuous cast slab with reduced center segregation and center porosity. Furthermore, since it is not necessary to increase the amount of reduction of the slab, the quality of the surface of the slab is not deteriorated. Therefore, the method of the present invention is a technique that can be widely applied as a method that exhibits an excellent effect on the production of continuous cast slabs.

1:取鍋、2:溶鋼、3:タンディッシュ、4:浸漬ノズル、5:メニスカス、
6:鋳型、7:二次冷却ゾーン、8:凝固シェル、9:鋳片、
10:ガイドロール対、11:ピンチロール対、12:鋳片圧下ゾーン、
13、局所冷却ゾーン、
1: ladle, 2: molten steel, 3: tundish, 4: immersion nozzle, 5: meniscus,
6: mold, 7: secondary cooling zone, 8: solidified shell, 9: slab,
10: guide roll pair, 11: pinch roll pair, 12: slab reduction zone,
13, local cooling zone,

Claims (3)

鋳型から鋳片を下方に引き抜き、複数のガイドロール対によって湾曲させた後、さらに鋳造方向下流側の複数のガイドロール対によって凝固末期の鋳片を圧下するとともに湾曲を矯正し、水平方向に引き抜く連続鋳造機を用いて連続鋳造する連続鋳造鋳片の製造方法であって、
通常の鋳片の二次冷却を終了した後に、鋳片を、その厚み中心部の固相率が0.2〜1.0の範囲であり、その湾曲している部分から湾曲の矯正を完了した後の部分までを前記複数のガイドロール対によって圧下するに際し、
前記圧下開始前後の鋳片表面に、さらに局所冷却である鋳片の二次冷却を、比水量を0.04L/kg−steel以上0.18L/kg−steel未満として行うことにより、前記圧下開始直前の鋳片の表面温度を900〜950℃に制御することを特徴とする連続鋳造鋳片の製造方法。
The slab is drawn downward from the mold and bent by a plurality of pairs of guide rolls, and then the slab at the end of solidification is reduced and corrected by a plurality of guide roll pairs on the downstream side in the casting direction, and the slab is drawn out horizontally. A continuous casting slab manufacturing method for continuous casting using a continuous casting machine ,
After completing the secondary cooling of a normal slab, the slab, the solid fraction of the thickness center portion is in the range of 0.2 to 1.0, complete straightening of the curved from the part that has its curvature When squeezing down to the part after having been done by the plurality of guide roll pairs ,
The secondary reduction of the slab, which is local cooling, is further performed on the surface of the slab before and after the start of the reduction at a specific water amount of 0.04 L / kg-steel or less and less than 0.18 L / kg-steel, thereby starting the reduction. A method for producing a continuous cast slab, wherein the surface temperature of the immediately preceding slab is controlled to 900 to 950 ° C.
前記局所冷却が、エアーミストによる二次冷却であって、
かつ、局所冷却全体での冷却水量が30L/min以上150L/minであり、エアー流量を冷却水量で除した値である気水比が30以上100以下であることを特徴とする請求項1に記載の連続鋳造鋳片の製造方法。
The local cooling is secondary cooling by air mist,
The amount of cooling water in the entire local cooling is 30 L / min or more and 150 L / min, and the air / water ratio, which is a value obtained by dividing the air flow rate by the amount of cooling water, is 30 or more and 100 or less. The manufacturing method of continuous cast slab of description.
前記局所冷却を行っている部分において、前記複数のガイドロール対による前記鋳片の圧下速度を0.27〜1.28mm/minとすることを特徴とする請求項1または2に記載の連続鋳造鋳片の製造方法。  3. The continuous casting according to claim 1, wherein in the portion where the local cooling is performed, a reduction speed of the slab by the plurality of guide roll pairs is set to 0.27 to 1.28 mm / min. A method for producing a slab.
JP2009122155A 2009-05-20 2009-05-20 Manufacturing method of continuous cast slab Active JP5195636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122155A JP5195636B2 (en) 2009-05-20 2009-05-20 Manufacturing method of continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122155A JP5195636B2 (en) 2009-05-20 2009-05-20 Manufacturing method of continuous cast slab

Publications (2)

Publication Number Publication Date
JP2010269328A JP2010269328A (en) 2010-12-02
JP5195636B2 true JP5195636B2 (en) 2013-05-08

Family

ID=43417793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122155A Active JP5195636B2 (en) 2009-05-20 2009-05-20 Manufacturing method of continuous cast slab

Country Status (1)

Country Link
JP (1) JP5195636B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402308B2 (en) * 2009-06-26 2014-01-29 Jfeスチール株式会社 Continuous casting method of high carbon steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3427794B2 (en) * 1999-08-31 2003-07-22 住友金属工業株式会社 Continuous casting method
JP3620494B2 (en) * 2001-10-15 2005-02-16 住友金属工業株式会社 Method for continuous casting of steel blooms and billets

Also Published As

Publication number Publication date
JP2010269328A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
KR101739674B1 (en) Continuous casting method for cast slab
JP6115735B2 (en) Steel continuous casting method
JP5604946B2 (en) Steel continuous casting method
JP5835531B2 (en) Continuous casting method for slabs for extra heavy steel plates
JP5085451B2 (en) Billet continuous casting method
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP4924104B2 (en) Method for producing high Ni content steel slab
JP5195636B2 (en) Manufacturing method of continuous cast slab
JP5754417B2 (en) Continuous casting method for slabs
JP2011224607A (en) Continuous casting method of metal
KR101223107B1 (en) Apparatus for manufacturing martensitic stainless hot rolled steel strip and method for manufacturing martensitic stainless hot rolled steel strip
JP5327006B2 (en) Steel continuous casting method and extra-thick steel plate
JP2014233726A (en) Method of manufacturing continuous casting cast piece
WO2016162906A1 (en) Method for manufacturing slab using continuous casting machine
JP6816523B2 (en) Continuous steel casting method
JP5131662B2 (en) Continuous casting method for slabs
JP3671868B2 (en) Method for casting high Cr steel
JP4285288B2 (en) Steel continuous casting method
JP6019989B2 (en) Secondary cooling method for continuous cast slabs
JP3994852B2 (en) Continuous casting method using vertical bending die continuous casting machine and cast slab produced thereby
JP2004307931A (en) Continuously cast piece, and casting method therefor
JP3365338B2 (en) Continuous cast slab and continuous casting method
JP7273307B2 (en) Steel continuous casting method
JP3055462B2 (en) Continuous casting method
JP6372209B2 (en) Steel continuous casting method and continuous cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5195636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350