JP5186179B2 - Composite fine particles consisting of saponified fine particles of ethylene-vinyl acetate copolymer coated with silica fine particles - Google Patents

Composite fine particles consisting of saponified fine particles of ethylene-vinyl acetate copolymer coated with silica fine particles Download PDF

Info

Publication number
JP5186179B2
JP5186179B2 JP2007285837A JP2007285837A JP5186179B2 JP 5186179 B2 JP5186179 B2 JP 5186179B2 JP 2007285837 A JP2007285837 A JP 2007285837A JP 2007285837 A JP2007285837 A JP 2007285837A JP 5186179 B2 JP5186179 B2 JP 5186179B2
Authority
JP
Japan
Prior art keywords
fine particles
ethylene
vinyl acetate
acetate copolymer
saponified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007285837A
Other languages
Japanese (ja)
Other versions
JP2009114241A (en
Inventor
昌男 山崎
陽一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakuranomiya Chemical Co Ltd
Original Assignee
Sakuranomiya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakuranomiya Chemical Co Ltd filed Critical Sakuranomiya Chemical Co Ltd
Priority to JP2007285837A priority Critical patent/JP5186179B2/en
Publication of JP2009114241A publication Critical patent/JP2009114241A/en
Application granted granted Critical
Publication of JP5186179B2 publication Critical patent/JP5186179B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、シリカ微粒子が付着したエチレン−酢酸ビニル共重合体ケン化物微粒子からなる複合微粒子および該複合微粒子を含む塗料に関する。   The present invention relates to composite fine particles composed of ethylene-vinyl acetate copolymer saponified fine particles to which silica fine particles are attached, and a coating material containing the composite fine particles.

従来、保護被覆用などの用途として、親水性などを付与するために基材の表面に塗装や印刷が施されている。   Conventionally, coating and printing have been performed on the surface of a base material in order to impart hydrophilicity or the like as a protective coating.

たとえば、引用文献1には、塗料として水、ポリビニルピロリドンおよび界面活性剤からなる水性塗布組成物が記載されている。該水性塗布組成物は、親水性に優れるため、防曇性を維持した塗膜を形成することが可能である。しかしながら、ポリビニルピロリドンを水中に分散させるために界面活性剤を含有しており、物性低下を招くという問題があった。   For example, Patent Document 1 describes an aqueous coating composition comprising water, polyvinyl pyrrolidone, and a surfactant as a paint. Since the aqueous coating composition is excellent in hydrophilicity, it is possible to form a coating film that maintains antifogging properties. However, a surfactant is contained in order to disperse polyvinyl pyrrolidone in water, which causes a problem that physical properties are lowered.

また、引用文献2には、平均1次粒子径が0.5〜50μmの球状セルロース粒子を含む親水性塗料が記載されている。該親水性塗料は、水濡れ性を向上することにより消臭性および抗カビ性を得る塗膜を形成することができる。しかしながら、該親水性塗料に含まれる球状セルロースは、平均1次粒子径が0.5〜50μmと大きく、得られる塗膜が厚くなり、外観、加工性、コストの点で充分に満足のいくものではなく、充分な親水性が得られないという問題があった。   Further, cited document 2 describes a hydrophilic paint containing spherical cellulose particles having an average primary particle diameter of 0.5 to 50 μm. The hydrophilic paint can form a coating film that obtains deodorization and antifungal properties by improving water wettability. However, the spherical cellulose contained in the hydrophilic coating has an average primary particle size as large as 0.5 to 50 μm, and the resulting coating film is thick, which is sufficiently satisfactory in terms of appearance, workability, and cost. However, there was a problem that sufficient hydrophilicity could not be obtained.

特開2006−131901号公報JP 2006-131901 A 特開2003−128977号公報JP 2003-128977 A

本発明は、塗膜化することで親水性に優れた塗膜を得ることができるエチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子が付着している球状の複合微粒子を提供することを目的とする。   The present invention provides spherical composite fine particles in which silica fine particles are attached to the surface of ethylene-vinyl acetate copolymer saponified fine particles, which can obtain a coating film excellent in hydrophilicity by coating. With the goal.

本発明は、エチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子が付着している複合微粒子であって、複合微粒子の1次粒子径が100〜2000nmの球状である複合微粒子に関する。   The present invention relates to composite fine particles in which silica fine particles are attached to the surface of ethylene-vinyl acetate copolymer saponified fine particles, and the composite fine particles are spherical with a primary particle diameter of 100 to 2000 nm.

シリカ微粒子の含有量が、エチレン−酢酸ビニル共重合体ケン化物微粒子100質量部に対して、10〜100質量部であることが好ましい。   The content of the silica fine particles is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer saponified fine particles.

シリカ微粒子が、乾式シリカであることが好ましい。   The silica fine particles are preferably dry silica.

また、本発明は、(a1)エチレン−酢酸ビニル共重合体ケン化物を溶媒に添加し、エチレン−酢酸ビニル共重合体ケン化物を加熱溶解させる工程、および
(b1)工程(a1)におけるエチレン−酢酸ビニル共重合体ケン化物溶液を加熱溶解後であって冷却前にシリカ微粒子を添加し、エチレン−酢酸ビニル共重合体ケン化物微粒子を凝析させるとともにエチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子を付着させて複合化する複合微粒子の製造方法にも関する。
The present invention also relates to (a1) a step of adding an ethylene-vinyl acetate copolymer saponified product to a solvent to heat-dissolve the ethylene-vinyl acetate copolymer saponified product, and (b1) ethylene in step (a1). Silica fine particles are added after the vinyl acetate copolymer saponified solution is heated and dissolved, and before cooling, the ethylene-vinyl acetate copolymer saponified fine particles are coagulated and the ethylene-vinyl acetate copolymer saponified fine particles are coagulated. The present invention also relates to a method for producing composite fine particles in which silica fine particles are attached to the surface to form a composite.

また、本発明は、(a1)エチレン−酢酸ビニル共重合体ケン化物を溶媒に添加し、エチレン−酢酸ビニル共重合体ケン化物を加熱溶解させる工程、および
(b2)工程(a1)におけるエチレン−酢酸ビニル共重合体ケン化物溶液を冷却時にシリカ微粒子を添加し、エチレン−酢酸ビニル共重合体ケン化物微粒子を凝析させるとともにエチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子を付着させて複合化する複合微粒子の製造方法にも関する。
The present invention also includes (a1) a step of adding an ethylene-vinyl acetate copolymer saponified product to a solvent and heating and dissolving the ethylene-vinyl acetate copolymer saponified product, and (b2) ethylene-in step (a1). When the vinyl acetate copolymer saponified solution is cooled, silica fine particles are added to coagulate the ethylene-vinyl acetate copolymer saponified fine particles and adhere silica fine particles to the surface of the ethylene-vinyl acetate copolymer saponified fine particles. The present invention also relates to a method for producing composite fine particles to be combined.

工程(b1)または(b2)における冷却後、得られたエチレン−酢酸ビニル共重合体ケン化物およびシリカ微粒子の混合物を静置してエチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子を付着させて複合化することが好ましい。   After cooling in the step (b1) or (b2), the mixture of the obtained ethylene-vinyl acetate copolymer saponified product and silica fine particles is allowed to stand, and silica fine particles are deposited on the surface of the ethylene-vinyl acetate copolymer saponified fine particles. It is preferable that they are attached and combined.

工程(a1)におけるエチレン−酢酸ビニル共重合体ケン化物の固形分濃度が、1〜15質量%であることが好ましい。   It is preferable that the solid content concentration of the saponified ethylene-vinyl acetate copolymer in the step (a1) is 1 to 15% by mass.

工程(a1)における溶媒が水溶性有機溶媒と水との混合溶剤であって、水溶性有機溶媒と水との混合比が、質量比で50:50〜70:30であることが好ましい。   It is preferable that the solvent in the step (a1) is a mixed solvent of a water-soluble organic solvent and water, and the mixing ratio of the water-soluble organic solvent and water is 50:50 to 70:30 by mass ratio.

また、本発明は、前記の複合粒子を含む塗料にも関する。   Moreover, this invention relates also to the coating material containing the said composite particle.

さらに、本発明は、前記の塗料を塗布して得られる塗膜であって、水に対する接触角が0〜30度である塗膜にも関する。   Furthermore, this invention relates to the coating film obtained by apply | coating the said coating material, Comprising: The coating angle whose contact angle with respect to water is 0-30 degree | times.

本発明のエチレン−酢酸ビニル共重合体ケン化物とシリカとの複合微粒子は、それぞれの機能を相殺させることがなく、特に該複合微粒子より得られる塗膜の親水性を向上させることができる。   The composite fine particles of the saponified ethylene-vinyl acetate copolymer of the present invention and silica do not cancel each function, and in particular, the hydrophilicity of the coating film obtained from the composite fine particles can be improved.

本発明は、エチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子が付着している複合微粒子に関する。   The present invention relates to composite fine particles in which silica fine particles are attached to the surface of ethylene-vinyl acetate copolymer saponified fine particles.

複合微粒子の形状は、球状である。ここで、球状とは、図1〜13に示す走査型電子顕微鏡で観察されるように鋭角な部分をもたず丸みを帯びた粒子の形状を指し、楕円状や形状の一部が歪んでいるものも含まれる。したがって、繊維などの粉砕物などの鋭角な部分を有するものは球状とはいわない。   The shape of the composite fine particles is spherical. Here, the spherical shape refers to the shape of a round particle without an acute angle portion as observed with the scanning electron microscope shown in FIGS. 1 to 13, and an elliptical shape or a part of the shape is distorted. Some are included. Therefore, what has an acute angle part, such as pulverized materials, such as a fiber, is not called spherical.

複合微粒子の1次粒子径は、複合微粒子を溶剤に分散させ塗料化する場合、得られる塗料の流動性が良好であるという点から、100nm以上が好ましく、さらに流動性が良好で取扱が容易であるという点から300nm以上がより好ましく、さらに流動性が良好で複合微粒子の含量をふやすことができるという点から400nm以上がさらに好ましい。また、複合微粒子の1次粒子径は、造膜性の観点から、2000nm以下が好ましく、得られる塗膜の外観が良好である点から1500nm以下がより好ましく、得られる被膜の外観がより良好である点から800nm以下がさらに好ましい。   The primary particle diameter of the composite fine particles is preferably 100 nm or more from the viewpoint of good fluidity of the resulting paint when the composite fine particles are dispersed in a solvent to form a paint, and the fluidity is good and easy to handle. From the point of view, it is more preferably 300 nm or more, and further more preferably 400 nm or more from the viewpoint that the fluidity is good and the content of the composite fine particles can be reduced. Further, the primary particle diameter of the composite fine particles is preferably 2000 nm or less from the viewpoint of film forming property, more preferably 1500 nm or less from the viewpoint of good appearance of the obtained coating film, and the appearance of the obtained coating film is better. 800 nm or less is more preferable from a certain point.

ここで、本発明の複合微粒子とは、エチレン−酢酸ビニル共重合体ケン化物と、シリカ微粒子とが一体化した、独立した単一の粒子であり、エチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子が一様に付着しているものをいう。また、複合微粒子の内部にシリカ微粒子を取り込んで入るものであってもよい。また付着した形態とは、例えば、実質的にシリカ微粒子が脱落しないものをいう。そのため、例えば図1および2に示す走査型電子顕微鏡で観察される複合微粒子1のように1次粒子を形成し得る。よって、エチレン−酢酸ビニル共重合体ケン化物微粒子とシリカ微粒子との単なる混合粒子とは異なるものである。   Here, the composite fine particle of the present invention is an independent single particle in which an ethylene-vinyl acetate copolymer saponified product and a silica fine particle are integrated, and the ethylene-vinyl acetate copolymer saponified fine particle This means that silica fine particles are uniformly attached to the surface. Further, silica fine particles may be taken into the composite fine particles. Moreover, the attached form refers to, for example, a form in which silica fine particles are not substantially dropped. Therefore, for example, primary particles can be formed like the composite fine particles 1 observed with a scanning electron microscope shown in FIGS. Therefore, it is different from simple mixed particles of ethylene-vinyl acetate copolymer saponified fine particles and silica fine particles.

また、本発明の1次粒子径とは、走査型電子顕微鏡により観察した粒子の20μm四方の中にある、個々の粒子の直径を測定したものをいう。   Moreover, the primary particle diameter of the present invention refers to a particle diameter measured in a 20 μm square of particles observed with a scanning electron microscope.

エチレン−酢酸ビニル共重合体ケン化物におけるエチレン含有量は、20〜60モル%が好ましく、27〜47モル%がより好ましい。   The ethylene content in the saponified ethylene-vinyl acetate copolymer is preferably 20 to 60 mol%, more preferably 27 to 47 mol%.

エチレン−酢酸ビニル共重合体ケン化物のケン化度は、98以上が好ましく、99以上がより好ましい。   The saponification degree of the saponified ethylene-vinyl acetate copolymer is preferably 98 or more, and more preferably 99 or more.

シリカ微粒子の含有量は、エチレン−酢酸ビニル共重合体ケン化物微粒子100質量部に対して、親水性を向上させることができる点から10質量部以上が好ましく、15質量部以上がより好ましい。また、シリカの含有量は、エチレン−酢酸ビニル共重合体ケン化物微粒子100質量部に対して、塗膜の加工性、密着性が優れる点から、100質量部以下が好ましく、50質量部以下がより好ましく、35質量部以下がさらに好ましい。   The content of the silica fine particles is preferably 10 parts by mass or more, more preferably 15 parts by mass or more from the viewpoint of improving hydrophilicity with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer saponified fine particles. Further, the content of silica is preferably 100 parts by mass or less, and preferably 50 parts by mass or less, from the viewpoint of excellent processability and adhesion of the coating film with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer saponified fine particles. More preferred is 35 parts by mass or less.

シリカの平均1次粒子径は、塗膜の親水性が優れる点から、5nm以上が好ましく、7nm以上がより好ましく、10nm以上がさらに好ましい。また、シリカの平均1次粒子径は、塗膜の透明性および親水性が優れる点から、50nm以下が好ましく、40nm以下がより好ましく、30nm以下がさらに好ましい。   The average primary particle diameter of silica is preferably 5 nm or more, more preferably 7 nm or more, and even more preferably 10 nm or more from the viewpoint of excellent hydrophilicity of the coating film. The average primary particle diameter of silica is preferably 50 nm or less, more preferably 40 nm or less, and even more preferably 30 nm or less from the viewpoint of excellent transparency and hydrophilicity of the coating film.

エチレン−酢酸ビニル共重合体ケン化物微粒子に被覆されるシリカ微粒子としては、乾式シリカ、湿式シリカが考えられるが、乾式シリカとしては、燃焼法またはアーク法により得られるものがあげられる。乾式シリカの具体例としては、ヒュームドシリカなどがあげられる。湿式シリカとしては、沈降法またはゲル法により得られるものがあげられ、湿式シリカとしては、コロイダルシリカがあげられる。これらの中で、乾式シリカが好ましく、燃焼法により得られるものがより好ましい。具体的には表面に遊離のシラノール基(シングルシラノール基ともいう)が高濃度で存在し活性が大きく塗膜表面に高い親水性を向上させることができる点でヒュームドシリカが好ましい。   The silica fine particles coated with the ethylene-vinyl acetate copolymer saponified fine particles may be dry silica or wet silica, and examples of the dry silica include those obtained by a combustion method or an arc method. Specific examples of dry silica include fumed silica. Examples of the wet silica include those obtained by a precipitation method or a gel method, and examples of the wet silica include colloidal silica. Among these, dry silica is preferable, and one obtained by a combustion method is more preferable. Specifically, fumed silica is preferred in that free silanol groups (also referred to as single silanol groups) are present at a high concentration on the surface, the activity is high, and the hydrophilicity of the coating film surface can be improved.

本発明の複合微粒子の製造方法としては、以下の4つの形態があげられる。
(1)(a1)エチレン−酢酸ビニル共重合体ケン化物を溶媒に添加し、エチレン−酢酸ビニル共重合体ケン化物を加熱溶解させる工程、および(b1)工程(a1)におけるエチレン−酢酸ビニル共重合体ケン化物溶液を加熱溶解後であって冷却前にシリカ微粒子を添加し、エチレン−酢酸ビニル共重合体ケン化物微粒子を凝析させるとともにエチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子を付着させて複合化する製造方法(以下、製造方法1ともいう)。
(2)(a1)エチレン−酢酸ビニル共重合体ケン化物を溶媒に添加し、エチレン−酢酸ビニル共重合体ケン化物を加熱溶解させる工程、および(b2)工程(a1)におけるエチレン−酢酸ビニル共重合体ケン化物溶液を冷却時にシリカ微粒子を添加し、エチレン−酢酸ビニル共重合体ケン化物微粒子を凝析させるとともにエチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子を付着させて複合化する製造方法(以下、製造方法2ともいう)。
(3)(a1)エチレン−酢酸ビニル共重合体ケン化物を溶媒に添加し、エチレン−酢酸ビニル共重合体ケン化物を加熱溶解させる工程、および(b3)工程(a1)におけるエチレン−酢酸ビニル共重合体ケン化物溶液を冷却後、エチレン−酢酸ビニル共重合体ケン化物が凝析する前にシリカ微粒子を添加し、エチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子を付着させて複合化する製造方法(以下、製造方法3ともいう)。
(4)(a2)エチレン−酢酸ビニル共重合体ケン化物を溶媒中で加熱溶解させる際にシリカ微粒子を添加する工程、および(b3)工程(a2)におけるエチレン−酢酸ビニル共重合体ケン化物およびシリカ微粒子の混合物を冷却させながら、エチレン−酢酸ビニル共重合体ケン化物微粒子を凝析させるとともにエチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子を付着させて複合化する製造方法(以下、製造方法4ともいう)。
Examples of the method for producing composite fine particles of the present invention include the following four forms.
(1) (a1) A step of adding a saponified ethylene-vinyl acetate copolymer to a solvent and heating and dissolving the saponified ethylene-vinyl acetate copolymer, and (b1) ethylene-vinyl acetate copolymer in step (a1) Silica fine particles are added after the polymer saponified solution is heated and melted before cooling, to coagulate the ethylene-vinyl acetate copolymer saponified fine particles and to form silica on the surface of the ethylene-vinyl acetate copolymer saponified fine particles. A production method in which fine particles are adhered to form a composite (hereinafter also referred to as production method 1).
(2) (a1) a step of adding a saponified ethylene-vinyl acetate copolymer to a solvent and heating and dissolving the saponified ethylene-vinyl acetate copolymer, and (b2) ethylene-vinyl acetate copolymer in step (a1) When the polymer saponified solution is cooled, silica fine particles are added to coagulate the ethylene-vinyl acetate copolymer saponified fine particles, and the silica fine particles are attached to the surface of the ethylene-vinyl acetate copolymer saponified fine particles to form a composite. Manufacturing method (hereinafter also referred to as manufacturing method 2).
(3) (a1) a step of adding a saponified ethylene-vinyl acetate copolymer to a solvent to heat and dissolve the saponified ethylene-vinyl acetate copolymer, and (b3) an ethylene-vinyl acetate copolymer in step (a1). After cooling the polymer saponified solution, silica fine particles are added before the ethylene-vinyl acetate copolymer saponified product coagulates, and the silica fine particles are adhered to the surface of the ethylene-vinyl acetate copolymer saponified fine particles to form a composite. Manufacturing method (hereinafter also referred to as manufacturing method 3).
(4) (a2) a step of adding silica fine particles when the ethylene-vinyl acetate copolymer saponified product is dissolved by heating in a solvent, and (b3) the saponified ethylene-vinyl acetate copolymer in step (a2) and A method for producing a composite of saponified fine particles of ethylene-vinyl acetate copolymer while cooling a mixture of fine silica particles and attaching silica fine particles to the surface of saponified fine particles of ethylene-vinyl acetate copolymer Also referred to as production method 4).

工程(b1)〜工程(b3)における冷却手段としては、大気中での徐冷、熱交換器などによる急冷による冷却などがあげられる。該冷却手段を用いて冷却する場合、20〜70℃まで冷却することが好ましく、25〜35℃がより好ましい。冷却後の溶液の温度が70℃より大きいと、凝析に時間がかかる傾向がある。一方、冷却後の溶液の温度が20℃より小さいと、冷却に時間がかかる、コストがかかるなどの傾向がある。   Examples of the cooling means in the steps (b1) to (b3) include slow cooling in the atmosphere, cooling by rapid cooling with a heat exchanger, and the like. When it cools using this cooling means, it is preferable to cool to 20-70 degreeC, and 25-35 degreeC is more preferable. When the temperature of the solution after cooling is higher than 70 ° C., coagulation tends to take time. On the other hand, when the temperature of the solution after cooling is lower than 20 ° C., there is a tendency that it takes time for cooling and costs.

徐冷により冷却する場合における冷却速度は、0.2〜20℃/minが好ましい。   The cooling rate in the case of cooling by slow cooling is preferably 0.2 to 20 ° C./min.

なお、エチレン−酢酸ビニル共重合体ケン化物微粒子の凝析は、前記冷却直後から生じる場合や、また、冷却してからある程度時間が経過した後に凝析し始める場合がある。シリカ微粒子はエチレン−酢酸ビニル共重合体ケン化物溶液の冷却前(製造方法1)、冷却時(製造方法2)、冷却後であってエチレン−酢酸ビニル共重合体ケン化物が凝析する前(製造方法3)、エチレン−酢酸ビニル共重合体ケン化物を溶媒中で加熱溶解させる時(製造方法4)に配合される。   In addition, coagulation of ethylene-vinyl acetate copolymer saponified fine particles may occur immediately after the cooling, or may start to coagulate after a certain time has passed since cooling. The silica fine particles are obtained before cooling the ethylene-vinyl acetate copolymer saponified solution (production method 1), at the time of cooling (production method 2), after cooling and before the ethylene-vinyl acetate copolymer saponified product coagulates ( The production method 3) is blended when the saponified ethylene-vinyl acetate copolymer is heated and dissolved in a solvent (production method 4).

製造方法1〜4におけるエチレン−酢酸ビニル共重合体ケン化物およびシリカ微粒子の混合物を凝析させる方法としては、得られたエチレン−酢酸ビニル共重合体ケン化物およびシリカ微粒子の混合物を静置して行う方法、混合物に超音波などの振動を与える方法、混合物にホモジナイザー、ディスパーなど攪拌を与える方法、エチレン−酢酸ビニル共重合体ケン化物溶液中の溶媒を蒸発させ、濃度を変化させることによって凝析させる方法によって行われる。   As a method of coagulating the mixture of ethylene-vinyl acetate copolymer saponified product and silica fine particles in production methods 1 to 4, the obtained mixture of ethylene-vinyl acetate copolymer saponified product and silica fine particles was allowed to stand. Coagulation by changing the concentration by evaporating the solvent in the solution of saponified ethylene-vinyl acetate copolymer, by applying agitation such as ultrasonic wave to the mixture, applying homogenizer, disper, etc. to the mixture It is done by the method.

工程(a1)および(a2)におけるエチレン−酢酸ビニル共重合体ケン化物微粒子を加熱溶解させる際の溶媒としては、アルコール系、またはアルコール以外のヘテロ原子を含む水溶性有機溶媒が好ましい。   As the solvent for heating and dissolving the ethylene-vinyl acetate copolymer saponified fine particles in the steps (a1) and (a2), an alcohol or a water-soluble organic solvent containing a hetero atom other than alcohol is preferable.

アルコール系溶媒の具体例としては、3−メチル−3−メトキシブタノール、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどがあげられる。これらの中で、3−メチル−3−メトキシブタノール、ジエチレングリコールが粒子径が均一であるエチレン−酢酸ビニル共重合体ケン化物微粒子を形成することができるという点で好ましい。   Specific examples of the alcohol solvent include 3-methyl-3-methoxybutanol, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and the like. Among these, 3-methyl-3-methoxybutanol and diethylene glycol are preferable in that the saponified fine particles of ethylene-vinyl acetate copolymer having a uniform particle diameter can be formed.

また、アルコール以外のヘテロ原子を含む水溶性有機溶媒としては、エステル系溶媒、アミド系溶媒があげられる。エステル系溶媒の具体例としては4−ブチロラクトン、アミド系溶媒としてはジメチルアセトアミドがあげられる。アルコール以外のヘテロ原子を含む水溶性有機溶媒のうち、ジメチルアセトアミド、4−ブチロラクトンが、粒子径が均一であるエチレン−酢酸ビニル共重合体ケン化物微粒子を形成することができるという点で好ましい。   Examples of the water-soluble organic solvent containing a hetero atom other than alcohol include ester solvents and amide solvents. Specific examples of the ester solvent include 4-butyrolactone, and the amide solvent includes dimethylacetamide. Of water-soluble organic solvents containing heteroatoms other than alcohol, dimethylacetamide and 4-butyrolactone are preferred in that they can form ethylene-vinyl acetate copolymer saponified fine particles having a uniform particle size.

また、粒子径が均一であるエチレン−酢酸ビニル共重合体ケン化物微粒子を形成することができる点から、アルコールまたはアルコール以外のヘテロ原子を含む水溶性有機溶媒と水との混合溶媒であることが好ましい。これら水溶性有機溶剤の溶解度パラメーター(SP値)はおおむね9.0〜15.0の値を示す。   Moreover, from the point which can form the ethylene-vinyl acetate copolymer saponified fine particle with a uniform particle diameter, it is a mixed solvent of water or a water-soluble organic solvent containing a hetero atom other than alcohol and water. preferable. The solubility parameter (SP value) of these water-soluble organic solvents generally shows a value of 9.0 to 15.0.

水溶性有機溶媒と水との混合溶媒とする場合、水溶性有機溶媒と水の混合比は、質量比で50:50〜70:30が好ましい。水溶性有機溶媒と水との質量比が50:50を外れて水が多くなると、均一な粒子径を有する粒子を形成させることができない傾向がある。一方、水溶性有機溶媒と水との質量比が70:30をはずれて水が少なくなると、均一な粒子径を有する粒子を形成させることができないなどの傾向がある。   When the mixed solvent of the water-soluble organic solvent and water is used, the mixing ratio of the water-soluble organic solvent and water is preferably 50:50 to 70:30 in terms of mass ratio. If the mass ratio of the water-soluble organic solvent and water is out of 50:50 and the amount of water increases, there is a tendency that particles having a uniform particle diameter cannot be formed. On the other hand, if the mass ratio of the water-soluble organic solvent and water is off 70:30 and the amount of water decreases, there is a tendency that particles having a uniform particle diameter cannot be formed.

工程(a1)および(a2)におけるエチレン−酢酸ビニル共重合体ケン化物微粒子の固形分濃度は、生産性が向上する点から1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましい。また、工程(a1)および(a2)におけるエチレン−酢酸ビニル共重合体ケン化物微粒子溶液の固形分濃度は、加熱溶解させるための時間が短くなるという点から15質量%以下が好ましく、12.5質量%以下がより好ましく、10質量%以下がさらに好ましい。   The solid content concentration of the saponified ethylene-vinyl acetate copolymer particles in the steps (a1) and (a2) is preferably 1% by mass or more, more preferably 3% by mass or more from the viewpoint of improving productivity. The above is more preferable. The solid content concentration of the ethylene-vinyl acetate copolymer saponified fine particle solution in the steps (a1) and (a2) is preferably 15% by mass or less from the viewpoint of shortening the time for heating and dissolving. The mass% is more preferably 10% by mass or less.

工程(a1)および(a2)におけるエチレン−酢酸ビニル共重合体ケン化物を溶解する際の溶媒の温度は、エチレン−酢酸ビニル共重合体ケン化物を溶解する時間が短くなるという点から80℃以上が好ましく、85℃以上がより好ましく、90℃以上がさらに好ましい。また、溶媒の温度は、蒸発量が少ないという点から100℃以下が好ましく、95℃以下がより好ましい。   The temperature of the solvent when dissolving the saponified ethylene-vinyl acetate copolymer in the steps (a1) and (a2) is 80 ° C. or higher from the point that the time for dissolving the saponified ethylene-vinyl acetate copolymer is shortened. Is preferable, 85 ° C. or higher is more preferable, and 90 ° C. or higher is more preferable. Further, the temperature of the solvent is preferably 100 ° C. or less, more preferably 95 ° C. or less from the viewpoint that the amount of evaporation is small.

シリカ微粒子の配合量は、エチレン−酢酸ビニル共重合体ケン化物100質量部に対して、得られる塗膜の親水性が良好であるという点から0.1質量部以上が好ましく、2質量部以上がより好ましく、10質量部以上がさらに好ましい。シリカ微粒子の配合量は、エチレン−酢酸ビニル共重合体ケン化物100質量部に対して、塗膜の密着性および加工性が良好であるという点から100質量部以下が好ましく、80質量部以下がより好ましく、50質量部以下がさらに好ましい。   The blending amount of the silica fine particles is preferably 0.1 parts by mass or more, preferably 2 parts by mass or more from the viewpoint that the hydrophilicity of the obtained coating film is good with respect to 100 parts by mass of the saponified ethylene-vinyl acetate copolymer. Is more preferably 10 parts by mass or more. The blending amount of the silica fine particles is preferably 100 parts by mass or less, and 80 parts by mass or less from the viewpoint that the adhesion and workability of the coating film are good with respect to 100 parts by mass of the saponified ethylene-vinyl acetate copolymer. More preferred is 50 parts by mass or less.

なお、配合されるシリカ微粒子は、エチレン−酢酸ビニル共重合体ケン化物溶液と混合する前にあらかじめ分散媒に分散させておくことが好ましい。シリカ微粒子を分散させる分散媒としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコールモノメチルエーテル、ジメチルアセトアミド、3−メチル−3−メトキシブタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテルなどがあげられるが、これらの中で、シリカの分散性が良好で、エチレン−酢酸ビニル共重合体ケン化物を溶解する際の溶媒との相溶性が良好であるという点から、エチレングリコールが好ましい。   The silica fine particles to be blended are preferably dispersed in a dispersion medium in advance before mixing with the ethylene-vinyl acetate copolymer saponified solution. Examples of the dispersion medium for dispersing the silica fine particles include ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol monomethyl ether, dimethylacetamide, 3-methyl-3-methoxybutanol, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, and the like. Of these, ethylene glycol is preferable from the viewpoints of good dispersibility of silica and good compatibility with a solvent for dissolving the saponified ethylene-vinyl acetate copolymer.

本発明における複合微粒子の製造方法は、分散剤、界面活性剤または重合活性剤などの物性低下を招く添加剤を加えることなく容易に複合微粒子を調製することができる。   In the method for producing composite fine particles in the present invention, the composite fine particles can be easily prepared without adding an additive that causes a decrease in physical properties such as a dispersant, a surfactant or a polymerization activator.

さらに本発明の複合微粒子は塗料に用いることができる。   Furthermore, the composite fine particles of the present invention can be used in paints.

本発明の複合微粒子を含む塗料は、前記の製造方法により得られる複合微粒子と分散媒を分離せずにそのまま用いてもよく、また、複合微粒子と溶媒を分離させてもよい。   The coating material containing the composite fine particles of the present invention may be used as it is without separating the composite fine particles and the dispersion medium obtained by the above production method, or the composite fine particles and the solvent may be separated.

複合微粒子と溶媒を分離させる場合の方法としては、ろ過、遠心分離などがあげられるが、これらに限定されるものではない。ろ過するためのフィルターとしては、たとえばセラミックフィルターなどがあげられる。また、粒子を分離したのち、粒子を乾燥させることが好ましい。乾燥方法としては、真空乾燥、自然乾燥、ドライヤーまたはオーブンによる乾燥など、特に限定されるものではない。ただし、ドライヤーまたはオーブンによる乾燥を行う際は、粒子が溶融しない温度に設定する必要がある。   Examples of the method for separating the composite fine particles from the solvent include filtration and centrifugation, but are not limited thereto. Examples of the filter for filtering include a ceramic filter. Moreover, it is preferable to dry the particles after separating the particles. The drying method is not particularly limited, such as vacuum drying, natural drying, drying with a dryer or oven. However, when drying with a dryer or oven, it is necessary to set the temperature so that the particles do not melt.

本発明の複合微粒子を分散させる溶媒としては、酢酸エチル、酢酸ブチルなどのエステル系溶媒、アジピン酸ジメチル、グルタル酸ジメチル、コハク酸ジメチルなどの二塩基酸エステル系溶媒、シクロヘキサノン、イソホロン、メチルイソブチルケトンなどのケトン系溶媒、シクロヘキサン、トルエン、キシレンなどの炭化水素系溶媒、ベンジルアルコール、シクロヘキサノールなどのアルコール系溶媒、エチレングリコールモノブチルエーテル、ジプロピレングリコールブチルエーテルなどのエーテル系溶媒、ジメチルアセトアミドなどのアミド系溶媒、N−メチル−2−ピロリドンなどのピロリドン系溶媒および水ならびにこれらの混合物があげられるが、これらに限定されるものではなく、目的とする塗料に適したあらゆる有機溶剤を使用することができる。   Examples of the solvent for dispersing the composite fine particles of the present invention include ester solvents such as ethyl acetate and butyl acetate, dibasic acid ester solvents such as dimethyl adipate, dimethyl glutarate, and dimethyl succinate, cyclohexanone, isophorone, and methyl isobutyl ketone. Ketone solvents such as cyclohexane, toluene and xylene, alcohol solvents such as benzyl alcohol and cyclohexanol, ether solvents such as ethylene glycol monobutyl ether and dipropylene glycol butyl ether, and amides such as dimethylacetamide Solvents, pyrrolidone solvents such as N-methyl-2-pyrrolidone and water, and mixtures thereof are not limited to these, and any organic solvent suitable for the intended paint can be used. It is possible to use.

複合微粒子の分散方法としては、超音波による分散、攪拌機による分散などがあげられる。たとえば、ホモジナイザー、ホモミキサー、クレアミックス、ディスパー、ロールミル、ビーズミル、高圧型湿式微粉化装置などがあげられる。   Examples of the method for dispersing the composite fine particles include dispersion using ultrasonic waves and dispersion using a stirrer. Examples thereof include a homogenizer, a homomixer, a clear mix, a disper, a roll mill, a bead mill, and a high-pressure wet pulverizer.

本発明の塗料を用いて塗膜を形成する場合の塗膜の膜厚は、0.3〜10μmが好ましく、1〜7μmがより好ましく、2〜5μmがさらに好ましい。   When the coating film is formed using the coating material of the present invention, the thickness of the coating film is preferably 0.3 to 10 μm, more preferably 1 to 7 μm, and further preferably 2 to 5 μm.

本発明の塗料を塗布することによって得られる塗膜の形成は、塗料を塗布した後に、加熱により溶媒を蒸発させ、その後粒子を加熱溶融させることで行う。これにより、親水性、耐溶剤性などに優れた塗膜が得られる。   Formation of the coating film obtained by applying the paint of the present invention is performed by evaporating the solvent by heating after applying the paint, and then heating and melting the particles. Thereby, the coating film excellent in hydrophilic property, solvent resistance, etc. is obtained.

複合微粒子を含む塗料の焼付け温度は、90〜260℃が好ましく、150〜220℃がより好ましい。また、加熱時間は、10〜90秒が好ましく、15〜60秒がより好ましい。さらに、加熱後、水冷することが好ましい。水冷を行うことで、塗膜の外観、加工性などの諸物性がより優れるためである。   90-260 degreeC is preferable and the baking temperature of the coating material containing composite fine particles has more preferable 150-220 degreeC. Further, the heating time is preferably 10 to 90 seconds, and more preferably 15 to 60 seconds. Furthermore, it is preferable to cool with water after heating. This is because water-cooling improves the physical properties such as the appearance and workability of the coating film.

本発明の塗料を塗布することによって得られる塗膜における水に対する接触角は、0〜30度が好ましい。   As for the contact angle with respect to water in the coating film obtained by apply | coating the coating material of this invention, 0-30 degree | times is preferable.

本発明の塗料の塗装は、たとえば、ロールコート法、スプレーコート法、ハケ塗り法、ヘラ塗り法、浸漬塗装法、電着塗装法、静電塗装法などの公知の方法によって行うことができる。   The paint of the present invention can be applied by a known method such as a roll coating method, a spray coating method, a brush coating method, a spatula coating method, a dip coating method, an electrodeposition coating method, or an electrostatic coating method.

本発明の塗料の塗布対象となる素材としては、金属、ガラス、紙、木材、プラスチック、コンクリート、セメント、繊維、陶磁器、石、セラミックスなどがあげられる。また、金属としては、具体的には、アルミニウム、スチール、銅、ステンレス、ならびにこれらに表面処理を施した金属板、例えば、スチールの場合は錫メッキ鋼板(ブリキ)、亜鉛メッキ鋼板、電解クロム酸処理鋼板(ティンフリースチール)などがあげられるが、本発明はかかる例示のみに限定されるものではない。   Examples of the material to which the paint of the present invention is applied include metal, glass, paper, wood, plastic, concrete, cement, fiber, ceramics, stone, and ceramics. Specific examples of the metal include aluminum, steel, copper, stainless steel, and metal plates subjected to surface treatment thereof, such as tin-plated steel plate (tinplate), galvanized steel plate, electrolytic chromic acid in the case of steel. A treated steel plate (tin-free steel) and the like can be mentioned, but the present invention is not limited to such examples.

本発明の塗料を塗布して得られる塗膜は、純水接触角が小さいために親水性に優れている。そのため、水に濡れてもすぐに乾く性質を有し、抗菌、防カビ、防汚、防曇、結露防止、水性インキにおけるインキ吸収性に優れるという効果を有する。また、エチレン酢酸ビニル共重合体ケン化物を素材とするためガスバリヤー性にも優れている。   The coating film obtained by applying the paint of the present invention has excellent hydrophilicity due to a small pure water contact angle. Therefore, it has the property that it dries quickly even when it gets wet, and has the effect of being excellent in antibacterial, antifungal, antifouling, antifogging, anti-condensation, and ink absorbency in water-based inks. Further, since the ethylene vinyl acetate copolymer saponified material is used as a raw material, the gas barrier property is also excellent.

そのため、親水性ガラス板、熱交換器用アルミニウムフィン材、食用包装(フィルム)、コップ、トレイなどの用途に好適に用いられる。   Therefore, it is suitably used for applications such as hydrophilic glass plates, aluminum fin materials for heat exchangers, edible packaging (films), cups and trays.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

実施例で用いたエチレン−酢酸ビニル共重合体ケン化物(以下、EVOHともいうこともある)、シリカおよび分散媒を以下に示す。
(1)エチレン−酢酸ビニル共重合体ケン化物
・ケン化物A(エチレン含有量:27モル%、密度:1.20g/cc、融点:191℃、結晶化温度:167℃、ガラス転移温度:72℃、(株)クラレ製のL101B)
・ケン化物B(エチレン含有量:27モル%、密度:1.20g/cc、融点:191℃、結晶化温度:164℃、ガラス転移温度:60℃、(株)クラレ製のL171B)
なお、ケン化物Aおよびケン化物B以外にも検討した共重合体ケン化物は、(株)クラレ製のF104B、H171B、E105B、G156Bであり、それぞれエチレン含有量が32、38、44、47モル%であった。
(2)シリカ微粒子
・AEROSIL200(デグサ(degussa)製の親水性ヒュームドシリカ、平均1次粒子径:12nm)
(3)溶媒、分散媒
・MMB(3−メチル−3−メトキシブタノール)
・DMAC(ジメチルアセトアミド)
・DBL(4−ブチロラクトン)
・HiDM(ジエチレングリコールモノメチルエーテル)
・HiDB(ジエチレングリコールモノブチルエーテル)
・DMF(N,N−ジメチルホルムアミド)
・EG(エチレングリコール)
・DEG(ジエチレングリコール)
The ethylene-vinyl acetate copolymer saponified product (hereinafter sometimes referred to as EVOH), silica and dispersion medium used in the examples are shown below.
(1) Ethylene-vinyl acetate copolymer saponified product / saponified product A (ethylene content: 27 mol%, density: 1.20 g / cc, melting point: 191 ° C., crystallization temperature: 167 ° C., glass transition temperature: 72 ℃, Kuraray Co., Ltd. L101B)
Saponified product B (ethylene content: 27 mol%, density: 1.20 g / cc, melting point: 191 ° C., crystallization temperature: 164 ° C., glass transition temperature: 60 ° C., L171B manufactured by Kuraray Co., Ltd.)
The saponified copolymer other than saponified product A and saponified product B were F104B, H171B, E105B, and G156B manufactured by Kuraray Co., Ltd., and had ethylene contents of 32, 38, 44, and 47 mol, respectively. %Met.
(2) Silica fine particles / AEROSIL 200 (hydrous fumed silica manufactured by Degussa, average primary particle size: 12 nm)
(3) Solvent, dispersion medium / MMB (3-methyl-3-methoxybutanol)
・ DMAC (dimethylacetamide)
・ DBL (4-butyrolactone)
・ HiDM (diethylene glycol monomethyl ether)
・ HiDB (diethylene glycol monobutyl ether)
・ DMF (N, N-dimethylformamide)
・ EG (ethylene glycol)
・ DEG (diethylene glycol)

参考例1(エチレン−酢酸ビニル共重合体ケン化物微粒子の調製)
MMBと水の混合溶媒(質量比70:30)に、ケン化物Aを質量濃度5質量%になるように添加し、その後液温を97℃にして、ケン化物Aの溶液を調製した。得られた溶液を20℃になるまで12時間撹拌しながら冷却し、静置し、エチレン−酢酸ビニル共重合体ケン化物の微粒子を凝析させ、懸濁液を調製した。
Reference Example 1 (Preparation of ethylene-vinyl acetate copolymer saponified fine particles)
Saponified product A was added to a mixed solvent of MMB and water (mass ratio 70:30) so that the mass concentration became 5% by mass, and then the solution temperature was set to 97 ° C. to prepare a solution of saponified product A. The resulting solution was cooled with stirring for 12 hours until it reached 20 ° C., allowed to stand, and fine particles of the saponified ethylene-vinyl acetate copolymer were coagulated to prepare a suspension.

得られた懸濁液から、各微粒子を分離した。得られたケン化物Aの形状を走査型電子顕微鏡(T−330A 日本電子株式会社製)により観察し、さらに、20μm四方の中にある粒子の大きさを測定した。冷却直後に凝析したケン化物A微粒子の走査型電子顕微鏡写真を図3に、評価結果を表1に示す。   Each fine particle was separated from the obtained suspension. The shape of the resulting saponified product A was observed with a scanning electron microscope (T-330A manufactured by JEOL Ltd.), and the size of particles in a 20 μm square was measured. FIG. 3 shows a scanning electron micrograph of the saponified A fine particles coagulated immediately after cooling, and Table 1 shows the evaluation results.

図3より、エチレン−酢酸ビニル共重合体ケン化物微粒子2は、均一な粒子を形成していることがわかる。特に、参考例1の調製により得られるエチレン−酢酸ビニル共重合体ケン化物微粒子2は、800〜1200nmの1次粒子径のものが得られることがわかる。   FIG. 3 shows that the ethylene-vinyl acetate copolymer saponified fine particles 2 form uniform particles. In particular, it can be seen that the ethylene-vinyl acetate copolymer saponified fine particles 2 obtained by the preparation of Reference Example 1 have a primary particle diameter of 800 to 1200 nm.

参考例2〜11(エチレン−酢酸ビニル共重合体ケン化物微粒子の調製)
表1に示す水溶性有機溶媒の種類、水溶性有機溶媒と水の質量比、および溶液の濃度を代えたほかは、参考例1と同様の方法によりケン化物Aの微粒子を調製した。
Reference Examples 2 to 11 (Preparation of ethylene-vinyl acetate copolymer saponified fine particles)
Saponified product A fine particles were prepared in the same manner as in Reference Example 1, except that the type of water-soluble organic solvent, the mass ratio of the water-soluble organic solvent and water, and the concentration of the solution shown in Table 1 were changed.

表1に、参考例2〜11について、参考例1から変化させた条件を示す。   Table 1 shows conditions changed from Reference Example 1 for Reference Examples 2 to 11.

得られたケン化物Aの粒子の形状および大きさを参考例1と同様の方法により測定した。参考例2〜11における冷却直後に凝析したケン化物1微粒子の走査型電子顕微鏡写真をそれぞれ図4〜13に、評価結果を表1に示す。   The shape and size of the resulting saponified product A particles were measured in the same manner as in Reference Example 1. Scanning electron micrographs of saponified 1 fine particles coagulated immediately after cooling in Reference Examples 2 to 11 are shown in FIGS.

図4〜13より、エチレン−酢酸ビニル共重合体ケン化物微粒子2は、均一な粒子を形成していることがわかる。特に、参考例2〜3、5および6の調製により得られるエチレン−酢酸ビニル共重合体ケン化物微粒子2(それぞれ図4〜図5、図7および図8)は、500〜1400nmの1次粒子径のものが得られ、さらに、参考例4の調製により得られるエチレン−酢酸ビニル共重合体ケン化物微粒子2(図6)は、300〜700nmの小さい1次粒子径のものが得られることがわかる。   4-13, it turns out that the ethylene-vinyl acetate copolymer saponified fine particles 2 form uniform particles. In particular, the ethylene-vinyl acetate copolymer saponified fine particles 2 (FIGS. 4 to 5, 7 and 8 respectively) obtained by the preparation of Reference Examples 2-3, 5 and 6 are primary particles of 500 to 1400 nm. The ethylene-vinyl acetate copolymer saponified fine particles 2 (FIG. 6) obtained by the preparation of Reference Example 4 can be obtained with a small primary particle size of 300 to 700 nm. Recognize.

なお、ケン化物として(株)クラレ製のF−104B(エチレン含有量:32モル%)、H171B(エチレン含有量:38モル%)、E−105B(エチレン含有量:44モル%)、G156B(エチレン含有量:47モル%)も参考例1と同様にして微粒子化を行いほぼ同様の結果が得られた。   As saponification products, F-104B (ethylene content: 32 mol%), H171B (ethylene content: 38 mol%), E-105B (ethylene content: 44 mol%), G156B (manufactured by Kuraray Co., Ltd.) (Ethylene content: 47 mol%) In the same manner as in Reference Example 1, fine particles were formed and almost the same results were obtained.

実施例1
MMB:水の混合溶媒(質量比が70:30)142.5gに、ケン化物Bを7.5g添加し、その後液温を97℃にしてケン化物B溶液を調製した。AEROSIL200のDMAC分散溶液(固形分濃度10質量%)を25g添加し、添加後5分間撹拌後、25℃に冷却し、ケン化物BとAEROSIL200が複合化した微粒子を凝析させ、懸濁液を調製した。実施例1における走査型電子顕微鏡観察による複合微粒子の写真を図1に示す。
Example 1
7.5 g of saponified product B was added to 142.5 g of a mixed solvent of MMB: water (mass ratio 70:30), and then the solution temperature was set to 97 ° C. to prepare a saponified product B solution. 25 g of AEROSIL200 DMAC dispersion solution (solid content concentration 10% by mass) was added, stirred for 5 minutes after the addition, cooled to 25 ° C., and coagulated fine particles of saponified product B and AEROSIL200 were coagulated. Prepared. A photograph of the composite fine particles observed with a scanning electron microscope in Example 1 is shown in FIG.

図1より、得られた複合微粒子1の1次粒子径は600〜1200nmであった。複合微粒子1は、単にエチレン−酢酸ビニル共重合体ケン化物微粒子とシリカ微粒子を混合した混合微粒子として形成されているものではなく、エチレン−酢酸ビニル共重合体ケン化物微粒子であるケン化物Bの微粒子の表面に、シリカ微粒子であるAEROSIL200が付着し、単一の粒子を形成していることがわかる。   From FIG. 1, the primary particle diameter of the obtained composite fine particles 1 was 600 to 1200 nm. The composite fine particles 1 are not simply formed as mixed fine particles obtained by mixing ethylene-vinyl acetate copolymer saponified fine particles and silica fine particles, but saponified B fine particles which are ethylene-vinyl acetate copolymer saponified fine particles. It can be seen that AEROSIL 200, which is a silica fine particle, adheres to the surface of each of the surfaces to form a single particle.

得られた懸濁液150g、2mmφガラスビーズ100gを量り取り、よく蓋を閉めた後、ペイントシェーカー(浅田鉄鋼株式会社製)で2時間分散し、ガーゼを用いてガラスビーズと濾別して塗料を得た。   Weigh 150 g of the obtained suspension and 100 g of 2 mmφ glass beads, close the lid well, disperse for 2 hours with a paint shaker (manufactured by Asada Steel Corporation), and filter off the glass beads using gauze to obtain a paint. It was.

得られた塗料を、バーコーターを用いて無塗装のアルミニウム板(5182材、板厚0.23mm、12cm×20cm)に、乾燥後の膜厚が5μmになるように塗装し(乾燥後塗布量6.0g/m2)、200℃、風速15m/秒に設定した熱風循環式オーブン(株式会社正英製作所製)に20秒間入れた後水冷し、複合微粒子よりなる塗膜を得た。得られた塗膜の密着性および純水接触角測定を以下の方法により測定した。評価結果を表2に示す。 The obtained paint was applied to an unpainted aluminum plate (5182 material, plate thickness 0.23 mm, 12 cm × 20 cm) using a bar coater so that the film thickness after drying was 5 μm (coating amount after drying) 6.0 g / m 2 ), 200 ° C., and a wind speed of 15 m / second were set in a hot-air circulating oven (manufactured by Shoei Seisakusho Co., Ltd.) for 20 seconds, followed by water cooling to obtain a coating film composed of composite fine particles. The adhesion and pure water contact angle of the obtained coating film were measured by the following methods. The evaluation results are shown in Table 2.

<純水接触角度>
Model:VCA・Optima(AST Products,lnc.製)を用いて測定した。接触角は被膜に純水を0.5μl滴滴下したときの液滴の接線と被膜表面のなす角θとする。
<Pure water contact angle>
Model: VCA · Optima (AST Products, Inc.) was used for measurement. The contact angle is defined as an angle θ formed between the tangent of a droplet and the surface of the coating when 0.5 μl of pure water is dropped on the coating.

<密着性>
JIS・K 5400(1990)に記載の方法に準拠し、焼付け後の塗装板上をカッターナイフで塗膜を貫通して素地に達するように1mm間隔で切り傷をつけ、碁盤目100個(10×10)を作る。これに株式会社ニチバン製セロテープ(登録商標)を完全に密着させ、塗面に対して90°の方向に急激に剥離し、塗膜の状態を目視にて観察し、以下の評価基準に基づいて評価した。
A…全く剥離しない。
B…1〜5個の升目が剥離している。
C…6個以上の升目が剥離している。
<Adhesion>
In accordance with the method described in JIS K 5400 (1990), the painted plate after baking was cut with a cutter knife at intervals of 1 mm so as to penetrate the coating film and reach the substrate. 10). Nichiban Co., Ltd. cello tape (registered trademark) is completely adhered to this, and it peels off suddenly in the direction of 90 ° with respect to the coating surface, visually observes the state of the coating film, and based on the following evaluation criteria evaluated.
A: No peeling at all.
B: 1 to 5 squares are peeled off.
C: Six or more cells are peeled off.

実施例2
実施例1で得られた塗料を、バーコーターを用いて無塗装のアルミニウム板(5182材、板厚0.23mm、12cm×20cm)に、乾燥後の膜厚が5μmになるように塗装し(乾燥後塗布量6.0g/m2)、200℃、風速15m/秒に設定した熱風循環式オーブン(株式会社正英製作所製)に60秒間入れた後水冷し、複合微粒子よりなる塗膜を得た。得られた塗膜の密着性および純水接触角測定を実施例1と同様の方法により測定した。評価結果を表2に示す。
Example 2
The paint obtained in Example 1 was applied to an unpainted aluminum plate (5182 material, plate thickness 0.23 mm, 12 cm × 20 cm) using a bar coater so that the film thickness after drying was 5 μm ( After drying, the coating amount was 6.0 g / m 2 ), placed in a hot air circulation oven (made by Shoei Seisakusho Co., Ltd.) set at 200 ° C. and a wind speed of 15 m / sec. It was. The adhesion and pure water contact angle of the obtained coating film were measured by the same method as in Example 1. The evaluation results are shown in Table 2.

実施例3
実施例1で得られた塗料を、バーコーターを用いて無塗装のアルミニウム板(5182材、板厚0.23mm、12cm×20cm)に、乾燥後の膜厚が5μmになるように塗装し(乾燥後塗布量6.0g/m2)、240℃、風速15m/秒に設定した熱風循環式オーブン(株式会社正英製作所製)に20秒間入れた後水冷し、複合微粒子よりなる塗膜を得た。得られた塗膜の密着性および純水接触角測定を実施例1と同様の方法により測定した。評価結果を表2に示す。
Example 3
The paint obtained in Example 1 was applied to an unpainted aluminum plate (5182 material, plate thickness 0.23 mm, 12 cm × 20 cm) using a bar coater so that the film thickness after drying was 5 μm ( After drying, the coating amount was 6.0 g / m 2 ), placed in a hot air circulation oven (manufactured by Shoei Seisakusho Co., Ltd.) set at 240 ° C. and a wind speed of 15 m / sec. It was. The adhesion and pure water contact angle of the obtained coating film were measured by the same method as in Example 1. The evaluation results are shown in Table 2.

実施例4
MMB:水の混合溶媒(質量比が70:30)142.5gに、ケン化物Bを7.5g添加し、その後液温を97℃にしてケン化物B溶液を調製した。ケン化物B溶液は攪拌しながら冷却し40℃になった時点でAEROSIL200のDMAC分散溶液(固形分濃度10質量%)25gを添加した、添加後さらに撹拌しながら25℃に冷却し、ケン化物BとAEROSIL200が複合化した微粒子を凝析させ、懸濁液を調製した。実施例4における走査型電子顕微鏡観察による複合微粒子の写真を図2に示す。
Example 4
7.5 g of saponified product B was added to 142.5 g of a mixed solvent of MMB: water (mass ratio 70:30), and then the solution temperature was set to 97 ° C. to prepare a saponified product B solution. When the saponified B solution was cooled to 40 ° C. while stirring, 25 g of AEROSIL 200 DMAC dispersion solution (solid content concentration: 10% by mass) was added. And AEROSIL200 were coagulated, and a suspension was prepared. FIG. 2 shows a photograph of the composite fine particles observed by the scanning electron microscope in Example 4.

図2より、得られた複合微粒子の1次粒子径は400〜1000nmであった。複合微粒子2は、単にエチレン−酢酸ビニル共重合体ケン化物微粒子とシリカ微粒子を混合した混合微粒子として形成されているものではなく、エチレン−酢酸ビニル共重合体ケン化物微粒子であるケン化物Bの微粒子の表面に、シリカ微粒子であるAEROSIL200が付着し、単一の粒子を形成していることがわかる。   From FIG. 2, the primary particle diameter of the obtained composite fine particles was 400 to 1000 nm. The composite fine particles 2 are not simply formed as mixed fine particles obtained by mixing ethylene-vinyl acetate copolymer saponified fine particles and silica fine particles, but saponified B fine particles which are ethylene-vinyl acetate copolymer saponified fine particles. It can be seen that AEROSIL 200, which is a silica fine particle, adheres to the surface of each of the surfaces to form a single particle.

得られた懸濁液150g、2mmφガラスビーズ100gを量り取り、よく蓋を閉めた後、ペイントシェーカー(浅田鉄鋼株式会社製)で2時間分散し、ガーゼを用いてガラスビーズと濾別して塗料を得た。   Weigh 150 g of the obtained suspension and 100 g of 2 mmφ glass beads, close the lid well, disperse for 2 hours with a paint shaker (manufactured by Asada Steel Corporation), and filter off the glass beads using gauze to obtain a paint. It was.

得られた塗料を、実施例1と同様にバーコーターを用いて無塗装のアルミニウム板(5182材、板厚0.23mm、12cm×20cm)に、乾燥後の膜厚が5μmになるように塗装し(乾燥後塗布量6.0g/m2)、200℃、風速15m/秒に設定した熱風循環式オーブン(株式会社正英製作所製)に20秒間入れた後水冷し、複合微粒子よりなる塗膜を得た。得られた塗膜の密着性および純水接触角測定を実施例1と同様の方法により測定した。評価結果を表2に示す。 The obtained paint was applied to an unpainted aluminum plate (5182 material, plate thickness 0.23 mm, 12 cm × 20 cm) using a bar coater in the same manner as in Example 1 so that the film thickness after drying was 5 μm. (The coating amount after drying is 6.0 g / m 2 ), put in a hot-air circulating oven (manufactured by Shoei Seisakusho Co., Ltd.) set at 200 ° C. and a wind speed of 15 m / sec. Got. The adhesion and pure water contact angle of the obtained coating film were measured by the same method as in Example 1. The evaluation results are shown in Table 2.

実施例5
実施例4で得られた塗料を、実施例1と同様にバーコーターを用いて無塗装のアルミニウム板(5182材、板厚0.23mm、12cm×20cm)に、乾燥後の膜厚が5μmになるように塗装し(乾燥後塗布量6.0g/m2)、200℃、風速15m/秒に設定した熱風循環式オーブン(株式会社正英製作所製)に60秒間入れた後水冷し、複合微粒子よりなる塗膜を得た。得られた塗膜の密着性および純水接触角測定を実施例1と同様の方法により測定した。評価結果を表2に示す。
Example 5
The paint obtained in Example 4 was applied to an unpainted aluminum plate (5182 material, plate thickness 0.23 mm, 12 cm × 20 cm) using a bar coater in the same manner as in Example 1, and the film thickness after drying was 5 μm. (Applied after drying: 6.0 g / m 2 ), put in a hot air circulating oven (made by Shoei Seisakusho Co., Ltd.) set at 200 ° C. and a wind speed of 15 m / second for 60 seconds, and then water-cooled to form composite fine particles The coating film which consists of was obtained. The adhesion and pure water contact angle of the obtained coating film were measured by the same method as in Example 1. The evaluation results are shown in Table 2.

実施例6
MMB:水の混合溶媒(質量比が70:30)161.5gに、ケン化物Bを8.5g添加し、その後液温を97℃にしてケン化物B溶液を調製した。AEROSIL200のDMAC分散溶液(固形分濃度10質量%)を15g添加し、添加後5分間撹拌後、25℃に冷却し、ケン化物BとAEROSIL200が複合化した微粒子を凝析させ、懸濁液を調製した。得られた複合微粒子の1次粒子径は600〜1200nmであった。
Example 6
8.5 g of saponified product B was added to 161.5 g of a mixed solvent of MMB: water (mass ratio 70:30), and then the solution temperature was set to 97 ° C. to prepare a saponified product B solution. Add 15 g of AEROSIL200 DMAC dispersion (solid concentration 10% by mass), stir for 5 minutes after addition, cool to 25 ° C., coagulate fine particles of saponified compound B and AEROSIL200 complexed, Prepared. The primary particle diameter of the obtained composite fine particles was 600 to 1200 nm.

得られた懸濁液150g、2mmφガラスビーズ100gを量り取り、よく蓋を閉めた後、ペイントシェーカー(浅田鉄鋼株式会社製)で2時間分散し、ガーゼを用いてガラスビーズと濾別して塗料を得た。   Weigh 150 g of the obtained suspension and 100 g of 2 mmφ glass beads, close the lid well, disperse for 2 hours with a paint shaker (manufactured by Asada Steel Corporation), and filter off the glass beads using gauze to obtain a paint. It was.

得られた塗料を、実施例1と同様にバーコーターを用いて無塗装のアルミニウム板(5182材、板厚0.23mm、12cm×20cm)に、乾燥後の膜厚が5μmになるように塗装し(乾燥後塗布量6.0g/m2)、200℃、風速15m/秒に設定した熱風循環式オープン(株式会社正英製作所製)に20秒間入れた後水冷し、複合微粒子よりなる塗膜を得た。得られた塗膜の密着性および純水接触角測定を実施例1と同様の方法で測定した。評価結果を表2に示す。 The obtained paint was applied to an unpainted aluminum plate (5182 material, plate thickness 0.23 mm, 12 cm × 20 cm) using a bar coater in the same manner as in Example 1 so that the film thickness after drying was 5 μm. (The coating amount after drying is 6.0 g / m 2 ), put into a hot air circulation type open (made by Shoei Seisakusho Co., Ltd.) set at 200 ° C. and a wind speed of 15 m / sec. Got. The adhesion of the obtained coating film and the pure water contact angle measurement were measured in the same manner as in Example 1. The evaluation results are shown in Table 2.

実施例7
実施例6により得られた塗料を、実施例1と同様にバーコーターを用いて無塗装のアルミニウム板(5182材、板厚0.23mm、12cm×20cm)に、乾燥後の膜厚が5μmになるように塗装し(乾燥後塗布量6.0g/m2)、200℃、風速15m/秒に設定した熱風循環式オープン(株式会社正英製作所製)に60秒間入れた後水冷し、複合微粒子よりなる塗膜を得た。得られた塗膜の密着性および純水接触角測定を実施例1と同様の方法で測定した。評価結果を表2に示す。
Example 7
The paint obtained in Example 6 was applied to an unpainted aluminum plate (5182 material, plate thickness 0.23 mm, 12 cm × 20 cm) using a bar coater in the same manner as in Example 1, and the film thickness after drying was 5 μm. The coating was applied in such a manner (coating amount after drying: 6.0 g / m 2 ), put in a hot air circulation type open (made by Shoei Seisakusho Co., Ltd.) set at 200 ° C. and a wind speed of 15 m / sec. The coating film which consists of was obtained. The adhesion of the obtained coating film and the pure water contact angle measurement were measured in the same manner as in Example 1. The evaluation results are shown in Table 2.

参考例12〜14
MMB:水の混合溶媒(質量比が70:30)190m1に、固形分濃度が5質量%となるようにケン化物Bを10g添加し、その後液温を97℃にしてケン化物B溶液を調製した。その後25℃に冷却し、ケン化物Bの微粒子を凝析させ、懸濁液を調製した。得られたエチレン−酢酸ビニル共重合体ケン化物微粒子の1次粒子径は700〜1300nmであった。
Reference Examples 12-14
10 g of saponified product B was added to 190 ml of a mixed solvent of MMB: water (mass ratio 70:30) so that the solid concentration would be 5% by mass, and then the solution temperature was adjusted to 97 ° C. to prepare a saponified product B solution. did. Thereafter, the mixture was cooled to 25 ° C. to coagulate the fine particles of saponified product B to prepare a suspension. The primary particle diameter of the resulting ethylene-vinyl acetate copolymer saponified fine particles was 700 to 1300 nm.

得られた懸濁液150g、2mmφガラスビーズ100gを量り取り、よく蓋を閉めた後、ペイントシェーカー(浅田鉄鋼株式会社製)で2時間分散し、ガーゼを用いてガラスビーズと濾別して塗料を得た。   Weigh 150 g of the obtained suspension and 100 g of 2 mmφ glass beads, close the lid well, disperse for 2 hours with a paint shaker (manufactured by Asada Steel Corporation), and filter off the glass beads using gauze to obtain a paint. It was.

得られた塗料を、実施例1と同様にバーコーターを用いて無塗装のアルミニウム板(5182材、板厚0.23mm、12cm×20cm)に、乾燥後の膜厚が5μmになるように塗装し(乾燥後塗布量6.0g/m2)、200℃、風速15m/秒に設定した熱風循環式オーブン(株式会社正英製作所製)に20秒(参考例12)および60秒(参考例13)間入れた後水冷し、エチレン−酢酸ビニル共重合体ケン化物の塗膜を得た。また、240℃、風速15m/秒に設定した熱風循環式オーブン(株式会社正英製作所製)に20秒間入れた後水冷し、エチレン−酢酸ビニル共重合体ケン化物の塗膜(参考例14)を得た。得られた塗膜の密着性および純水接触角測定を測定した。評価結果を表2に示す。 The obtained paint was applied to an unpainted aluminum plate (5182 material, plate thickness 0.23 mm, 12 cm × 20 cm) using a bar coater in the same manner as in Example 1 so that the film thickness after drying was 5 μm. (Application amount after drying 6.0 g / m 2 ), 20 seconds (Reference Example 12) and 60 seconds (Reference Example 13) in a hot air circulation oven (made by Shoei Seisakusho Co., Ltd.) set to 200 ° C. and a wind speed of 15 m / second. ) After interposing, it was cooled with water to obtain a coating film of a saponified ethylene-vinyl acetate copolymer. Moreover, after putting into the hot-air circulation type oven (made by Shoei Seisakusho Co., Ltd.) set to 240 degreeC and the wind speed of 15 m / sec for 20 seconds, it water-cools and the coating film (reference example 14) of ethylene-vinyl acetate copolymer saponification thing is produced. Obtained. The adhesion and pure water contact angle measurement of the obtained coating film were measured. The evaluation results are shown in Table 2.

実施例1で得られた複合微粒子の1次粒子の走査型電子顕微鏡観察による写真(×15000倍)である。2 is a photograph (× 15000 times) of a primary particle of composite fine particles obtained in Example 1 observed with a scanning electron microscope. 実施例4で得られた複合微粒子の1次粒子の走査型電子顕微鏡観察による写真(×20000倍)である。4 is a photograph (× 20000 times) of a primary particle of composite fine particles obtained in Example 4 observed by a scanning electron microscope. 参考例1で得られたエチレン−酢酸ビニル共重合体ケン化物微粒子の冷却直後の1次粒子の走査型電子顕微鏡観察による写真(×15000倍)である。2 is a photograph (× 15000 times) of a primary particle immediately after cooling of an ethylene-vinyl acetate copolymer saponified fine particle obtained in Reference Example 1 observed with a scanning electron microscope. 参考例2で得られたエチレン−酢酸ビニル共重合体ケン化物微粒子の冷却直後の1次粒子の走査型電子顕微鏡観察による写真(×15000倍)である。2 is a photograph (× 15000 times) of a primary particle immediately after cooling of an ethylene-vinyl acetate copolymer saponified fine particle obtained in Reference Example 2 observed with a scanning electron microscope. 参考例3で得られたエチレン−酢酸ビニル共重合体ケン化物微粒子の冷却直後の1次粒子の走査型電子顕微鏡観察による写真(×15000倍)である。It is a photograph (* 15000 times) by the scanning electron microscope observation of the primary particle immediately after cooling of the ethylene-vinyl acetate copolymer saponified fine particles obtained in Reference Example 3. 参考例4で得られたエチレン−酢酸ビニル共重合体ケン化物微粒子の冷却直後の1次粒子の走査型電子顕微鏡観察による写真(×15000倍)である。It is the photograph (* 15000 times) by the scanning electron microscope observation of the primary particle immediately after cooling of the ethylene-vinyl acetate copolymer saponified fine particle obtained in Reference Example 4. 参考例5で得られたエチレン−酢酸ビニル共重合体ケン化物微粒子の冷却直後の1次粒子の走査型電子顕微鏡観察による写真(×10000倍)である。6 is a photograph (× 10,000 times) of the primary particles immediately after cooling of the ethylene-vinyl acetate copolymer saponified fine particles obtained in Reference Example 5, observed with a scanning electron microscope. 参考例6で得られたエチレン−酢酸ビニル共重合体ケン化物微粒子の冷却直後の1次粒子の走査型電子顕微鏡観察による写真(×10000倍)である。It is a photograph (x10000 time) by the scanning electron microscope observation of the primary particle immediately after cooling of the ethylene-vinyl acetate copolymer saponified fine particles obtained in Reference Example 6. 参考例7で得られたエチレン−酢酸ビニル共重合体ケン化物微粒子の冷却直後の1次粒子の走査型電子顕微鏡観察による写真(×5000倍)である。It is a photograph (* 5000 times) by the scanning electron microscope observation of the primary particle immediately after cooling of the ethylene-vinyl acetate copolymer saponified fine particle obtained in Reference Example 7. 参考例8で得られたエチレン−酢酸ビニル共重合体ケン化物微粒子の冷却直後の1次粒子の走査型電子顕微鏡観察による写真(×5000倍)である。It is the photograph (* 5000 time) by the scanning electron microscope observation of the primary particle immediately after cooling of the ethylene-vinyl acetate copolymer saponified fine particle obtained in Reference Example 8. 参考例9で得られたエチレン−酢酸ビニル共重合体ケン化物微粒子の冷却直後の1次粒子の走査型電子顕微鏡観察による写真(×5000倍)である。It is the photograph (x5000 times) by the scanning electron microscope observation of the primary particle immediately after cooling of the ethylene-vinyl acetate copolymer saponified fine particle obtained in Reference Example 9. 参考例10で得られたエチレン−酢酸ビニル共重合体ケン化物微粒子の冷却直後の1次粒子の走査型電子顕微鏡観察による写真(×5000倍)である。4 is a photograph (× 5000 magnification) of the primary particles immediately after cooling of the ethylene-vinyl acetate copolymer saponified fine particles obtained in Reference Example 10 observed by a scanning electron microscope. 参考例11で得られたエチレン−酢酸ビニル共重合体ケン化物微粒子の冷却直後の1次粒子の走査型電子顕微鏡観察による写真(×5000倍)である。It is a photograph (x5000 times) of the primary particles immediately after cooling of the ethylene-vinyl acetate copolymer saponified fine particles obtained in Reference Example 11 observed with a scanning electron microscope.

符号の説明Explanation of symbols

1 複合微粒子
2 エチレン−酢酸ビニル共重合体ケン化物微粒子
1 Composite fine particles 2 Ethylene-vinyl acetate copolymer saponified fine particles

Claims (10)

エチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子が付着している複合微粒子であって、複合微粒子の1次粒子径が100〜2000nmの球状である複合微粒子を含む塗料 A paint comprising composite fine particles in which silica fine particles are attached to the surface of ethylene-vinyl acetate copolymer saponified fine particles, wherein the composite fine particles are spherical with a primary particle diameter of 100 to 2000 nm. シリカ微粒子の含有量が、エチレン−酢酸ビニル共重合体ケン化物微粒子100質量部に対して、10〜100質量部である請求項1記載の塗料The paint according to claim 1, wherein the content of the silica fine particles is 10 to 100 parts by mass with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer saponified fine particles. シリカ微粒子が、乾式シリカである請求項1または2記載の塗料The paint according to claim 1 or 2, wherein the silica fine particles are dry silica. (a1)エチレン−酢酸ビニル共重合体ケン化物を溶媒に添加し、エチレン−酢酸ビニル共重合体ケン化物を加熱溶解させる工程、および
(b1)工程(a1)におけるエチレン−酢酸ビニル共重合体ケン化物溶液を加熱溶解後であって冷却前にシリカ微粒子を添加し、エチレン−酢酸ビニル共重合体ケン化物微粒子を凝析させるとともにエチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子を付着させて複合化する複合微粒子の製造方法。
(A1) a step of adding a saponified ethylene-vinyl acetate copolymer to a solvent, and heating and dissolving the saponified ethylene-vinyl acetate copolymer; and (b1) an ethylene-vinyl acetate copolymer ken in step (a1). Silica fine particles are added to the saponified fine particles of ethylene-vinyl acetate copolymer, and the silica fine particles are adhered to the surface of the saponified fine particles of the ethylene-vinyl acetate copolymer after the molten solution is dissolved by heating and before cooling. A method for producing composite fine particles which are combined to form a composite.
(a1)エチレン−酢酸ビニル共重合体ケン化物を溶媒に添加し、エチレン−酢酸ビニル共重合体ケン化物を加熱溶解させる工程、および
(b2)工程(a1)におけるエチレン−酢酸ビニル共重合体ケン化物溶液を冷却時にシリカ微粒子を添加し、エチレン−酢酸ビニル共重合体ケン化物微粒子を凝析させるとともにエチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子を付着させて複合化する複合微粒子の製造方法。
(A1) a step of adding a saponified ethylene-vinyl acetate copolymer to a solvent, and heating and dissolving the saponified ethylene-vinyl acetate copolymer; and (b2) an ethylene-vinyl acetate copolymer ken in step (a1). Fine particles are added by adding silica fine particles when cooling the fluoride solution to coagulate the ethylene-vinyl acetate copolymer saponified fine particles and attaching the silica fine particles to the surface of the ethylene-vinyl acetate copolymer saponified fine particles. Manufacturing method.
工程(b1)または(b2)における冷却後、得られたエチレン−酢酸ビニル共重合体ケン化物およびシリカ微粒子の混合物を静置してエチレン−酢酸ビニル共重合体ケン化物微粒子の表面にシリカ微粒子を付着させて複合化する請求項4または5記載の複合微粒子の製造方法。 After cooling in the step (b1) or (b2), the mixture of the obtained ethylene-vinyl acetate copolymer saponified product and silica fine particles is allowed to stand, and silica fine particles are deposited on the surface of the ethylene-vinyl acetate copolymer saponified fine particles. The method for producing composite fine particles according to claim 4 or 5, wherein the composite fine particles are made to adhere to form a composite. 工程(a1)におけるエチレン−酢酸ビニル共重合体ケン化物の固形分濃度が、1〜15質量%である請求項4〜6のいずれかに記載の複合微粒子の製造方法。 Definitive ethylene step (a1) - solid concentration of vinyl acetate copolymer saponified method of producing a composite fine particles according to any one of claims 4 to 6 1 to 15% by weight. 工程(a1)における溶媒が水溶性有機溶媒と水との混合溶剤であって、水溶性有機溶媒と水との混合比が、質量比で50:50〜70:30である請求項4〜7のいずれかに記載の複合微粒子の製造方法。 Solvent which definitive in step (a1) is a mixed solvent of a water-soluble organic solvent and water, mixing ratio of the water-soluble organic solvent and water, in a weight ratio 50: 50-70: Claim 4 is 30 8. The method for producing composite fine particles according to any one of 7 above. 請求項1〜3のいずれかに記載の塗料を塗布して得られる塗膜であって、水に対する接触角が0〜30度である塗膜The coating film obtained by apply | coating the coating material in any one of Claims 1-3, Comprising: The coating film whose contact angle with respect to water is 0-30 degree | times . エチレン−酢酸ビニル共重合体ケン化物微粒子の表面に乾式シリカ微粒子が付着している複合微粒子であって、複合微粒子の1次粒子径が100〜2000nmの球状である複合微粒子 Composite fine particles in which dry silica fine particles are attached to the surface of ethylene-vinyl acetate copolymer saponified fine particles, and the composite fine particles are spherical with a primary particle diameter of 100 to 2000 nm .
JP2007285837A 2007-11-02 2007-11-02 Composite fine particles consisting of saponified fine particles of ethylene-vinyl acetate copolymer coated with silica fine particles Expired - Fee Related JP5186179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007285837A JP5186179B2 (en) 2007-11-02 2007-11-02 Composite fine particles consisting of saponified fine particles of ethylene-vinyl acetate copolymer coated with silica fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007285837A JP5186179B2 (en) 2007-11-02 2007-11-02 Composite fine particles consisting of saponified fine particles of ethylene-vinyl acetate copolymer coated with silica fine particles

Publications (2)

Publication Number Publication Date
JP2009114241A JP2009114241A (en) 2009-05-28
JP5186179B2 true JP5186179B2 (en) 2013-04-17

Family

ID=40781748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285837A Expired - Fee Related JP5186179B2 (en) 2007-11-02 2007-11-02 Composite fine particles consisting of saponified fine particles of ethylene-vinyl acetate copolymer coated with silica fine particles

Country Status (1)

Country Link
JP (1) JP5186179B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893777B2 (en) 2009-05-11 2012-03-07 ソニー株式会社 Recording apparatus, recording method, reproducing apparatus, reproducing method, and recording medium
JP2011213806A (en) * 2010-03-31 2011-10-27 Sumitomo Chemical Co Ltd Thermoplastic resin pellet
EP2687560A4 (en) * 2011-03-17 2015-10-28 Kuraray Co Modified vinyl alcohol polymer solution and method for producing same
JP6526571B2 (en) * 2013-12-16 2019-06-05 住友精化株式会社 Epoxy resin adhesive
JP6542155B2 (en) * 2015-06-03 2019-07-10 積水化成品工業株式会社 Method of producing substantially spherical resin particles comprising thermoplastic resin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833060A (en) * 1988-03-21 1989-05-23 Eastman Kodak Company Polymeric powders having a predetermined and controlled size and size distribution
JP4447115B2 (en) * 2000-05-12 2010-04-07 日本ペイント株式会社 Hydrophilizing agent and method for producing the same
JP3474866B2 (en) * 2000-05-12 2003-12-08 日本ペイント株式会社 Method of hydrophilizing heat exchanger and heat exchanger hydrophilized
JP3828470B2 (en) * 2001-09-03 2006-10-04 株式会社クラレ Ethylene-vinyl alcohol copolymer composition and powder coating using the same

Also Published As

Publication number Publication date
JP2009114241A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5186179B2 (en) Composite fine particles consisting of saponified fine particles of ethylene-vinyl acetate copolymer coated with silica fine particles
JP3946771B2 (en) Stable amino-containing polymer formulations
CN103068855B (en) The method preparing the stabilising dispersions of starch granules
JP2009091426A (en) Aqueous dispersion, its manufacturing method and layered product
TWI406873B (en) A polyvinyl acetal powder and a powder coating using the powder
CN1278845A (en) Stable waterborne polymer compositions containing poly (alkyleneimines)
JP2006274214A (en) Preparation process of white pigment for water-based inks
JP5295621B2 (en) Bactericidal filler composition
WO2011027818A1 (en) Polyolefin-based composite resin spherical particles, coating composition and coated object
JP2019031644A (en) Polyolefin resin aqueous dispersion and method for producing the same
CN109852127A (en) A kind of polyester type powder paint composite curing agent and the preparation method and application thereof
JP2013087284A (en) Process for improving hiding efficiency in pigment paint
JP4864699B2 (en) Process for producing aqueous dispersion of ethylene / vinyl alcohol copolymer
CN108948850A (en) A kind of aqueous copper gold pigment and preparation method thereof
JPS62246984A (en) Anti-fogging agent composition
JP4270790B2 (en) Water-based adhesive for paper and laminate
JP5036405B2 (en) Composition and powder coating
JP4744709B2 (en) Resin aqueous dispersion
JP4904627B2 (en) Resin solution composition with good solution properties
JP7128057B2 (en) Compounding agent for paint
JP4742163B2 (en) Method for producing cast coated paper
JP2009023472A (en) Cart coated with polyvinyl acetal powder coating
CN110315731A (en) BOPP (biaxially-oriented polypropylene) antistatic stretched film and preparation method thereof
WO2019004007A1 (en) Coating-type antifogging agent for films for agricultural use, and film for agricultural use
JP2001288404A (en) Water-base coating composition and polyolefin resin molding prepared by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

R150 Certificate of patent or registration of utility model

Ref document number: 5186179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees