JP5170355B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition Download PDF

Info

Publication number
JP5170355B2
JP5170355B2 JP2001147427A JP2001147427A JP5170355B2 JP 5170355 B2 JP5170355 B2 JP 5170355B2 JP 2001147427 A JP2001147427 A JP 2001147427A JP 2001147427 A JP2001147427 A JP 2001147427A JP 5170355 B2 JP5170355 B2 JP 5170355B2
Authority
JP
Japan
Prior art keywords
weight
zno
sio
composition
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001147427A
Other languages
Japanese (ja)
Other versions
JP2002338342A (en
Inventor
均 増村
礼智 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001147427A priority Critical patent/JP5170355B2/en
Publication of JP2002338342A publication Critical patent/JP2002338342A/en
Application granted granted Critical
Publication of JP5170355B2 publication Critical patent/JP5170355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は誘電体磁器組成物に係り、特に誘電体共振器や温度補償用誘電体の材料として好適な高周波用誘電体磁器組成物に関する。
【0002】
【従来の技術】
携帯電話器等の高周波機器は、小型化、高機能化、低価格が望まれている。これら高周波機器に使用される誘電体共振器にも、同様に小型、高性能且つ低価格なものが望まれている。
【0003】
これら誘電体共振器等の材料として用いられる誘電体磁器組成物には、比誘電率が高く、Q値が高く、更に静電容量の温度依存性が低い特性のものが要求される。特に、静電容量の温度特性に関しては、欧州工業規格(以下EIAという)で規定されているCOG特性を満足するものが望ましい。
【0004】
COG特性とは、+25℃における静電容量を基準としたとき、−55℃〜+125℃の広い温度範囲にわたり、静電容量の温度変化率の係数(以下TCという)が±30ppm/℃以内と平坦である特性のことである。
【0005】
このような特性を満足する誘電体磁器組成物して、特開平4−10494号公報に、置換バリウム−ネオジウム−チタン−ペロブスカイト構造組成物に二酸化ケイ素を添加物として含有させると1400℃以下の低温焼結が可能になることが開示されている。
【0006】
誘電体磁器組成物を製造するために低温で焼結できることは誘電体磁器の低価格化のために非常に重要である。しかも焼結温度が高いと高価な高温用炉が必要となり、設備投資が莫大なものになるのみならず、運転に際し電気エネルギー消費も多く、環境負荷も大きくなってしまう。
【0007】
誘電体磁器組成物が積層セラミックコンデンサとして使用される場合、内部電極として従来から用いられているPd、Pt、Au等の貴金属の代わりに安価なAgを用いることが低価格化のために有効であることが知られている。Agは前記Pd等の貴金属と比較して融点が低いので、内部電極として安価なAgを使用するためにも低温焼結が望ましい。Agの融点は961.93℃(理化学辞典より)であるので、Agが融解したり蒸発しないように少なくとも930℃以下の温度で焼結できることか望ましい。さらに製造の安定性を考慮すると望ましくは900℃以下の温度で焼結できることが要求される。
【0008】
【発明が解決しようとする課題】
本発明はこのような事情に対処するものであり、本発明の目的は、比誘電率及びQ値が高く、前記COG特性を満足し、かつ焼結温度が900℃以下と低温焼結が可能な誘電体磁器組成物を提供し、内部電極として安価なAgを使用できることにある。
【0009】
【課題を解決するための手段】
前記目的を達成するため、本発明に係る誘電体磁器組成物では、(BaNdSmMn)TiO3 磁器組成物に対し、ZnO−SiO2 −BaOの三元図において、重量比で50%:30%:20%(点A)、30%:50%:20%(点B)、20%:30%:50%(点C)、45%:20%:35%(点D)からなる範囲にあり、さらに重量比でZnO−SiO2 −BaOを6〜13%、B2 3 を5〜13.5%、CuOを0.5〜3%、B2 3 を0.5〜3%添加したことを特徴とする。
【0010】
これにより、比誘電率が60以上、誘電損失tanDが0.001以下で、比誘電率の温度依存性が前記COG特性を満足し、且つ焼結温度が900℃以下の低温焼結が可能な磁器組成物を得ることができる。
【0011】
【発明の実施の形態】
本発明の実施の形態を説明する。
【0012】
本発明の好ましい実施例の1つは、単板型のセラミックコンデンサに用いられる誘電体磁器組成物である。
【0013】
まず(BaNdSmMn)TiO3 系の母材を作成する。この母材はBaCO3 、TiO2 、Nd2 3 、Sm2 3 、MnCO3 を出発材料として、例えばBaO18mol%、Nd2 3 11mol%、Sm2 3 4mol%、TiO2 67mol%、MnCO3 0.05wt%になるように秤量後、水を溶媒としてジルコニアビーズを用いて3時間湿式混合を行った後乾燥した。これにより得られた混合体を1170℃で2時間仮焼後、水を溶媒としてジルコニアビーズを用いて3時間湿式粉砕した後、乾燥させることにより、(BaNdSmMn)TiO3 を有する磁器組成物を得た。
【0014】
それから出発材料としてZnO、SiO2 、BaCO3 を、焼結後の組成が、表1に示す目的組成になるように秤量し、水を溶媒としてジルコニアビーズを用いて3時間湿式混合を行った後に乾燥した。そして得られた混合体を680℃で2時間仮焼後、攪拌機で粉砕し、ZnO−SiO2 −BaCO3 の混合体を得た。
【0015】
この(BaNdSmMn)TiO3 系の母材と、ZnO−SiO2 −BaCO3 、CuO、B2 3 、Bi2 3 からなる出発原料を用いて焼成後の組成が、表1に示す目的組成になるよう秤量し、これらを水を溶媒としてジルコニアビーズを用いて3時間湿式混合後乾燥して乾粉を得た。この得られた混合粉体にバインダーとしてPVA(ポリビニールアルコール)を添加して造粒した。
【0016】
このようにして調整された粉体を16.5mmΦの金型に充填し、プレス成形機にて3ton/cm2 の圧力で成形し、厚さ0.7mmのデスク状サンプルを得た。こうして得られたサンプルを900℃で2時間空気中焼成を行った。これら得られた焼結体磁器の両面にAgペーストを印刷し、750℃で焼き付けして電極を形成した。
【0017】
こうして得られたサンプルについて比誘電率、誘電損失tanDを1KHz、1Vrs(実効電圧)の条件で自動ブリッジ式測定器を用いて測定した。又静電容量の温度依存性TC(ppm/℃)を、+25℃における静電容量を基準として、−55〜+125℃での静電容量の温度依存性を求めた。
【0018】
【表1】

Figure 0005170355
【0019】
表1は、このようにして得られた各焼結体の単板型コンデンサの特性を表したものであり、×印は本発明の範囲外の比較例を示す。なお表1においてKは比誘電率を示す。また表1の%は重量%を示す。
【0020】
表1において、試料番号Nr.1からNr.8は(BaNdSmMn)TiO3 と、ZnO−SiO2 −BaO(ZSB)、CuOと、B2 3 と、Bi2 3 の組成比を80:9:1:1:9の重量%と一定にしておき、ZSBを構成するZnOとSiO2 とBaOの比率を、図1に示す三元図の点STD、点A〜点Gの状態に変化させたものである。
【0021】
ここで点STDはZnO:SiO2 :BaO3 が35:35:30重量%を示し、点Aは50:30:20重量%を示し、点Bは30:50:20重量%を示し、点Cは20:30:50重量%を示し、点Dは45:20:35重量%を示し、点Eは40:45:15重量%を示し、点Fは15:45:40重量%を示し、点Gは35:20:45重量%を示す。図1より明らかなように点STDは点A、B、C、Dで囲まれた範囲内にある。
【0022】
表1から明らかなように、Nr.1〜Nr.5の点STD、点A、点B、点C、点Dに示すものは、いずれも比誘電率Kが60以上と高く、tanDが10×10-4以下と小さく、TCが±30ppm/℃以内と小さく、良好な特性を示す。
【0023】
Nr.6〜Nr.8は点A、点B、点C、点Dで囲まれた範囲から外れたZSBの比率を用いたものであり、いずれも比誘電率Kが60以下と小さく、tanDが10×10-4以上と大きく、TCも±30ppm/℃以上と大きな値を示す。
【0024】
これらNr.6〜Nr.8はいずれも900℃では焼結性が不充分のためと考えれられる。
【0025】
これらのことより、ZSBの比率は、図1の点A、B、C、Dの範囲内であることが望ましい。
【0026】
Nr.9〜Nr.13は、前記ZSB内の組成比率を前記Nr.1と同一にして、その(BaNdSmMn)TiO3 に対する添加量を変化させたものである。このときCuOとB2 3 は変化させないので、合計量が100重量%になるようにBi2 O量を変化した。
【0027】
これによりZSBが5重量%以下になれば、Nr.11に示す如く、比誘電率Kが60以下と小さく、tanDが10×10-4以上と大きく、TCが±30ppm/℃以上と大きい、またZSBが15重量%以上になれば、Nr.13に示す如く、これまた誘電率Kが小さく、tanDが大きく、TCも大きく電気的特性が悪化することがわかる。従ってNr.9、10、12よりZSB量は6〜13重量%が望ましい。
【0028】
Nr.14〜Nr.18は、(BaNdSmMn)TiO3 量を変化させたものである。そのとき他の組成(ZSB、CuO、B2 3 、Bi2 3 )はNr.1の組成比(9:1:1:9)と同じになるように調整した。
【0029】
(BaNdSmMn)TiO3 が重量65%以下になれば、Nr.14より明らかなように比誘電率Kの低下が大きく、また90重量%以上になればNr.18より明らかなようにこれまた比誘電率Kの低下がみられ、好ましくない。従ってNr.15〜Nr.17より(BaNdSmMn)TiO3 の量は70〜85重量%が望ましい。これを逆に表現すれば、添加物の添加量は15〜30重量%が望ましい。
【0030】
Nr.19〜Nr.23はCuOの添加量を変化させたものである。
【0031】
CuOの添加量が0%のとき、Nr.19に示す如く、焼結が進まず比誘電率Kが小さいものとなる。また添加量が5重量%では、Nr.23に示す如く、比誘電率Kは小さく、tanDが大きく、かつTCも大きくなり好ましいものではない。これらのことからCuOの添加量はNr.20〜Nr.22に示す如く、0.5〜3重量%が望ましい。
【0032】
Nr.24〜Nr.28は、B2 3 の添加量を変化させたものである。
【0033】
2 3 の添加量が0%のとき、Nr.24に示す如く、焼結が進まず誘電率が小さく、tanD、TCのいずれも大きな値のものであった。またNr.28に示す如く、添加量が5重量%のときは誘電率は大きくなるものの、TCが大きく好ましくない。これらのことよりB2 3 の添加量はNr.25〜Nr.27に示す如く、0.5〜3重量%が望ましい。
【0034】
Nr.29〜Nr.32は、Nr.1の組成のBi2 3 の一部をMoO3 で置換したものである。
【0035】
MoO3 の置換量が7重量%の場合は、Nr.32に示す如く、TCが大きくなり好ましくない。しかしNr.29〜Nr.31より明らかな如く、MoO3 の置換量が5重量%の場合は、比誘電率Kが60以上と大きく、tanDが10×10-4以下と小さく、TCが30ppm/℃以下とこれまた小さい。従ってBi2 3 の一部をMoO3 で置換するとき5重量%までの置換は、誘電率が大きく、好ましいものである。
【0036】
Nr.33〜Nr.36は、Nr.1の組成のBi2 3 の一部をLi2 3 で置換したものである。Li2 3 の置換量が5重量%の場合は、Nr.36に示す如く、tanDが大きくなり好ましくない。しかしNr.33〜Nr.35より明らかな如く、Li2 3 の置換量が3重量%までの場合は、比誘電率Kが60以上と大きく、tanDが10×10-4以下と小さく、TCが30ppm/℃以下とこれまた小さい。従ってBi2 3 の一部をLi2 3 で置換するとき、3重量%までの置換は電気特性が良好なものである。
【0037】
次に本発明の好ましい第2の実施例として、本発明の誘電体磁器組成物を積層セラミックコンデンサに使用した例について説明する。
【0038】
前記説明と同様の手法により、(BaNdSmMn)TiO3 とZnO−SiO2 −BaCO3 、CuO、B2 3 、Bi2 3 を出発原料として、その焼成後の組成が本発明の範囲内のものとなるように秤量後、水を溶媒としてジルコニアビーズを用いて3時間湿式混合を行った。このようにして得られた混合体にバインダーとしてPVA(ポリビニールアルコール)を添加して混合し、セラミック・スリップを調整した。このセラミック・スリップをドクターブレード法によってシートを成形し、厚さ23μmの矩形のグリーンシートを得た。
【0039】
次にこのセラミック・グリーンシート上にAg導電ペーストを印刷し内部電極を形成した。これら内部電極が形成された前記セラミック・グリーンシートを、導電ペースト層が引き出されている例が互い違いになるように複数枚積層して積層体を得る。そして上記積層体を空気中で900℃で2時間焼成する。
【0040】
焼成後、セラミック焼結体の両側に銀ペーストを塗布し、大気中において750℃で焼き付け、内部電極と電気的に接続された外部電極を形成した。
【0041】
上記のようにして得られた積層コンデンサの外形寸法は、幅3.2mm、長さ1.6mm、厚さ0.5mmであった。また上記内部電極間に介在する各誘電体セラミック層の厚さは14μmであり、有効誘電体セラミック層の総数は20層であった。
【0042】
このようにして得られた誘電体磁器組成物の特性は、焼結温度が900℃で2時間の焼結でよく、比誘電率が60以上で、tanDが10×10-4以下であって、TCは±30ppm/℃以下であった。
【0043】
特に表1に示すサンプルNr.1の組成を用いて得られた積層コンデンサの電気的特性は、900℃2時間の焼成で、静電容量2400pF(比誘電率80)、tanDが3×10-4、TCが−10ppm/℃と良好のものが得られた。
【0044】
本発明によれば、マイクロ波領域で使用される誘電体共振器や温度補償用誘電体の材料として用いられる高周波用誘電体磁器組成物を提供できる。
【0045】
【発明の効果】
本発明の誘電体磁器組成物は、−55℃〜+125℃の広い温度範囲にわたって静電容量の温度依存性が±30ppm/℃以内で、EIA規格で規定する温度係数特性を満足し、比誘電率が60以上でtanDが10×10-4以下という電気的特性の非常にすぐれたものを提供することができる。
【0046】
しかもBi2 3 の一部をMoO3 やLi2 3 で置換することにより、tanDや温度係数を前記特性内に維持するとともに比誘電率が略80というすぐれた特性のものを得ることができる。
【0047】
更に、900℃という低い温度で焼結が可能であるので、炉等の焼結に用いられる設備投資が安くてすみ、この誘電体磁器組成物が積層セラミックコンデンサに用いられた場合、内部電極として安価なAgを使用することができるので、低価格の誘電体磁器組成物を実現できる。
【図面の簡単な説明】
【図1】本発明の組成範囲を示すZnO−SiO2 −BaCO3 三元図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic composition, and more particularly to a high frequency dielectric ceramic composition suitable as a material for a dielectric resonator or a temperature compensating dielectric.
[0002]
[Prior art]
High-frequency devices such as mobile phones are desired to be small in size, highly functional, and low in price. Similarly, a dielectric resonator used in these high-frequency devices is desired to be small, high-performance and low-cost.
[0003]
A dielectric ceramic composition used as a material for these dielectric resonators or the like is required to have a characteristic having a high relative dielectric constant, a high Q value, and a low capacitance temperature dependency. In particular, regarding the temperature characteristics of the capacitance, those satisfying the COG characteristics defined by European Industrial Standards (hereinafter referred to as EIA) are desirable.
[0004]
The COG characteristic is that when the capacitance at + 25 ° C. is used as a reference, the coefficient of temperature change rate of capacitance (hereinafter referred to as TC) is within ± 30 ppm / ° C. over a wide temperature range of −55 ° C. to + 125 ° C. It is a characteristic that is flat.
[0005]
A dielectric porcelain composition satisfying such characteristics is disclosed in Japanese Patent Application Laid-Open No. 4-10494. When silicon dioxide is added as an additive to a substituted barium-neodymium-titanium-perovskite structure composition, the temperature becomes 1400 ° C. or lower. It is disclosed that sintering is possible.
[0006]
The ability to sinter at a low temperature to produce a dielectric ceramic composition is very important for reducing the price of the dielectric ceramic. Moreover, if the sintering temperature is high, an expensive high-temperature furnace is required, and not only the capital investment becomes enormous, but also the electric energy is consumed during operation, and the environmental load becomes large.
[0007]
When a dielectric ceramic composition is used as a multilayer ceramic capacitor, it is effective for lowering the price to use inexpensive Ag instead of noble metals such as Pd, Pt, Au, etc. that have been conventionally used as internal electrodes. It is known that there is. Since Ag has a lower melting point than noble metals such as Pd, low temperature sintering is desirable in order to use inexpensive Ag as an internal electrode. Since the melting point of Ag is 961.93 ° C. (from RIKEN), it is desirable that it can be sintered at a temperature of at least 930 ° C. or less so that Ag does not melt or evaporate. Furthermore, considering the stability of production, it is desirable that sintering should be possible at a temperature of 900 ° C. or lower.
[0008]
[Problems to be solved by the invention]
The present invention addresses such circumstances, and the object of the present invention is to achieve low temperature sintering with a high dielectric constant and Q value, satisfying the COG characteristics, and a sintering temperature of 900 ° C. or lower. It is to be able to use inexpensive Ag as an internal electrode.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the dielectric ceramic composition according to the present invention, the (BaNdSmMn) TiO 3 ceramic composition has a weight ratio of 50%: 30% in the ternary diagram of ZnO—SiO 2 —BaO: 20% (point A), 30%: 50%: 20% (point B), 20%: 30%: 50% (point C), 45%: 20%: 35% (point D) further 6-13% of ZnO-SiO 2 -BaO in a weight ratio, B 2 O 3 and 5 to 13.5%, a CuO 0.5 to 3% of B 2 O 3 0.5~3% added It is characterized by that.
[0010]
As a result, low-temperature sintering is possible in which the relative dielectric constant is 60 or more, the dielectric loss tanD is 0.001 or less, the temperature dependence of the dielectric constant satisfies the COG characteristics, and the sintering temperature is 900 ° C. or less. A porcelain composition can be obtained.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described.
[0012]
One preferred embodiment of the present invention is a dielectric ceramic composition used in a single plate type ceramic capacitor.
[0013]
First, a (BaNdSmMn) TiO 3 base material is prepared. This base material uses BaCO 3 , TiO 2 , Nd 2 O 3 , Sm 2 O 3 , MnCO 3 as starting materials, for example, BaO 18 mol%, Nd 2 O 3 11 mol%, Sm 2 O 3 4 mol%, TiO 2 67 mol%, After weighing to make 0.05 wt% of MnCO 3, wet mixing was performed for 3 hours using zirconia beads with water as a solvent, followed by drying. The mixture thus obtained was calcined at 1170 ° C. for 2 hours, then wet pulverized with zirconia beads for 3 hours using water as a solvent, and then dried to obtain a porcelain composition having (BaNdSmMn) TiO 3. It was.
[0014]
Then, after weighing ZnO, SiO 2 and BaCO 3 as starting materials so that the composition after sintering becomes the target composition shown in Table 1, and performing wet mixing for 3 hours using zirconia beads with water as a solvent. Dried. The obtained mixture was calcined at 680 ° C. for 2 hours and then pulverized with a stirrer to obtain a ZnO—SiO 2 —BaCO 3 mixture.
[0015]
The composition after firing using this (BaNdSmMn) TiO 3 base material and a starting material composed of ZnO—SiO 2 —BaCO 3 , CuO, B 2 O 3 , Bi 2 O 3 is shown in Table 1. These were weighed, and these were wet-mixed for 3 hours using zirconia beads with water as a solvent, followed by drying to obtain dry powder. The obtained mixed powder was granulated by adding PVA (polyvinyl alcohol) as a binder.
[0016]
The powder thus adjusted was filled into a 16.5 mmφ mold and molded with a press molding machine at a pressure of 3 ton / cm 2 to obtain a desk-shaped sample having a thickness of 0.7 mm. The sample thus obtained was calcined in air at 900 ° C. for 2 hours. An Ag paste was printed on both surfaces of the obtained sintered ceramics and baked at 750 ° C. to form electrodes.
[0017]
The relative permittivity and dielectric loss tanD of the sample thus obtained were measured using an automatic bridge type measuring instrument under the conditions of 1 KHz and 1 Vrs (effective voltage). Further, the temperature dependence TC (ppm / ° C.) of the electrostatic capacity was determined based on the electrostatic capacity at + 25 ° C. and the temperature dependence of the electrostatic capacity at −55 to + 125 ° C.
[0018]
[Table 1]
Figure 0005170355
[0019]
Table 1 shows the characteristics of the single-plate capacitor of each sintered body obtained in this manner, and the x marks indicate comparative examples outside the scope of the present invention. In Table 1, K represents a relative dielectric constant. Moreover,% of Table 1 shows weight%.
[0020]
In Table 1, sample number Nr. 1 to Nr. No. 8 has a constant composition ratio of (BaNdSmMn) TiO 3 , ZnO—SiO 2 —BaO (ZSB), CuO, B 2 O 3 and Bi 2 O 3 to 80: 9: 1: 1: 9 wt%. Thus, the ratio of ZnO, SiO 2 and BaO constituting ZSB is changed to the states of points STD and points A to G in the ternary diagram shown in FIG.
[0021]
Here, the point STD indicates that ZnO: SiO 2 : BaO 3 is 35:35:30 wt%, the point A indicates 50:30:20 wt%, the point B indicates 30:50:20 wt%, C represents 20:30:50 wt%, point D represents 45:20:35 wt%, point E represents 40:45:15 wt%, and point F represents 15:45:40 wt% The point G represents 35: 20: 45% by weight. As is apparent from FIG. 1, the point STD is within the range surrounded by the points A, B, C, and D.
[0022]
As is apparent from Table 1, Nr. 1 to Nr. The points 5 shown in point STD, point A, point B, point C and point D all have a high relative dielectric constant K of 60 or more, a small tanD of 10 × 10 −4 or less, and a TC of ± 30 ppm / ° C. It is small and has good characteristics.
[0023]
Nr. 6-Nr. 8 is a ratio of ZSB out of the range surrounded by point A, point B, point C, and point D. In all cases, the relative dielectric constant K is as small as 60 or less, and tanD is 10 × 10 −4. TC also shows a large value of ± 30 ppm / ° C. or higher.
[0024]
These Nr. 6-Nr. No. 8 is considered to be due to insufficient sinterability at 900 ° C.
[0025]
From these facts, it is desirable that the ratio of ZSB is within the range of points A, B, C, and D in FIG.
[0026]
Nr. 9-Nr. 13 represents the composition ratio in the ZSB. 1 and the amount added to (BaNdSmMn) TiO 3 is changed. At this time, since CuO and B 2 O 3 were not changed, the amount of Bi 2 O was changed so that the total amount became 100% by weight.
[0027]
As a result, if ZSB is 5 wt% or less, Nr. 11, when the relative dielectric constant K is as small as 60 or less, tanD is as large as 10 × 10 −4 or more, TC is as large as ± 30 ppm / ° C. or more, and ZSB is 15% by weight or more, Nr. As can be seen from FIG. 13, the dielectric constant K is small, tanD is large, TC is large, and the electrical characteristics are deteriorated. Therefore, Nr. From 9, 10, and 12, the ZSB amount is desirably 6 to 13% by weight.
[0028]
Nr. 14-Nr. No. 18 is obtained by changing the amount of (BaNdSmMn) TiO 3 . At that time, other compositions (ZSB, CuO, B 2 O 3 , Bi 2 O 3 ) are Nr. The composition ratio was adjusted to be the same as the composition ratio of 1 (9: 1: 1: 9).
[0029]
If (BaNdSmMn) TiO 3 has a weight of 65% or less, Nr. As is clear from FIG. 14, when the relative dielectric constant K is greatly reduced and becomes 90% by weight or more, Nr. As is clear from FIG. 18, the relative permittivity K is also lowered, which is not preferable. Therefore, Nr. 15-Nr. 17, the amount of (BaNdSmMn) TiO 3 is preferably 70 to 85% by weight. In other words, the additive amount is preferably 15 to 30% by weight.
[0030]
Nr. 19-Nr. No. 23 changes the amount of CuO added.
[0031]
When the amount of CuO added is 0%, Nr. As shown in FIG. 19, the sintering does not proceed and the relative dielectric constant K becomes small. When the addition amount is 5% by weight, Nr. 23, the relative dielectric constant K is small, tanD is large, and TC is large, which is not preferable. For these reasons, the amount of CuO added is Nr. 20-Nr. As shown in FIG. 22, 0.5 to 3% by weight is desirable.
[0032]
Nr. 24-Nr. No. 28 is obtained by changing the amount of B 2 O 3 added.
[0033]
When the amount of B 2 O 3 added is 0%, Nr. As shown in FIG. 24, sintering did not proceed and the dielectric constant was small, and both tanD and TC were large values. Nr. As shown in FIG. 28, when the addition amount is 5% by weight, the dielectric constant increases, but the TC is not preferable because it is large. From these facts, the amount of B 2 O 3 added is Nr. 25-Nr. As shown in 27, 0.5 to 3% by weight is desirable.
[0034]
Nr. 29-Nr. 32 is Nr. A part of Bi 2 O 3 having the composition 1 is substituted with MoO 3 .
[0035]
When the substitution amount of MoO 3 is 7% by weight, Nr. As shown in FIG. 32, TC is undesirably large. However, Nr. 29-Nr. As is clear from FIG. 31, when the substitution amount of MoO 3 is 5% by weight, the relative dielectric constant K is as large as 60 or more, tanD is as small as 10 × 10 −4 or less, and TC is as small as 30 ppm / ° C. or less. . Therefore, when a part of Bi 2 O 3 is replaced with MoO 3 , the replacement up to 5% by weight is preferable because the dielectric constant is large.
[0036]
Nr. 33-Nr. 36, Nr. A part of Bi 2 O 3 having the composition 1 is substituted with Li 2 O 3 . When the substitution amount of Li 2 O 3 is 5% by weight, Nr. As shown in 36, tanD becomes large, which is not preferable. However, Nr. 33-Nr. 35, when the substitution amount of Li 2 O 3 is up to 3% by weight, the relative dielectric constant K is as large as 60 or more, the tanD is as small as 10 × 10 −4 or less, and the TC is 30 ppm / ° C. or less. This is also small. Therefore, when a part of Bi 2 O 3 is substituted with Li 2 O 3 , the substitution up to 3% by weight has good electrical characteristics.
[0037]
Next, as a preferred second embodiment of the present invention, an example in which the dielectric ceramic composition of the present invention is used for a multilayer ceramic capacitor will be described.
[0038]
By the same method as described above, the composition after firing is within the scope of the present invention using (BaNdSmMn) TiO 3 and ZnO—SiO 2 —BaCO 3 , CuO, B 2 O 3 , Bi 2 O 3 as starting materials. After weighing so as to become a product, wet mixing was performed for 3 hours using zirconia beads with water as a solvent. Ceramic slip was adjusted by adding PVA (polyvinyl alcohol) as a binder to the resulting mixture and mixing. A sheet of this ceramic slip was formed by the doctor blade method to obtain a rectangular green sheet having a thickness of 23 μm.
[0039]
Next, an Ag conductive paste was printed on the ceramic green sheet to form internal electrodes. A laminate is obtained by laminating a plurality of the ceramic green sheets on which the internal electrodes are formed such that the conductive paste layers are alternately drawn. The laminate is fired at 900 ° C. for 2 hours in air.
[0040]
After firing, a silver paste was applied to both sides of the ceramic sintered body and baked at 750 ° C. in the atmosphere to form an external electrode electrically connected to the internal electrode.
[0041]
The outer dimensions of the multilayer capacitor obtained as described above were 3.2 mm in width, 1.6 mm in length, and 0.5 mm in thickness. The thickness of each dielectric ceramic layer interposed between the internal electrodes was 14 μm, and the total number of effective dielectric ceramic layers was 20.
[0042]
The dielectric porcelain composition thus obtained was characterized by a sintering temperature of 900 ° C. for 2 hours, a relative dielectric constant of 60 or more, and a tanD of 10 × 10 −4 or less. , TC was ± 30 ppm / ° C. or less.
[0043]
In particular, the sample Nr. The electrical characteristics of the multilayer capacitor obtained using the composition of No. 1 are as follows: a firing at 900 ° C. for 2 hours, a capacitance of 2400 pF (relative dielectric constant 80), a tanD of 3 × 10 −4 , and a TC of −10 ppm / ° C. And a good one was obtained.
[0044]
ADVANTAGE OF THE INVENTION According to this invention, the dielectric ceramic composition for high frequencies used as a material of the dielectric resonator used in a microwave area | region and the dielectric material for temperature compensation can be provided.
[0045]
【Effect of the invention】
The dielectric ceramic composition of the present invention has a temperature coefficient dependence within ± 30 ppm / ° C. over a wide temperature range of −55 ° C. to + 125 ° C., satisfies the temperature coefficient characteristic defined by the EIA standard, and has a relative dielectric constant. It is possible to provide an excellent electrical property having a rate of 60 or more and tanD of 10 × 10 −4 or less.
[0046]
Moreover, by substituting a part of Bi 2 O 3 with MoO 3 or Li 2 O 3 , it is possible to maintain the tanD and the temperature coefficient within the above characteristics and to obtain an excellent characteristic with a relative dielectric constant of about 80. it can.
[0047]
Furthermore, since sintering can be performed at a temperature as low as 900 ° C., capital investment used for sintering of a furnace or the like is low, and when this dielectric ceramic composition is used for a multilayer ceramic capacitor, as an internal electrode Since inexpensive Ag can be used, a low-cost dielectric ceramic composition can be realized.
[Brief description of the drawings]
FIG. 1 is a ternary diagram of ZnO—SiO 2 —BaCO 3 showing the composition range of the present invention.

Claims (3)

(BaNdSmMn)TiO3 、ZnO、SiO2 、CuO、B2 3 、Bi23 、BaOを含有する誘電体磁器組成物において、前記ZnO、SiO2 、BaOが、ZnO−SiO2−BaOの三元図において、重量比でそれぞれ50%:30%:20%、30%:50%:20%、20%:30%:50%、45%:20%:35からなる範囲にあることを特徴とし、
前記ZnO、前記SiO 2 、前記CuO、前記B 2 3 、前記Bi 2 3 及び、前記BaOの総量は、前記(BaNdSmMn)TiO 3 に対して、重量比で15〜30%の範囲内にある、
誘電体磁器組成物。
In the dielectric ceramic composition containing (BaNdSmMn) TiO 3 , ZnO, SiO 2 , CuO, B 2 O 3 , Bi 2 O 3 , BaO, the ZnO, SiO 2 , and BaO are ZnO—SiO 2 —BaO. In the ternary diagram, the weight ratios are in the ranges of 50%: 30%: 20%, 30%: 50%: 20%, 20%: 30%: 50%, 45%: 20%: 35, respectively. As a feature ,
The total amount of the ZnO, the SiO 2 , the CuO, the B 2 O 3 , the Bi 2 O 3 , and the BaO is within a range of 15 to 30% by weight with respect to the (BaNdSmMn) TiO 3 . It is in,
Dielectric ceramic composition.
(BaNdSmMn)TiO3 磁器組成物に対し、重量比でZnO−SiO2 −BaOを6〜13%、Bi23を5〜13.5%、CuOを0.5〜3%、B23を0.5〜3%添加したことを特徴とし、
前記添加物ZnO−SiO 2 −BaOと、Bi 2 3 と、CuOと、B 2 3 の総量は、(BaNdSmMn)TiO 3 磁器組成物に対し、重量比で15〜30%の範囲内にあることを特徴とする、
誘電体磁器組成物。
(BaNdSmMn) TiO 3 porcelain composition by weight ratio ZnO—SiO 2 —BaO 6 to 13%, Bi 2 O 3 5 to 13.5%, CuO 0.5 to 3%, B 2 O 3 is added 0.5 to 3% ,
The total amount of the additives ZnO—SiO 2 —BaO, Bi 2 O 3 , CuO, and B 2 O 3 is within a range of 15 to 30% by weight with respect to the (BaNdSmMn) TiO 3 porcelain composition. It is characterized by being,
Dielectric ceramic composition.
(BaNdSmMn)TiO(BaNdSmMn) TiO 3 Three 磁器組成物に対し、重量比でZnO−SiOZnO-SiO by weight ratio to the porcelain composition 22 −BaOを6〜13%、Bi-6-13% BaO, Bi 22 O 3Three を5〜13.5%、CuOを0.5〜3%、B5 to 13.5%, CuO 0.5 to 3%, B 22 O 3Three を0.5〜3%添加したことを特徴とし、Is added 0.5 to 3%,
前記添加物BiSaid additive Bi 22 O 3Three の一部を重量比でMoOA portion of MoO by weight 3Three 0〜5%又はLi 0-5% or Li 22 O 3Three 0〜3%で置換したことを特徴とする誘電体磁器組成物。A dielectric ceramic composition characterized by being substituted by 0 to 3%.
JP2001147427A 2001-05-17 2001-05-17 Dielectric porcelain composition Expired - Lifetime JP5170355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001147427A JP5170355B2 (en) 2001-05-17 2001-05-17 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001147427A JP5170355B2 (en) 2001-05-17 2001-05-17 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JP2002338342A JP2002338342A (en) 2002-11-27
JP5170355B2 true JP5170355B2 (en) 2013-03-27

Family

ID=18992919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001147427A Expired - Lifetime JP5170355B2 (en) 2001-05-17 2001-05-17 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP5170355B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5294441B2 (en) * 2006-03-30 2013-09-18 双信電機株式会社 Electronic components

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2788459B2 (en) * 1988-11-21 1998-08-20 ティーディーケイ株式会社 Dielectric porcelain composition
JP2753311B2 (en) * 1989-03-10 1998-05-20 ティーディーケイ株式会社 Dielectric ceramic composition for temperature compensation
DE4334454A1 (en) * 1993-10-09 1995-04-13 Philips Patentverwaltung Substituted barium-neodyn-titanium perovskite Dielectric, ceramic composition, capacitor and microwave component
JP3467874B2 (en) * 1994-12-12 2003-11-17 宇部興産株式会社 Dielectric porcelain composition
JP4108836B2 (en) * 1998-07-15 2008-06-25 Tdk株式会社 Dielectric porcelain composition
JP4203176B2 (en) * 1999-03-16 2008-12-24 Tdk株式会社 Dielectric porcelain composition
JP2000313659A (en) * 1999-04-27 2000-11-14 Philips Japan Ltd Dielectric ceramic composition
JP4377482B2 (en) * 1999-07-22 2009-12-02 Tdk株式会社 Dielectric ceramic composition and manufacturing method thereof
JP2001348270A (en) * 2000-05-31 2001-12-18 Philips Japan Ltd Dielectric ceramic composition

Also Published As

Publication number Publication date
JP2002338342A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JP2007055828A (en) Dielectric ceramic composition and electronic component produced using the same
JP5170355B2 (en) Dielectric porcelain composition
JP3698953B2 (en) Dielectric ceramic composition, ceramic capacitor using the same, and method for manufacturing the same
JP3698951B2 (en) Dielectric ceramic composition, ceramic capacitor using the same, and method for manufacturing the same
KR100444225B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
JP2002356371A (en) Dielectric ceramic composition and laminated ceramic capacitor
KR100444221B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
JP3605260B2 (en) Non-reducing dielectric ceramic composition
JPH11340075A (en) Dielectric cermic composition
JP4253652B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT PRODUCED BY USING SAME, AND METHOD FOR PRODUCING MULTILAYER CERAMIC CAPACITOR
JP3373436B2 (en) Ceramic laminated electronic components
KR100452817B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
JPS6136170A (en) Dielectric ceramic composition and manufacture
JPH04260665A (en) Irreducible dielectric ceramic composition
JPH11162775A (en) Dielectric porcelain composition
KR100444220B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
JP3698952B2 (en) Dielectric ceramic composition, ceramic capacitor using the same, and method for manufacturing the same
JP3797057B2 (en) Method for producing dielectric ceramic composition
JP2000313660A (en) Dielectric ceramic composition
JP2000251537A (en) Dielectric ceramic composition
JP2002338353A (en) Dielectric ceramic composition
JP4528919B2 (en) Dielectric porcelain composition and electronic component produced using the same
JP2000313659A (en) Dielectric ceramic composition
JP3599646B2 (en) Dielectric porcelain composition, porcelain capacitor using the same, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080501

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

R150 Certificate of patent or registration of utility model

Ref document number: 5170355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term