JP5168893B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP5168893B2
JP5168893B2 JP2006325192A JP2006325192A JP5168893B2 JP 5168893 B2 JP5168893 B2 JP 5168893B2 JP 2006325192 A JP2006325192 A JP 2006325192A JP 2006325192 A JP2006325192 A JP 2006325192A JP 5168893 B2 JP5168893 B2 JP 5168893B2
Authority
JP
Japan
Prior art keywords
negative electrode
battery
alloy
grid
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006325192A
Other languages
Japanese (ja)
Other versions
JP2008140645A (en
Inventor
幹人 長谷川
義文 久間
一宏 杉江
和成 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006325192A priority Critical patent/JP5168893B2/en
Publication of JP2008140645A publication Critical patent/JP2008140645A/en
Application granted granted Critical
Publication of JP5168893B2 publication Critical patent/JP5168893B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は充電受入性を改善した鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery with improved charge acceptance.

鉛蓄電池は充電不足状態で使用されると、サルフェーションなどにより短寿命になるケースがあり、充電不足を防止するためにも、充電受入性は重要な特性である。とりわけ、近年、燃費向上を目的とした、アイドリングストップ車両が本格的に実用化されつつある。アイドリングストップ車両では、従来の車両に比較して、鉛蓄電池への放電負荷が増大する等、使用条件の変化もあり、このような使用条件に対応するために、ますます充電受入性の重要度が増している。   When lead-acid batteries are used in an insufficiently charged state, there are cases where the life is shortened due to sulfation or the like, and charge acceptability is an important characteristic in order to prevent insufficient charging. In particular, in recent years, idling stop vehicles aiming at improving fuel efficiency are being put into practical use in earnest. In idling stop vehicles, there are changes in usage conditions such as an increased discharge load on lead-acid batteries compared to conventional vehicles, and the importance of charge acceptance is increasing to meet such usage conditions. Is increasing.

そして、鉛蓄電池の充電受入性を向上する目的で、負極活物質中にPbよりも水素過電圧の低い、Sb等の金属元素の添加が有効であることが知られている(例えば特許文献1参照)。   For the purpose of improving the charge acceptability of the lead storage battery, it is known that the addition of a metal element such as Sb having a hydrogen overvoltage lower than that of Pb in the negative electrode active material is effective (see, for example, Patent Document 1). ).

アイドリングストップ車両は、従来の車両と異なり、鉛蓄電池のSOC(充電状態)が100%となる頻度は低く、主として、SOCが85〜95%といったような、100%未満の範囲(中間SOC)で推移する。このような、中間的なSOCを中心として鉛蓄電池を充放電した場合、負極耳の厚みが次第に薄くなる現象が見られる。   Unlike conventional vehicles, idling stop vehicles have a low frequency of lead-acid battery SOC (charged state) of 100%, mainly in a range of less than 100% (intermediate SOC) such as SOC of 85-95%. Transition to. When the lead storage battery is charged / discharged around such an intermediate SOC, a phenomenon in which the thickness of the negative electrode ear gradually decreases is observed.

このような、負極耳に細りが生じる現象は、電池系内のSbの有無に大きく影響を受ける。例えば、特許文献2には、ストラップやセル間接続体、極柱等の鉛蓄電池の内部接続用にPb−Sb合金を用いた場合、このSbが負極耳周辺に析出し、これらの部分の細り現象が促進されることが示されている。また、このような耳細りの現象は、負極の耳の結晶組織にも大きく影響を受け、エキスパンド格子体のような、圧延組織のものでは、鋳造組織を有する鋳造格子に比較して耳細りが進行しやすいという傾向があった。   Such a phenomenon that the negative electrode ear is thin is greatly influenced by the presence or absence of Sb in the battery system. For example, in Patent Document 2, when a Pb—Sb alloy is used for internal connection of a lead storage battery such as a strap, an inter-cell connection body, or a pole pole, this Sb is deposited around the negative electrode ear, and these portions are thinned. It has been shown that the phenomenon is accelerated. In addition, such an edge thinning phenomenon is also greatly affected by the crystal structure of the negative electrode ear, and in the case of a rolled structure such as an expanded lattice, the ear thinness is smaller than that of a cast lattice having a cast structure. There was a tendency to progress easily.

このような、負極耳の細り現象を抑制するために、極柱や、ストラップおよび接続体といった電解液に接触する接続部材、あるいは、正極および負極の格子に用いるPb合金として、Sbを含まないPb合金を用いることが有効である。また、負極格子として鋳造格子を用いることも有効であると考えられる。   In order to suppress the thinning phenomenon of the negative electrode ear, Pb not containing Sb is used as a Pb alloy used in a pole column, a connecting member in contact with an electrolyte solution such as a strap and a connection body, or a lattice of a positive electrode and a negative electrode. It is effective to use an alloy. It is also considered effective to use a cast lattice as the negative electrode lattice.

しかしながら、鋳造格子は、エキスパンド格子と比較して、生産性に極めて劣り、またエキスパンド格子のような薄型格子の作成が困難であるため、鉛蓄電池の軽量化に不利という問題があった。
特開平9−283137号公報 特開2003−346888号公報
However, the cast lattice is extremely inferior in productivity as compared with the expanded lattice, and it is difficult to produce a thin lattice such as the expanded lattice, and thus there is a problem that it is disadvantageous for the weight reduction of the lead storage battery.
JP-A-9-283137 JP 2003-346888 A

しかしながら、電池内の電解液に接する接続部材中にSbを含まないPb合金を用いた場合、電池の充電受入性が極端に低下することが判ってきた。すなわち、接続部材中に含まれるSbが、電解液中に溶出し、負極板上で再析出することによって、電池の充電受け入性が向上しているものと推測される。   However, it has been found that when a Pb alloy that does not contain Sb is used in the connecting member that contacts the electrolyte in the battery, the charge acceptance of the battery is extremely reduced. That is, it is presumed that Sb contained in the connecting member elutes in the electrolytic solution and re-deposits on the negative electrode plate, thereby improving the charge acceptability of the battery.

本発明は、アイドルストップ車両等、中間SOC状態で充電不足ぎみで鉛蓄電池を使用した場合において発生する、負極耳の細り現象を抑制し、かつ、充電受入性の低下による短寿命が抑制された、長寿命の鉛蓄電池を提供するものである。 The present invention suppresses the thinning phenomenon of the negative electrode ear, which occurs when a lead storage battery is used due to insufficient charging in an intermediate SOC state, such as an idle stop vehicle, and the short life due to a decrease in charge acceptability is suppressed. A long-life lead-acid battery is provided.

前記した課題を解決するために、本発明は、アイドリングストップ車両等の中間SOCで充放電される鉛蓄電池において、負極格子および正極格子はいずれもPb−Ca合金の圧延シートをエキスパンド加工した格子体であり、正極板および負極板のそれぞれ同極性極板の耳部を集合溶接するストラップ、前記ストラップから導出されたセル間接続のための接続体、前記ストラップから導出され電池端子に接続された極柱等の接続部材の希硫酸電解液に接触する部分が、いずれもSbを含まないP−Sn合金からなり、前記希硫酸電解液の20℃での密度が1.260g/cm 3 となるように調整し、前記負極格子に連設した前記耳部は圧延加工されており、前記負極格子に充填された負極活物質中に、カーボンを含み、前記カーボンの含有量を化成後の前記負極活物質中のPb質量の0.3〜1.0%に相当する量とした鉛蓄電池を示すものである。 In order to solve the above-described problems, the present invention provides a lead-acid battery that is charged and discharged with an intermediate SOC of an idling stop vehicle or the like, and the negative grid and the positive grid are both a grid body obtained by expanding a rolled sheet of a Pb-Ca alloy. , and the positive electrode plate and each strap set welded ears of the same polarity electrode plates of the negative electrode plate, connecting member for connection between the cells derived from the strap, is derived from the strap electrode connected to the battery terminals portion in contact with the dilute sulfuric acid electrolyte of the connecting member such as a pillar, both made of P b -Sn alloy not including the Sb, density at 20 ° C. of the dilute sulfuric acid electrolyte is between 1.260 g / cm 3 so as to adjust the said ear portions were continuously provided to the negative electrode grid is rolled, the negative electrode active material in which is filled in the negative electrode grid comprises a carbon, including the carbon The lead acid battery which made quantity equivalent to 0.3 to 1.0% of Pb mass in the said negative electrode active material after chemical conversion is shown.

本発明によれば、アイドリングストップ車両等、中間SOCで充放電される鉛蓄電池において、負極耳の細り現象を抑制するとともに、充電受入性に優れた鉛蓄電池を得るという、顕著な効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, the lead storage battery charged / discharged by intermediate | middle SOC, such as an idling stop vehicle, has the remarkable effect of suppressing the thinning phenomenon of a negative electrode ear and obtaining the lead storage battery excellent in charge acceptance.

以下、本発明の実施の形態による鉛蓄電池の構成を説明する。本発明の鉛蓄電池は、負極格子および正極格子はいずれもPb−Ca合金製圧延シートの格子である。特に、負極格子は、Pb−Ca合金の圧延体からなり、負極格子と一体に設けられた集電用の耳を有する。負極格子本体は、圧延体にエキスパンド加工開口加工を施したものとし、負極格子本体と耳は、いずれも圧延方向に引き伸ばされた薄片状の、いわゆる圧延組織を有する。 Hereinafter, the structure of the lead acid battery by embodiment of this invention is demonstrated. In the lead storage battery of the present invention, both the negative electrode lattice and the positive electrode lattice are lattices of a rolled sheet made of Pb-Ca alloy. In particular, the negative electrode grid is made of a rolled body of a Pb—Ca alloy and has current collecting ears provided integrally with the negative electrode grid. Negative electrode grid body, and that has been subjected to the opening process at d Kisupando processed into rolling body, the negative electrode grid body and ears have any flaky that stretched in the rolling direction, so-called rolled structure.

前記した負極格子および正極格子には、いずれもその極性に応じた活物質が充填されるが、特に、負極活物質には、化成され、電池が満充電の状態において、負極活物質としてのPb質量の0.3〜1.0%に相当するカーボンが含まれる。   Both the negative electrode lattice and the positive electrode lattice are filled with an active material corresponding to the polarity. In particular, the negative electrode active material is formed and Pb as a negative electrode active material is formed when the battery is fully charged. Carbon corresponding to 0.3 to 1.0% of the mass is included.

上記の正極板および負極板は、それぞれ同極性同士の極板が、耳でストラップにより、集合溶接される。正極および負極のストラップには、セル間接続のための接続体や、電池端子とストラップとの間の接続のための極柱が設けれる。これらのストラップ、接続体および極柱といった、接続部材は、通常Pb合金で構成されるが、本発明では、特に、これら接続部材の中で、特に、希硫酸電解液と接触する部分を、Sbを含まないP−Sn合金で構成する。なお、本発明の鉛蓄電池は、正極板および負極板の極板面がいずれも電解液に浸漬した状態となっている。 In the positive electrode plate and the negative electrode plate, electrode plates having the same polarity are collectively welded with a strap at the ear. The positive electrode and the negative electrode strap connecting member and for the inter-cell connection, pole pillar provided et al are for connection between the battery terminals and the strap. The connection members such as the strap, the connection body, and the pole column are usually made of a Pb alloy. In the present invention, in particular, a part of the connection member that contacts with the dilute sulfuric acid electrolyte solution is designated as Sb. not including the constituting at P b -Sn alloy. In the lead storage battery of the present invention, the electrode plate surfaces of the positive electrode plate and the negative electrode plate are both immersed in the electrolytic solution.

本発明の鉛蓄電池は、正負両極のストラップ、およびこれらストラップから導出された極柱や接続体といった、接続部材の電解液に接触する部分は、Sbを含まないP−Sn合金で構成されるので、鉛蓄電池を充放電あるいは保管した際に進行する、接続部材からのSbの電解液中への溶出がないLead-acid battery of the present invention, the positive and negative electrodes of the strap, and such pole and connection bodies derived from these strap portions in contact with the electrolyte of the connecting member is formed of a P b -Sn alloy not including the Sb Therefore, there is no elution of Sb from the connecting member into the electrolyte, which proceeds when the lead storage battery is charged / discharged or stored.

したがって、特に負極耳、とりわけ圧延組織を有した負極耳上に、Sbが再析出することによって促進される耳細り現象が抑制される。一方、電池系内にSbを含まないことによる負極の充電受入性の低下を、負極活物質中のカーボン量を、負極活物質中のPb質量の0.3〜1.0%とすることによって抑制するため、全体として、負極の耳における耳細り現象が抑制され、負極充電受入性の低下が抑制された鉛蓄電池を得ることができる。   Therefore, particularly the thinning phenomenon promoted by reprecipitation of Sb on the negative electrode ear, particularly on the negative electrode ear having a rolled structure, is suppressed. On the other hand, the decrease in charge acceptability of the negative electrode due to the absence of Sb in the battery system is achieved by setting the amount of carbon in the negative electrode active material to 0.3 to 1.0% of the mass of Pb in the negative electrode active material. Therefore, as a whole, it is possible to obtain a lead-acid battery in which the thinning phenomenon in the negative electrode ear is suppressed and the decrease in negative electrode charge acceptance is suppressed.

負極の耳細り現象は、鋳造格子等、負極の耳が鋳造組織を有するものは、それほど問題となることはない。この負極の耳細り現象は、特に、Pb−Ca合金からなり、かつ圧延組織を有する耳に顕著であることから、本発明は、負極の耳が、このようなPb−Ca合金の圧延組織を有するものに用いる。   The thinning phenomenon of the negative electrode is not so problematic when the negative electrode has a cast structure such as a cast lattice. Since the edge thinning phenomenon of the negative electrode is particularly noticeable in the ears made of a Pb—Ca alloy and having a rolled structure, the present invention provides the negative electrode ears with such a rolled structure of the Pb—Ca alloy. Used for what you have.

Pb−Ca合金中に含まれるCaは、Sbとは異なり、Pb合金の水素過電圧を低下させることがない。したがって、Pb−Ca合金を負極格子に用いることによって、Pb合金上での水素発生が、Pb−Sb合金よりも抑制されるため、鉛蓄電池における電解液中の水分減少や、自己放電が抑制される。しかしながら、一方では、耳の耳細り現象や、負極の充電受入性の低下が見られる。   Unlike Sb, Ca contained in the Pb—Ca alloy does not lower the hydrogen overvoltage of the Pb alloy. Therefore, by using a Pb—Ca alloy for the negative electrode lattice, hydrogen generation on the Pb alloy is suppressed more than that of the Pb—Sb alloy, and therefore, moisture reduction in the electrolyte solution and self-discharge in the lead storage battery are suppressed. The However, on the other hand, the ear thinning phenomenon and the charge acceptability of the negative electrode are reduced.

本発明では、接続部材の電解液に接触する部分を、Sbを含まないPb−Sn合金とし、かつ負極活物質中のカーボン含有量を、化成後の負極活物質のPb質量に対して0.3〜1.0%とすることで、負極の耳細り現象が抑制され、良好な充電受入性を有した鉛蓄電池を得ることができる。 In the present invention, the portion in contact with the electrolytic solution of the connecting member, and Pb -Sn alloy containing no Sb, and carbon content of the anode active material, with respect to Pb mass of the negative electrode active substance after the chemical conversion 0 By setting the content to 3 to 1.0%, the lead thinning phenomenon of the negative electrode is suppressed, and a lead storage battery having good charge acceptability can be obtained.

本実施例では、本発明例および比較例による鉛蓄電池(以下、電池)を作成し、充電受入性と負極耳細り現象の再現試験を行った。   In this example, lead acid batteries (hereinafter referred to as “battery”) according to the present invention and comparative examples were prepared, and a reproducibility test of charge acceptability and negative electrode ear thinning was performed.

本実施例では、負極活物質中のカーボン含有量および接続部材(正負両極のストラップ、接続体および極柱)のPb合金の種類を種々変更させることによって、JIS D5301(始動用鉛蓄電池)に規定する80D26形の電池を作成した。   In this example, the carbon content in the negative electrode active material and the type of Pb alloy of the connecting member (straps for positive and negative electrodes, connecting body and pole column) are variously changed, and are specified in JIS D5301 (lead storage battery for starting). A 80D26 type battery was made.

本実施例の電池に用いた正極板は、Pb−1.6質量%Sn−0.06質量%Caの厚み1.0mmの圧延鉛合金シートをエキスパンド加工して得たエキスパンド格子に、公知の鉛蓄電池正極活物質ペーストを充填し、熟成乾燥して得たものである。このペーストは、酸化度75%のボールミル式鉛粉を水および希硫酸で混練したものである。   The positive electrode plate used in the battery of this example is known as an expanded lattice obtained by expanding a rolled lead alloy sheet of Pb-1.6 mass% Sn-0.06 mass% Ca with a thickness of 1.0 mm. A lead-acid battery positive electrode active material paste is filled and aged and dried. This paste is obtained by kneading ball mill type lead powder having an oxidation degree of 75% with water and dilute sulfuric acid.

本実施例の電池に用いた負極板は、以下の2種類の負極格子に、カーボン含有量がそれぞれ異なる鉛蓄電池負極活物質ペーストを充填し、熟成乾燥して得たものである。   The negative electrode plate used in the battery of this example was obtained by filling the following two types of negative electrode lattices with lead-acid battery negative electrode active material pastes having different carbon contents and aging and drying.

負極格子としては、Pb−0.2質量%Sn−0.07質量%Ca合金からブックモールド式鋳造によって得た鋳造格子と、このPb合金から得た厚み10.0mmの鋳造スラブを段階的に0.7mmの厚みにまで圧延して得た、圧延鉛合金シートにエキスパンド加工を施すことによって得たエキスパンド格子のいずれか一方を用いた。   As a negative electrode grid, a cast grid obtained by book mold type casting from a Pb-0.2 mass% Sn-0.07 mass% Ca alloy and a cast slab having a thickness of 10.0 mm obtained from this Pb alloy are stepwise. Any one of the expanded lattices obtained by subjecting a rolled lead alloy sheet obtained by rolling to a thickness of 0.7 mm to an expanding process was used.

負極活物質ペーストとしては、正極で用いたものと同様のボールミル式鉛粉に、リグニンスルホン酸ナトリウム、硫酸バリウムおよび種々の添加量でカーボンを添加し、水と希硫酸で混練したものである。リグニンスルホン酸ナトリウムの添加量は、鉛粉100kgあたり0.5kgであり、硫酸バリウムの添加量は、鉛粉100kgあたり1kgとした。カーボン量については、化成によって満充電状態となった負極活物質に含まれるPb質量に対して、0(カーボン含有なし)、0.1%、0.3%、0.7%、1.0%、1.5%および3.0%に相当する量とした。   As the negative electrode active material paste, sodium lignin sulfonate, barium sulfate and carbon are added in various addition amounts to the same ball mill type lead powder as that used for the positive electrode, and kneaded with water and dilute sulfuric acid. The amount of sodium lignin sulfonate added was 0.5 kg per 100 kg of lead powder, and the amount of barium sulfate added was 1 kg per 100 kg of lead powder. Regarding the amount of carbon, 0 (no carbon content), 0.1%, 0.3%, 0.7%, 1.0% with respect to the Pb mass contained in the negative electrode active material that has been fully charged by chemical conversion. %, 1.5% and 3.0%.

また、本実施例では、希硫酸電解液に接する、極柱、接続体および正負のストラップをSbを含まない、Pb−2.0質量%Sn合金もしくは、Sbを含むPb−2.5質量%Sb−0.25質量%As合金を用いた。   Further, in this example, the pole column, the connection body, and the positive and negative straps that are in contact with the dilute sulfuric acid electrolyte solution do not contain Sb, Pb-2.0 mass% Sn alloy, or Pb-2.5 mass% containing Sb. An Sb-0.25 mass% As alloy was used.

さらに、セパレータとしては、1μm以下の平均細孔径を有した多孔性ポリエチレンの袋状セパレータを用い、その内部に正極板を収納する構造とした。そして、電解液は密度1.260g/cm3(20℃換算)の希硫酸を用い、ストラップ上面より上方20mmの位置とした。この状態で、極柱の下半分、極板、接続体とストラップの全てが電解液に浸漬した状態となっている。 Further, as the separator, a bag-like separator made of porous polyethylene having an average pore diameter of 1 μm or less was used, and the positive electrode plate was accommodated therein. And the electrolyte solution used the dilute sulfuric acid of density 1.260g / cm < 3 > (20 degreeC conversion), and made it 20 mm above the strap upper surface. In this state, the lower half of the pole pole, the electrode plate, the connection body and the strap are all immersed in the electrolyte.

上記の正極板と負極板および接続部材を、表1に示した組み合わせで組み立てることによって、本実施例による鉛蓄電池を作成した。なお、負極格子として鋳造格子を用いた電池A1〜A7および電池C1〜C7の質量は18.8kg、エキスパンド格子を用いた電池B1〜B7および電池B1〜B7の質量は18.1kgであった。   By assembling the positive electrode plate, the negative electrode plate, and the connecting member in the combinations shown in Table 1, a lead storage battery according to this example was produced. The masses of the batteries A1 to A7 and the batteries C1 to C7 using the cast grid as the negative grid were 18.8 kg, and the masses of the batteries B1 to B7 and the batteries B1 to B7 using the expanded grid were 18.1 kg.

Figure 0005168893
Figure 0005168893

表1で示した各電池について、寿命試験、負極の耳細り再現試験および減液試験を行った。寿命試験条件は、電池の充電受入性と強い相関があり、また、負極の耳細り現象が再現される試験方法とした。   Each battery shown in Table 1 was subjected to a life test, an ear thinning reproduction test, and a liquid reduction test. The life test condition has a strong correlation with the battery charge acceptability, and the test method reproduces the thinning phenomenon of the negative electrode.

(寿命試験および耳細り再現試験)
本実施例においては、寿命試験と耳細り再現試験を同時に評価できる試験方法とした。すなわち、75℃雰囲気において、各試験電池を25A放電4分と、13.8V定電圧充電(最大充電電流25A)10分充電とを480サイクル繰り返し、その後、各試験電池を500Aで30秒間放電したときの放電30秒目電圧を計測する。そして、各試験電池を満充電状態としたのち、再び、前記した充放電サイクルと500A放電とを繰り返して行い、500A放電時の放電30秒目電圧が7.2Vまで低下した時点を寿命サイクル数とした。
(Life test and ear thinning reproduction test)
In the present example, a test method capable of simultaneously evaluating the life test and the ear thinning reproduction test was adopted. That is, in a 75 ° C. atmosphere, each test battery was repeatedly discharged for 480 cycles of 25 A discharge for 4 minutes and 13.8 V constant voltage charge (maximum charge current 25 A) for 10 minutes, and then each test battery was discharged at 500 A for 30 seconds. The voltage at the time of discharge 30 seconds is measured. And after making each test battery into a full charge state, the above-mentioned charge / discharge cycle and 500 A discharge are repeated, and the time when the discharge 30 second voltage at the time of 500 A discharge is reduced to 7.2 V is the number of life cycles. It was.

そして、寿命サイクルに到達した電池を分解し、負極の耳を取り出し、その厚み測定を行った。なお、負極の耳の初期厚みは、エキスパンド格子で0.7mm、鋳造格子で1.3mmであり、それぞれの初期厚みから寿命サイクル後の厚みを差し引いた値を耳細り量として算出した。   And the battery which reached the life cycle was disassembled, the ear | edge of the negative electrode was taken out, and the thickness measurement was performed. The initial thickness of the negative electrode ear was 0.7 mm for the expanded lattice and 1.3 mm for the cast lattice, and the value obtained by subtracting the thickness after the life cycle from each initial thickness was calculated as the amount of thinning.

(減液試験)
減液試験は、各電池を満充電状態とした後、40℃雰囲気下で、14.4V定電圧充電(最大充電電流25A)672時間連続して行い、定電圧充電前後の電池質量差を減液量として計測した。
(Liquid reduction test)
The liquid reduction test was conducted for 14 hours at 14.4V constant voltage (maximum charging current 25A) in a 40 ° C atmosphere after each battery was fully charged, reducing the battery mass difference before and after constant voltage charging. It was measured as the liquid volume.

上記した寿命試験および耳細り再現試験結果を表2に示す。なお、減液量については、電池D1の減液量に対する百分率で表した。   Table 2 shows the results of the above life test and ear thinning reproduction test. In addition, about the liquid reduction amount, it represented with the percentage with respect to the liquid reduction amount of the battery D1.

Figure 0005168893
Figure 0005168893

表2に示した結果から、接続部材にSbを含むPb−Sb合金を用いた電池C1〜C7および電池D1〜D7は、接続部材にSbを含まないPb−Sn合金を用いた電池A1〜A7および電池B1〜B7に比較して、減液量が大きいことがわかる。また、特に、負極活物質中のカーボン量が0.3%を越えた領域では、減液量が相乗的に増加している。   From the results shown in Table 2, the batteries C1 to C7 and the batteries D1 to D7 using the Pb—Sb alloy containing Sb as the connecting member are the batteries A1 to A7 using the Pb—Sn alloy containing no Sb as the connecting member. It can be seen that the amount of liquid reduction is larger than those of batteries B1 to B7. In particular, in the region where the amount of carbon in the negative electrode active material exceeds 0.3%, the amount of liquid reduction increases synergistically.

耳細り量に関しては、接続部材にPb−Sb合金を用いた電池であり、鋳造格子を用いた電池C1〜C7は、それほど耳細り量が多くなく、実用上問題のない範囲であった。しかし、エキスパンド格子を用いた電池、特に、カーボン量が0.3%を越える電池D2〜D7では、耳細り量が急激に相乗的に増加する傾向にあった。接続部材中のSbの存在、負極活物質中のカーボン量および負極耳の結晶組織によって、負極の耳細り現象が相乗的に現れることがわかる。負極に用いたエキスパンド格子の耳の初期厚みは0.7mmであるので、0.2〜0.4mmといった量の耳細りでは、集電効率が急激に低下し、それとともに、電池の寿命サイクル数も、鋳造格子を用いた電池に比較して、同一カーボン量において、減少する傾向にあった。   Regarding the amount of ear thinning, the batteries using a Pb—Sb alloy as a connecting member, and the batteries C1 to C7 using a cast lattice did not have a large amount of ear thinning and had a practically no problem. However, in the battery using the expanded lattice, particularly in the batteries D2 to D7 in which the carbon amount exceeds 0.3%, the ear thinning amount tended to increase rapidly and synergistically. It can be seen that the thinning phenomenon of the negative electrode appears synergistically depending on the presence of Sb in the connecting member, the amount of carbon in the negative electrode active material, and the crystal structure of the negative electrode ear. Since the initial thickness of the expanded grating ear used for the negative electrode is 0.7 mm, current collection efficiency decreases drastically when the amount of ear thinness is 0.2 to 0.4 mm. However, as compared with the battery using the cast grid, there was a tendency to decrease at the same carbon amount.

一方、本発明例の電池B3〜B5は、他の比較例の電池に比較して、寿命特性に優れ、負極の耳細り量も低く抑制され、かつ減液量も低く抑制されていた。なお、比較例の電池B2では、急激に充電受入性の低下からくる充電不足によって短寿命となることから、負極活物質のカーボン含有量は0.3%(活物質のPb質量基準)以上とする。ただし、カーボン含有量を1.5%に増加させると、減液量が増加し、それに伴って寿命特性も若干低下するため、カーボン含有量は、負極活物質中のPb質量に対して1.0%以下とする。   On the other hand, the batteries B3 to B5 of the example of the present invention were superior in the life characteristics, the amount of thinning of the negative electrode was suppressed to be low, and the amount of liquid reduction was suppressed to be low as compared with the batteries of other comparative examples. In addition, in the battery B2 of the comparative example, since the battery life is shortened due to insufficient charge resulting from a sudden decrease in charge acceptability, the carbon content of the negative electrode active material is 0.3% (based on the Pb mass of the active material) or more. To do. However, when the carbon content is increased to 1.5%, the amount of liquid decrease increases, and accordingly the life characteristics slightly decrease. Therefore, the carbon content is 1. with respect to the Pb mass in the negative electrode active material. 0% or less.

なお、本発明例の電池B3〜B5の負極格子をエキスパンド格子から鋳造格子に変更した比較例の電池A3〜A5は、本発明例の電池B3〜B5とほぼ同等の寿命特性を有しているが、耳細り量と減液量は、本発明例の電池B3〜B5が、比較例の電池A3〜5に比較して、より耳細り量と減液量が抑制されていた。   In addition, the batteries A3 to A5 of the comparative example in which the negative electrode grid of the batteries B3 to B5 of the example of the present invention is changed from the expanded grid to the cast grid have substantially the same life characteristics as the batteries B3 to B5 of the example of the present invention. However, the amount of ear thinning and the amount of liquid reduction were more suppressed in the batteries B3 to B5 of the present invention than in the batteries A3 to 5 of the comparative example.

しかしながら、前記したように、鋳造格子は、エキスパンド格子に比較して生産性が低い。また格子の薄型化も制限されるため、本実施例においては、エキスパンド格子を用いた電池の質量は18.1kgであるが、鋳造格子を用いた電池の質量は18.8kgであり、電池の軽量化の面、および生産性の低下およびPb使用量の増加による電池製造価格の面で好ましくない。   However, as described above, the cast lattice has lower productivity than the expanded lattice. In addition, since the thickness of the grid is limited, in this example, the mass of the battery using the expanded grid is 18.1 kg, but the mass of the battery using the cast grid is 18.8 kg. It is not preferable in terms of weight reduction, and in terms of battery manufacturing cost due to a decrease in productivity and an increase in Pb usage.

本発明によれば、減液量抑制、電池の軽量化、生産性向上といった、Pb−Ca合金のエキスパンド格子の利点を活かしつつ、エキスパンド格子を用いたときの問題点、すなわち、負極の耳の細り現象を顕著に抑制し、充電受入性の向上による長寿命化が可能となるという、顕著な効果を奏する。   According to the present invention, while utilizing the advantages of the expanded lattice of the Pb-Ca alloy, such as suppression of liquid reduction, weight reduction of the battery, and improvement of productivity, problems when using the expanded lattice, that is, the ear of the negative electrode. The remarkable effect is achieved that the thinning phenomenon is remarkably suppressed and the life can be extended by improving the charge acceptance.

本発明は、特に、液式鉛蓄電池で発生する負極耳細り現象が顕著に抑制される戸ともに、充電受入性向上による寿命改善効果が得られることから、自動車の始動用をはじめとする、様々な鉛蓄電池に好適である。   In particular, the present invention provides a life improvement effect by improving the charge acceptability of the door in which the negative electrode ear thinning phenomenon generated in the liquid lead-acid battery is remarkably suppressed. It is suitable for a lead acid battery.

Claims (1)

アイドリングストップ車両等の中間SOCで充放電される鉛蓄電池において、負極格子および正極格子はいずれもPb−Ca合金の圧延シートをエキスパンド加工した格子体であり、正極板および負極板のそれぞれ同極性極板の耳部を集合溶接するストラップ、前記ストラップから導出されたセル間接続のための接続体、前記ストラップから導出され電池端子に接続された極柱等の接続部材の希硫酸電解液に接触する部分が、いずれもSbを含まないP−Sn合金からなり、前記希硫酸電解液の20℃での密度が1.260g/cm 3 となるように調整し、前記負極格子に連設した前記耳部は圧延加工されており、前記負極格子に充填された負極活物質中に、カーボンを含み、前記カーボンの含有量を化成後の前記負極活物質中のPb質量の0.3〜1.0%に相当する量とした鉛蓄電池。 In a lead storage battery that is charged and discharged with an intermediate SOC such as an idling stop vehicle, both the negative electrode grid and the positive electrode grid are grid bodies obtained by expanding a rolled sheet of a Pb-Ca alloy , and the positive polarity plate and the negative electrode plate have the same polarity. A strap for collectively welding the ears of the plate, a connection body for connection between cells derived from the strap, and a dilute sulfuric acid electrolyte solution of a connecting member such as a pole post derived from the strap and connected to a battery terminal portion are both made of P b -Sn alloy not including the Sb, density at 20 ° C. of the dilute sulfuric acid electrolyte was adjusted to be 1.260 g / cm 3, and continuously provided to the negative electrode grid the ears are rolling, the negative electrode grid anode active material in filling the include carbon, Pb mass of the negative active material during subsequent chemical content of the carbon Lead-acid battery with an amount corresponding to 0.3 to 1.0% of the above.
JP2006325192A 2006-12-01 2006-12-01 Lead acid battery Expired - Fee Related JP5168893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325192A JP5168893B2 (en) 2006-12-01 2006-12-01 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325192A JP5168893B2 (en) 2006-12-01 2006-12-01 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2008140645A JP2008140645A (en) 2008-06-19
JP5168893B2 true JP5168893B2 (en) 2013-03-27

Family

ID=39601902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325192A Expired - Fee Related JP5168893B2 (en) 2006-12-01 2006-12-01 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5168893B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522444B2 (en) 2008-09-22 2014-06-18 株式会社Gsユアサ Lead acid battery
US9553335B2 (en) 2010-12-21 2017-01-24 Hitachi Chemical Company, Ltd. Lead-acid battery
CN103403933B (en) * 2011-05-12 2016-07-06 松下知识产权经营株式会社 Lead-acid battery anode and lead battery
JP5445655B2 (en) * 2012-10-25 2014-03-19 新神戸電機株式会社 Lead acid battery
JP2014157703A (en) * 2013-02-15 2014-08-28 Panasonic Corp Lead accumulator
JP6070684B2 (en) * 2014-12-24 2017-02-01 株式会社Gsユアサ Control valve type lead acid battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151617A (en) * 2001-11-14 2003-05-23 Japan Storage Battery Co Ltd Lead-acid battery
JP2003346790A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd Lead acid storage battery
JP2006114417A (en) * 2004-10-18 2006-04-27 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP4904686B2 (en) * 2004-11-25 2012-03-28 パナソニック株式会社 Lead acid battery
JP4515902B2 (en) * 2004-12-27 2010-08-04 古河電池株式会社 Lead acid battery
JP4396527B2 (en) * 2005-01-11 2010-01-13 新神戸電機株式会社 Lead acid battery

Also Published As

Publication number Publication date
JP2008140645A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP5168893B2 (en) Lead acid battery
JP5858048B2 (en) Lead acid battery
JP4515902B2 (en) Lead acid battery
JP5790975B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP4433593B2 (en) Control valve type lead acid battery
JP4356321B2 (en) Lead acid battery
JP4892827B2 (en) Lead acid battery
WO2017110585A1 (en) Lead storage battery
JP4896392B2 (en) Lead acid battery
JP4470381B2 (en) Lead acid battery
JP2012138331A (en) Lead storage battery and idling stop vehicle
JP2002075379A (en) Lead-acid battery
JP2007305370A (en) Lead storage cell
JP3764978B2 (en) Manufacturing method of lead acid battery
JP6115841B2 (en) Lead acid battery
JP2006114416A (en) Lead-acid battery
JP2019207786A (en) Lead acid battery
JP2003317711A (en) Formation method of lead-acid battery
JPH0869811A (en) Lead-acid battery
JP2003346790A (en) Lead acid storage battery
JP2596273B2 (en) Anode plate for lead-acid battery
JP4374626B2 (en) Lead acid battery
JP2004079198A (en) Lead accumulator
JP2006202584A (en) Lead-acid battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees